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In a Vlasov equation, the destabilization of a homogeneous stationary state is typically described by a
continuous bifurcation characterized by strong resonances between the unstable mode and the continuous
spectrum. However, when the reference stationary state has a flat top, it is known that resonances drastically
weaken and the bifurcation becomes discontinuous. In this article we analyze one-dimensional spatially periodic
Vlasov systems, using a combination of analytical tools and precise numerical simulations to demonstrate that
this behavior is related to a codimension-two bifurcation, which we study in detail.
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I. INTRODUCTION

Vlasov and other similar equations are infinite-dimensional
Hamiltonian systems (see, for instance, [1]) which are funda-
mental in many domains governed by long-range interactions,
for instance, plasma physics, astrophysics, and fluid dynam-
ics. Getting a qualitative understanding of Vlasov dynamics
is thus an old problem, which started with Vlasov and Lan-
dau [2,3]. We approach this question with dynamical systems
tools, in particular bifurcation theory; the rationale is that
bifurcations have a universal character and tend to provide in-
formation on the structure of the phase space, in a sometimes
rather wide neighborhood of the critical point.

The bifurcation theory of Vlasov and Vlasov-like equa-
tions is very different from that of dissipative nonlinear partial
differential equations (PDEs). The paradigmatic case for a bi-
furcation of the Vlasov equation is a homogeneous stationary
solution with a certain velocity profile F (p) which becomes
unstable as a parameter (a coupling constant, for instance) is
varied. This situation is now well understood: The unstable
eigenvalue appears embedded in the marginally stable (purely
imaginary) continuous spectrum, and a reduced description
involving a finite-dimensional central manifold is not possi-
ble. Instead, the development and saturation of the instability
is generically described by the single-wave model, which is
itself a nonlinear PDE [4–7]. In particular, the bifurcation
is continuous, and if λ is a real eigenvalue and indicates
the instability rate, the nonlinear saturation amplitude of the
instability is the peculiar O(λ2) trapping scaling rather than
the much larger O(λ1/2) typical for standard pitchfork bifur-
cations [8,9] in dissipative systems.

Beyond this generic scenario, it is also well known that
modifying the velocity profile of the stationary state may
have a strong influence on the type of bifurcation: Indeed,
for flat-top velocity profiles, or water bags, resonance effects
between the unstable mode and the continuous spectrum are
suppressed and the validity of the standard central manifold
approach is recovered; a finite-dimensional reduction is then

achievable and in all cases in which the computation has been
attempted it predicts a discontinuous bifurcation [7,10].

At the critical point, a purely imaginary eigenvalue λI

appears; this requires the first derivative of the velocity profile
to vanish at λI : F ′(λI ) = 0. The generic scenario then corre-
sponds to F ′′(λI ) �= 0 and the flat-top case to the vanishing of
all derivatives: F (n)(λI ) = 0 for any n ∈ N. In the review in
[7] (see Sec. VIII-C therein) the authors numerically analyze,
in the simple setting of the Hamiltonian mean-field model,
how the standard single-wave model bifurcation is modified
when the critical velocity profile interpolates between a Gaus-
sian and a water bag. We undertake in this article a systematic
study of this situation and show that it can be understood as
the influence of a special point in the family of single-wave
model bifurcations, i.e., a kind of codimension-two bifurca-
tion, which rules the dynamics in its neighborhood.

A typical example of codimension-two bifurcation is the
Bogdanov-Takens bifurcation in a dissipative ordinary differ-
ential equation [11]. Another physically important example is
a tricritical point in thermodynamics; such a tricritical point
has also been observed in a Vlasov system [12] in relation
to Lynden-Bell statistical mechanics. At variance with [12],
which uses nonstationary water-bag initial states, we consider
in the present work small perturbations of smooth stationary
reference states. Beyond the case of homogeneous states,
bifurcations of Vlasov equations have also been studied for
families of nonhomogeneous (position depending) distribu-
tions, in the context of self-gravitating systems [13], and more
recently in [14,15]; these studies are restricted however to
codimension-one bifurcations.

To be more precise, for simplicity we restrict our dis-
cussion to one-dimensional Vlasov equations with periodic
boundary condition and to even velocity profiles. We consider
a family Fα of stationary states parametrized by α, which
are unimodal for α � 0 and bimodal for α > 0. A coupling
constant provides one more tunable parameter, which induces
instability of the reference state, and a codimension-two bi-
furcation lies on the line α = 0. The existence of a critical
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FIG. 1. (a) Sketch of the two-dimensional parameter space
(α, Reλ), where α parametrizes a family of reference stationary
states Fα: Fα is unimodal for α � 0 and bimodal for α > 0. Here λ

is the eigenvalue or Landau pole which has the largest real part. The
codimension-two bifurcation point is the origin (α, Reλ) = (0, 0).
The three types of lines are the critical line (red solid), the eigen-
value collision line (green dotted), and the jump line (blue dashed).
Trapping scaling Asat = O((Reλ)2) appears between the critical line
and the jump line, where Asat is the asymptotically saturated ampli-
tude of the unstable mode. (b) Sketch of a curve representing Asat

as a function of Reλ, along the left magenta vertical line in (a).
(c) Same as (b) but along the right magenta vertical line. In both
cases (b) and (c) the bifurcation is continuous with trapping scaling,
but the asymptotic amplitude then shows a jump. In (b) [(c)], Landau
damping (instability) is oscillatory to the left of the green diamond
point and nonoscillatory to the right.

unimodal velocity profile requires the interaction to be attrac-
tive, which we assume in the following. A typical example is
provided by self-gravitating systems and another remarkable
example is a system consisting of trapped ions, whose interac-
tion range can be experimentally controlled from short to long
[16–20].

Our results are schematically illustrated on Fig. 1. We
first analyze the codimension-two bifurcation at the linear
level, showing that it is characterized by a collision of two
complex conjugate eigenvalues (or Landau poles) λ and λ∗
on the real axis. We call this, in the following, eigenvalue
collision; it should not be confused with the points where one
or two eigenvalues cross the imaginary axis: At these points
the reference state becomes unstable and we call them criti-
cal points. For simplicity, when Landau poles (and not bona
fide eigenvalues) collide on the real axis, we also call it an
eigenvalue collision. At the codimension-two point, which we
also call a bifurcation point, the eigenvalue collision happens
exactly for λ = 0, at the same time as the critical point.

In the neighborhood of the bifurcation point, Landau poles
are close to the imaginary axis and not always real: Landau
damping is then weak and may be oscillating. As a standard
central manifold expansion is in general not valid in this case,
we use a combination of complementary methods to study the
bifurcation at the nonlinear level.

(i) The self-consistent equation [21–25] focuses on com-
puting approximately the asymptotic stationary state after the
nonlinear evolution of the instability. It predicts a discontinu-
ous transition at the codimension-two bifurcation point; in the
unimodal region α < 0, it predicts a continuous bifurcation,
followed, deeper in the unstable region, by a discontinuous
jump of the asymptotic state. However, the self-consistent
equation is not applicable for the bimodal region α > 0 close
to the tricritical point α = 0.

(ii) Direct numerical simulations confirm the analytical
results when they are available and allow us to explore the
regimes when they are not. Numerical simulations reveal in
particular that the bifurcation is always continuous except
at the codimension-two bifurcation point, but that this con-
tinuous bifurcation is followed by a jump of the asymptotic
state in the bimodal side α > 0 as well as the unimodal side
α < 0. The region where the bifurcation is continuous, which
is described by trapping scaling and the single-wave model,
drastically shrinks when we approach the codimension-two
bifurcation point from either side, vanishing at the bifurcation
point. We also complement our analysis by studying the case
of more vanishing derivatives of the critical profile F0.

The rest of the paper is organized to explain Fig. 1 as
follows. We present the model and the corresponding Vlasov
equation in more detail in Sec. II. We develop the linear theory
of the bifurcation in Sec. III. The linear theory in particular
derives the eigenvalue collision point, which plays an essential
role in understanding the jump in the bimodal case (α > 0). A
nonlinear theory is developed in Sec. IV and used to analyze
in detail the unimodal case (α � 0), including the jump line
following the continuous bifurcation. Direct numerical simu-
lations of the Vlasov equation in Sec. V provide comparisons
and complements for these theoretical predictions.

II. MODEL

We consider a spatially one-dimensional system with peri-
odic boundary condition. The N-body Hamiltonian is

HN =
N∑

i=1

p2
i

2
+ 1

2N

N∑
i=1

N∑
j=1

φ(qi − q j ), (1)

where φ(q) is a 2π -periodic and even coupling function. The
coupling function is then expanded in a Fourier series as

φ(q) = −
∞∑

k=1

Kk cos(kq), (2)

where the constant term (k = 0) is omitted. A positive co-
efficient Kk > 0 means that the kth Fourier mode generates
an attractive interaction, which may destabilize the homoge-
neous state. If K1 = 1 and Kk = 0 (k > 1), the N-body system
is called the Hamiltonian mean-field (HMF) model [26,27],
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which is a paradigmatic mean-field model. We assume that

K1 > |Kk| (k > 1) (3)

so that the instability occurs in the first Fourier mode. We
use K1 as the first bifurcation parameter corresponding to λ

in Fig. 1 and rename it K for simplicity: The homogeneous
state is stable for small K and unstable for large K .

The mean-field-like interaction in (1) allows us to describe
dynamics of the N-body system in the limit N → ∞ by the
Vlasov equation [28–30]

∂ f

∂t
+ ∂H[ f ]

∂ p

∂ f

∂q
− ∂H[ f ]

∂q

∂ f

∂ p
= 0. (4)

Here f (q, p, t ) is the one-particle distribution function with
the normalization condition∫∫

μ

f (q, p, t )dq d p = 1 (5)

and H[ f ](q, p, t ) is the one-particle Hamiltonian functional
defined by

H[ f ](q, p, t ) = p2

2
+

∫∫
μ

φ(q − q′) f (q′, p′, t )dq′d p′, (6)

where μ is the one-particle phase space spanned by the po-
sition variable q ∈ (−π, π ] and the conjugate momentum
variable p ∈ R.

We recall three important facts about the Vlasov equa-
tion. First, any homogeneous distribution, which depends on
p only, is a stationary solution to the Vlasov equation (4).
Second, the Vlasov equation has an infinite number of con-
served quantities, called Casimir invariants, irrespective of the
Hamiltonian. A Casimir invariant is of the form

C[ f ] =
∫∫

μ

c( f (q, p))dq d p, (7)

where c is an arbitrary smooth function (see, for instance,
Ref. [31], Pt. III). Third, from the condition (3), the stability
of a homogeneous stationary state F (p) is obtained from the
spectral function for the first Fourier mode �1(λ), where the
spectral function for the kth Fourier mode is (see [32], or [33]
in the context of self-gravitating systems)

�k (λ) = 1 + Kkπ

∫
R

F (1)(p)

p − iλ/k
d p. (8)

The superscript with the parentheses represents the order of
the derivative

F (l )(p) = dlF

d pl
(p). (9)

Roots of �k (λ) are eigenvalues of the linearized Vlasov equa-
tion around the reference stationary state F . Clearly, if there
exists an eigenvalue whose real part is positive, then F is
unstable. Due to (3), the destabilization of the profile F occurs
through the first Fourier mode. Hence we use the first-order
magnetization M1 > 0 to quantify the instability, where

M1,x + iM1,y = M1eiϕ1 =
∫∫

μ

eiq f (q, p)dq d p. (10)
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FIG. 2. Examples of the reference states Fα (p) (13) with β4 = 3.

The second bifurcation parameter α is introduced as fol-
lows. We consider a family of homogeneous stationary states
{Fα (p)}α , which are even in p and such that F (2)

α (0) changes
sign at α = 0. For simplicity, we take α so that

α = F (2)
α (0). (11)

We assume that Fα (p) is unimodal for α � 0 and bimodal for
α > 0. The unimodality at α = 0 implies that F (4)

0 (0) < 0 in
general. Higher-order flatness, i.e., vanishing of higher-order
derivatives at p = 0, will be discussed separately. There is
a critical strength of the coupling constant K at which the
reference state Fα changes stability. This critical point depends
on α and is denoted by Kc

α (>0). We introduce the relative
distance from the critical point as

κα = K − Kc
α

Kc
α

. (12)

In the explicit computations of Secs. III and V, we use the
family of stationary states

Fα (p) = C exp[−β2 p2/2 − (β4 p2/2)2], β4 = 3, (13)

where C is the normalization factor, so that Fα satisfies the
normalization condition (5). The bifurcation parameter α is
defined by

α = F (2)
α (0) = −Cβ2. (14)

Some examples of Fα (p) are shown in Fig. 2.

III. LINEAR THEORY: EIGENVALUE COLLISION

The eigenvalue collision is derived from the linear theory
of the Vlasov equation. The linearized Vlasov operator has
a continuous spectrum spanning the whole imaginary axis. It
may also have eigenvalues, given by the roots of the spectral
functions (8). Since the instability occurs on the first Fourier
mode [due to the condition (3)], the �k functions for k �= ±1
have no roots in the neighborhood of the bifurcation: Indeed,
the existence of an eigenvalue λ would imply by Hamiltonian
symmetry the existence of an eigenvalue −λ and the reference
state would be unstable. The spectral function �−1 satisfies
the relation �−1(λ) = [�1(λ∗)]∗, where λ∗ is the complex
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conjugate of λ; hence we concentrate on

�1(λ, κα, α) = 1 + (1 + κα )Kc
απ

∫
R

F (1)
α (p)

p − iλ
d p. (15)

The model dependence appears solely in the coefficient K ,
i.e., κα in (15), so the linear theory is universal for all models
satisfying (3).

We see from this expression that �1 is holomorphic on the
domains Re λ > 0 and Re λ < 0, but not on the whole com-
plex plane. On the stable side of the bifurcation (κα < 0), there
are no eigenvalues; there are however Landau poles, which are
roots of the analytically continued spectral function (15) from
the right half plane Reλ > 0 to the left half plane Reλ � 0.
The continuation is performed by continuously deforming the
integration contour from R to a new contour L so as to avoid
the singular point p = iλ, which is in the upper half of the
complex p plane for Reλ > 0, goes down on the real axis
for Reλ = 0, and moves to the lower half for Reλ < 0 (see
Appendix A 1 for more details). The continued integral is
expressed for an analytic function g(p) as

∫
L

g(p)

p − iλ
d p =

⎧⎪⎨
⎪⎩

∫
R

g(p)
p−iλ d p (Reλ > 0)

P
∫
R

g(p)
p−iλ d p + iπg(iλ) (Reλ = 0)∫

R
g(p)
p−iλ d p + i2πg(iλ) (Reλ < 0),

(16)

where the notation P
∫ · · · stands for the Cauchy principal

value. The second term in the second and third lines is the
residue at p = iλ.

We approximately obtain an eigenvalue or a Landau pole λ

by expanding the spectral function �1 in a Taylor series of λ,

�1(λ, κα, α) = −(1 + κα )(aα + bαλ − cαλ2 + dαλ3 + · · · ),
(17)

where

aα = κα

1 + κα

− �1(0, 0, α), bα = Kc
απ2α,

cα = −1

2
Kc

απ

∫
R

F (3)
α (p)

p
d p, dα = − 1

3!
Kc

απ2F (4)
α (0).

(18)

Details of the above expansion are reported in Appendix A 1.
We assume that cα > 0: This assumption implies that

�1(0, 0, α) = 0 (α � 0),

�1(0, 0, α) > 0 (0 < α < α1), (19)

where α1 > 0 is a certain small value (see Appendix A 2).
Since κα = 0 corresponds to the critical line, we see from
the first equation of (19) that for α � 0 the critical eigen-
value crosses the imaginary axis at λ = 0 and the instability
is nonoscillatory; from the second equation of (19) we see
that for α > 0 the critical eigenvalues cross the imaginary
axis away from λ = 0 and the instability is oscillatory. The
assumption cα > 0 is indeed true for the family (13) around
α = 0 (see Appendix A 3).

It is worth commenting that, from (17), (19), and the coef-
ficient aα , we have the relation

�1(0, κα, α) = −κα (α � 0). (20)

For α > 0 it is reasonable to assume that

�1(0, 0, α) = O(α) (α > 0). (21)

We may also assume dα > 0 for sufficiently small α > 0
since, from the unimodality hypothesis, F (4)

α (0) < 0 when
α = 0 and this inequality can be continued to small |α| > 0.

Eigenvalues (or Landau poles) satisfy the equation

aα + bαλ − cαλ2 + dαλ3 + · · · = 0. (22)

We will use a truncated version of (22) to describe a sketch of
the eigenvalue bifurcation diagram by computing eigenvalues
or Landau poles at the eigenvalue collision point κcol

α and the
critical point κc

α = 0; the order of truncation we use depends
on the purpose.

The eigenvalue collision corresponds to the existence of
a double root of �1 and it can be captured by the quadratic
equation

aα + bαλ − cαλ2 = 0. (23)

The degenerate real eigenvalue λcol
α is computed as

λcol
α = bα

2cα

< 0 (α < 0)

= 0 (α = 0)

> 0 (α > 0), (24)

which is of O(α) due to bα = O(α). Substituting λcol
α into (23)

and using (18), we have

κcol
α

1 + κcol
α

= �1(0, 0, α) − b2
α

4cα

. (25)

Recalling (19) and the assumption �1(0, 0, α) = O(α) for
α > 0, we have the following signs and scalings for the eigen-
value collision point κcol

α :

κcol
α < 0, κcol

α = O(α2) (α < 0),

κcol
α = 0 (α = 0),

κcol
α > 0, κcol

α = O(α) (α > 0). (26)

In order to estimate the purely imaginary critical eigen-
value λc

α ∈ iR, which is embedded in the continuous spec-
trum, we truncate (22) at cubic order. Substituting λc

α = iy
(y ∈ R) into

aα + bαλ − cαλ2 + dαλ3 = 0, (27)

the imaginary part of (27) gives

λc
α =

{
0 (α � 0)

±i
√

bα

dα
(α > 0).

(28)

For the family (13), the eigenvalue collisions numerically
computed from the continued spectrum function are shown in
Fig. 3 with the α dependence of the critical point Kc

α . The sign
of λcol

α (24) and the critical Landau pole (28) are confirmed.
The scalings (26) will be confirmed in Sec. V after discussing
the trapping scaling and the jump in the nonlinearly saturated
amplitude in Sec. IV.
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FIG. 3. Collisions of eigenvalues and Landau poles for the family
(13) close to the codimension-two bifurcation point. Here β2 = 0.3
(unimodal α < 0, blue diamonds), β2 = 0 (flat α = 0, orange cir-
cles), and β2 = −0.3 (bimodal α > 0, magenta squares) from left to
right. The arrows indicate the movement of eigenvalues and Landau
poles as K increases. The inset shows the critical point Kc

α as a
function of α; we note an apparent singular maximum of this function
at α = 0.

IV. NONLINEAR THEORY:
TRAPPING SCALING AND JUMP

After the reference state becomes unstable, the system
reaches an asymptotic state which is close to the reference
state: The bifurcation is continuous, except for α = 0. This
is the region where the trapping scaling Asat = O((Reλ)2) is
valid. When the parameter controlling the instability is further
increased, a jump in Asat follows the continuous bifurcation.
To understand these features, we apply a nonlinear theory,
the self-consistent equation, which is a powerful tool for
Vlasov and Vlasov-like equations. We sketch the derivation
of the self-consistent equations in Sec. IV A; in Sec. IV B,
we expand them into (half-integer) power series of the mag-
netizations and explain why considering only the dominant
magnetization M1 in the HMF model is sufficient to ensure
universality of the bifurcation diagram, as for the linear com-
putation. Using this expansion, we discuss the continuity of
the bifurcation in Sec. IV C. For α < 0 (unimodal), we show
in Sec. IV D that the well-known trapping scaling O((Reλ)2)
is reproduced by the self-consistent equation and that the
scaling of the jump point κJ

α = O(|α|3/2) is also predicted.
The self-consistent equation has a limitation: The asymptotic
state must be stationary; this condition is not satisfied for
small α > 0 (bimodal). We therefore propose another theory
to predict the scaling: κJ

α = O(α) for α > 0 in Sec. IV E.
The investigation of the trapping scaling for α > 0 is left for
numerical examinations.

A. Self-consistent equation

The idea of the self-consistent equation is to assume that
there exists an asymptotic stationary state F asym

α and make
the approximation that the temporal evolution is governed
by the Hamiltonian corresponding to this asymptotic state

H asym
α = H[F asym

α ]. Introducing the kth magnetizations in the
asymptotic state

Mk,x + iMk,y =
∫∫

μ

eikqF asym
α (q, p)dq d p, (29)

the asymptotic Hamiltonian is

H asym
α = p2

2
−

∞∑
k=1

Kk[Mk,x cos(kq) + Mk,y sin(kq)]. (30)

The asymptotic Hamiltonian system is integrable, so we
can introduce angle-action variables (θ, J ). The temporal dy-
namics driven by H asym

α conserves the action and evolves
linearly the angle. The asymptotic state is then obtained by
taking the average of the initial reference state Fα (p) over the
θ variable, at fixed J ,

F asym
α (J ) = 1

2π

∫ 2π

0
Fα (p(θ, J ))dθ =: 〈Fα〉J , (31)

where the symbol 〈·〉J represents the average over θ on
a fixed-J contour. The right-hand side 〈Fα〉J actually de-
pends on the asymptotic state, in other words, on M =
(M1, M2, . . .), through the definition of angle-action vari-
ables; hence Eq. (31) must be solved self-consistently. We
assume Mk,y = 0 and Mk,x > 0 and define Mk = Mk,x. The
self-consistent equations are

Mk =
∫∫

μ

cos(kq)〈Fα〉Jdq d p (k = 1, 2, . . .). (32)

We start with three remarks. First, we have to assume the
existence of an asymptotic stationary state. The bimodal case
with small α > 0 is then out of scope, since the two peaks
in the velocity profile induce two resonances and the two
resonances create two traveling clusters at opposite velocities.
This two-cluster state is not stationary. Second, although the
self-consistent equation is only approximate, it has been al-
ready proved to be powerful to analyze the critical behavior,
when |F asym

α − Fα| is sufficiently small around the critical
point [34]. Third, the asymptotic state (31) conserves all
Casimir invariants up to linear order in F asym

α − Fα , that is,

C
[
F asym

α

] − C[Fα] = O
(∣∣F asym

α − Fα

∣∣2)
. (33)

B. Expansion of the self-consistent equations

Expanding the self-consistent equation (32) into a power
series of M and picking up the leading two terms, we estimate
Mk = O(αM3/2

1 ) (k > 1) (see in Appendix B 1). This scaling
suggests that for small |α|, the higher-order k > 1 magneti-
zations have a negligible effect and the analysis of the HMF
model should be valid for any interaction potential φ.

We denote from now on M1 by M for simplicity. In the
HMF model, the expanded self-consistent equation is [23]

�1(0, κα, α)M = ϕ(M )M, (34)

where

ϕ(M ) := L3/2M1/2 + L5/2M3/2 + L3M2 + · · · . (35)
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The coefficients L3/2 and L5/2 are proportional to derivatives
of Fα:

L3/2 = L̃3/2F (2)
α (0) = L̃3/2α,

L5/2 = L̃5/2F (4)
α (0). (36)

The one-particle dynamics in the HMF model is essentially a
pendulum and the angle-action variables (θ, J ) have explicit
expressions in terms of Legendre elliptic functions and inte-
grals (see [35], for instance). Using the expressions, we have

L̃3/2 
 5.168, L̃5/2 
 −0.089. (37)

The exact values above as well as the vanishing O(M ) term
in ϕ(M ) are specific to the HMF model, but the signs and
smallness of the O(M ) term hold around the codimension-two
bifurcation point for a generic system, i.e., a generic coupling
function φ. We thus analyze the continuity of the bifurcation
using (34).

C. Continuity of the bifurcation

Solutions to the self-consistent equation (34) are obtained
as intersection points of the graph of ϕ(M ) with the horizon-
tal level �1(0, κα, α), which is a decreasing function of κα

around α = 0. To graphically understand the intersection, we
consider a scaled and truncated function ϕscale(M ) defined by

ϕscale(M ) = rM1/2 + M3/2 − γ M2, (38)

which is obtained by scaling (35) as

√
M → −γ L5/2

L3

√
M, ϕ → −γ 3L4

5/2

L3
3

ϕ, r = L2
3L3/2

γ 2L3
5/2

.

(39)

Here we use the sign L5/2 > 0 from F (4)
0 (0) < 0 and contin-

uation around α = 0. Moreover, we assume that L3 < 0 and
γ > 0 because it is the case for F0(p) in the HMF model
(see Appendix B 2). The sign of r coincides with the sign
of α. Graphs of ϕscale(M ) are shown in Fig. 4 for γ = 1.2.
An increasing interval of ϕscale(M ) corresponds to an unstable
branch, because M at the intersection point decreases when κα

increases.
For α < 0, a stable branch exists around M = 0 and the

bifurcation is continuous. Further increasing κα , the sta-
ble branch vanishes and a jump emerges, when the level
�1(0, κα, α) is lower than ϕmin, which is the local minimum
of ϕ(M ) located around M = 0 [see Fig. 4(b)]. For α � 0,
there is no stable branch around M = 0: The self-consistent
equation predicts that the bifurcation is discontinuous. The
discontinuity for α = 0 is also predicted by the unstable
manifold expansion, reported in Appendix C. The disconti-
nuity disagrees for α > 0 with Fig. 1 and with the numerical
simulations. There is no contradiction however: As already
commented above and as we will see in the simulations, the
asymptotic state for α > 0 and very close to criticality is not
stationary and is then out of the scope of the self-consistent
equation.

We note that smallness of |α| is crucial to have the local
minimum ϕmin for α < 0. Indeed, as shown in Fig. 5, the
local minimum disappears if |r| is sufficiently large. Recalling
r = O(α), we conclude that the jump following a continuous
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FIG. 4. (a) Schematic picture of ϕscale(M ) (38) for r = −0.1
(α < 0, blue lower curve), r = 0 (α = 0, orange middle curve), and
r = 0.1 (α > 0 magenta upper curve) with γ = 1.2. A solid line
represents a stable branch and a dashed line an unstable branch.
The three horizontal lines mark the level of �1(0, κα, α), which goes
down as the coupling constant K increases from the critical value
Kc

α . The three points predict the asymptotic value of M for α < 0
and κα > 0 (blue diamond), α = 0 and κα = 0+ (orange circle), and
α > 0 and κα = 0+ (magenta square). Actually, this jump of M does
not happen for α > 0 (see the text). (b) Magnification of (a) around
the origin. The middle of the three horizontal blue lines is the jump
level at K J

α , determined from ϕmin by (44), and M jumps to the other
stable branch of (a) for K > K J

α .

bifurcation is produced by flatness of Fα (p) around p = 0 in
α < 0 (unimodal) and disappears for large |α|. This depen-
dence on α is consistent with Fig. 15 of Ref. [7].

We further remark that the discontinuity for α = 0 actually
carries over for higher-order flatness of F0(p): Any F0(p)
with a nonconstant leading term of O(p2n) (n � 3) makes
the bifurcation discontinuous, as discussed in Appendix D.
An extreme case is the water-bag distribution, which is per-
fectly flat around p = 0 and which is known to induce a
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FIG. 5. Graphs of ϕscale(M ) (38) with γ = 1.2. A solid part is a
stable branch and a dashed part is an unstable branch. The unstable
branch and a jump disappear when |r| is sufficiently large.
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discontinuous bifurcation [12]. The above result implies that
n = 2 is sufficiently flat to make the bifurcation discontinu-
ous.

D. Trapping scaling and jump location for α � 0

The trapping scaling M = O((Reλ)2) is well known and is
reproduced by the self-consistent equation. First, we observe
the linear relation

κα = O(Reλ) (40)

from the eigenvalue problem up to the linear term

aα + bαλ = 0, (41)

where aα = κα/(1 + κα ) for α � 0. Second, the self-
consistent equation up to the leading term of ϕ(M ) is

�1(0, κα, α) = L3/2M1/2 (42)

for M > 0. The trapping scaling then results from relations
(20) and (36):

M =
(

κα

−L3/2

)2

= O((Reλ)2/α2). (43)

This dependence on α suggests a discontinuity at α = 0.
We compute now the α dependence of the jump point κJ

α .
The self-consistent equation has a nonzero stable solution
around M = 0 if �1(0, κα, α) � ϕmin and loses this stable
solution if �1(0, κα, α) < ϕmin. The jump point κJ

α is hence
computed by the equation

�1
(
0, κJ

α, α
) = ϕmin, (44)

where, using the expansion of ϕ up to O(M3/2),

ϕmin = −2

3

(−L3/2)3/2

(3L5/2)1/2
. (45)

The relations (20) and (36) then provide the scaling

κJ
α = 2

3

(−L3/2)3/2

(3L5/2)1/2
= O(|α|3/2) (α � 0). (46)

The prefactor of |α|3/2 is given in Appendix E.

E. Scaling of the jump location for α > 0

Since the self-consistent equation is a priori not valid
in this case, we propose a heuristic mechanism to explain
the continuous bifurcation and the jump in the bimodal case
(drawing ideas from [36]). Let λ be an eigenvalue. The two
peaks of Fα (p) create two traveling clusters around the mo-
mentum p = ±Imλ and the system may be trapped in such
a nonstationary bicluster asymptotic state. The width of the
clusters is of O(

√
M ), which is expected to be of O(Reλ) from

the trapping scaling M = O((Reλ)2) (this will be checked in
Sec. V). This nonstationary asymptotic state is expected to
disappear when the two clusters start to overlap, because this
will trigger their merging; this happens when Imλ 
 O(Reλ).
After merging, a single cluster forms and the system goes
to a stationary state which is predicted by the self-consistent
equation: This is the jump.

The critical eigenvalue λc
α and the eigenvalue at the eigen-

value collision point λcol
α , corresponding, by definition, to

κc
α = 0 and κcol

α > 0, respectively, satisfy

Reλc
α = 0, Imλc

α = O(
√

α),

Reλcol
α = O(α), Imλcol

α = 0. (47)

We also know that Imλ (Reλ) is a decreasing (increasing)
function of κα [see Fig. 3(c)] and κcol

α = O(α).
Clearly, the cluster merging condition Imλ 
 Reλ is

reached for κJ
α somewhere in the interval 0 = κc

α < κJ
α <

κcol
α = O(α). Hence κJ

α is at most of order α. Furthermore,
if κα � α, then

Reλα = O(α), Imλα = O(
√

α),

so the merging condition Imλ 
 Reλ can never be met. We
conclude that

κJ
α = O(α) (α > 0), (48)

consistently with Fig. 1.

V. NUMERICS

We now illustrate and complement with detailed numerical
simulations the results of previous sections.

A. Simulation setup

We use the coupling function

φ(q) = −[K cos(q) + K2 cos(2q)],

where K2 = 0.5 is fixed and K is used as a bifurcation param-
eter. We remark that K2 is smaller than the critical point Kc

α

reported in the inset of Fig. 3. The reference family is (13)
and

α = F (2)
α (0) = −Cβ2 (49)

is the second bifurcation parameter. The initial condition is
prepared as

F (q, p, t = 0) = Fα (p)(1 + ε cos q) (50)

and the strength of perturbation is fixed as ε = 10−6.
We perform numerical simulations of the Vlasov equation

by the semi-Lagrangian method described in [37] with the
time step �t = 0.05. The phase space (q, p) is truncated
as (−π, π ] × [−4, 4], where the maximum value |p| = 4 is
large enough (see Fig. 2). We divide the phase space into an
L × L mesh and we fix L = 512 in the following computa-
tions. We have checked that L = 1024 does not significantly
modify the results for β2 = 0.03 and 0.05.

B. Scaling relation between Reλ and K − Kc
α

The instability rate Reλ is commonly used as a bifurcation
parameter; for instance, the universal trapping scaling is usu-
ally expressed as M = O((Reλ)2) on the unstable side around
the critical point. However, we will typically show curves of
the magnetization as a function of the coupling constant K or
κα .

In principle, the choice between Reλ and κα is arbitrary, as
there is a linear relation between them (40); however, for α
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FIG. 6. (a) Bifurcation of Landau poles, with α = −0.0054
(β2 = 0.05). Here Reλ (plum circles) and Imλ (brown triangles)
are plotted as functions of K . The blue solid curve represents the
curve (51). The green dotted and red solid vertical lines mark the
eigenvalue collision point Kcol

α and the critical point Kc
α , respectively.

(b) Instability Reλ as a function of K − Kc
α in logarithmic scale. The

blue solid curve represents the curve (51).

close to 0, this linear relation is restricted to a narrow interval
of κα around 0. For α > 0 (β2 < 0), the narrowness of the
region is clear, since the linear relation between Reλ and κα

does not hold after the eigenvalue collision κα > κcol
α and the

eigenvalue collision point κcol
α approaches the critical point

κc
α = 0 as α goes to 0. For α < 0 (β2 > 0), the narrowness

of the linear region is illustrated in Fig. 6. Figure 6(a) reports
the bifurcation diagram of Landau poles for β2 = 0.05, which
corresponds to α = −0.0054. The unstable branch of Reλ is
approximated by

Reλ = 0.48
(√

K − Kcol
α −

√
Kc

α − Kcol
α

)
, (51)

where

Kc
α 
 0.968 79, Kcol

α 
 0.968 65. (52)

Due to the smallness of Kc
α − Kcol

α 
 1.4 × 10−4, the linear
region is restricted to K − Kc

α < 10−4, as shown in Fig. 6(b).
Working in this region is very demanding numerically. There-

fore, we will test the trapping scaling and the jump scaling by
observing M as a function of K − Kc

α or κα rather than of Reλ.

C. Scaling region and jump

We use three estimators for the amplitude of the magneti-
zation in the saturated state: the average

Mave = 2

T

∫ T

T/2
M(t )dt, (53)

the maximum

Mmax = max
t∈[0,T ]

M(t ), (54)

and the first peak height Mfp of M(t ). The upper limit of time
is set as T = 3000. These estimators are shown in Fig. 7 as
functions of K . As the theory predicted, we find a jump in each
panel. The orders of magnitude of the collision point Kcol

α , the
critical point Kc

α , and the jump point K J
α perfectly agree with

Fig. 1. The trapping scaling M = O(κ2
α ) is also confirmed in

the insets of Figs. 7(a) and 7(c).
The existence of a jump is directly confirmed from the

temporal evolution of M(t ), which is reported in Fig. 8 around
the jump point K J

α . Note that in Fig. 8(b) M(t ) is very small
for K = 0.9863 > K J

α , but this is caused by the slow dynam-
ics around the critical point. Indeed, M(t ) tends to slowly
increase. We remark that the slow dynamics induces a small
gap between the critical point Kc

α and the jump point K J
α in

Fig. 7(b).
A numerically obtained bifurcation diagram is reported

in Fig. 9(a), which is quantitatively in good agreement with
Fig. 1(a). For α > 0, Fig. 9(a) verifies the linear scaling of
the eigenvalue collision κcol

α = O(α) (26) and of the jump
κJ

α = O(α) (see Sec. IV E). For α < 0, Figs. 9(b) and 9(c)
confirm the collision scaling κcol

α = 5.34α2 (26) and the jump
point scaling κJ

α = 6.29|α|3/2 (46), respectively, although the
theoretical prefactor 6.29 is somewhat larger than the numeri-
cally obtained value 4.71 (a similar effect is seen in [23]). See
Appendix E for the computation of theoretical prefactors for
α � 0.

We assess the universality of the bifurcation diagram
through the scaling of M2, which is theoretically predicted in
Appendix B 1 to be M2 = O(αM3/2

1 ), namely, M2 = O(ακ3
α ),

for a fixed α < 0 (unimodal). This scaling with respect to κα is
verified in Fig. 10. Beyond the scaling with κα , the magnitude
of M2 also suggests the validity of the scaling factor α, since
M2 is much smaller than M3/2

1 in the scaling region. Therefore,
we conclude that the theory is valid and for small |α| the
higher-order magnetizations Mk (k > 1) are negligible for a
general interaction potential φ in (1) and (2).

D. Existence of two traveling clusters

Finally, we examine the existence of two traveling clusters
for α > 0 in the interval between Kc

α and K J
α . These clusters

are very small and cannot be observed directly on the phase
space density. Instead we observe the angular frequency ω of
M(t ), which is extracted as the peak position of the power
spectrum density. A complex eigenvalue λ induces an oscilla-
tion with angular frequency Imλ, but the existence of the two
traveling clusters at p = ±Imλ induces the double angular
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α (estimated from the numerics); the three lines coincide in
(b). In (a) and (c) the insets show the three estimators against κα in
logarithmic scale. The orange straight lines have slope 2 (consistent
with trapping scaling) and are guides for the eyes.

frequency ω = 2 Imλ. Indeed, this relation is confirmed in
Fig. 11, which supports the existence of the two traveling
clusters.
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with (a) β2 = 0.05 (unimodal α < 0), (b) β2 = 0 (flat α = 0), and
(c) β2 = −0.3 (bimodal α > 0). The numbers in the panels represent
the value of K . The magnetization M(t ) is scaled to 10sM(t ) in (b);
s = 2 for K = 0.9861 and 0.9862, s = 3 for K = 0.9863, and s = 0
for K = 0.9864.

VI. CONCLUSION

We have investigated in detail the bifurcation occurring in
a Vlasov equation when a family of stationary states with
a small curvature at the critical velocity (taken to be 0 in
this article) becomes unstable. Our main result is that the
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codimension-two bifurcation point where the curvature is zero
corresponds to a collision of generalized eigenvalues hap-
pening precisely at the stability boundary. At this point the
magnetization is discontinuous and away from this point and
on both sides the bifurcation is continuous and followed by
a jump. Due to this jump, the region where trapping scaling
can be observed shrinks on both sides of the codimension-two
bifurcation point. Our theoretical analyses based on the self-
consistent equation qualitatively predict this phenomenology
around the codimension-two bifurcation point and the predic-
tions are fully confirmed by direct numerical simulations.

Although the analysis and numerical simulations were per-
formed in the simplified context of a periodic one-dimensional
Vlasov equation with attractive potential, we certainly expect
that the uncovered bifurcation is generic and could be found
in physical systems sharing the same qualitative properties.
The two-dimensional Euler equation shares many properties
with the Vlasov equation; hence we expect the bifurcation de-
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FIG. 10. Scalings of M1,max = O(κ2
α ) and M2,max = O(κ3

α ), where
Mk,max = maxt∈[0,3000] Mk (t ) (k = 1, 2) and M1,max = Mmax, with
β2 = 0.05 (unimodal α = −0.0054), which gives Kc

α 
 0.968 794.
The magnitude of M2,max suggests the validity of the scaling factor α

in the predicted relation M2 = O(αM3/2
1 ). More precise computations

are needed for κα < 10−4.

scribed in this article can be found, for instance, for vortices in
two-dimensional fluids, which can also model electron beams
[38,39], or for other shear flows [10,40]. Self-organizing
atoms in optical cavities could also provide an experimental
test bed [41], but would require one to understand the role of
a small dissipation (see [42] for shear flows).

On the theoretical side, these results are a further step to-
wards a classification of bifurcations in Vlasov systems [15].
Several questions remain open however. The self-consistent
equation approach is restricted to the unimodal side of the bi-
furcation; hence our description of the bimodal side is mainly
numerical. Even on the unimodal side, a better theory would

0

0.05

0.1

0.15

0.2

0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

|Im
λ
|,ω

/2

K

β2 = −0.3
β2 = −0.2
β2 = −0.1

FIG. 11. Comparison between |Imλ| (small symbols) and ω/2
(large symbols), where ω is estimated from a time series of M(t ),
with α = −Cβ2 > 0 and β2 = −0.1 (light blue circles), −0.2 (or-
ange triangles), and −0.3 (magenta inverted triangles). Red, blue,
and green vertical segments mark the critical point Kc

α , the jump
point K J

α (estimated from the numerics), and the collision point Kcol
α ,

respectively.
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FIG. 12. The integration contour (black line) is L = R for
(a) Reλ > 0; it includes (b) a half circle for Reλ = 0 and (c) a full
circle for Reλ < 0.

be welcome; it would entail a real description of the phase
space and possibly a generalization of the single-wave model.
This is probably challenging.
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APPENDIX A: LINEAR ANALYSIS

1. Expansion of the spectrum function

We first recall how the spectrum function is defined for any
λ ∈ C by analytical continuation. For Reλ > 0 the spectrum
function is defined by the expression

�1(λ, κα, α) = 1 + (1 + κα )Kc
απ

∫
R

F (1)
α (p)

p − iλ
d p.

For Reλ � 0, the integration contour for p is deformed from
R to L as in Fig. 12, in order to avoid the singularity at p = iλ;
the final result is (16).

The Taylor expansion of �1(λ, κα, α) is

�1(λ, κα, α) =
∞∑

k=0

λk

k!

∂k�1

∂λk
(0, κα, α), (A1)

where

∂k�1

∂λk
(λ, κα, α) = ik (1 + κα )Kc

απ

∫
R

F (k+1)
α (p)

p − iλ
d p. (A2)

Performing the analytic continuation, we have

∂�1

∂λ
(0, κα, α) = −(1 + κα )Kc

απ2F (2)
α (0),

∂2�1

∂λ2
(0, κα, α) = −(1 + κα )Kc

απ

∫
R

F (3)
α (p)

p
d p,

∂3�1

∂λ3
(0, κα, α) = (1 + κα )Kc

απ2F (4)
α (0). (A3)

The first derivative with the definition α = F (2)
α (0) provides

the coefficient bα and the second and third derivatives directly
give the coefficients cα and dα , respectively.

The constant term aα satisfies

�1(0, κα, α) = −(1 + κα )aα. (A4)

Using the definition

�1(0, 0, α) = 1 + Kc
απ

∫
R

F (1)
α (p)

p
d p, (A5)

we can modify �1(0, κα, α) as

�1(0, κα, α) = 1 + (1 + κα )[�1(0, 0, α) − 1]. (A6)

This modification gives the coefficient aα of (18).

2. Spectrum function at the origin

We consider the spectrum function at λ = 0:

�1(0, κα, α) = 1 + (1 + κα )Kc
απ

∫
R

F (1)
α (p)

p
d p. (A7)

We show (19) under the assumption cα > 0.
We start from the case α � 0. At the critical point κα = 0,

a purely imaginary critical eigenvalue iλI (embedded in the
continuous spectrum) satisfies

1 + Kc
απ

(
P

∫
R

F (1)
α (p)

p + λI
+ iπF (1)

α (−λI )

)
= 0. (A8)

Considering the imaginary part of the above equation, we see
that the unimodality of Fα implies that λI = 0. Considering
the real part, we then conclude that �1(0, 0, α) = 0.

We now turn to the case α > 0. We may assume that |λI| is
small for small α > 0. We then have the expansion

P
∫
R

F (1)
α (p)

p + λI
d p = P

∫
R

F (1)
α (p − λI )

p
d p

=
∫
R

F (1)
α (p)

p
d p + λ2

I

2

∫
R

F (3)
α (p)

p
d p

+ O(|λI|4). (A9)

The above relation induces, for α > 0 small,

�1(0, 0, α) = 1 + Kc
απ

∫
R

F (1)
α (p)

p
d p

> 1 + Kc
απ P

∫
R

F (1)
α (p)

p + λI
d p = 0 (A10)

under the assumption cα > 0.

3. Positiveness of the coefficient cα

We show that the coefficient is positive at α = 0, namely,
c0 > 0 for the family (13). Then continuity with respect to α

implies that cα is positive around α = 0.
The reference function at α = 0 is

F0(p) = Ce−(β4 p2/2)2
, (A11)

where the normalization factor C is

C = 1

4π

1

∫∞
0 e−(β4 p2/2)2 d p

=
(

β4

2

)1/2 1

π�(1/4)
(A12)

and �(z) is the gamma function

�(z) =
∫ ∞

0
t z−1e−t dt . (A13)
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The third-order derivative of F0(p) is

F (3)
0 (p) = −Cβ2

4 p
(
β4

4 p8 − 9β2
4 p4 + 6

)
e−(β4 p2/2)2

(A14)

and the coefficient c0 is

c0 = Kc
απCβ2

4

∫ ∞

0

(
β4

4 p8 − 9β2
4 p4 + 6

)
e−(β4 p2/2)2

d p

= Kc
αβ2

4

2

8�(9/4) − 18�(5/4) + 6�(1/4)

�(1/4)

= Kc
αβ2

4

2
> 0, (A15)

where we use the relation

�(z + 1) = z�(z). (A16)

APPENDIX B: NONLINEAR ANALYSIS

1. Expansion of self-consistent equations

We first introduce in Appendix B 1 a the setting for a
general model, i.e., a general interaction potential φ in (1)
and (2); we then show the expanded self-consistent equa-
tions in Appendix B 1 b. A sketch of the expansion is given
in Appendix B 1 c. The scaling of each term is discussed in
Appendix B 1 d and of Mk in Appendix B 1 e.

a. Setting

We consider (1) and (2) with a general interaction potential
φ, a model whose one-body potential is

V (q) = −
∞∑

k=1

KkMk cos(kq). (B1)

The self-consistent equations (32) are

Mk = Ik (M) (k ∈ N ), (B2)

where the function Ik is defined by

Ik (M) =
∫∫

μ

〈cos(kq)〉JFα (p)dq d p. (B3)

We used the equality dqd p = dθdJ and the definition of the
angle average 〈·〉J . Note that the average 〈cos(kq)〉J depends
on the one-body potential V (q) and on the magnetizations M
accordingly.

We expand Ik (M) into a power series of M. The idea is to
divide the phase space μ into the two regions

U1 = {(q, p) | |p| < p∗}, U2 = {(q, p) | |p| > p∗}, (B4)

where p∗ > 0 is a small value. In region U1 we expand Fα (p)
in a Taylor series

Fα (p) =
∞∑

n=0

F (2n)
α (0)

p2n

(2n)!
, (q, p) ∈ U1. (B5)

In region U2 we expand 〈cos(kq)〉J as

〈cos(kq)〉J =
∞∑

n=1

ck,n(q; M)

p2n
, (q, p) ∈ U2. (B6)

The expansion (B6) is based on symmetry between p and −p,
and the convergence 〈cos(kq)〉J → 0 when |p| → ∞.

TABLE I. Contribution of the terms Tk,l (l = 1, . . . , 5) to Ik . See
the text for the definitions of the symbols.

Region U1 U2

Ik,n Tk,2 Tk,2

Jk,n Tk,1, Tk,3, Tk,4 Tk,5

b. Result

The expanded Ik (M) is

Ik (M) =
∞∑

n=1

[Ik,n(M) + Jk,n(M)], (B7)

where

Ik,n = 1

(2n − 1)!

∫ π

−π

ck,n(q; M)dq
∫ ∞

−∞

F (2n−1)
α (p)

p
d p (B8)

and

Jk,n = F (2n)
α (0)

(2n)!

∫∫
μ

p2n

(
〈cos(kq)〉J −

n∑
l=1

ck,l (q; M)

p2l

)
dq d p.

(B9)

The scalings of Ik,n and Jk,n are Ik,n = O(‖M‖n) and Jk,n =
O(‖M‖n+1/2), respectively.

c. Sketch of expansion

The expansion (B5) in U1 gives the contribution

Tk,1 =
∞∑

n=0

F (2n)
α (0)

(2n)!

∫∫
U1

p2n〈cos kq〉dq d p (B10)

to Ik . In U2 with the expansion (B6), we have the function
Fα (p)/p2n in the integrand and we repeat the integration by
parts to reduce the power of the denominator:∫ ∞

p∗

Fα

p2n
d p = 1

(2n − 1)!

(∫ ∞

0

F (2n−1)
α (p)

p
d p

−
∫ p∗

0

F (2n−1)
α (p)

p
d p

+
2n−2∑
l=0

(2n − 2 − l )!
F (l )

α (p∗)

p2n−1−l∗

)
. (B11)

The contribution from the first term is denoted by Tk,2. We
expand F (2n−1)

α (p) in the second term into a Taylor series and
denote the contribution by Tk,3. In the third term, we expand
F (l )

α (p∗) into a Taylor series and use the trick

p2m+1
∗ =

{
(2m + 1)

∫ p∗
0 p2md p (m � 0)

−(2m + 1)
∫ ∞

p∗
p2md p (m < 0). (B12)

The contribution from the non-negative power terms is de-
noted by Tk,4 and from the negative power terms by Tk,5. All
together, we have the expansion (B7). The contributions of
the terms Tk,l (l = 1, . . . , 5) to Ik in regions U1 and U2 are
summarized in Table I.
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d. Scalings of Ik,n and Jk,n

We first estimate the scaling of ck,n defined in (B6) by using
the explicit form of 〈cos(kq)〉J for energy h(J ):

〈cos(kq)〉J =
∫ π

−π

cos(kq)√
h − V (q)

dq

/ ∫ π

−π

dq√
h − V (q)

.

(B13)

The integrations are performed on a fixed-J contour. When h
is sufficiently large, we perform the expansion

1√
h − V (q)

= 1√
h

(
1 + V (q)

2h
+ 3

8

V (q)2

h2
+ · · ·

)
. (B14)

The factor h(J ) can be outside the integral. After performing
the integral, we expand h = p2/2 + V (q) in denominators as

1

2h
= 1

p2

(
1 − 2V (q)

p2
+ · · ·

)
. (B15)

These expansions give the explicit expressions of ck,n as

ck,1 = 1

2π

∫ π

−π

V (q) cos(kq)dq = −KkMk

2
,

ck,2(q) = −V (q)ck,1 + 3

4π

∫ π

−π

V (q)2 cos(kq)dq. (B16)

We have ck,n = O(V n) and hence ck,n = O(‖M‖n). This scal-
ing directly provides Ik,n = O(‖M‖n).

We have to be careful to estimate Jk,n owing to the term
〈cos(kq)〉J . The expansion (B6) is valid for large |p| and the
leading term of Jk,n is not ck,n+1 = O(‖M‖n+1). The main
contribution to Jk,n comes from 〈cos(kq)〉J around the sep-
aratrix (see, for example, Fig. 1 of Ref. [23]). The separatrix
width in the p direction is estimated as psep = O(

√‖M‖) from
hsep = p2

sep/2 + V (0), where the separatrix energy hsep and
the potential V are of O(‖M‖). This estimation provides the
scaling Jk,n = O(‖M‖n+1/2), because, roughly speaking, Jk,n

is of O(p2n+1
sep ). See also [43] for the scaling in a generalized

kinetic term.

e. Scalings of Mk

The scaling of Mk is estimated by picking up the lead-
ing two terms of (B7). From ck,1 (B16), the factor Ik,1

forms �k (0, κα, α) with the unity of the left-hand side of
the self-consistent equation (B2). Thus, we have truncated
self-consistent equations as

�k (0, κα, α)Mk = Jk,1(M) (k ∈ N ). (B17)

Recall that Jk,1 is proportional to F (2)
α (0) = α for any k [see

(B9)]. The leading term of Jk,1 is then of O(αM3/2
1 ). For k = 1,

combining it with the scaling �1(0, κα, α) = O(κα ) (20), we
have M1 = O(κ2

α/α2). For k > 1, we use �k (0, κα, α) = O(1)
since the kth mode is far from being critical due to (3) and
hence Mk = O(αM3/2

1 ). Inputting the scaling of M1, we also
have Mk = O(κ3

α/α2). See Fig. 10 for confirmation of these
scalings with respect to κα .

In the HMF model, we have I1,2 = 0, since the constant
second term of c1,2 in (B16) is zero. The vanishing I1,2 ex-
plains the absence of O(M ) in (35).

2. Negativeness of the coefficient L3

We show that L3 < 0 for F0(p) in the HMF model. The
explicit form of L3 in the HMF model is

L3 = − 5π

192

∫
R

F (5)
α (p)

p
d p, (B18)

where the integral is well defined since F (5)(p) is of O(p). The
fifth-order derivative of F0(p) is

F (5)
0 (p) = − Cβ4

4 p
(
β6

4 p14 − 30β4
4 p10 + 195β2

4 p6 − 210p2)
× e−(β4 p2/2)2

. (B19)

Straightforward computations give

L3 = −5β3
4

8

�(3/4)

�(1/4)
< 0. (B20)

APPENDIX C: UNSTABLE MANIFOLD EXPANSION

The idea is to set up a series expansion in powers of the
amplitude of the perturbation and to solve it order by order
by projecting the full dynamics onto the unstable manifold
instead of projecting onto the central manifold as usually
done; one obtains in the end a reduced equation for the ampli-
tude, which is singular at the bifurcation point. However, it is
well defined away from the bifurcation point, at variance with
standard central manifold computations. By construction, it is
restricted to the unstable side of the bifurcation. According
to the study of the linearized Vlasov operator in Sec. III,
in the unimodal α � 0 case, the unstable manifold is two
dimensional, whereas it is four dimensional in the bimodal
α > 0 case. We restrict our discussion here to the unimodal
case, in which the Landau pole moves on the real axis around
the critical point (see Fig. 3).

The tangent space to the unstable manifold at the reference
stationary state is spanned by the two eigenfunctions � and
�∗; we expand f into

f (q, p, t ) = Fα (p) + g(q, p, t ),

where

g(q, p, t ) = A(t )�(q, p) + A∗(t )�∗(q, p) + S(q, p, A, A∗, t ),
(C1)

with S of O(|A|2). The equation for the amplitude A is

dA

dt
= ψ (A), (C2)

where

ψ (A) = λA + c3(λ)A|A|2 + O(|A|5) (C3)

on the unstable side of the critical point, namely, for 0 < λ �
1. The coefficient c3 is

c3(λ) = −
(

πK

2

)2

c̃3(λ) (C4)
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and

c̃3(λ) = 1

λ3
− 1

λ2

�
(2)
1 (λ)

�
(1)
1 (λ)

+ 2

3λ

�
(3)
1 (λ)

�
(1)
1 (λ)

− 1

4

�
(4)
1 (λ)

�
(1)
1 (λ)

+ K2

K
�

(2)
1 (λ)

[
−1

λ

(
1 + K2

K

1

�2(2λ)

)

+ 1

2

1

�2(2λ)

�
(2)
1 (λ)

�
(1)
1 (λ)

]
. (C5)

Here we omit the arguments κα and α in �1 and derivatives
are performed with respect to λ. We find a small real solution
|A| to the equation ψ (A) = 0 if c3 < 0, while there is no small
real solution if c3 > 0. The bifurcation is hence continuous if
c̃3(0) > 0 and discontinuous if c̃3(0) < 0.

The leading term of c̃3 is positive 1/λ3 when α < 0; hence
the bifurcation is continuous [8,9]. However, the leading sin-
gularity of c̃3 changes when α = 0 since �(1)(λ) = O(λ) from

�
(1)
1 (0, κα, 0) = −(1 + κα )Kc

απ2α = 0. (C6)

With the aid of the Taylor expansions of �
(1)
1 (λ, κα, α) and

�
(2)
1 (λ, κα, α) around λ = 0, the leading singularity at α = 0

is

c̃3 
 1

6λ2

�
(3)
1 (0)

�
(2)
1 (0)

= − 1

12λ2

πF (4)
0 (0)∫

R
F (1)

0 (p)
p3 d p

. (C7)

Since the function F (1)
0 (p) is of O(p3) around p = 0, the inte-

gral in the denominator is well defined. In (C7), unimodality
for α � 0 implies that the numerator and the denominator are
negative; hence the bifurcation is discontinuous from c̃3 < 0.
We also see from (C5) and (C7) that if F (2)

α (0) is negative but
small, the sign of c̃3 will change from positive to negative as λ

is increased from 0 (the critical point) to some small positive
value. We then expect a continuous bifurcation with trapping
scaling, followed by a jump in the saturated amplitude as
the distance from the instability threshold is increased: This
provides a qualitative understanding of Fig. 1 (when α < 0).
We also remark that the second Fourier coefficient of the
coupling function φ [see (2)] does not affect the c̃3 factor at
O(1/λ2).

APPENDIX D: DISCONTINUITY OF BIFURCATION FOR
HIGHER-ORDER FLATNESS

At the point α = 0, the reference state is further classified
by its leading order at p = 0. We defined that the reference
state F (p) is of order n when the Taylor expansion is

F (p) − F (0) = −bp2n + O(p2(n+1)). (D1)

We will show now that for F of order 3 or higher (n � 3),
the self-consistent equation predicts that the bifurcation is
discontinuous.

If the order of F is 3 or higher, we have F (2)(0) =
F (4)(0) = 0 and hence L3/2 = L5/2 = 0, since L3/2 and L5/2

are extracted from J1,1 ∝ F (2)(0) and J1,2 ∝ F (4)(0), respec-
tively [see (B9) and the following scaling of Jk,n]. The leading

term of ϕ(M ) [Eq. (35)] is therefore L3, which is

L3 = − 5π

192

∫
R

F (5)(p)

p
d p. (D2)

The integration is well defined since F (5) is of O(p) around
p = 0. Under the conditions F (2)(0) = F (4)(0) = 0, we can
derive another expression of L3 as

L3 = − 5π

192
4!

∫
R

F (1)(p)

p5
d p (D3)

by repeating integration by parts, where the integral is well de-
fined since F (1) is of O(p5) around p = 0. Therefore, we have
L3 > 0 for a unimodal F , and the self-consistent equation
�1(0, κ0, 0) = L3M2 concludes that the bifurcation is discon-
tinuous since �1(0, κ0, 0) < 0 in the unstable side κ0 > 0 [see
(20)]. We must not confuse L3 < 0 shown in Appendix B 2
with L3 > 0 found here, since the former (negative sign) is
obtained for F (2)(0) = 0 but F (4)(0) < 0, while the latter
(positive sign) is for F (2)(0) = F (4)(0) = 0. In general, L3

is not zero however high the order of F is; hence the self-
consistent equation predicts a discontinuous bifurcation for
any F of order 3 or higher.

APPENDIX E: PREFACTORS OF SCALING RELATIONS
FOR α � 0

We compute here the eigenvalue collision point κcol
α and the

jump point κJ
α for the family (13). The theoretically obtained

prefactors are used in Fig. 9.
The eigenvalue collision point κcol

α satisfies

κcol
α

1 + κcol
α

= − b2
α

4cα

. (E1)

Recalling bα = Kc
απ2α, we have, at leading order in α,

κcol
α = −

(
Kc

0π2
)2

4c0
α2. (E2)

Substituting the factor c0 (A15), the eigenvalue collision point
is estimated as

κcol
α = −Kc

0π4

2β2
4

α2. (E3)

The values β4 = 3 and Kc
0 
 0.986 225 give

κcol
α 
 −5.34α2. (E4)

The jump point κJ
α is

κJ
α 
 2(L̃3/2)3/2

3
[
3L̃5/2F (4)

0 (0)
]1/2 |α|3/2 (E5)

at leading order. We have

F (4)
0 (0) = −6Cβ2

4 = − 6β
5/2
4√

2π�(1/4)

 −5.806 42. (E6)

Therefore, using (37), we have

κJ
α 
 6.29|α|3/2. (E7)
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