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1. INTRODUCTION

The article is a summary of [12]. Let R be a quiver Hecke algebra associated with a simple Lie
algebra g and R-gmod the category of finite-dimensional graded R-modules. We set K (R-gmod) to
be the Grothendieck ring of R-gmod. It is well-known that the unipotent quantum coordinate ring

Ay() is categorified by K (R-gmod). The basic theory of localization for the monoidal category
R- gmod of R-gmod is initiated by [5] and its Grothendieck ring K (R-gmod) defines the localized
(unipotent) quantum coordinate ring ﬁ[Xﬁ). In [11], Lauda-Vazirani defined certain crystal structure
on the family of simple modules of R-gmod and they have shown that this crystal is isomorphic to
the crystal B(co) of the nilpotent half of U,(g). In this article, considering the family of self-dual
simple module B(R- gmod) of the localized category R-gmod, we define a crystal structure of ?{q(n)
and show that it is isomorphic to the cellular crystal B;, which is defined to a reduced word for
the longest Weyl group element wg. This result can be seen as a localized version of the result by
Lauda-Vazirani.

2. PRELIMINARIES

Letg = n@ton_ = (e h; fier=(12. n) be a simple Lie algebra associated with a Cartan
matrix A = (a;;); je; where {e;, fi, hi}ic; are the standard Chevalley generators and 1 = {e;);c; (resp.
t = (hiYier, 1= = (fiier) 1s the positive nilpotent subalgebra (resp. the Cartan subalgebra, the negative
nilpotent subalgebra).

Let {a;}ic; be the set of simple roots of g and ( , ) a pairing on t X t* satisfying a;; =
((hi,a))ijer. We also define a symmetric bilinear form (, ) on t* such that (a;,«;) € 2Z.o and
(hi, ) = 290 for ) e t°.

Let P {/1 € t"|(h;,A) € Z forany i € I} be the weight lattice and P, := {1 € P | (h;,A) >
0 for any i € I} the set of dominant weights. Set Q = ®,;Za; (resp. Q4 = e Zsow;), Which
is called the root lattice (resp. positive root lattice). For an element 8 = };m;a; € Q, define
|8l = X; m;, which is called the height of 8. Let W = (s;| s;);e; be the Weyl group associated with P,
where s; is the simple reflection defined by s;(1) = A — (h;, De; (1 € P).

We denote the dual weight lattice of P by P* := {h € t|(h, P) C Z}. Let U,(9) := {e;, fi qh>i61’hep*
be the quantum algebra associated with g with the defining relations (see e.g.,[1, 2]) and U;(g) =
(fiYier (resp. U;r(g) := (ej)ier) the negative (resp. positive) nilpotent subalgebras of U,(g). We also
define the Z-form Ui[ _,](q) of U;(g) as in [5]. Set g; := g2 nl; = (¢} — g7/ (g — g7 M),

(7] := [Tocrenlkl; andX(") = X"/[n];! for X; = fi,e; fori € I, n € Zs.
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Now, let us define the (unipotent) quantum coordinate ring A,(n) by
A = P A AL = Homg (U (8)-5. Q)
Be0-
Note that Uq‘(g) = Ay(n) as a Q(g)-algebra. The Z-form A(n)z, 1 is defined as in [S5].

3. CRysSTAL BASES AND CRYSTALS

3.1. Crystal Base of U, (g) = A (). Letus define the crystal base (L(c0), B(c0)) of U (g)([1]). For
i € I the operator e, € End( U,(9)) is defined by the formula

¢(PO) = (P)Q +q"'Pel(Q), €[(f) =5, €(1)=0,
forany P € Uy(8)s, Q € Uy(9), i, j € 1. By the fact that for P € U,(g)s, there exists the following
unique decomposition
— (k)
3.1) P= Z op,,
k=0

where P, € Ker(e)) N U,;(Q)mm,»- And define the operators Z’,-,fi € End(U;(g)) on P € U;(g),g by
using the decomposition (3.1)

5P = Zfi(k_l)P"’ fip= Zfi(k+1)P"’
k>0 k=0
which are called Kashiwara operators. Now, set
L(e0) := Z Afy -+ fitteo B(e0) = {f;, -+ fiutteo mod gL(c0) |k = 0,1, -+ ,ix € I} \ {0},
k20,1, el
&i(b) = maxik : éfb # 0}, ¢i(b) = &i(b) + (h;j, wt(D)),
where u. = 1 € Uy(g) and A C Q(g) is the local subring at g = 0.
Theorem 3.1 ([1]). A pair (L(c0), B(c0)) is a crystal base of U; (9. Indeed, we obtain
&iL(0) C L(w0),  fil(e0) C L(e),
&iB(e0) C B(co) {0}, fiB(e0) C B(eo) LI {0},
wt(e;b) = wt(b) + a; forb,;b € B(eo), wt(fib) = wt(b) — a; for b, f;b € B(c0),
£i(@b) = &i(b) = 1 ¢i(€D) = €i(b) + 1, for b,&;b € B(0),
&i(fib) = (b) + 1 @i(fib) = ¢i(b) = 1, for b, fib € B(0),
fib=b &b =b, forb, b € B(c)
3.2. Crystals. We shall introduce the notion crystal following [2], which is a combinatorial object

obtained by abstracting the properties of crystal bases in Theorem 3.1.

Definition 3.2 ([2]). A 6-tuple (B, wt, {&;}, {¢i}, {&;}, {f,—}),-e[ is a crystal if B is a set and there exists a
certain special element O outside of B and maps:

3.2) wt:B—> P, &:B-oZuU{-}, ¢;:B—oZU{-0} (i€l),
(3.3) & :BU{0)— BU{0}, fi:BU{0)— BU{0) (iel),
satisfying :

(1) ¢i(b) = &i(b) + (hi, wi(D)).
(2) If b, ;b € B, then wt(;b) = wt(b) + a;, £i(&:b) = £i(b) — 1, @i(&;b) = ;(b) + 1.
(3) If b, fib € B, then wt(f;b) = wt(b) — a;, £;(fib) = :(b) + 1, i(fib) = @i(b) — 1.
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(4) For b,b’ € Band i € I, one has f,»b =biffb=2¢b.
(5) If pi(b) = —co for b € B, then ¢;b = f;b = 0 and &;(0) = f;(0) = 0.

Here, a ccrystal graph of crystal B is a I-colored oriented graph defined by b—i>b’ & fi(b) = ' for
b,b’ € B.

Definition 3.3 ([2]). For crystals By and B,, ¥ is a strict embedding (resp. isomorphism) from B
to B, if ¥ : B; U {0} — B, LI{0} is an injective (resp. bijective) map satisfying that ¥(0) = O,
wt(P(b)) = wt(b), (Y (b)) = &;(b) and ¢;(¥Y (b)) = ¢i(b) for any b € B; and ¥ commutes with all
&’sand f’s,.

We obtain the tensor structure of crystals as follows([1, 2]):

Proposition 3.4. For crystals By and By, set
B1® By = {b1 ® by := (b1,b2) | by € By, by € Ba}(= By X By).
Then, B; ® B, becomes a crystal by defining:

3.4 wit(by ® by) = wi(by) + wt(by),

(3.5) &i(b1 ® by) = max(gi(b1), £i(b2) — (hi, wi(b1))),

(3.6) @i(b1 ® by) = max(gi(ha), i(b1) + (hi, wi(b2))),
. _ | &b ®by if gi(by) = &i(b2)

©7) &ib1 ®b2) ‘{ bi®eby  if gilbr) < eilba),
z | fibi®by if gi(by) > &i(by)

38) Jibr@b2) = { bi® fby if gilby) < ilbn).

Example 3.5. Fori € [, set B; := {(n);|n € Z} and
wt((n)) = na;, €((n)) = —n, ¢:((n);) = n,
gi((m)y) = ¢j((n);)) = —c0 (i # j),
&) =+, fil@m) = (n =1y,
&i((m)) = film) =0 (i # j).
Then B; (i € I) possesses a crystal structure. Note that as a set the crystal B; can be identified

with the set of integers Z.

3.3. Explicit structure of the crystal B; ® --- ® B;, . Here we shall describe an explicit structure
of tensor product of B;’s. Fix a sequence of indices i = (i, - ,i,,) € I and write

et X) 2= 10 ® - ® f(0);, = (=x1);, ® -+ @ (=Xm)i, »

where if n < 0, then fi"(O),- means &;"(0);. Note that here we do not necessarily assume that i is a
reduced word though later we will take i to be a reduced longest word. By the tensor structure of
crystals in Proposition 3.4, for the sequence i as above, we can describe the explicit crystal structure

onB; := B; ®---® B;, as follows: For x = (x;,--- ,x,) € B;, define
() 1= 3+ Y i @)x;
Jj<k

and for i € I define
7(x) := max{oi(x)|1 < k < mandi; = i},
MO = M(i)(x) ={k|1 <k <m, iy =i, op(x) = 7)),

my = () = max MO0, m = m(x) := min MO ().
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Now, the actions of the Kashiwara operators &, f; and the functions &;, ¢; and wt are written explic-
itly:

3.9) filok == xi + 8y i &0k 1= Xk = Sy 0

m
(3.10) wt(x) i= — > xay, &%) = a0(x),  @ix) = (h, wi(x)) + &i(x).
k=1
Define the function ,8;:) on B; by :

3.11) BY() = o (1) = 0 (0) = e+ D i@ )x + X,

k<j<k*
for x = (x1,---,x,) € Bj, where for k € [1,N], k¥ (resp. k™) is the minimum (resp. maximum)
number j € [1, N] such that k < j (resp. [ < k) and iy = i; if it exists, otherwise N + 1 (resp. 0). Here
one knows that rTz;'.)(x) and rng’) (x) are determined by {ﬂ;:)(x) [1<k<N, iy =1i}.

3.4. Braid-type isomorphism. We shall introduce some isomorphism of crystals, called “braid-
type isomorphism”.

Set ¢ := (i, a;j)hj, a;), c1 := —(h;, @) and ¢; := —(hj, ;). In the sequel, for x € Z, put
x ifx>0,
Xy 1= )
0 ifx<O.

Proposition 3.6 ([13]). There exist the following isomorphisms of crystals ¢gf) (k=0,1,2,3)
(1) If¢;j = 0,

(3.12) ¢ : Bi® B—B;® B,
where ¢;'((x); ® (),) = ()} ® ().
) Ife; =1,
(3.13) ¢;) 1 Bi® B;® B—B,;8 B;®B;,
where

8 (0 ®(1);® () = @+ (—x+y=2)),® (X + 2 ® (y— 2= (—x +y = 2),);.
(3) IfC,'j = 2,
(3.14) ¢§f>:B,-@B,»@B,»@Bj—;Bj@B,»@B,»@Bi,

where ¢E,2') is given by the following: for (x);®(y);®(2)i®(w); we set (X) ;&(Y);®(Z) ;@(W); :=
¢§j?>((x),- ® (1)) ® (2)i ® (W);).

(3.15) X = wH(-cx+y—-w+acr(x—c1y+2)+)+,
(3.16) Y = x+cpwH+(—x+z—ciw+(x—c1y+2)4)+,
(3.17) Z = y-(—axt+y-—wtcalx—cy+2+),
(3.18) W = z—cw—(—x+z—ciw+(x—c1y +2)+)+-

(4) If ¢;; = 3, the map

(3.19) ¢fj3) : B,’®Bj®B,'®Bj®B[®Bj—l>Bj®B[®Bj®Bi®Bj®B,',
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is defined by the following: for (x); ® (); ® (2); ® () ; ® (v); ® (W) ; we set A := —x+ 1y — 2,
B:=—-y+cz—u,C:=—z+ciu—vand D := —u+cy—w. Then (X);®(Y);®(2);® (U); ®
(V); @ (W) := 67 ((x); ® ()} ® (2 ® (u); ® (v); & (w),) is given by

w+ D+ (2C+@2B+A)1)1)+,

= x+cw+(1D+BC+ Q2ciB+2A,)1)4)+,
= y+u+w-=-X-YV,

xX+z+v-=Y-W,

= u—-w—-—02D+ 2c;C+ BB+ c2A4)4)4)+s
v—ciw—(ciD+QRC+ (ci1B+A):)4)s.

E < SN~ X
I

They also satisfy ¢>g‘.) o qﬁ;l? =id.

We call such isomorphisms of crystals braid-type isomorphisms.

We also define a braid-move on the set of reduced words of w € W to be a composition of the
following transformations induced from braid relations:

cifeee i (cip=0),  ceifice o e jijoe(cp= 1),
Cififeee = e fifiee e (cij = 2),  ceeifijijoee = e jijijiee e (cij = 3),

which are called by 2-move, 3-move, 4-move, 6-move respectively.

3.5. Cellular Crystal B; = B; ;,..;,, = B;, ® - -® B;,. Forareduced word i = i i, - - - i, of some Weyl
group element, we call the crystal B; := B;, ® --- ® B;, a cellular crystal associated with a reduced
word i. Indeed, it is obtained by applying the tropicalization functor to the geometric crystal on the
Langlands-dual Schubert cell ©X,,, where w = si, - -+ s, 1s an element of the Well group W ([14]).
It is immediate from the braid-type isomorphisms that for any w € W and its reduced words i; - - - i
and j; - - - j;, we get the following isomorphism of crystals:

(3.20) B,® --®B,=B; ® --®Bj.

3.6. Half potential and the crystal B(co). For a Laurent polynomial ¢(xy,--- ,x,) with positive
coefficients, the tropicalization of ¢ is denoted by ¢ := Trop(¢), which is given by the rule: Trop(ax+
by) = min(x, y) with a,b > 0, Trop(xy) = x +y and Trop(x/y) = x — y and Trop(c) = 0 for ¢ > 0. In
[10], the crystal B(co) has been realized as a certain subset of B; defined as follows:

Theorem 3.7 ([10, Theorem 5.11]). Define the subset of B;:
By oo, = (¥ = (x1, -+, xy) € By | 0 (x) > 0),

where BJ, is a certain geometric crystal, O™ isa tropicalization of the half potential ®* which is
a Laurent polynomial with positive coefficients in N variables and ©j is a certain positive structure
on the geometric crystal By, . Then, (B} )o g = B(c0).

Remark 3.8. To define the crystal structure on (E;}O)QH),@E, it is supposed that if &;x ¢ (ﬁ;())¢(+)_@i,
then &x = 0. Thus, in this sense, the embedding B(c0) = (B )ow e, < Bi is not a strict embedding.

In [15, 14], it has been given the strict embedding of B(co) < B;, which is called ”Kashiwara
embedding” and the method to describe the image of this embedding, called ’polyhedral realization”.
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3.7. Subspace H;. The object H; will play a significant role for this article.
Fix a reduced longest word i = i;---iy and take the function ﬂ]i')(x) = X Dkejare Shigai)x; +
xp+ (1 <k < N)asin (3.11). In what follows, let us identify the Z-lattice Z" with B; and then we
define the summation of elements x = (x1,--- ,xy)andy = (y1,--- ,yn) by x+y = (x1+y1,- - , an+
y) as a standard one in Z". Here, we define the subspace H; ¢ Z" by
(3.21) H; = {x € ZV(= By) | BP(x) = 0 for any k such that k* < N} c B;.

The following result was presented in [10]:

Proposition 3.9 ([10]). Fori =iji,---iy, k=1,2,---, N and a fundamental weight A;, set

(3.22) WY = (hy, si, sy Ay and by = BV R, EY) e By
Then, we obtain that {hy, - -- ,hy} is a Z-basis of H;, namely,
(3.23) H; =Zh, ®Zh, @ --- ® Zh,,.

Example 3.10. In g = Gy-case. Set aj; = —1 and a;; = —3. Taking a reduced longest word
i = 121212, one has

ﬁ(li)(x) =X~ X+ X3, ﬁ(zi)(x) =X —3x3 + xa, Béi)(x) = X3 = X4 + Xs, BEP(X) = X4 — 3Xs5 + Xg.
By the formula (3.22), one gets
h; =(1,3,2,3,1,0), h, =(0,1,1,2,1,1).
Then the solution space 7 of A (x) = Y (x) = Y (x) = B2 (x) = 0 is given by
Hi = {cihy + cohy = (c1,¢2 + 3¢1,¢2 + 2¢1,2¢2 + 3¢1,¢2 + ¢1,¢2) | ¢1,¢2 € Z}.

Lemma 3.11. The braid-type isomorphisms are well-defined on 7;, that is, ¢f.f)(‘Hi) = H;, where
i’ is the reduced word obtained by applying the corresponding braid-moves. We also obtain the
following formula:
(1) Forany i = (--- ,x,y,-++) = - ® (=X); ® (-y); ® --- € H;, assume that a;; = a;; = 0.
Applying the braid-type isomorphism qﬁg.)) on (x,y) in h, we have

(3.24) G (M) = (- yxee) =@ (<)) @ (-0 ® - € Hy
(2) Forany h= (-, x,5,2,--+) = ®(-x); ®(-y);®(-2); ®- - - € H, assume that a;; = aj; =
—1. Applying the braid-type isomorphism ¢§}) on (x,y,z) in h, we have
(3.25) gl = (o zyx) =@ (=2, 8 () @ (—1); @ € Hy
(3) Forh = (---,x,y,z,w,---) = - ® (=x); ® (=¥); ® (—2); ® (—w); - -- € H;, assume that

a;j - aji = 2. Applying the braid-type isomorphism ¢§_/2.) on (x,y,z,w) in h, we have
(3.26) GO = (o Wy x ) =@ (W) ® (<2 ® (<) ® (~x); @ € Hy
(4) Forh=(--,xy,zuv,w,- )= 8(=x);®(=y);®(-2);i®(—u); @ (-v); ® (-w); - - € Hj,
assume that a;; - a;; = 3. Applying the braid-type isomorphism ¢$) on (x,y,z,u,v,w) in h,
we have
B2 VU =Wy ) = ® (-w) 8 (2 ® (<) ® (1) ® - € Hy

In [10, Sect.8], we have shown the following statements under the condition ”H;”, where we omit
the explicit form of H; since we do not need it here. But, we succeed in showing the following
proposition without the condition H; since in [10] we have shown that there exists a specific reduced
longest word iy satisfying the condition Hj, for each simple Lie algebra g and we got Lemma 3.11.
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Proposition 3.12. Leti = iyi, ---iy be an arbitrary reduced longest word. Here if the crystal B(co)
is realized in B; as in 3.6, we shall denote it by B(co); to emphasize the word i. For i € H;, define

B'(c0); := {x + h € ZV(= By) | x € B(x0);} C B;.

(1) For any x + h € B"(c0); and i € I, we obtain

(3.28) gi(x +h) = &(x) + h, filx+h) = fi(x) + h.
(2) For any & € H;, we have B(co); N B (c0); # 0.
(3)
B; = | B'(eo;
/’L€7‘{i

Remark 3.13. In the setting of the half-potential method in [10], as mentioned in Remark 3.8, the
crystal B(co) is realized as a subset of B; and it is supposed that &;x = 0 if &;x ¢ (ﬁfvu)@“,@i = B(c0).
At the statement (2), since x € B(o0); is considered as an element of Bj, &;x is also considered as an
element in B;. That is, even if &;x ¢ B(co), we consider that &;x € B; and then it never vanishes.

It is immediate from this proposition that one has the following theorem:

Theorem 3.14 ([10]). For any simple Lie algebra g and any reduced word i;i; - - - iy, the cellular
crystal B ;,..;, = B;, ® Bj, ® - -- ® B;, is connected as a crystal graph.

4. QUIVER HECKE ALGEBRA AND ITS MODULES

In this section, we shall introduce the quiver Hecke algebra and its basic properties (see [4, 5, 7,
16]).

4.1. Definition of Quiver Hecke Algebra. For a finite index set / and a field k, let (2; ;(u, v)); jer €
k[u, v] be polynomials satisfying:

(1) 2;(u,v)=2;,(v,u)forany i, jel
(2) 2;(u,v) is in the form:

t,',j;a,bu“vb if i # j,
Qi,_/’(ua v) = < alap.a)+b(aja)==2(a;w))
0 ifi = j,
where tiji—a;; 0 € k*.

Forf = Y, mja; € Qs with |8 := Y;m; = m, set I :={v = (v, -+ ,v) € I" | 1L, @y, = B

Definition 4.1. For 8 € Q,, the quiver Hecke algebra R(B) associated with a Cartan matrix A and
polynomials 2; ;(u, v) is the k-algebra generated by

{eMvel’), (xll<k<n), {r|l<i<n-1}
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with the following relations:

where @i,j(u, v, W) =

eM)e(v) = Gpe), Y e =1, e = xe(), Xx = xxi,
velP
Te(v) = e(ss(M)t, T =T iflk—1 > 1,

12e(V) = Dy (ks Xier1)e(V),
—e(v) ifl=k vi=vp1,
(Tix; — xgyT)e(V) = qe(v)  ifl=k+1, vy = vy,

0 otherwise,

(Trs 1Tk Tk 1 — TaTkr1 TR)E(V) =

Dy i Xty X1, Xiw2)e(v) i v = vipn,
otherwise,

2, j(un)-2; j(wy)

pr— € k[u,v,w].

(1) The relations above are homogeneous if we define

deg(e(v)) =0, deg(xie(v)) = (ay,,@,,), deg(rie(v)) = —(a,,, ay,,).

Thus, R(B) becomes a Z-graded algebra. Here we define the weight of R(S)-module M as
wt(M) = .

2) Let M = @kez My be a Z-graded R(B)-module. Define a grading shift functor g on the
category of graded R()-modules R(3)-Mod by

aM = P (M), where (gM); = Mj.
keZ

(3) For M, N € R(B)-Mod, let Homgs (M, N) be the space of degree preserving morphisms
and define HoMg(s) (M, N) := @ keZ HomR(ﬂ)(qu, N), which is a space of morphisms up to
grading shift. We define deg(f) = k for f € Homg)(¢*M, N).

(4) Let  be the anti-automorphism of R(8) preserving all generators. For M € R(8)-Mod,
define M* := Homg(M, k) with the R(B)- module structure by (r - f)(u) := f(Qp(r)u) for
re€ R(B), u € M and f € M*, which is called a dual module of M. In particular, if M = M*
we call M is self-dual.

(5) For B,y € Oy, sete(B,y) = Xyep e (v, v'). We define an injective homomorphism &g, :
R(B) ® R(y) — e(B,YREB + V)e(B.y) by EB.Y)e(v) ® e(v) = e(r,V), EB,y)(xie(B) ®
D= )CkE(ﬂ, 7)’ 6(37 7)(1 ® Xk€(7)) = xk+|ﬁ|€(ﬁ’ 7)’ ‘f(ﬂ’ '}/)(TkE(ﬂ) ®1)= Tke(ﬂ! 7)7 g(ﬁ’ 7)(1 ®
Tre(y)) = Trripe(Bsy)-

(6) For M € R(B)-Mod and N € R(y)-Mod, define the convolution product o by

MoN := R(,B + y)e(ﬂ, ’)’) ®R(ﬁ)®R(y) (M ® N)

For simple M € R(S)-Mod and simple N € R(y)-Mod, we say M and N strongly commutes
if M o N is simple and M is real if M o M is simple.

(7) For M € R(B)-Mod and N € R(y)-Mod, denote by MVN := hd(M o N) the head of M o N
and MAN := soc(M o N) the socle of M o N, where the head of module M is the quotient
by its radical and the socle of module M is the summation of all simple submodules.

4.2. Categorification of quantum coordinate ring A,(n). Let R(8)-gmod be the full subcate-
gory of R(B)-Mod whose objects are finite-dimensional graded R(f)-modules and set R-gmod=
b se0, R(B)-gmod. Define the functors

E; : R(B)-gmod — R(S — a;)-gmod, F; : R(B)-gmod — R(B + @;)-gmod ,
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by E(M) := e(@;.f — ap)M, Fi(M) = L(i) o M, where e(a;,8 — @;) := Yyep,,= €(v) and L(i) :=
R(a;)/R(a;)x; is a 1-dimensional simple R(a;)-module. Let K(R-gmod) be the Grothendieck ring
of R-gmod and then K (R-gmod) becomes a Z[q, g~']-algebra with the multiplication induced by the
convolution product and Z[g, g~']-action induced by the grading shift functor g. Here, one obtain
the following:

Theorem 4.2 ([4, 16]). As a Z[q, g~ ']-algebra there exists an isomorphism
K(R-gmod) = Ay(W)z4.411-

4.3. Categorification of the crystal B(co) by Lauda and Vazirani [11]. The following lemma is
given in [4]:

Lemma 4.3 ([4]). For any simple R(B)-module M, soc(E;M), hd(E;M) and hd(F; M) are all simple
modules. Here we also have that soc(E;M) = hd(E; M) up to grading shift.

For M e R(B)-gmod, define
4.1) wt(M) = =B, &(M)=max{n € Z|E;M # 0}, @i(M) = &(M) + {h;, w(M)),
(4.2) EM = g " Msoc(E;M) = g7 'hd(E;M),  FiM = 7" hd(F;M).

Set B(R-gmod) := {S | § is a self-dual simple module in R-gmod}. Then, it follows from Lemma 4.3
that E; and F; are well-defined on B(R-gmod).

Theorem 4.4 ([11]). The 6-tuple (B(R-gmod), {E-}, {I?,-}, wt, {&;}, {¢i})ie; holds a crystal structure and
there exists the following isomorphism of crystals:

¥ :B(R-gmod) — B(co).

Remark 4.5. Note that Lauda and Vasirani showed this theorem under more general setting that g
is arbitrary symmetrizable Kac-Moody Lie algebra. Here we assume that g is a simple Lie algebra.
The definition of E; and F; in (4.2) differs from the one in [11], which follows the one in [7].

5. LOCALIZATION OF MONOIDAL CATEGORY
Here we shall review the theory of localization for monoidal category following [5].
5.1. Braiders and Real Commuting Family. Let A be Z-lattice and 7 = &,c4 7, be a k-linear A-
graded monoidal category with a data consisting of a bifunctor ® : 7, X7, = T+, an isomorphism
aX,Y,2): (X®Y)®Z—XQ (Y ®Z) satisfying a(X, Y, Z@W)oca(X®Y,Z, W) = idy ® a(¥, Z, WZ) o

aX,Y®Z,W)oa(X,Y,Z)®idy and an object 1 € 7 endowed with an isomorphism e : 1 ® 1—1
such that the functor X — X ® 1 and X — 1 ® X are fully-faithful.

Definition 5.1 ([S]). Let g be the grading shift functor on 7. A graded braider is a triple (C, R¢, ¢),
where C € 7, Z-linear map ¢ : A — Z and a morphism:

Rc:C®X = ¢""X®C (XeT)),
satisfying the following commutative diagram:

Coxey ~Lphexecey  (XeT, YeT,)

\ lX@Rc(Y)
Re(X®Y)

FPHXRY)®C
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and being functorial, that is, for any X,Y € 7 and f € Homs (X, Y) it satisfies the following com-
mutative diagram:

id
Cox—- coy

RC(X)l l&m
id
xec 2 yec

Definition 5.2 ([5]). Let I be an index set and (C;, Rc,, ¢)ier @ family of graded braiders in 7. We
say that (Cj, Rc,, ¢i)ier is a real commuting family of graded braiders in T if

(1) C; €T, for some A; € A, and ¢;(4;) = 0, ¢;(1;) + ¢j(4;) = 0 forany i, j € I.

(2) Rc,(Ci) € K*id¢uc, forany i € 1.

3) RC’(CJ) ®RC/(C,‘) € kxidci,g,cj for any i, j € [.

Note that Rc¢,’s satisfy so-called ”Yang-Baxter equation”, such as,
Rc,(Cj) o Re,(Cy) © Re,(Cr) = Re;(Cy) © Re,(Cy) o R, (Cj) on CioCjoCy.

For a finite index set I, set I' := @,;Ze; and Iy := ®;c;Zspe;.
Lemma 5.3 ([5]). Suppose that we have a real commuting family of graded braiders (C;, Rc,, ¢:)ier-
We can choose a bilinear map H : I’ X I' — Z such that ¢;(1;) = H(e;, e;) — H(ej, e;) and there exist

(1) anobject C* forany @ € I'y.

(2) anisomorphism &, : C*® CP—sqH@P Co*F for any a,f € T,
such that C° = 1 and C¢ = C;.
5.2. Localization. Let 7 and (C;,Rc,, ¢i)ie; be as above and {C%},cr, objects as in the previous
lemma. We define a partial order < on I" by

= p-acl,
For a;,as,--- €T, define
Dayan =10 €T aj+0€Ty forany j=1,2,---}.
ForX € 7,,Y €7, and 6 € D, 4, set
Hs((X, @), (Y.)) := Homy (C** ® X, ¢" P10y @ CF*°),
where a Z-valued function P(a,f,6, 1) := HO,B—a) + ¢(0 + B,u) and the map ¢ : T X A — Z is
defined by ¢(a, L(B)) = H(a,B) — H(B,@) and L : ' — A is defined by L(e;) = 4; ([5]).
Lemma 5.4 ([5]). For § < ¢’ there exists the map
L5t Hs(X, @), (Y, ) = Hy (X, @), (Y, 5))
satisfying
Lsg 0 Lyor = Lsrfors <" <0,

Therefore, we find that { Hs((X, @), (Y, 8))}sco,

., becomes an inductive system.

Definition 5.5 (Localization [5]). We define the category T by
Ob(T) := Ob(T) xT,
Homz((X, o), (Y, ) := lim Hs((X, @), (Y, ),

seD(ap),
A+L(@)=p+L(B)

where X € 7, Y € 7, and the function L : I' — A (¢; = A;) is as above. We call this T a
localization of T by (Ci, Rc,, ¢i)icr and denote it by T[C?“ | i € I1 when we emphasize {C; | i € I}.
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Theorem 5.6 ([5]). 7 becomes a monoidal category. Moreover, there exists a monoidal functor
T:7 — T such that
(1) Y(C))is invertible in T for any i € I, namely, the functors X — X®T(C;) and X — T(C))®X
are equivalence of categories.
(2) Foranyieland X € 7, T(R¢,(X)) : T(C; ® X) = T(X ® C;) is an isomorphism.
(3) The functor Y holds the following universality: If there exists another monoidal category
7 and a monoidal fucntor 17 : 7~ — 7 satisfying the above statements (1) and (2), then
there exists a monoidal functor F : 7~ — 7 (unique up to iso.) such that (" = F o .

Proposition 5.7 ([S]). Under the setting above, we obtain
(1) (X, a+p) = g HEICreX,8), (1,5)®(1,—B) = g A (1,0) fora € T,,feTand X € T
(2) If 7 is an abelian category, then so is T.
(3) The functors Y : 7~ — 7 is exact.
(4) If the functor —®Y and Y ®— are exact for any Y in 77, then the functors T 5T X - XeY
(resp. X = Y ® X)) are exact for any Y in T.

6. LOCALIZATION OF THE CATEGORY R-gmod

In this section, we shall apply the method of localization to the category R-gmod.

6.1. Determinantial Modules. Here we just go back to the setting as in Sect.4. Let L(i") :=
n(n-1) kg (7,0;)
q9i—4; i

o @i =477

2

q; ° L(i)°*" be a simple R(na;)-module satisfying qdim(L(i")) = [n];! := [T},

Definition 6.1 ([5, 7]). For M € R-gmod, define
F'(M) := L(i")VM.
For a Weyl group element w, let s;, - - - s;, be its reduced expression. For a dominant weight A € P,
set
my = (g, S, o0 sy N) (k=1,---,D.
We define the determinantial module associated with w and A by
M(WwA.A) 1= Fy' - 'L,

where 1 is a trivial R(0)-module.

Note that in general, one can define determinantial modules M(wA, uA) (w,u € W) which corre-
sponds to the generalized minor Ay -

Now, let us see some similarity between the family of determinantial modules {M(woA, A)}acp,

and the subspace H;. As has seen above that for a reduced longest word i = i; - - - iy, the subspace
H; C B is presented by

Hi=Pzhi, b= (5 = i si, - sy Adier v
iel
Furthermore, we also get
Proposition 6.2. For any reduced longest word i = ijiy ---iy and A € P,, set
my = i, Sic Sig, - S N) (k=1,2,---,N) and hp = (my,--- ,my).
Then we obtain
ha = 7" 7 70, ® (), @ ®(0),) = fM(O0), ® F(0), - ® (0, € H,
where note that for A = }; a;A;, one has hy = }; ajhy,.
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By this proposition, one observes that there would exist a certain correspondence

(6.1) M(woA, A) = F" - F"l = hy=f" - f™(0);, @ (0);, ® - @ (0);,).

1

Definition 6.3 ([5]). For 3 € Q,, define a central element in R(8) by
Pi 1= e (Hae{ 1.2, ht(B)).va=i xa) e(v) € R(B). For a simple M € R(5)-gmod, define an affinization
M of M with degree d:

(1) There is an endomorphism z : M — M of degree d > 0O such that M is finitely generated

free module of k[z] and M/zﬂ =M.

2) p,-M #0foranyiel.
Theorem 6.4 ([5, Theorem 3.26]). Forany A € P, and w € W, the determinantial module M(wA, A)
is a real simple module and admits an affinization ﬁ(wA, A).

Note that indeed, if g is simply-laced, then the affinization M always exists for any simple M €
R(B)-gmod as ([3]),

M =K[z] ® M.
6.2. Localization.

Definition 6.5 ([5]). Let M be a simple R-module. A graded braider (M, Ry, ¢) is non-degenerate
if Ry (L(7)) : M o L(i) — L(i) o M is a non-zero homomorphism.

For R-gmod, there exists a non-degenerate real commuting family of graded braiders (C;, R¢;, ¢i)ier([S]).
Set Cp := M(woA, A) and denote Cy, by C;.

Proposition 6.6 ([8]). For A = };m;A; € P, we obtain the following isomorphism up to grading
shift:

(6.2) Cr :=MWoA,A) = C{™ 00 C;™.
Theorem 6.7 ([5, Proposition 5.1]). Define the function ¢; : Q — Z by
¢l(ﬂ) = _(ﬂv WOAi + Al)

Then there exists {(C;, Rc,, ¢i)}ies @ non-degenerate real commuting family of graded braiders of the
monoidal category R-gmod.

Now, we take I' = P = @iZA[ and I, = P, = @iZZ()Ai. Here, we obtain the localization
R-gmod[Cl?”l |7 € I1by {(Ci,Rc,, ¢i)}ier, which will be denoted by ﬁ-gmod.
By the above Proposition, it holds the following properties:

Proposition 6.8 ([5]). Let ® : R-gmod — ﬁ—gmod be the canonical functor. Then,
(1) ﬁ-gmod is an abelian category and the functor @ is exact.
(2) For any simple object S € R-gmod, ®(S) is simple in E—gmod.
3) 5, 1= ®O(C)) (i € ) is invertible central graded braider in ﬁ-gmod.
For u € P, define CT, such that 5,, =0(C,) forue Py, 5_,\, = C;’"l and 5““ = (,3 o Ci, for
A, pu € P up to grading shift.
(4) Any simple object in I.é—gmod is isomorphic to Ch o d(S) for some simple module § €
R-gmod and A € P.
Note thatin (4) A € Pand S € R-gmod are not necessarily unique.
Remark 6.9. In [5], the localization is applied to more general category %,,, which is the full sub-

category of R-gmod associated with a Weyl group element w. The category R-gmod here coincides
with 4, associated with the longest element wy in W.
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Definition 6.10. The category E—gmod is abelian and monoidal. Therefore, its Grothendieck ring
K (R-gmod) holds a natural Z[q, g~ l];zatlgebra structure, which defines a localized quantum coordi-
nate ring A,() := Q(q) ®zjy,17 K(R-gmod).

Indeed, the Grothendieck ring K (ﬁ-gmod) is described as follows:

Proposition 6.11 ([5, Corollary 5.4]). The Grothendieck ring K (ﬁ—gmod) is isomorphic to the left
ring of quotients of the ring K'(R-gmod) with respect to the multiplicative set

={g" [ |ICH 1k € Z, (apes € ZLy),
i€l
that is, K(R-gmod) = S~ (R-gmod).
7. CRYSTAL STRUCTURE ON LOCALIZED QUANTUM COORDINATE RINGS

We shall mention the main theorem, crystal structure on localized quantum coordinate ring ﬁq\(ﬁ).
More precisely, we shall define a crystal structure on a family of self-dual simple objects in the
category R- gmod (Theorem 7.4) and mention that it is isomorphic to the cellular crystal B; (Theorem
7.5), where i is a reduced word for the longest Weyl group element wy.

Lemma 7.1 ([4, Proposition 2.18]). For any i € I, B,y € Q., any modules M € R(B)-gmod and
N € R(y)-gmod, one has the following exact sequence in R(5 + y — a;)-gmod:

(7.1) 0— EMoN — E(MoN)— ¢ “PMoEN— 0.
Fori € I,leti* € I be a unique index satisfying A = —wpA;.

Lemma 7.2. (1) For S € R-gmod and i € [, if E;S = 0, then the module E;Cy,. o S is a simple

module.
(2) IfE;S =0for S € R-gmod, then we get for A € P, with (h,A) > 0,
(7.2) SOC(Ei(Cpr 0 8)) 2 Cpa-pp. © (EiCpr 0 5),
up to grading shift.
We set

B(ﬁ-gmod) :={L| L is a self-dual simple module in ﬁ-gmod}.

Lemma 7.3 ([5]). For any simple L € R-gmod, there exists a unique n € Z such that ¢"L is self-dual
simple. For a simple module L € R-gmod we define 5(L) to be this integer n.

Then by this lemma, we find that B(R- ?-gmod) includes all simple modules in R- gmod up to grading
shift. For a simple object Cro®(S) € R- gmod we write simply Cx o S if there is no confusion.
Now let us define the Kashiwara operators F; and E (iel)on B(R gmod) by

(7.3) Fi(Cp 08) = g"CxFSC, o FS,
S(CA0E;S) o if E:
~ q Cp 0 E;S if E;S #0,
7.4 E(Cro0S8)=17 = —
o (Ered) {q"(c“f* (B INCN 0 (EiCh, 0S)  FES =0,

where Ca o S is a self-dual simple module in R-gmod, the actions E;S and F;S are given in (4.2),

which is defined on the family of all self-dual simple modules in R-gmod and in (7.4) the module

ECA,.* o § is simple by Lemma 7.2. Note that for any m > 0, Ef"(CA 08)#0, IFIT"(CA o8)#0.
LetV¥: B(R-gmod)—;B(oo) be as in Theorem 4.4. For Cp o S € B(E—gmod), we also define

&(Cp 08) = &(¥(S)) — (hi, wo), wi(Cp 0 §) = wt(¥(S)) + woA — A,

(7.5) Gi(Cr 0 8) = £(¥(Ch 0 5)) + (i, Wt(Ch 0 S)).
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Theorem 7.4. The 6-tuple (B(R-gmod), wt, {&;}, {¢:}, {E;}. {F:})ics is a crystal.

Here, by Proposition 6.2 we observe that there seems to exist a certain correspondence:

{CAIA € Py} CR-gmod «— Hj
Ca=F"--F™1 «— hy=f"f" f™(0);, @ (0), & ®(0),)
Together with the result of Proposition 3.12, we obtain the following:
Theorem 7.5. For any reduced longest word i = i1, - - - iy, there exists an isomorphism of crystals:
v B(ﬁ—gmod) - B;= U Bh(m)
hetH;
CroS +— hy+¥(S) e B™ (),

where ¥ : B(R-gmod)—s B(co) is the isomorphism of crystals given in Theorem 4.4, S is simple in
B(R-gmod) and for A = }; a;A; sethy = Y, a;h;.

8. APPLICATION AND FURTHER PROBLEMS
8.1. Operator d. Dcfinc the Q(g)-linear anti-automorphism x of U,(g) by

@ =q" e =e f=Ff

Theorem 8.1 ([2]). Set L*(o0) := {u* |u € L(c0)}, B*(c0) := {b* | b € B(c0)}. Then we have

L*(e0) = L(e0), B*(e0) = B(0).

From the proof of Theorem 5.13 in [5] we get

Proposition 8.2 ([5]). For v = (vi,va, -+ , Vi1, Vi) € IP (m := |B) set ¥V = (Vs Viue1s =+ > V2, V1)
Define the automorphism a on R(3) by

ae(») = e(¥), a(xie(v) = Xp_ir1e(v), a(Tje(v)) = —Tp_je(v).

Then, there exists the functor a : R-gmod — R-gmod such that a(C;) = Ci» (Vi € I), ai = id and
gX oY) = a(Y)oa(X) for X, Y € R-gmod. Furthermore, it is extended to the functor @ : R-gmod —
R-gmod which satisfies

(8.1) @ ==id, and dXoY)=dY)od(X) forX,Y € R-gmod.

Note that a(resp. @) induces the operation x on &(n) (resp. %I(n)) since a(L(i)) = L(i) and then
one has a(f;) = f; (resp. a(f;) = f;) on A, (1) (resp. A,(n)). Now, we obtain the following:
Proposition 8.3. Let & : R-gmod — ﬁ-gmod be the functor as above. It yields
(8.2) (B(R-gmod)) = B(R-gmod).

Here note that Proposition 8.3 can be seen as a generalization of Theorem 8.1.

Since as crystals B(ﬁ—gmod) =~ B; for any reduced longest word i, the proposition above gives
rise to the following problem.
Problem 1. Can we describe d-operation on B; = B;, ® - - - ® B;,, explicitly?

Of course, this problem is non-trivial since even for the case B(c) the explicit description has not
yet been done before in B;.
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8.2. Category %,. In [5], it has been shown that for an arbitrary symmetrizable Kac-Moody Lie
algebra and any Weyl group element w € W, there exists a subcategory %,, CR-gmod and it admits a
localization _

Gw=ColC i€ 1], (Ci = M(wA;, A})
Indeed, note that for finite type Lie algebra setting, €, = R-gmod.
Problem 2. We conjecture that the localization %, possess a crystal B(%,,). If so, we also conjecture
that there is an isomorphism of crystals

B(%y)— B;, ®---® B;,,
where i, - - - i, is a reduced word of w.
8.3. Rigidity.

Definition 8.4. Let X, Y be objects in a monoidal category 7,and ¢ : X®Y — landnp:1 - YQ®X
morphisms in 7. We say that a pair (X, Y) is dual pair or X is a left dual to Y or Y is a right dual to
X if the following compositions are identities:

¢ < . y
X>X0l S xeYeX B lex=X Y~y S veXxey LByel~y

We denote a right dual to X by D(X) and a left dual to X by D™(X).
Theorem 8.5 ([5]). For any finite type R, R-gmod is rigid, i.e., every object in R-gmod has left and
right duals.

Note that in [6], it is shown that for any symmetrizable Kac-Moody setting the localized category
%, is rigid.
Problem 3. For a simple object Cp o S € B(E—gmod), describe the right and left duals explicitly:
Y(D(Cpo08)), YD (CproS)) eB.
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