
1. Introduction
Climate change has contributed to more frequent and severe storm tide in coastal areas and enhanced flood risk 
(Emanuel, 2005; Feng & Chao, 2020; Feng et al., 2018; Goldenberg et al., 2001; Hansen et al., 2005; Hinkel 
et al., 2014; IPCC, 2021; Little et al., 2015; Marsooli et al., 2019; Mori & Takemi, 2016; Mori et al., 2021; Muis 
et al., 2016; Nicholls et al., 1999; Smith & Katz, 2013). In response, policymakers are seeking risk mitigation 
policies to defend coastal communities against flooding, such as dike rising, building code restrictions, land 
use restrictions, and public flood insurance based on scientific projections of coastal flood risks. A key require-
ment for these projections is that they need to involve uncertainty due to the stochastic nature of extreme events 
and insufficient knowledge of the mechanisms of tropical cyclones (Grinsted et  al., 2013; Henderson-Sellers 
et al., 1998; Knutson et al., 2010; Little et al., 2015; Wong & Keller, 2017). Such uncertainty poses challenges for 
policymakers to design and implement risk mitigation policies.

Uncertainty can be classified as “aleatory uncertainty” and “epistemic (or deep) uncertainty” (Hoffman & 
Hammonds, 1994; Merz & Thieken, 2009). The former refers to the natural randomness of a relevant event. 
The latter refers to a situation where there is too little information to specify a single probability density func-
tion (PDF). Concerning coastal flooding, the latter might be due to a lack of sufficient knowledge on typhoon 
systems such as cyclogenesis factors, developmental processes, and their movements. In economic terminology, 
aleatory uncertainty is classified as “risk” and epistemic uncertainty corresponds to “ambiguity” (Camerer & 
Weber, 1992; Etner et al., 2012). While risk is represented by a single well-defined PDF, ambiguity is often 

Abstract Risk mitigation policies (like dike rising) are essential to address increasing coastal flood risks 
due to global warming. Furthermore, the optimal level of risk mitigation policy should be determined by 
public preferences for risk reduction. However, it is difficult to reveal public preferences for coastal flood risk 
reduction because projections of coastal flood risks inevitably involve uncertainty. This study aims to estimate 
household preference for coastal flood reduction under ambiguity and multiple projections of coastal flood 
risks. By coupling storm surge inundation simulations and stated preference experiments with decision models, 
we estimate the expected loss reduction, risk premium, and ambiguity premium for coastal flood risk mitigation 
policies. The study shows that ignoring the ambiguity premium causes significant undervaluation of coastal 
flood risk mitigation.

Plain Language Summary Climate change has contributed to more frequent and severe storm 
tide in coastal areas and enhanced flood risk. Thus, risk mitigation policies are essential to address increasing 
coastal flood risks from global warming. The policymakers must integrate multiple projections of coastal flood 
risk to make policy decisions. These decisions should reflect stakeholders' preferences on risk and ambiguity. 
Risk is uncertainty with a clear probability distribution, and ambiguity is uncertainty without a clear probability 
distribution. Currently, this key requirement has not yet been met. To fill this gap, this study investigates 
residents' preference to mitigate flood risk under ambiguity by coupling flood simulation and surveying 
residents on their willingness to pay for insurance to mitigate risk under average and worst-case scenarios. The 
ambiguity premium is an additional payment for an individual to reduce flood risk with an unknown probability 
distribution in comparison to flood risk specified with a well-known probability distribution. We found that 
ignoring ambiguity premium causes undervaluing coastal flood risk mitigation.
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represented with multiple PDFs derived from different models with various parameter settings (Kunreuther 
et al., 2013; Merz & Thieken, 2009).

Policymakers face ambiguity, or multiple projected PDFs, regarding coastal flood risk when making risk miti-
gation policies (Oppenheimer et al., 2016; Sriver et al., 2018). The most common approach is to use the average 
projection of multiple predictions (Boettle et  al.,  2016; Knutti,  2010; Knutti et  al.,  2010; Oddo et  al.,  2020; 
Stephenson et al., 2012; Watkiss et al., 2015). While the average projection is straightforward and reasonable, it 
might lead to ignoring the possibility of the worst case. That being said, worst-case projection is often consid-
ered in flood risk management such as in probable maximum flooding (Schwerdt et  al., 1979) and plausible 
worst-case estimates (Buchanan et al., 2016; Ranger et al., 2013). Although a risk mitigation policy designed 
for worst-case projection can prevent almost all inundation risks, it requires large costs to implement the policy 
(Hinkel et al., 2014; Vousdoukas et al., 2018). Thus, policymakers face the problem of which and how multiple 
projections should be used to make risk mitigation policies.

This problem is particularly important when designing structural flood mitigation measures such as dikes or sea 
walls. These structural measures can only prevent flood damage from storm surges with predefined design levels 
(e.g., 100-year storm surge), thus, their effect might be quite different between average and worst projections 
(Kunreuther et al., 2013). For example, suppose that areas A and B face 1 and 2 m storm surges in average projec-
tion and 2 and 4 m storm surges in the worst projections, respectively. Dikes with a height of 3 m can protect 
both areas in average projection but cannot protect area B in the worst projection. This example emphasizes the 
importance of worst projections as well as average projection for designing structural flood mitigation measures.

Accordingly, policymakers are required to integrate multiple projections of coastal flood risk to make policy deci-
sions; to what extent they allocate resources to safety margins in structural measures against the worst projection 
(Downton et al., 2005; Shrader-Frechette, 1991). One of important aspects for socially better choice is economic 
value of structural measures. In economics, the net benefit (i.e., benefit minus cost) of structural measures should 
be maximized. The main goal of this paper is to provide benefit information on structural measures for mitigating 
flood risk under ambiguity.

Benefit of structural measures for an individual is measured with his/her willingness to pay (WTP) for them. If 
economic loss due to storm surge was predicted with certainty, his/her WTP would be equivalent to the amount of 
the loss. Generally, the prediction of economic loss due to storm surge involves risk and ambiguity. People often 
prefer a fixed loss to a stochastic loss when both expected values of loss are same. It implies that they are willing 
to pay extra money for avoiding the stochastic loss compared to avoiding the fixed loss. This extra payment is 
“risk premium.” It is zero if the economic loss has no random variability (or fixed amount as expected loss). 
Similarly, People often prefer a fixed loss to a stochastic loss with its well-known probability distribution to one 
with its unknown probability distribution when both expected values of loss are same. They are willing to pay 
extra money for avoiding the latter compared to the former. This extra payment is “ambiguity premium.” It is 
zero if a unique projection of coastal flood risks is specified. Thus, benefit of structural measures under risk and 
ambiguity should involve risk premium and ambiguity premium in addition to reduction of expected loss. This is 
particularly important for residential sectors because many studies revealed that decisions affecting civilians are 
often affected by risk and ambiguity (Camerer & Weber, 1992; Etner et al., 2012).

Numerous previous studies explore the ambiguity of flood risk (Hallegatte et  al.,  2011; Oddo et  al.,  2020; 
Resio et al., 2013; Wong & Keller, 2017) and propose decision support methods under ambiguity (Buchanan 
et al., 2016; Hunter, 2012; Rohmer et al., 2019; Sriver et al., 2018). Several studies estimate residents' preferences 
to mitigate flood risk without considering ambiguity (Botzen & van den Bergh, 2012; Botzen et al., 2009; Withey 
et al., 2019). To our knowledge, no research has investigated residents' preference to mitigate flood risk under 
ambiguity.

To fill this gap, we estimated homeowners' preferences for coastal flood risk mitigation under ambiguity in 
the Osaka bay area, Japan. Accordingly, we obtained multiple PDFs of flood risk by conducting typhoon and 
storm surge inundation simulations. Then, by using the multiple PDFs, a web survey was implemented to esti-
mate homeowners' preferences for protecting their houses from coastal flooding under ambiguity. In addition, 
we estimated risk premium and ambiguity premium. Finally, we explored the geographical distribution of risk 
and ambiguity premiums. This information might be useful for policymakers to design risk mitigation policies 
tailor-made to each area.

Writing – review & editing: Si Ha, 
Toshio Fujimi, Masahide Watanabe
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The remainder of this study has been organized as follows. Section 2 describes coastal flood risks in the research 
target area, Osaka bay. Section 3 explains methods of obtaining multiple projections of coastal flood risk as ambi-
guity, estimating homeowners' preferences for mitigating coastal flood risk under ambiguity, and calculating risk 
and ambiguity premiums. Section 4 outlines a web survey for homeowners in the target area. Section 5 shows the 
estimated results of these premiums and displays their geographical distribution. Section 6 discusses the results 
and their policy implications and Section 7 concludes.

2. Methods
To assess inundation risks and ambiguity in coastal areas, we proposed a framework as shown in Figure 1 (a) 
conduct a simulation of typhoon generations for 200 years using a global stochastic tropical cyclone model; (b) 
the total number of typhoons in this study generated over half a million in the Western Pacific Ocean, to under-
stand the uncertainty of typhoon storm surge inundation, also to avoid unnecessary inundation simulations, the 
significant four typhoon ensembles (each ensemble including 25 typhoon cases) are selected (after fulfilling the 
conditions), and the storm surges of Osaka Bay are simulated by a full-coupled surge-wave-tide coupled model 
(SuWAT); (c) predict the inundation depth due to storm surges using the inundation simulation model; (d) repeat 
step (a) to (c), get 25 projections of the inundation risk for each dike level: current level and rising by 0.5, 1.0, 1.5, 
and 2.0 m (25 × 5); (e) the average and worst projections of the inundation risks are specified by each zip-code in 
the web-based survey; (f) estimate households' preferences by asking them to choose whether to buy hypothetical 
insurance to cover all losses from coastal flooding by presenting the average and worst scenarios of the inunda-
tion risks to their houses; (g) by using the choice experiment data, a decision model is applied for estimating risk 
premiums and ambiguity premiums; (h) analyze the geographical distribution of risk premiums and ambiguity 
premiums by geographic information system (GIS).

2.1. Study Area

Increased mean and extreme sea levels, alongside ocean warming and acidification, are projected to exacer-
bate risks for human communities in low-lying coastal areas (IPCC, 2019). In addition, Japan experiences huge 

Figure 1. Study flow of methodological framework.
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typhoons, causing serious flood damage. Osaka Bay is one of the most vulnerable areas in terms of coastal inun-
dation in Japan and is ranked fifth among the world's 120 cities in terms of expected annual losses due to coastal 
flooding in 2050 (Abadie et al., 2017). In 2018, Typhoon Jebi caused 14 deaths and 1,014 injuries and destroyed 
686 houses in Osaka Bay. Figure 2 shows our study area which ranges between 22.23 km long by 19.32 km 
wide, along with the coastal areas of Osaka Bay extending between Osaka prefecture and Hyogo prefecture, and 
including Osaka city, the third-largest city in Japan. According to the Census Mesh Data (the Statistics Bureau of 
Japan, 2015), it has 1.63 million households with 3.30 million people, of which our target respondents represent 
25% of the households.

2.2. Typhoon Simulation

An extreme storm surge occurs due to the combination of an intense typhoon, dangerous tracks, and fast-moving 
speeds. A combination does not occur often, and extreme surges rarely occur. Therefore, numerous simulated 
typhoons are required to predict storm surges in a particular region. Thus, we used the global circulation model 
(GCM) as one of the choices. However, the typhoons in the GCMs have a large bias, and the length of the 
simulation period is insufficient for analyzing extreme storm surge events. A stochastic tropical cyclone model 
(STCM) is often used to increase the number of simulated typhoons with different parameter values such as 
track/direction, minimum sea-level pressure, and translation speed based on Monte Carlo simulations. Among 
several approaches of STCMs, one of GSTCM takes the translation model giving increments of translation speed 
and direction by random variables using PDFs of their rates of change estimated from historical data (Rumpf 
et al., 2007; Vickery et al., 2000). The other GSTCM regards TCs as a group of points, and advection is calcu-
lated by the environmental field with the bata-effect (e.g., Emanuel et al., 2006). Unlike other STCMs developed 
for specific ocean basins, GSTCM was expanded to implement an annual global simulation of tropical cyclones, 
which is necessary for assessing climate change factors. To project coastal flood risk in Osaka Bay, we conducted 
synthetic typhoon simulations using GSTCM (Nakajo et al., 2014). And, we calibrated the parameters of the 
GSTCM using data from the International Best Track Archive for Climate Stewardship provided by the National 
Oceanic and Atmospheric Administration.

2.3. Inundation Simulation of Storm Surges

This study conducts typhoon simulations over 200 years by using GSTCM under the current climate conditions 
and selects the four worst typhoon ensembles among simulated typhoons satisfying the following three condi-
tions: (a) the minimum distance to Osaka Bay is less than 200 km; (b) the minimum central pressure is less 
than 950 hPa; (c) the velocity of the typhoon at landfall is higher than 20 km/hr. Then, by adding inputs like the 
simulated properties (track, speed, and central pressure) of the four selected typhoon ensembles, storm surges in 
Osaka Bay are simulated using the SuWAT (Kim et al., 2008; Mori et al., 2019). The model simulates storm surge 
heights and maximum wind wave heights using the nonlinear shallow water equation and spectral wave model 
SWAN (Simulating Waves Nearshore), respectively. Entering the simulated storm surge properties, we predict 
the inundation depth of each 30 m mesh area in Osaka Bay using an inundation simulation model based on the 
2D shallow water equation (Ha et al., 2021; Liang, 2010).

2.4. Elicitation of Households' Preferences: The Stated Preference Method

We estimated households' preferences for full protection from coastal flood risk under ambiguity using the stated 
preference method, which asks the respondents to make hypothetical choices in controlled experiments (Johnston 
et al., 2017; Louviere et al., 2000). The current study attempts to estimate households' preferences under ambi-
guity by coupling GSTCM and a stated preference experiment. Our stated preference survey included a choice 
experiment. The respondents were asked whether they would buy hypothetical insurance that covers all house-
hold losses from coastal flooding under multiple projections of the inundation risk as ambiguity. Using the choice 
experiment data, we estimate a decision model to calculate the risk and ambiguity premiums.
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2.4.1. Experimental Design of Web Survey

We conducted the choice experiments on households' preferences for purchasing hypothetical insurance through 

Figure 2. Study area in Osaka Bay, Japan.
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a web survey. The steps were as follows:

1.  Explain the impact of disasters on daily life and past damages due to coastal flooding (abstracted from the 
leaflet by the Japanese government).

2.  Ask respondents about the estimated values of their house and furniture. These data were used in the latter 
part of the survey.

3.  Explain that the projections of inundation risk inevitably include ambiguity and that 25 PDFs of coastal flood-
ing risk were projected as ambiguity.

4.  Explain that the damage to the house from coastal flooding is classified into four categories according to the 
inundation depth: “no flooding,” “flooding under the floor,” “flooding on the floor,” and “house submerged” 
when the inundation depth is less than 0.01  m, from 0.01 to 0.5  m, from 0.5 to 2.0  m and over 2.0  m, 
respectively.

5.  Two projections of coastal flood risk were randomly chosen from a set of five inundation projections that are 
typical in the target area (Figure S1 in Supporting Information S1). The more serious one was the worst projec-
tion, while the other was the average projection. Then these projections were presented to the respondents.

6.  When “flooding under the floor,” “flooding on the floor,” and “house submerged” occur due to coastal floods, 
we assumed that 1%, 50%, and 100% loss of the households' assets (house and furniture) value as responded 
to in step (2). The economic loss due to inundation was automatically calculated on the web system and 
presented to the respondents.

7.  To evaluate the economic value that eliminates the risk of damage due to coastal floods, respondents were 
asked whether or not they would buy hypothetical insurance that fully compensates them for the inundation 
damages (Figure 3). It also shows an example of scenarios for the choice experiment and the key parts of the 
questionnaire. The question was as follows: “Suppose that the government sells a new type of insurance, that 
covers all losses from coastal flooding with full compensation for house restoration costs and households' 
assets, and that the insurance will be contracted once a year, would you buy this new insurance policy with the 
annual fee of XXX JPY?” The economic loss of AAA, BBB, and CCC were calculated at 1%, 50%, and 100% 
of the respondent's asset value. XXX was randomly chosen for the respondents based on their given asset 
value: estimated households' asset value ×0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, and 1%. The amounts 
of AAA, BBB, CCC, and XXX were automatically calculated in the web survey system.

8.  We estimated the limited degree of confidence (LDC) model using the survey data after excluding “protest 
responses.” The protest responses were obtained from the respondents who chose not to buy the hypotheti-
cal insurance due to the following two reasons: “I cannot understand the question” and “I cannot accept the 
hypothetical scenarios.” The number of protest responses is 340 (34%). As a result, the effective number of 
observations is 660.

2.4.2. Outline of Survey Attributes

The respondents of the web surveys were recruited from 1.9 million panel members registered with Cross Market-
ing, a Japanese company. The web survey was conducted with 1,000 households who responded that they live at 
an altitude of 5 m or less among the detached houses in Osaka Bay. This survey was conducted from 16 December 
to 22 December in 2016. Table S1 in Supporting Information S1 shows the means and standard deviations of the 
socioeconomic attributes of the respondents.

2.5. Decision Model Under Ambiguity

Although some decision models under ambiguity have been developed (Gilboa & Marinacci, 2016; Lempert 
et al., 2006; Machina & Siniscalchi, 2014; Ryan, 2009), no model is widely accepted. We used an LDC model to 
address the ambiguity of coastal flood risk because this model is applied to design robust strategies for dealing 
with the uncertainty of climate change (Buchanan et al., 2016; Froyn, 2005; Lange, 2003; McInerney et al., 2012). 
The LDC model can be interpreted as a special case of a neo-additive model by Chateauneuf et al. (2007), which 
includes two popular decision models under ambiguity: the Choquet expected utility model (Schmeidler, 1989) 
and the α–maximin expected utility model (Ghirardato et al., 2004). In our context, the LDC model is given by:

� (� ) = ��pA(�) + (1 − �)�pW(�) (1)
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Figure 3. The ambiguity or multiple projections of coastal flood risk (average and worst projections) were embedded into the households' preferences during the 
survey.
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where 𝐴𝐴 𝐴𝐴 is the utility function to measures households' preferences for a set of goods and services, 𝐴𝐴 𝐴𝐴  is a set of 
probability distribution functions, and 𝐴𝐴 𝐴𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝑊𝑊 ∈ 𝑃𝑃  are the average and worst probability distribution func-
tions, respectively. The parameter 𝐴𝐴 𝐴𝐴 ∈ [0, 1] represents the degree of confidence in the expected utility based on 
the average projection. In our context, 𝐴𝐴 𝐴𝐴  is the set of multiple projections of coastal flood risk, and 𝐴𝐴 𝐴𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝑊𝑊  
are  the average and worst projections, respectively. Accordingly, �pA(�) and �pW(�) are expected utilities with 𝐴𝐴 𝐴𝐴𝐴𝐴 
and 𝐴𝐴 𝐴𝐴𝑊𝑊  , respectively. � (� ) is the expected utility with the LDC model of the homeowner facing 𝐴𝐴 𝐴𝐴  .

To design choice experiments in the stated preference survey, we consider the situation where a household 
chooses to buy insurance covering all losses from a coastal flood. Household 𝐴𝐴 𝐴𝐴 faces multiple projections of 
inundation risks in his/her house. House damage from inundation is divided into four categories; “no flooding,” 
“flooding under the floor,” “flooding on the floor,” and “house submerged.” The average and worst projection of 
coastal flood risk for household 𝐴𝐴 𝐴𝐴 are described as:

𝑝𝑝𝑖𝑖𝑖𝑖 = (𝑝𝑝𝑖𝑖𝑖𝑖0, 𝑚𝑚𝑖𝑖; 𝑝𝑝𝑖𝑖𝑖𝑖1, 𝑚𝑚𝑖𝑖1; 𝑝𝑝𝑖𝑖𝑖𝑖2, 𝑚𝑚𝑖𝑖2; 𝑝𝑝𝑖𝑖𝑖𝑖3, 𝑚𝑚𝑖𝑖3) (2)

𝑝𝑝𝑖𝑖𝑖𝑖 = (𝑝𝑝𝑖𝑖𝑖𝑖 0, 𝑚𝑚𝑖𝑖; 𝑝𝑝𝑖𝑖𝑖𝑖 1, 𝑚𝑚𝑖𝑖1; 𝑝𝑝𝑖𝑖𝑖𝑖 2, 𝑚𝑚𝑖𝑖2; 𝑝𝑝𝑖𝑖𝑖𝑖 3, 𝑚𝑚𝑖𝑖3) (3)

where 𝐴𝐴 𝐴𝐴𝑖𝑖𝐴𝐴0, 𝐴𝐴𝑖𝑖𝐴𝐴1, 𝐴𝐴𝑖𝑖𝐴𝐴2, and 𝐴𝐴𝑖𝑖𝐴𝐴3 are the average probabilities of “no flooding,” “flooding under the floor,” “flood-
ing on the floor,” and “house submerged,” respectively. Similarly, 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 0, 𝐴𝐴𝑖𝑖𝑖𝑖 1, 𝐴𝐴𝑖𝑖𝑖𝑖 2, and 𝐴𝐴𝑖𝑖𝑖𝑖 3 are the worst-case 
probabilities. The house value of household 𝐴𝐴 𝐴𝐴 is 𝐴𝐴 𝐴𝐴𝑖𝑖 , which becomes 𝐴𝐴 𝐴𝐴𝑖𝑖1, 𝐴𝐴𝑖𝑖2, and𝐴𝐴𝑖𝑖3 when it gets “flooding under 
the floor,” “flooding on the floor,” and “house submerged,” respectively.

The econometric model is as follows. The LDC expected utility without insurance can be written as:

𝑉𝑉𝑖𝑖1 = 𝛼𝛼𝛼𝛼𝑝𝑝𝑖𝑖𝑖𝑖
(𝑢𝑢) + (1 − 𝛼𝛼)𝛼𝛼𝑝𝑝𝑖𝑖𝑖𝑖

(𝑢𝑢) (4)

𝑢𝑢(𝑚𝑚) =
𝑚𝑚

1−𝑟𝑟

1 − 𝑟𝑟
 (5)

where 𝐴𝐴 𝐴𝐴 is the constant relative risk aversion (CRRA) utility function, 𝐴𝐴 𝐴𝐴 denotes house value, 𝐴𝐴 𝐴𝐴 is the coefficient 
of relative risk aversion.

The LDC expected utility with insurance at the cost of 𝐴𝐴 𝐴𝐴𝐴𝐴𝑖𝑖 is given as:

��2 = �(� − ���) (6)

where 𝐴𝐴 𝐴𝐴𝑖𝑖 is the insurance fare rate such that 𝐴𝐴 𝐴𝐴𝐴𝐴𝑖𝑖 is a household's payment for buying insurance. A household 
chooses to buy insurance if the following inequality holds:

𝑉𝑉𝑖𝑖1 + 𝜀𝜀1 < 𝑉𝑉𝑖𝑖2 + 𝜀𝜀2 (7)

where 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 are random components of utilities and 𝐴𝐴 𝐴𝐴 = 𝜀𝜀1 − 𝜀𝜀2 ∼ 𝑁𝑁(0, 1) . The probability of buying insur-
ance can be written as:

Prob(��1 + �2 < ��2 + �1) = Prob(� < ��2 − ��1) = Φ(��2 − ��1) (8)

where 𝐴𝐴 Φ is the standard normal distribution function. Thus, the log-likelihood is written as:

ln�(�, �) =
�
∑

�=1
[��lnΦ(��2 − ��1) + (1 − ��)ln {1 − Φ(��2 − ��1)}] (9)

where 𝐴𝐴 𝐴𝐴𝑖𝑖 is a dummy variable taking a value of 1 if household 𝐴𝐴 𝐴𝐴 chooses to buy the insurance and 0 otherwise, and 
𝐴𝐴 𝐴𝐴 is the number of respondents. This log-likelihood is maximized with our survey data to estimate the coefficients 

of risk aversion 𝐴𝐴 𝐴𝐴 and the degree of confidence 𝐴𝐴 𝐴𝐴 .

2.6. Estimation of Expected Loss, Risk Premium, and Ambiguity Premium

Based on the LDC model, the willingness of household 𝐴𝐴 𝐴𝐴 to pay for the full protection of the insurance policy 
(𝐴𝐴 WTP𝑖𝑖 ) is calculated as follows:

WTP� = �� − �−1
(

�����(�) + (1 − �)���� (�)
)

 (10)
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where 𝐴𝐴 𝐴𝐴
−1 is an inverse function of 𝐴𝐴 𝐴𝐴 . The following equations define the expected loss, risk premium, and ambi-

guity premium. The expected loss 𝐴𝐴 EL𝑖𝑖 , is defined as the full asset value 𝐴𝐴 𝐴𝐴𝑖𝑖 , minus the expected value 𝐴𝐴 EV𝑖𝑖 , with 
the average projection of inundation risk as:

EL𝑖𝑖 = 𝑚𝑚𝑖𝑖 − EV𝑖𝑖 (11)

where 𝐴𝐴 EV𝑖𝑖 = 𝑝𝑝𝑖𝑖𝐴𝐴0𝑚𝑚𝑖𝑖 + 𝑝𝑝𝑖𝑖𝐴𝐴1𝑚𝑚𝑖𝑖1 + 𝑝𝑝𝑖𝑖𝐴𝐴2𝑚𝑚𝑖𝑖2 + 𝑝𝑝𝑖𝑖𝐴𝐴3𝑚𝑚𝑖𝑖3 . The certainty equivalent to risk 𝐴𝐴 CE
risk

𝑖𝑖
 is a certain value that 

is equally attractive to the household's asset facing inundation risks in the average projection and can be written 
as follows:

CErisk
� = �−1

(

����(�)
)

 (12)

The risk premium, 𝐴𝐴 RP𝑖𝑖 , is defined as the expected value minus the certainty equivalent for risk.

RP𝑖𝑖 = EV𝑖𝑖 − CErisk
𝑖𝑖 (13)

There is no widely accepted definition of the ambiguity premium, while the expected loss and risk premium are 
clearly defined. However, we follow the definition proposed by Cubitt et al. (2018), as it can be applied to any 
decision model. By an analogous notion to certainty equivalent to risk, we consider the certainty equivalent to 
ambiguity 𝐴𝐴 CE

amb

𝑖𝑖
 . It is a certain value that is equally attractive to the household's asset facing inundation risk 

under ambiguity and can be written as follows:

CEamb
� = �−1

(

����� (�) + (1 − �)���� (�)
)

 (14)

The ambiguity premium is defined as certainty equivalent for risk minus certainty equivalent for ambiguity.

AP𝑖𝑖 = CErisk
𝑖𝑖

− CEamb
𝑖𝑖 (15)

Note that the following equation holds because 𝐴𝐴 CE
amb

𝑖𝑖
 is equivalent to 𝐴𝐴 𝐴𝐴𝑖𝑖 −WTP𝑖𝑖 .

WTP𝑖𝑖 = EL𝑖𝑖 + RP𝑖𝑖 + AP𝑖𝑖 (16)

Finally, expected loss reduction, risk premium, ambiguity premium and WTP are calculated by using the LDC 
model.

3. Results
3.1. Coastal Flood Risk in Osaka Bay

Storm surge inundations were simulated for all selected stochastic typhoon events using the 2D flood inundation 
model. Due to the continuous improvement of the dike in Osaka Bay in recent years, only a few simulated storms 
caused inland inundation under the current sea level and climate conditions. Therefore, we selected the largest 
inundation areas of the four typhoon ensembles because the fifth typhoon ensemble does not cause any inunda-
tion under the current protection level of the target area. Thus, we have the four worst-case projections of inunda-
tion depth over 200 years for each mesh. Each typhoon ensemble provided a set of storm surge inundation results 
with probabilities. The probability distribution of such inundation results represented the variation in flooded 
areas caused by the uncertainty of a typhoon for a specific probability. Here, the exceedance probability of inun-
dation was linked to the probability of the occurrence of a typhoon under ensemble forecasting. Since sometimes 
we only focus on the significant probabilities of occurrence, such as 1/200, 1/100, 3/200, 1/50, etc., it can be 
interpreted that the top four worst inundation results are projected to occur with return periods of once in 200, 
100, 67, and 50 years. We consider it as a PDF of coastal flood risk. To explore the ambiguity, the process from 
typhoon simulation to inundation simulation was repeated 25 times to obtain 25 PDFs of inundation risk in each 
mesh. Finally, the simulated inundation depths of 30 m meshes were averaged over each zip-code area. Figure 4 
shows the average and worst projections of coastal flood risk (based on exceedance probability) with different 
dike levels in each zip-code area. 1/50, 3/200, 1/100, and 1/200 denote once in 50, 67, 100, and 200 years.
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3.2. Estimated Parameters of the LDC Model

Table  1 reveals that the estimate of the degree of confidence in Model 1 
is 0.9049 (99% confidence interval; 0.8294, 0.9804) with statistical signif-
icance at the 1% level. It indicates that the average household (sampled) 
decides about risk mitigation policy by weighting 90% of the average projec-
tion and 10% of the worst projection. If we assign equal weight to each of 
the 25 projections, the weight of the worst projection might be less than 4% 
(=1/25). Thus, our findings show that households tend to disproportionately 
pay greater attention to the worst scenario (i.e., 10% rather than 4%). The 
CRRA coefficient of Model 1 is 0.3764 (99% confidence interval; 0.4694, 
1.4984), which is statistically significant at the 1% level. Moreover, Model 
2 presents the heterogeneity of a household's socioeconomic attributes, such 
as age, gender, family size, and education which affects the estimated param-
eters of confidence of degree (𝐴𝐴 𝐴𝐴 ) and CRRA coefficient (𝐴𝐴 𝐴𝐴 ). No statistically 
significant estimates are found at the 5% level. Thus, we decided to use the 
estimated results of Model 1 to calculate risk and ambiguity premiums.

3.3. Estimation of Expected Loss, Risk Premium, and Ambiguity 
Premium

Using the estimated parameters of Model 1 and the sample average of house-
hold assets (34.1 million JPY), we calculate the expected loss reduction, 
risk premium, and ambiguity premium for full protection from the coastal 
flood risk. Then, each value is multiplied by the number of households in 
each zip-code area and aggregated for the entire target area, as presented in 
Table 2. The total economic value or WTP is 1,743 million JPY (about 17 
million USD) for a full-protection insurance policy from coastal flood risk 
under ambiguity in the target area. It consists of the expected loss reduction, 

Figure 4. Projection of coastal flood risk by (a) average projection and (b) worst projection to current and different dike rising levels.

Model 1 Model 2

Coefficient
Standard 

error Coefficient
Standard 

error

α: confidence of degree

 Constant 0.9049** 0.0385361 0.9839** 0.2625074

 Age 0.0005 0.0035491

 Gender 0.064 0.0729309

 Family size −0.0415 0.0331706

 Education −0.0086 0.0817453

r: risk attitude

 Constant 0.3764** 0.0123102 0.4481** 0.0774997

 Age −0.0024 0.0013095

 Gender −0.0383 0.0312893

 Family size 0.0125 0.0090214

 Education 0.0380 0.0275757

Sample size 660 660

Log likelihood −391.50034 −385.18647

Pseudo R 2 0.134073257 0.148038376

Note. Pseudo 𝐴𝐴 𝐴𝐴
2 = 1 − 𝐿𝐿1∕𝐿𝐿0 where 𝐴𝐴 𝐴𝐴0 and 𝐴𝐴 𝐴𝐴1 represent loglikelihoods of 

the models with and without the constraint that all parameters are zero.
 **Represent statistical significance at 1%.

Table 1 
Estimated Parameters of the LDC Model
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risk premium, and ambiguity premium, which are 821, 65, and 849 million yen, respectively. The risk premium 
and ambiguity premium are 8% and 103%, respectively, compared to the value of expected loss reduction for 
eliminating coastal flood risks in the target area. Thus, the total economic value is 211% of the expected loss 
reduction.

The LDC model calculates expected loss reduction and risk premium using the average prediction, while ambi-
guity premium is estimated with the worst prediction. The estimated LDC model indicates that a statistically 
representative household weighs 90% on the average projection and 10% on the worst projection, which seems to 
imply a small ambiguity premium compared to the value of expected loss reduction and risk premium. However, 
the results demonstrate that the ambiguity premium is much larger than the risk premium and almost equivalent to 
the expected loss reduction. This is because asset loss based on the worst projection is much larger than loss based 
on the average projection. As shown in Figure 4, there are many areas where houses will be submerged, or that 
flooding on the floor will occur in the worst projection. Simultaneously, the average prediction shows no areas 
of submerged houses, and a very small area of flooding on the floor will occur. Due to this relationship between 
geographic conditions and inundation levels, the asset loss and its dispersion in the average and worst projections 
are very different, as shown numerically in Table 3.

3.4. Expected Economic Value of Coastal Flood Risk Mitigation Policies

Estimating the economic value of dike rise is important for coastal flood risk mitigation policies. Our study 
considers four dike rising policies assuming all dikes in the target area are uniformly raised by 0.5, 1.0, 1.5, and 
2.0 m, respectively. Table 2 indicates that the total economic value of the dike rising by 2.0 m is 1,682 million 
yen, which is close to the benefit of full protection (1,743 million yen). It implies that a dike rising by 2.0 m 
can prevent almost all damages from coastal floods. Further, we divided the dike rising by 2 m into four steps: 
“0–0.5 m,” “0.5–1.0 m,” “1.0–1.5 m,” and “1.5–2.0 m” and calculate their values. The results demonstrate that 
the marginal values of dike rising decreases with higher levels of dike rising. For example, the expected loss 
reduction and risk premium for dike rising of “0–0.5 m” are 581 and 64 million yen, which drop sharply to 110 
and 1 million yen, respectively, for dike rising of “0.5–1.0 m.” The ambiguity premium is about 390 million 
yen for dike rising of both “0–0.5 m” and “0.5–1.0 m” and then falls largely to 55 million yen for dike rising of 
“1.0–1.5 m.” The first dike rising by 0.5 m to the current level may mostly protect the target area from coastal 
flooding in the average prediction but cannot protect it in the worst prediction. However, additional dike rising by 
0.5 m (or +1.0 m to the current level) can prevent coastal inundation largely, even in the worst prediction. Thus, 

Value (million JPY) Benefit of full protection* Value of 2.0 m dike rising

Value of additional dike rising

0–0.5 m 0.5–1.0 m 1.0–1.5 m 1.5–2.0 m

Reduction of expected loss 821 769 581 110 41 36

Risk premium 65 (0.08) 65 (0.08) 64 (0.11) 1 (0.01) 0 (0.00) 0 (0.00)

Ambiguity premium 849 (1.03) 848 (1.10) 395 (0.68) 390 (3.53) 55 (1.33) 9 (0.25)

Total economic value (WTP) 1,734 (2.11) 1,682 (2.19) 1,040 (1.79) 500 (4.54) 96 (2.33) 46 (1.26)

Note. Parentheses indicate ratios of risk premium, ambiguity premium, and total economic value (WTP) of expected loss reduction.
 *Value of eliminating all damage from coastal flood with current dike level.

Table 2 
Estimated Reduction of Expected Loss, Risk Premium and Ambiguity Premium for Full Protection and Dike Rising Levels

Dike rising 0 m 0.5 m 1.0 m 1.5 m 2.0 m

Average projection 0.73 (8.94) 0.21 (2.21) 0.11 (1.29) 0.08 (0.98) 0.05 (0.62)

Worst projection 6.69 (76.57) 3.62 (45.15) 0.64 (8.71) 0.16 (2.10) 0.05 (0.66)

Note. Unit: million JPY.

Table 3 
Averages of Expected Values (Standard Deviations) of Economic Loss Over Zip-Code Areas
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the marginal ambiguity premium decreases more slowly than the marginal value of the expected loss reduction 
and the marginal risk premium as the dike rises.

The geographical distributions of the expected loss reduction, risk premium, and ambiguity premium provide 
useful information for designing effective coastal flood risk mitigation policies. Figure 5 demonstrates that these 
values are disproportionately located in areas close to rivers and the sea along the Osaka Bay, the coastal areas 
in Amagasaki city, Osaka city, Sakai city, and the areas of Yodo riverside. Furthermore, in each step of dike 
rising by 0.5 m from 0 to 2.0 m, the values of the expected loss reduction, risk premium, and ambiguity premium 
reveal different distribution patterns, indicating that the benefited areas of dike rising also depend on the baseline 

Figure 5. Geographical distributions of the expected loss reduction, risk premium, and ambiguity premium for full protection 
from coastal flood risk and each step of dike rising by 0.5 m from 0 to 2.0 m.
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level of the dike. This also stresses the need for a better understanding and robust analysis of spatial distribution 
patterns for designing coastal flood risk mitigation policies.

Figure 5 illustrates that ambiguity premiums are narrowly distributed compared to expected loss reduction and 
risk premiums. Notably, in each level of dike rising by 0.5 m (from 0 to 2.0 m), expected loss reduction occurs, 
and risk premiums arise in the same areas, while ambiguity premiums generally happen in different areas. These 
results suggest that decision on dike rising without considering ambiguity premium (or the worst projection) may 
cause a significant underestimation of dike rising value in some areas rather than all areas with coastal flood risk.

3.5. Policy Implication

Finally, our results provide several policy implications for mitigating coastal flood risk. Ignoring ambiguity 
premium causes significant undervaluation of coastal flood risk mitigation, such as dike rising. Our LDC deci-
sion model finds that a statistically representative household weighs 90% on the average projection and 10% on 
the worst projection. Although the weight on the worst projection is not very high, it causes a large ambiguity 
premium that is almost equivalent to the value of the expected loss reduction for eliminating coastal flood risk. 
The economic loss due to inundation under the worst projection is much larger than the loss under the aver-
age projection. Thus, the total economic value of eliminating coastal flood risk is almost half if the ambiguity 
premium is ignored.

4. Conclusions
This study provides a new perspective on households' preferences for coastal flood risk mitigation under ambi-
guity by coupling coastal flood simulations and a stated preference experiment with the LDC model and GIS. 
We estimated the expected loss reduction, risk premium, and ambiguity premium values for full protection from 
coastal flood risk, equal to the total economic value or WTP for full protection of an insurance policy. Our anal-
ysis indicates that an ambiguity premium is not negligible in economic efficiency or cost-benefit consideration 
of risk mitigation policies. Rather, they are distributed extremely in some areas of higher expected loss from 
coastal inundation. This suggests that ambiguity premiums should be measured for planning and implementing 
coastal flood risk mitigation policies. Although our results have extensive implications from many perspectives, 
there are several limitations. First, they only address the ambiguity of coastal flood risk projections rather than 
other sources of ambiguity such as climate change and residential population. Second, our analysis focuses on the 
household sector, whereas other sectors are also important, such as commercial and industrial buildings, roads 
and subways, and human health. Third, this paper focus on dike rising as flood risk mitigation measure. There 
are other important measures. For example, residents may migrate to elsewhere when risk communicated. It 
may  affect their WTP for dike rising. Future research in these areas is required for further investigation.
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