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ABSTRACT
In this paper, we present the design and implementation methods of quarter-wavelength resonators accommodating Beltrami standing waves
with parallel electric and magnetic (E∥H) fields. The resonator is bounded by the quarter-wavelength longitudinal electromagnetic conductor
(LEMC), the circumferential electromagnetic conductor (CMEC), and the radial electromagnetic conductor (REMC). The LEMC, CEMC,
and REMC boundaries are artificially implemented by the circumferentially aligned corrugation, concentrically aligned circular fins, and
axisymmetrically aligned radial fins, respectively. The coupling control methods by introducing slots in the CEMC and REMC with the
external TM01 and TE01 circular waveguides are presented. We design the quarter-wavelength resonators with the implemented LEMC,
CEMC, and REMC boundaries with controlled external couplings and numerically demonstrate their E∥H properties, which confirms the
validity of the proposed design method.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0138601

I. INTRODUCTION

The Beltrami cylindrical cavity resonator whose resonant mode
has a unique property of the spatially and temporally parallel electric
and magnetic fields has been proposed.1 The fields in the Beltrami
cylindrical cavity resonator are represented as

E = e−iωtE0[
β
kc

J1(kcρ) sin(βz)eρ ±
k0

kc
J1(kcρ) cos(βz)eφ

+ J0(kcρ) cos(βz)ez], (1)

H = − ie−iωtH0[
β
kc

J1(kcρ) sin(βz)eρ ±
k0

kc
J1(kcρ) cos(βz)eφ

+ J0(kcρ) cos(βz)ez], (2)

where a is the radius of the cavity, k0 is the wavenumber number
in vacuum, kc is the cut-off wavenumber, β is the phase constant,
and the relationship β =

√
k0

2 − kc
2 holds. The resonant fields of

Eqs. (1) and (2) are a superposition of the TM01 and its electro-
magnetically dual TE standing waves with the same amplitudes and

±π/2 spatial phase difference1 and are spatially and temporally par-
allel with each other.2–13 The existence of the resonant modes in
the cavity resonator perfectly isolated from the external circuits
has been numerically confirmed. In order to excite the resonator
in practical use, excitation schemes with (a) compatibility with the
Beltrami fields and (b) individual controllability of TM and TE
resonances are indispensable; however, the physical implementa-
tion and design methods of the excitation scheme have not been
proposed yet.

In this paper, we propose an implementation method for the
Beltrami resonators with individual TM and TE coupling con-
trol functionalities. According to Eqs. (1) and (2), the electric and
magnetic fields in the transverse plane have only circumferential
components Eφ and Hφ at βz = 0, whereas they have only radial com-
ponents Eρ and Hρ at βz = π/2. Exploiting this fact, we propose an
excita8ion method by introducing a quarter-wavelength resonator
with complementary artificial boundaries that are compatible with
the Beltrami fields with individual controllability. In the following,
the implementation methods of the quarter-wavelength resonator
and the artificial boundaries are presented, and the E∥H Beltrami
field generation is demonstrated.
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II. BELTRAMI RESONATOR WITH COUPLING CONTROL
FUNCTIONALITY
A. Quarter-wavelength Beltrami resonators

Figure 1 shows the proposed Beltrami resonator with indepen-
dent TM and TE coupling control functionalities. The resonator is a
LEMC waveguide terminated by singular boundary conditions, i.e.,
(a) a circumferential electromagnetic conductor (CEMC) enforcing
Eφ = 0 and Hφ = 0 (presented in the previous study1) and (b) a radial
electromagnetic conductor (REMC) enforcing Eρ = 0 and Hρ = 0
(presented in this paper). The CEMC boundary operates as open-
and short-circuited boundaries for TM and TE modes, respectively,
whereas the REMC boundary operates as short- and open-circuited
boundaries for TM and TE modes, respectively. This leads to the
quarter-wavelength Beltrami resonant field.

The CEMC and REMC boundary conditions can be artificially
implemented with the coupling control functionality of conven-
tional TM01 and TE01 circular waveguides, respectively. It is noted
that the coupling coefficient designs to generate the Beltrami fields
are not trivial since the TM and TE field distributions differ and their
unloaded Qs are not identical.

Figure 2 shows the implemented Beltrami resonator with the
quarter-wavelength LEMC waveguide, the CEMC component, and
the REMC component. The LEMC waveguide is implemented by
circumferential corrugation.1 The design methods of the CEMC and
REMC components are presented in the following.

B. Circumferential electromagnetic conductor
with coupling control functionality

The CEMC boundary is implemented by concentrically aligned
circular fins with depth dCEMC and thickness tCEMC shown in
Fig. 2(c). The circular fin depth dCEMC is supposed to be λ0/4 so
that the incident TM and TE modes can be reflected with the reflec-
tion coefficients of 1 and −1, respectively. This results in Eφ = 0 and
Hφ = 0 on the surface.

This component of Fig. 2(c) has coupling control functional-
ity with an external TM01 circular waveguide with the narrow arc
slots axisymmetrically aligned at the bottom. The coupling coeffi-
cient, κTM, can be tuned by changing the slot width wCEMC

s , the slot
thickness tCEMC

s , the arc radius ρCEMC
s , the arc angle φCEMC

s , and the
number of the slots NCEMC

s .

FIG. 1. Quarter-wavelength E∥H Beltrami resonator composed of the LEMC wave-
guide and the CEMC/REMC components. The resonator is coupled to TM and TE
feeding waveguides via small apertures in the CEMC and REMC components,
respectively. κTM and κTE are the coupling coefficients from the external TM01 and
TE01 waveguides, respectively.

FIG. 2. Quarter-wavelength Beltrami resonator implementation cut on the plane,
including the axis. (Only a half portion is shown.) (a) The general view. (b) The
LEMC waveguide with the length L. a is the inner radius and dLEMC is the corruga-
tion depth. (c) The CEMC boundary implementation. dCEMC is the fin depth, tCEMC
is the fin thickness, wCEMC

s is the slot width, tCEMC
s is the slot thickness, ρCEMC

s is
the arc radius, and φCEMC

s is the arc angle. (d) The REMC boundary implementa-
tion. b is the center hole radius, dREMC is the fin depth, tREMC is the fin thickness,
wREMC

s is the slot width, tREMC
s is the slot thickness, ρREMC

s is the arc radius, and
φREMC

s is the arc angle. The dashed half-circles in (a), (c), and (d) represent the
periphery of the feeding circular waveguides.

C. Radial electromagnetic conductor with coupling
control functionality

The REMC boundary is implemented by radially aligned fins
in a short-circuited LEMC waveguide, as shown in Fig. 2(d). The
thickness of the fin tREMC is supposed to be sufficiently smaller than
the wavelength so that the incoming TE wave with the orthogonal
electric field pattern toward the radial fins penetrates the REMC
boundary on the surface and is reflected at the bottom. The depth
of the fin dREMC is chosen to be π/(2β), where β is the phase con-
stant of the TE wave inside the REMC, which is identical to that
of the TE wave in the resonator. Therefore, the incoming TE wave
is reflected with the reflection coefficient of ei0 at the REMC sur-
face, whereas the incoming TM wave is reflected with the reflection
coefficient of eiπ at the REMC surface due to the radial fins. This
leads to Eρ = 0 and Hρ = 0 on the surface. Incidentally, since the
electric field of the incoming TE wave on the axis is zero, the con-
ductor in the region 0 ≤ ρ ≤ b (b≪ a) is removed for fabrication
convenience.
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This device of Fig. 2(d) also has the coupling control functional-
ity with an external TE01 circular waveguide with the narrow radial
slots axisymmetrically aligned at the bottom. The coupling coeffi-
cient, κTE, can be determined by choosing the slot width wREMC

s , the
slot length lREMC

s , the radial position ρREMC
s , the slot thickness tREMC

s ,
and the number of the slots NREMC

s .

III. DESIGN METHOD
An E∥H Beltrami field is theoretically obtained as a superpo-

sition of the TM and TE modes with the same amplitude, i.e., with
identical TM and TE stored energies in the resonator. However, in
reality, it is not trivial to store the identical TM and TE mode ener-
gies in the proposed resonator structure since the effective LEMC
radii differ for the TM and TE modes, and the TM and TE fields
distribute differently in the CEMC and REMC components as well.
Here, we theoretically derive the E∥H resonant condition based on
circuit theory.

A. Equivalent circuit model for the Beltrami resonator
We introduce two individual equivalent circuits for the orthog-

onal TM and TE modes, each with a series RLC resonator coupled to
an external feeding line shown in Fig. 3. Let us refer to the TM and
TE feeding lines as Ports 1 and 2, respectively. In the TM resonator
of Fig. 3(a), the resonator end on the Port 2 side is short-circuited
since the TM mode is perfectly reflected at the surface of the REMC
boundary on the Port 2 side with a reflection coefficient of −1. The
resonator end on the Port 1 side is coupled to the external TM
feeding line via an ideal transformer with a turns ratio 1 : nTM. In
contrast, for the TE resonator of Fig. 3(b), the resonator end in the
Port 1 side is short-circuited since the TE mode is perfectly reflected
at the surface of the CEMC boundary in the Port 1 side with the
reflection coefficient of −1. The resonator end in the Port 2 is cou-
pled to the external TE feeding line via an ideal transformer with
a turns ratio 1 : nTE as well. It is noted that the resistance in each

FIG. 3. Equivalent circuits for (a) the TM resonance and for (b) the TE resonance.
The TM equivalent circuit is coupled to the feeding line with the characteristic
impedance ZTM

0 via the ideal transformer with a turns ratio of 1 : nTM. The TE
equivalent circuit is coupled to the feeding line with the characteristic impedance
ZTE

0 via the ideal transformer with a turns ratio of 1 : nTE. Ports 1 and 2 are
assigned on the sides of the TM and TE feeding lines, respectively.

circuit includes all the losses in the resonator and the CEMC and
REMC components.

B. E∥H condition
In order to obtain the E∥H condition, let us first calculate the

stored energies in the TM and TE resonators. According to equiva-
lent circuits in Fig. 3, the unloaded Qs for the TM and TE resonators
are readily obtained by

QTM
0 = ωTM

0 LTM

RTM
= 1

ωTM
0 CTMRTM

, (3)

QTE
0 =

ωTE
0 LTE

RTE
= 1

ωTE
0 CTERTE

, (4)

where LTM and CTM are the inductance and capacitance in the TM
resonator, respectively, and LTE and CTE are the inductance and
capacitance in the TE resonator, respectively, and ωTM

0 and ωTE
0

are the resonant angular frequencies of the TM and TE resonators,
respectively. To realize the E∥H fields, the TM and TE resonant
frequencies ωTM

0 and ωTE
0 have to be identical, i.e.,

ωTM
0 = ωTE

0 =
1√

LTMCTM
= 1√

LTECTE
≡ ω0. (5)

Under this condition, the TM and TE stored energies at the
resonance, UTM and UTE, are given by

UTM =
QTM

0 PTM
in

ω0
= 4QTM

0 κTM

ω0(1 + κTM)2 P1, (6)

UTE =
QTE

0 PTE
in

ω0
= 4QTE

0 κTE

ω0(1 + κTE)2 P2, (7)

where P1 and P2 are the available powers of the sources of Port 1 and
Port 2, respectively, and PTM

in and PTE
in are the powers flowed into the

TM and TE resonators, respectively, and κTM and κTE are coupling
coefficients of the TM and TE external circuits given by

κTM =
n2

TMZTM
0

RTM
, (8)

κTE =
n2

TEZTE
0

RTE
. (9)

Incidentally, PTM
in and PTE

in are written with the reflection coefficients
∣S11(ω0)∣ and ∣S22(ω0)∣ as

PTM
in = (1 − ∣S11(ω0)∣2)P1, (10)

PTE
in = (1 − ∣S22(ω0)∣2)P2. (11)

Therefore, according to Eqs. (6) and (7) with P1 = P2, the ratio of
UTM and UTE is given by

UTE

UTM
= κTE

κTM

(1 + κTM)2

(1 + κTE)2
QTE

0

QTM
0

. (12)
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In reality, the stored energies of Eqs. (6) and (7) are distributes
not only inside the resonator but also in the CEMC and REMC
components. In addition, the stored energies inside the TM and
TE resonators differ due to the artificial LEMC boundary imple-
mentation with the corrugation. As for the TM resonator, the
energy is stored in the resonator and the CEMC component. The
energy ratio in the resonator is expressed by UTM/(1 + αTM), where
αTM is the ratio between the energy in the resonator and that in
the CEMC component [see Fig. 4(a)]. As for the TE resonator,
the energy is stored inside the resonator, the REMC component,
and the LEMC corrugation. The energy ratio in the resonator is
expressed by UTE/(2(1 + αTE)), where αTE is the ratio between the
energy in the resonator and that in the LEMC corrugation consid-
ering the fact that the energy in the REMC component is identical
to the total energy in the resonator and the LEMC corrugation
[see Fig. 4(b)].

The E∥H Beltrami field occurs when the TM and TE energies
inside the resonator except for the LEMC corrugation agree with
each other. Consequently, we obtain

UTM

1 + αTM
= UTE

2(1 + αTE)
. (13)

FIG. 4. The energy distributions of (a) the TM mode and (b) the TE mode. The
total energies in the TM and TE mode resonances are denoted as UTM and UTE,
respectively. The TM stored energy in the resonator region enclosed by the blue
line is UTM/(1 + αTM). The TE stored energy in the resonator region enclosed by
the red line is UTE/(2(1 + αTE)). The E∥H Beltrami resonance occurs under the
condition UTM/(1 + αTM) = UTE/(2(1 + αTE)).

Note that the stored energy ratios αTM and αTE are theoretically
obtained from the mode matchings at the CEMC surface and the
LEMC corrugation surface, respectively, as

αTM =
a2β3λ0

2π(a2β2 + p01
2)

(14)

αTE =
(1 −Dcor)π

2p01
. (15)

See Appendix. By applying Eqs. (14) and (15) into Eq. (13),
UTE/UTM is determined from the resonator radius a and the LEMC
corrugation duty Dcor as

UTE

UTM
= 2 + (1 −Dcor)π/p01

1 + (1 − p2
01λ2

0/(4a2π2)) 2
3
≡ U∗TE

U∗TM
, (16)

where λ0 is the wavelength in free space and p01 is the first zero of
zeroth first kind Bessel function J0. Therefore, the E∥H condition
for κTM and κTE is obtained by applying Eq. (16) into Eq. (12) as

κTE

κTM

(1 + κTM)2

(1 + κTE)2 =
U∗TEQTM

0

U∗TMQTE
0

. (17)

Note that any combination of κTM and κTE satisfying Eq. (17)
gives an E∥H field. Figure 5 depicts the relationship between κTM and
κTE of Eq. (17) for specific U∗TEQTM

0 /(U∗TMQTE
0 ) values of 0.125, 0.25,

0.5, 1, 2, 4, and 8. Note that the value of U∗TEQTM
0 /(U∗TMQTE

0 ) is deter-
mined directly from the resonator structure and material. It is also
noted that the relationship between κTM and κTE is linear for κTM and
κTE sufficiently smaller than unity, whereas the relationship deviates
from a linear one depending on the U∗TEQTM

0 /(U∗TMQTE
0 ) value.

FIG. 5. The E∥H resonant condition for the TM and TE coupling coefficients κTM
and κTE for the specific U∗TEQTM

0 /(U
∗
TMQTE

0 ) values of 0.125 (blue dotted line),
0.25 (blue dashed line), 0.5 (blue solid line), 1 (black solid line), 2 (red solid line),
4 (red dashed line), and 8 (red dotted line).
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IV. NUMERICAL SIMULATIONS
A. Resonator design

We first determine the structure of a Beltrami resonator com-
posed of the LEMC waveguide and CEMC/REMC components
without coupling slots. We determine the resonant frequency to
be 2.38 GHz and the lateral LEMC boundary to be implemented
with 64 φ-segments of corrugation with the duty ratio Dcor = 0.2
considering realistic implementations. Then, by using a commercial
finite element method based simulator, the High Frequency Struc-
ture Simulator (HFSS), we numerically obtain the effective LEMC
radius a considering the fringing effect as 62.5 mm with a corruga-
tion depth of 41.64 mm so that the TM and TE cut-off frequencies
coincide with each other.1 In the simulation, we use the conduc-
tivity of the resonator material as 5.8 × 108 S/m. The resonator
length L is theoretically obtained from a as 48.57 mm accordingly.
As for the CEMC component, let the CEMC be composed of ten
equally spaced concentric fins with the fin thickness tCEMC = 1 mm,
as shown in Fig. 2(c). The fin depth dCEMC is numerically determined
as 31.16 mm by taking into account the fringing effect at the resonant
frequency of 2.38 GHz. As for the REMC component, let the REMC
be composed of 32 radial fins with fin thickness tREMC = 1.23 mm
with the center hole radius b = 7.5 mm, as shown in Fig. 2(d).
The fin depth dREMC is numerically determined as 50.75 mm by
taking into account the fringing effect at the resonant frequency
of 2.38 GHz.

B. External coupling designs for E∥H realizations
Now, we realize the E∥H resonance by determining the external

coupling structures. According to eigenmode simulations by HFSS,
the TM and TE unloaded Qs of the designed resonator are calcu-
lated as QTM

0 = 5.78 × 103 and QTE
0 = 3.92 × 103, respectively. On the

other hand, from Eq. (16), the theoretical TM and TE stored energy
ratio is

U∗TE

U∗TM
= 2.42. (18)

Applying these QTM
0 , QTE

0 , and U∗TE/U∗TM values to Eq. (17), the κTM
and κTE have to satisfy

κTE

κTM

(1 + κTM)2

(1 + κTE)2 =
U∗TEQTM

0

U∗TMQTE
0
= 3.50. (19)

In order to determine the coupling slot structures, we numerically
investigate the relationship between the slot dimension and the cou-
pling coefficients. The coupling coefficients are calculated by the
reflection coefficients ∣S11∣ and ∣S22∣ in Figs. 6(a) and 6(b) as

κTM =
1 − ∣S11∣
1 + ∣S11∣

, (20)

κTM =
1 − ∣S22∣
1 + ∣S22∣

. (21)

Figure 6(a) shows the slot thickness dependence of κTM for spe-
cific three slot dimensions. Here, the radius of the external feeding
TM01 circular waveguide is given as 62.5 mm so that its phase con-
stant is identical to that of the resonant E∥H Beltrami field inside
the resonator. Note that the radius of the external feeding wave-
guide is arbitrary. The black and red lines are for arc radius ρCEMC

s
= 31.25 mm and 62.5 mm, respectively. The other parameters are
wCEMC

s = 3 mm, φCEMC
s = 3π/8, and NCEMC

s = 4. It is seen from the
figure that the coupling coefficient decreases with the slot thick-
ness and the larger the arc radius ρCEMC

s , the larger the coupling
coefficient κTM. The black and blue lines are for the slot width
of wCEMC

s = 3 and 1 mm, respectively. The other parameters are
ρCEMC

s = 31.25 mm, φCEMC
s = 3π/8, and NCEMC

s = 4. It is seen from
the figure that the coupling coefficient decreases with the slot thick-
ness and the narrower the slot width wCEMC

s , the smaller the coupling
coefficient κTM. Figure 6(b) shows the slot thickness dependence of
κTE for specific three slot dimensions. Here, the radius of the exter-
nal feeding TE01 circular waveguide is given as 99.58 mm so that
its phase constant is identical to that of the resonant E∥H Beltrami
field inside the resonator. Note that the radius of the external feed-
ing waveguide is arbitrary. The black and red lines are for the slot

FIG. 6. The slot thickness dependences of (a) the TM coupling coefficient κTM and (b) the TE coupling coefficient κTE. The black, blue, and red lines in (a) correspond to
the combinations of arc radius ρCEMC

s and the slot width wCEMC
s of (ρCEMC

s , wCEMC
s ) = (31.25 mm, 3 mm), (31.25 mm, 1 mm), and (62.5 mm, 3 mm), respectively. The slot

number NCEMC
s is 4, and the arc angle φCEMC

s is 3π/8. The black, blue, and red lines in (b) correspond to the combinations of the slot number NCEMC
s and the slot width

wREMC
s of (NREMC

s , wREMC
s ) = (16, 3 mm), (16, 1 mm), and (8, 3 mm), respectively. The radial slot position ρREMC

s is 31.25 mm, and the slot length lCEMC
s is 31.25 mm. All

the lines are fitted with least squares approximations.
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FIG. 7. The relation between κTM and
κTE for E∥H fields (a) and the ρ-
dependence of ∣cos θ∣ for the three
κTM and κTE combinations (b). The red,
blue, and green points in (a) correspond
to (κTM, κTE) = (7.90 × 10−2, 6.84
× 10−1), (5.45 × 10−2, 3.11 × 10−1),
and (2.13 × 10−2, 8.16 × 10−2), respec-
tively.

number of NREMC
s = 16 and 8, respectively. The other parameters

are wREMC
s =3 mm, lREMC

s = 31.25 mm, and ρREMC
s = 31.25 mm. It

is seen from the figure that the coupling coefficient decreases with
the slot thickness and the more the slot number NREMC

s , the larger
the coupling coefficient κTE. The black and blue lines are for the slot
width of wREMC

s = 3 and 1 mm, respectively. The other parameters
are NREMC

s = 16, lREMC
s = 31.25 mm, and ρREMC

s = 31.25 mm. It is seen
from the figure that the coupling coefficient decreases with the slot
thickness and the narrower the slot width wREMC

s , the smaller the
coupling coefficient κTE.

The curve in Fig. 7(a) is the κTM and κTE relationship of Eq. (19)
for the designed resonator. In order to examine the E∥H reso-
nance, we arbitrarily choose the three (κTM, κTE) points of (7.90
× 10−2, 6.84 × 10−1), (5.45 × 10−2, 3.11 × 10−1), and (2.13 × 10−2,
8.16 × 10−2) on the curve, and the field distributions in the

three resonators corresponding to the points are numerically cal-
culated. The TM and TE coupling slot dimensions at Port 1 and
Port 2 are determined according to each set of coupling coeffi-
cients (κTM, κTE), respectively. The slot dimensions are summarized
in Table I. Figure 7(b) shows the ρ-dependence of ∣cos θ∣ on the
transverse section z = L/2 for the three resonators, where θ is the
angle between the E and H vectors. The value of ∣cos θ∣ represents
∣E ⋅H/(∣E∣∣H∣)∣, and the E and H vectors are parallel or antiparallel
with the value of unity, whereas the E and H vectors are orthogo-
nal with the value of null. It is seen from Fig. 7(b) that the value
of ∣cos θ∣ is almost unity for each κTM and κTE combination except
in the vicinity of the periphery (ρ/a ∼ 1) due to the local field per-
turbations by the corrugation. Figure 8 shows an example of the
time series snapshots of electromagnetic field distributions on the
transverse section z = L/2 for the coupling coefficient combination

TABLE I. The TM and TE slot dimensions for the coupling coefficients κTM and κTE satisfying the E∥H condition. The numbers of the TM and TE slots are 4 and 16, respectively.
The TM slot dimensions wCEMC

s , tCEMC
s , ρCEMC

s , and φCEMC
s represent the slot width, the slot thickness, the arc radius, and the arc angle, respectively. The TE slot dimensions

wREMC
s , lREMC

s , ρREMC
s , and tREMC

s represent the slot width, the slot length, the radial position, and the slot thickness, respectively.

(κTM, κTE) wCEMC
s (mm) tCEMC

s (mm) ρCEMC
s (mm) φCEMC

s wREMC
s (mm) lREMC

s (mm) ρREMC
s (mm) tREMC

s (mm)

(7.90 × 10−2,6.84 × 10−1) 3 13 31.25 3π/8 3 31.25 31.25 2
(5.45 × 10−2,3.11 × 10−1) 3 17 31.25 3π/8 3 31.25 31.25 8.3
(2.13 × 10−2,8.16 × 10−2) 3 25 31.25 3π/8 3 31.25 31.25 15.3

FIG. 8. The time-series snapshots of the electric and magnetic field distributions on the transverse section z = L/2 for the resonator with (κTM, κTE) = (5.45 × 10−2,
3.11 × 10−1). The red arrows represent the electric field vector, whereas the blue arrows represent the magnetic field vector.
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(κTM, κTE) = (7.90 × 10−2, 6.84 × 10−1). It is seen from the figure
that the electric and magnetic fields are parallel with each other both
spatially and temporally. From these results, we can conclude that
the E∥H Beltrami resonance is realized by choosing coupling slot
parameters so that the coupling coefficients satisfy Eq. (17), and the
validity of the presented design method is confirmed.

V. CONCLUSIONS
In this paper, we have presented the design and realistic imple-

mentation methods of the quarter-wavelength E∥H Beltrami cavity
resonators using CEMC and REMC boundary components. Imple-
mentation methods of the CEMC and REMC boundaries with the
TM and TE coupling control functionalities have been shown. We
have theoretically derived the relation between the TM and TE cou-
pling coefficients for the E∥H condition based on circuit theory.
We have numerically designed the resonator operating at 2.38 GHz
based on the design theory and numerically demonstrated the E∥H
Beltrami field generations in the resonator.
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APPENDIX: CALCULATIONS OF αTM AND αTE

In the LEMC, the TM electromagnetic field is represented with
orthogonal wave functions for the circular waveguide, eLEMC

m (ρ, φ, z)
(m = 1, 2, ⋅ ⋅ ⋅) as

ELEMC(ρ, φ, z) =E0(βk−1
c J1(kcρ) sin βzeρ + J0(kcρ)ez cos βz)

+∑
m

eLEMC
m (ρ, φ, z), (A1)

with the origin at the REMC center. Assuming that the higher mode
energies are sufficiently small and neglected, the stored energy in the
resonator, U in

TM, is given by integrating the square of Eq. (A1) in the
entire resonator region as

U in
TM =

a2πJ1(p01)2(a2β2 + πp01
2)ε0E0

2

16βp01
2 . (A2)

In the CEMC, the electric field in the CEMC component is
represented by the coaxial waveguide modes as

ECEMC(ρ, φ, z) = Vn

ln(rin
n /rout

n )r
cos(k0(z − π/(2β)))er

+∑
m

eCEMC
m (ρ, φ, z), (A3)

where Vn is the voltage between the n- and (n + 1)-th fins with n
counted from inside, rout

n and rin
n are the outer radius of nth fin and

the inner radius of (n + 1)th fin, respectively, and eCEMC
m ’s represents

higher order modes of the coaxial waveguide. Due to the field con-
tinuity at the boundary z = β/(2π), the fundamental mode between
the n- and (n + 1)-th fins is rewritten with Eq. (A1) as

Vn

ln(rin
n /rout

n )r
cos(k0(z − π/(2β)))er

= E0[βk−1
c J1(kcρ) cos(k0(z − π/(2β)))eρ]

+∑
m
[eLEMC

m (ρ, φ, β/(2π))

− eCEMC
m (ρ, φ, β/(2π))] cos(k0(z − π/(2β))). (A4)

Therefore, the field energy between the n- and (n + 1)-th fins,
uCEMC

n , is calculated as

uCEMC
n =∫

ρout
n

ρin
n
∫

2π

0
∫

π/(2β)+π/(2k0)

β/(2π)
ρ

× ∣E0βkc
−1J1(kcρ) cos(k0(z − π/(2β)))∣2 ddd, (A5)

where all the higher mode energies in the LEMC and CEMC compo-
nents are assumed to be sufficiently small and neglected. Assuming
that the CEMC fin thickness is infinitely small, the total CEMC
energy, UCEMC, is calculated as

UCEMC =∑
n

uCEMC
n = a4β2λ0J1(p01)2ε0E0

2

32p01
2 . (A6)

Therefore, the TM energy ratio αTM is

αTM =
UCEMC

U in
TM
= a2β3λ0

2π(a2β2 + p01
2)

. (A7)

The electric field of the TE mode in the LEMC region can be
represented by taking into account the field continuity at ρ = a as

E=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

E0J1(kcρ) cos(βz)eφ (0 ≤ ρ ≤ a),

E0J1(kca) cos(kc(ρ − a)) cos(βz)eφ (a ≤ ρ ≤ a + dLEMC).
(A8)
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The stored energy in the resonator region 0 ≤ ρ ≤ a, U in
TE, is

given by integrating the square of Eq. (A8) in the entire resonator
region as

U in
TE =

a2π2J1(p01)2ε0E0
2

8β
. (A9)

The stored energy inside the corrugation, Ucor
TE , is calculated with the

corrugation duty Dcor from Eq. (A8) as

Ucor
TE =

a2π3(1 −Dcor)J1(p01)2ε0E0
2

16βp01
. (A10)

From Eqs. (A9) and (A10), the energy ratio αTE is given as

αTE =
Ucor

TE

U in
TE
= (1 −Dcor)π

2p01
. (A11)
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