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TRIANGULATIONS OF CYCLIC POLYTOPES AND THE 

HIGHER AUSLANDER ALGEBRAS OF TYPE A 

NICHOLAS J. WILLIAMS 

ABSTRACT. We outline the relationship between triangulations of cyclic poly-

topes and the representation theory of the higher Auslander algebras of type A. 

This relationship includes algebraic interpretations of the two partial orders 

on the set of triangulations of a cyclic polytope known as the higher Stasheff-
Tamari orders. These orders were subsequently shown to be equal by the 

author, thereby giving new information about the representation theory of the 

higher Auslander algebras of type A. 

1. INTRODUCTION 

One of the earliest examples of a cluster algebra produced by Fomin and Zelevin-

sky was the type A cluster algebra [FZ02]. This cluster algebra has a particularly 

simple combinatorial model. Namely, the cluster variables of this cluster algebra are 

in bijection with the arcs in a convex polygon in such a way that clusters correspond 

to triangulations of the polygon. 

Categorical versions of this relationship were later discovered in the representa-

tion theory of algebras. For instance, one can categorify the type A cluster algebra 

by taking the cluster category of a type A path algebra [Bua+06]. In this cate-

gory, indecomposable objects correspond to arcs in the polygon in such a way that 

cluster-tilting objects correspond to triangulations. 

It is natural to wonder whether there are versions of this phenomenon that use 

polytopes of higher dimension than two-dimensional ones. This was discovered by 

Oppermann and Thomas [OT12], who showed that triangulations of 2d-dimensional 

cyclic polytopes were in bijection with cluster-tilting objects for the higher Aus-

lander algebras of type A, introduced by lyama [Iyall]. An alternative framework 

for essentially the same result gives that triangulations of 2d-dimensional cyclic 

polytopes are in bijection with certain silting complexes over the higher Auslander 

algebra of type A. 

One of the many fascinating aspects of this discovery is that the Calabi-Yau 

dimension of the cluster category is equal to the dimension of the corresponding 

polytope. In the classical case, the type A cluster categories are 2-Calabi-Yau, 

corresponding to a two-dimensional convex polygon; in the general case, the cluster 

categories of the higher Auslander algebras of type A are 2d-Calabi-Yau, corre-

sponding to a 2d-dimensional cyclic polytope. It is also intriguing that this picture 

only involves even-dimensional triangulations, especially noting the relationship dis-

covered between the higher Auslander algebras of type A and symplectic geometry 

[DJL21]. 
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The relationship between triangulations of cyclic polytopes and the higher Aus-

lander algebras of type A has much more structure than simply being a bijection. 

Indeed, there are two natural orders on the set of triangulations of a cyclic poly-

tope known as the'higher Stasheff-Tamari orders'[ER96]. For even dimensions, 

these partial orders correspond, via the bijection, to partial orders on silting com-

plexes already known in representation theory from [A112], following earlier work 

in [RS91]. 

The interpretation of the higher Stasheff-Tamari orders on the representation-

theoretic side can be used to bring triangulations of odd-dimensional cyclic poly-

topes into the picture. Indeed, it is shown in [Ram97] that triangulations of a (J + 1)-

dimensional cyclic polytope are given by equivalence-classes of maximal chains in 

the J-dimensional higher Stasheff-Tamari order. Hence, triangulations of a (2d+ 1)-

dimensional cyclic polytope are given my maximal chains of 2d-dimensional trian-

gulations, which in turn correspond to maximal chains of silting complexes. Such 

maximal chains of silting complexes were already known in representation theory 

for d = 1 as'maximal green sequences'. Ford> 1, we call them'd-maximal green 
sequences'. The difference between the representation-theoretic interpretations of 

even-and odd-dimensional triangulations is therefore quite striking. 

One can then interpret the odd-dimensional higher Stasheff-Tamari orders in 

terms of equivalence classes of d-maximal green sequences, giving natural orders not 

previously appreciated in representation theory. Indeed, we obtain an altogether 

new perspective on maximal green sequences: that they should be considered sub-

ject to an equivalence relation, and that when one does this more structure becomes 

visible-namely, the partial orders on the equivalence classes. 

The two higher Stasheff-Tamari orders were conjectured to be equal in [ER96]. 

This conjecture remained open for some time, despite various papers on the sub-

ject [Ram97; ERROO; Tho02; Tho03]. It was eventually shown to be true in 

[Wil21b]. With the algebraic interpretations of the higher Stasheff-Tamari orders 

from [Wil22], we thereby obtain new information about the representation theory 

of the higher Auslander algebras of type A, in particular, that the two partial or-

ders on silting complexes coincide with each other, as do the two partial orders on 

equivalence classes of d-maximal green sequences. 

The structure of the paper is as follows. We begin in Section 2 by giving back-

ground on cyclic polytopes and the higher Auslander algebras of type A. In Sec-

tion 3, we describe how triangulations of even-dimensional cyclic polytopes may be 

interpreted in terms of the representation theory of the higher Auslander algebras 

of type A. We also describe the even-dimensio叫 higherStasheff-Tamari orders in 

these terms. We do the same for odd dimensions in Section 4. In the final section, 

Section 5, we describe the consequences of the equality of the higher Stasheff-

Tamari orders on the representation theory of the higher Auslander algebras of 

type A. 

2. BACKGROUND 

2.1. Cyclic polytopes and their triangulations. 
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2.1.1. Cyclic polytopes. Cyclic polytopes are very special polytopes in combina-

torics. They satisfy the Upper Bound Theorem [McM70; Sta75], meaning that 

they have the largest number of faces possible in every given dimension. Further-

more, every sufficiently large generic collection of points in酎 containsthe vertex 

set of a polytope combinatorially equivalent to a cyclic polytope [CDOO]. 

The moment cu四 ep:股→酎 isdefined by p(t) := (t, t汽．．．，秒） c配， where

o E N;;,1-Choose t1, t2,..., tm E恥 suchthat t1 < t2 < ・ ・ ・ < tm. The convex hull 

conv{p(t1),...,p(tm)} is a cyclic polytope C(m, o). The combinatorial properties 

of C(m, o) are independent of the initial choices of t1, t2,...,tm, so, for ease, we set 

ti= i. We label the vertices of C(m, o) by [m] = {1, 2,..., m }, in the natural way. 

There is a natural projection map from C(m, o) to C(m, o -1) given by forgetting 

the last coordinate. 

2.1.2. Triangulations. The set of triangulations of a cyclic polytope has a rich com-

binatorial structure which appears in many different areas of mathematics [DK19; 

DM12; Wil21a; AT14]. 

A triangulation of a cyclic polytope C(m, o) is a subdivision of C(m, o) into 

ふdimensionalsimplices whose vertices are elements of [m]. We identify a triangu-

lation of C(m, o) with the corresponding set of o-simplices. 

We specify a k-simplex in C(m, o) using its vertex set in（は）， theset of subsets 
of [m] of size k + 1. Given A E（伍l)K+1, we write IAlo for th 0 for the corresponding geometric 

simplex in dimension o. When the dimension is clear, we will drop the subscript. 

We will always label the elements of A E (k悶） asa。<a1< ・ ・ ・ < ad, and use the 
analogous labelling for different letter of the alphabet. 

2.1.3. The higher Stasheff-Tamari orders. The first higher Stasheff-Tamari orders 

were introduced by Kapranov and Voevodsky to give examples in higher category 

theory [KV叫 Thesecond higher Stasheff-Tamari order was later introduced by 

[ER96]. Both orders are higher-dimensional generalisations of the Tamari lattice 

[Tam51; Tam62], a ubiquitous partial order in mathematics [MPS12]. 

The cyclic polytope C(o + 2, o) has two triangulations, one of which is known as 
the'lower triangulation', and the other which is known as the'upper triangulation'. 

Suppose that a triangulation T of C(m, o) restricts to a triangulation of a copy of 

C(o + 2, o) on a subset of the vertices, such that this C(o + 2, o) subpolytope is 
given the lower triangulation by T. Let T'be the triangulation obtained from 

T by replacing the part of T within the C(o + 2, o) subpolytope by the upper 
triangulation. Then T'is called an increasing bistellar flip of T The first higher 
Stasheff-Tamari order is defined such that T <::1 T'if and only if T'is an increasing 

bistellar flip of T. Here <::1 denotes a covering relation in the first higher Stasheff— 

Tamari order. 

Every triangulation T of C(m, o) determines a unique piecewise-linear section 

sr: C(m,o)→C(m,o + 1) 

of C(m, o + 1) by sending each o-simplex IA枯ofT to IAIH1 in C(m, o + 1), in the 
natural way. This is a section— that is, a right inverse--of the projection map from 
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FIGURE 1. Examples of the quivers Q(d,n) 
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C(m, 8 + 1) to C(m, 8). The second higher Stasheff-Tamari order on triangulations 
of C(m, 8) is defined such that 

T怠 T'⇔ ST(x)6+1 < sTI(x)8+1 Vx E C(m,8)， 
where sr(x)o+i denotes the (8 + 1)-th coordinate of the point sr（叫． Wewrite 
ふ(m,8) for the poset this gives. 

2.2. Representation theory of finite-dimensional algebras. We let K be a 

field. By'modules'we mean right modules. 

2.2.1. The higher Auslander algebras of type A. The higher Auslander algebras of 

type A are the canonical examples of algebras appearing in the higher homological 

algebra of Iyama [Iya07; Iyall]. 

In order to define these algebras, we first need to define the set of subsets 

1点：＝｛AE（畠）： ai-1,(ai-2¥:/i E [d]}. 

Then, let Q(d,n) be the quiver with vertices 

Q茫~,n) := I~誌d-2

and arrows 

Qid,n) := {A→びi(A): Aぶ (A)E Q炉d,n)}, 

where 

びi(A):= {ao, a1,..., ai-l, ai + 1, ai+l,...，四｝．
a B 

We multiply arrows as if we were composing functions, so that→→=f3a. 
Let A~ be the quotient of the path algebra KQ(d,n) by the relations: 

A →O"i(A)→ 6凸（A))={ A→叫A)→叫びi(A)) :叫A)E Qば'n)

゜
otherwise. 

The algebra A~ has a distinguished basic module M(d,n) which has the property 

of being d-cluster-tilting. This means that 

addM(d,n) ={XE modA I Vi E [d-1], ExtA(X,M(d,n)) = O} 

={XE modA I Vi E [d-1], Ext~(M(d,nl,x) = O}. 
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The module M(d,n) is the unique basic A~-module which satisfies these properties, 

up to isomorphism. The beautiful result due to [Iyall] is that we in fact have 

A~+l ~ En虹 M(d,n)_

The idea of higher homological algebra is that there are no non-trivial extensions 

of degree less than din add Af(d,n), so that the shortest non-trivial exact sequences 

are those with d + 2 non-zero terms, rather than short exact sequences. Indeed, 
add Af(d,n) is a "d-abelian" category [Jas16], meaning that it satisfies axioms anal-

ogous to those of abelian categories, only with short exact sequences replaced by 

longer exact sequences. Few algebras A posses d-cluster-tilting subcategories in 

mod A, so the algebras A~ are quite special. 

2.2.2. Silting theo可． Siltingcomplexes were introduced in [KV88] to classify aisles 

in derived categories. We write Db(A~) for the bounded derived category of A~. 

A complex T of Db(A~) is pre-silting if Homか(A~)(T, T[i]) = 0 for all i > 
0. A pre-silting complex T is silting if, additionally, thick T =び（A~). Here 

thick T denotes the smallest full subcategory of び(A~) which contains T and is 

closed under cones,［士1],direct summands, and isomorphisms. We consider the 

subcategory E(A~) := add(M(d,n) 〶 A~[d]) of び(A~) and call a silting complex T 

of び(A~) d-silting if, additionally, it lies in E(A~). 

Remark 2.1. Note that for objects T, T'of E(A~) we have Homか(A~)(T, T'[i]) = 0 
if i足{-d, 0, d}, since add M(d,n) is a d-cluster-tilting subcategory of mod A~ and 

gl. dim A,(d. Hence, for an object T of E(A~) to be d-silting, it suffices that 

Homか(A~)(T,T[d]) = 0 and thickT =か（A~).

3. TRIANGULATIONS OF EVEN-DIMENSIONAL CYCLIC POLYTOPES 

We now describe the relation between d-silting complexes over A~ and triangu-

lations of the even-dimensional cyclic polytope C(n + 2d + 1, 2d). 

3.1. Describing £(A~). We begin by explaining how one can describe the category 

£(A~) combinatorially, which is the first step in describing the relationship with 

cyclic polytopes. 

SinceEndA店M(d,n)= A~, we have that the vertices of Q(n,d+l) correspond to the 

indecomposable modules in add M(d,n). Hence, we have that the indecomposable 

modules in addM(d,n) are labelled by 1~+2d. Given a subset BE  1~+2d'we write 

店 forthe corresponding indecomposable A~-module in add M(d,n). This labelling 

of the modules allows us to identify the projectives and injectives. 

Proposition 3.1 ([OT12]). There is a bijection from I~ n+2d to the isomorphism 

classes of indecomposable modules in addM(d,n) via 

A→UA 
such that 

(1) U A is a projective A~ -module if and only if ao = 1; and 

{2) U A is an injective A~ -module if and only if ad = n + 2d. 
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One can extend this labelling of the indecomposables of add Af(d,n) by 1~+2d to 

a labelling of the indecomposables of e(A~) in a natural way. For this, we need the 

set of subsets 

況：＝｛AE（畠） ：ai-1 ~ ai -2¥:/i E [d], and ad~ a。+m-2}.
Then, if UA is a projective A~-module, we write 

U{a1 -l,a2-l,…，ad-1,ao+n+2d} := UA[d]. 

Definition 3.2 ([OT12]). If A BE  ul~ n+2d+l are such that 

a。<b。<a1< b1く・・・＜叩 <bd,
then we say that A intertwines B, and write A I B. 

Theorem 3.3 ([OT12]). There is a bijection fr . There is a bijection from ul~ n+2d+l 
classes of indecomposable complexes in e(A~) 

A→UA 

to the isomorphism 

such that given UA, Us E e(A~), we have that Homか (A氏）（Us,UA[d]) -# 0 if and 
only if A I B and in this case the Hom-space is one-dimensional. 

T h o summarise. we nave a iaoe labelling of e(A~) by ul~+2d+1 which encodes certain 

homological properties. 

3.2. Describing even-dimensional triangulations. The easiest way to describe 

a triangulation of a convex polygon is as a set of non-crossing arcs, rather than as a 

set of triangles. Oppermann and Thomas show that, remarkably, this observation 

extends to all even-dimensional cyclic polytopes. That is, a triangulation of a 

2d-dimensional cyclic polytope can be described as a set of non-crossing internal 

d-simplices, rather than as a set of 2d-simplices. Here, a simplex is internal in 

C(n + 2d + 1, 2d) if it does not lie in the boundary. 

Theorem 3.4 ([OT12]). There is a bijection between triangulations ofC(n+2d+ 

1, 2d) and sets of internal d-simplices of size (n+~-1) whose interiors do not inter-

sect each other, given 

Tf---t{AE（冒竹-1): IAI is an internal d-simplex of T}. 

This theorem can be made combinatorial using the following proposition, which 

gives combinatorial criteria for a d-simplex to be internal and for two d-simplices 

to intersect in their interiors. 

Proposition 3.5 ([OT12; Bre73; Gal63]). {1) A d-simplex IAI is internal in 

C(n + 2d + 1, 2d) if and only if A E 0I~+2d+l. 

{2) Two d-simplices IAI and IBI in C(n+2d+l,2d) intersect in their interiors 

if and only if either A I B or B I A. 

Hence, we obtain the following combinatorial version of Theorem 3.4. 

Theorem 3.6 ([OT12]). There is a bijection between triangulations of C(n + 2d + 

1, 2d) and non-intertwining subsets of 01~+2d+1 of size (n十t1),given by sending 

a triangulation to the set of vertex sets of its set of internal d-simplices. 
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3.3. Even-dimensional triangulations and representation theory. This de-

scription of triangulations of even-dimensional cyclic polytopes can be used to draw 

a connection with representation theory. Indeed, putting together the description 

of the category E(A~) from Section 3.1 and the triangulations of C(n + 2d + 1, 2d) 

from Section 3.2, along with some additiona work, we obtain the following theorem. 

Theorem 3.7 ([OT12; Will). There is a bijection 

IAI→UA 

between internal d-simplices in C(n + 2d + 1, 2d) and indecomposable objects of 

E(A~) which induces a bijection between triangulations of C(n + 2d + 1, 2d) and 

basic d-silting complexes in E(A~). 

Having interpreted triangulations of even-dimensional cyclic polytopes in terms 

of representation theory, we can now consider whether the higher Stasheff-Tamari 

orders can be described algebraically too. The interpretation of both orders is very 

natural, with the first order being interpreted as follows. 

Theorem 3.8 ([Wil22; Will, [BK04, d = 1]). Let T and T'be triangulations of 

C(n + 2d + 1, 2d) with corresponding basic d-silting complexes T and T'in E(A~). 

Then T <:: 1 T'if and only if T'is a left mutation of T. 

Here T'is a left mutation of T if and only if T = E①X,T'=E①Y where X and 

Y are indecomposable and such that Hom(X, Y[d]) = 0. This theorem is explained 

by the fact that an increasing bistellar flip of a triangulation of a 2d-dimensional 

cyclic polytope is given by replacing a d-simplex by one which it intertwines, which 

corresponds to a left mutation by Proposition 3.3. 

The second higher Stasheff-Tamari order is then interpreted as follows. 

Theorem 3.9 ([Wil22; Will). Let T and T'be triangulations of C(n + 2d + 1, 2d) 

with corresponding basic d-silting complexes T, T'E £(A~). Then T,:::;2 T'if and 
only if_j_T<:;;上T'.

Here 

_j_T :={XE E(A~): Homか(A~)(X,T[i]) = 0¥/i > 0} 

={XE E(A~): Homか (A名）（X,T[d]) = O}. 

The explanation of this theorem is that for an internal simplex IAl2d in C(n+2d+ 

1, 2d), we have that IAl2d+1 lies below the section of a triangulation T if and only 

if we have UA E_j_T for the corresponding d-silting complex T. 

Remark 3.10. The remarkable thing about Theorem 3.8 and Theorem 3.9 is that the 

orders obtained on silting complexes are higher-dimensional versions of well-known 

orders introduced in [AI12], based on analogous orders on tilting modules defined 

in [RS91]. It is beautiful that orders defined independently in representation theory 

and combinatorics should turn out to be the same. 
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4. TRIANGULATIONS OF ODD-DIMENSIONAL CYCLIC POLYTOPES 

What is especially interesting about Theorem 3.8 is that it allows us to interpret 

odd-dimensional triangulations in the representation theory of A~. This completes 

the picture from [OT12], as it were. 

The key is a result of [Ram97], which states that triangulations of C(m, 8 + 

1) are in bijection with equivalence classes of maximal chains in S1 (m, 8). By 

Theorem 3.8, maximal chains in S1(n+2d+l, 2d) correspond to maximal sequences 

of left mutations of d-silting complexes over A~. For d = l, such sequences are 

known as'maximal green sequences'[Kelll; DIJ19; BST19]. Hence, we make the 

following definition. 

Definition 4.1 ([Wil22; Will). A d-maximal green sequence of A~ is a sequence 

(T。,T1,...,Tr) of d-sil ting com pl exes in E (A~) such that Ti。 =A~, Tr = A~[d], 

and, for i E [r], T; is a left mutation of T;-1. 

Since we have that triangulations of C(n + 2d + 1, 2d + 1) are in bijection with 

equivalence classes of maximal chains in S1 (n + 2d + l, 2d), we need an equivalence 

relation on d-maximal green sequences of A~. Given a d-maximal green sequence 

G, we denote the set of indecomposable summands of d-silting complexes occurring 

in G by ~(G). We write G ~ G'if and only if ~(G) = ~(G'). We then obtain the 

following theorem by applying [Ram97, Theorem 1.1] to Theorem 3.8. 

Theorem 4.2 ([Wil22; Will). There is a bijection between triangulations of C(n + 

2d + 1, 2d + 1) and equivalence classes of d-maximal green sequences of A~. 

Having interpreted triangulations of odd-dimensional cyclic polytopes in the rep-

resentation theory of A~, we can now ask the same question we asked before, namely, 

how the higher Stasheff-Tamari orders may be interpreted. The first order has the 

following description in terms of d-maximal green sequences. 

Theorem 4.3 ([Wil22; Will). Let T and T'be triangulations of C(n+2d+l, 2d+l) 

corresponding to equivalence classes of d-maximal green sequences [G], [G'] of A~. 

Then T <£1 T'if and only if there are equivalence class representatives GE [G] and 

G'E [G'] such that G'is an increasing elementary polygonal deformation of G. 

Here, an increasing elementary polygonal deformation is defined as follows. An 

oriented polygon is a sub-poset of S1 (m, 2d) formed of the union of a chain of d + 2 

covering relations with a chain of d + l covering relations, such that these chains 

intersect only at the top and bottom. If two d-maximal green sequences G and G' 

diザeronly in that G contains the longer side of an oriented polygon and G'contains 

the shorter side, then we say that G'is an increasing elementary polygonal defor-

mation of G. Note that an increasing elementary polygonal deformation decreases 

the length of the chain. 

The explanation of Theorem 4.3 is that the chain of length d + 2 forming part 

of the polygon gives the lower triangulation of a copy of C(2d + 3, 2d + 1), whilst 

the chain of length d + l gives the upper triangulation of the same copy of C(2d + 
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3, 2d + 1). Hence, the increasing elementary polygonal deformation corresponds to 

an increasing bistellar flip. 

The second order admits the following elegant description in terms of d-maximal 

green sequences. 

Theorem 4.4 ([Wil22; Will). Given two triangulations T and T'of C(n + 2d + 

1, 2d + 1) corresponding to equivalence classes of d-maximal green sequences [ G] and 

[G'] of A~, we have that T ::;;2 T'if and only if E(G);;:?区(G').

The explanation here is that the elements of E(G) which are neither projectives 

nor shifted projectives correspond to the internal d-simplices of T, in a similar man-

ner to Theorem 3.7. One can then show that in dimension 2d+l, the second higher 

Stasheff-Tamari order corresponds to reverse inclusion of internal d-simplices, which 

yields the result. 

5. EQUALITY OF THE ORDERS 

In [ER96], Edelman and Reiner conjectured that the two higher Stasheff-Tamari 

orders were actually the same. This conjecture was proven in [Wil21b]. 

Theorem 5.1 ([Wil21b]). Let T, T'be triangulations of C(m,'5). Then T ::;;1 T' 

if and only if T ::;;2 T'. 

The difficult direction in this theorem is to show that if T ::;;2 T', then T ::;; 1 T'. 

It is straightforward to show that if T印 T',then T ::;;2 T': it suffices to note that 
increasing bistellar flips always move the section upwards. However, to show that 

T ::;;1 T'whenever T ::;;2 T'requires one to show that one can always find a sequence 
of increasing bistellar flips from T to T'whenever the section of T'lies above the 

section of T. However, whilst every arc of a polygon triangulation can be flipped, 

the analogous statement is not true in higher-dimensional triangulations. In fact, 

as the dimension of a cyclic polytope increases, bistellar flips become increasingly 

scarce. Hence, finding such a sequence of increasing bistellar flips is in general very 

hard. 

By the results of the preceding sections, Theorem 5.1 also gives new results about 

the representation theory of A~. Indeed, by applying Theorem 5.1 to Theorem 3.8 

and Theorem 3.9, we obtain the following. 

Corollary 5.2 ([Will). Let T, T'bed-silting complexes in E(A~)- Then there zs a 

sequence of left mutations from T to T'if and only if.lTC::.lT'. 

This is essentially the analogue in higher Auslander-Reiten theory of [AI12, 

Proposition 2.36] for the higher Auslander algebras of type A. Conjecturally, the 

sam.e result should hold for other algebras in higher homological algebra, but the 

proof techniques from [AI12] break down for d > 1. 

Theorem 5.1 can also be applied to Theorem 4.3 and Theorem 4.4 to obtain 

results on the two orders on d-maximal green sequences. 

Corollary 5.3 ([Will). Let [G], [G'] be two equivalence classes of d-maximal g詑 en

sequences for A~. Then there is a sequence of increasing elementary polygonal 

deformations from [G] to [G'] if and only if E(G);;:? E(G'). 
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This can be seen as a "no-gap" result ford-maximal green sequences. The "no-

gap" conjecture of Briistle, Dupont, and Perotin states that the set of lengths of 

maximal green sequences of a finite-dimensional algebra should not contain any 

gaps [BDP14]. Cases of this conjecture were proven in [GM19; Hl19]. Corollary 5.3 

implies that if there is a sequence of increasing elementary polygonal deformations 

from [ G] to [ G'], then is a d-maximal green sequence of every length between the 

lengths of G and G'. There exists a d-maximal green sequence G'of A~ such 

that I;(G') consists only of the projectives and shifted projectives; there also exists 

G such that I;(G) consists of all of the indecomposable objects of e(A~). By 

Corollary 5.3, we get a sequence of increasing elementary polygonal deformations 

from [G] to [G'], since I;(G) ;;2 I;(G'). Since G is clearly the longest possible d-

maximal green sequence, whilst G'is the shortest, the "no-gap" conjecture therefore 

holds for A~. Corollary 5.3 is stronger than simply saying that there are no gaps, 

of course, since it also takes account of how the d-maximal green sequences are 

ordered. 

For the case d = l, we get a stronger result on the poset of maximal green 
sequences, namely that it is a lattice. 

Corollary 5.4 ([Wil22]). The set of equivalence classes of (1-)maximal g化ense-

quences of A1 forms a lattice under the order given by reverse inclusion of sum-

mands, or, equivalently, the order whose covering relations are given by increasing 

elementary polygonal deformations. 

The fact that the set of equivalence classes of maximal green sequences has such a 

nice structure shows the virtues of considering maximal green sequences subject to 

an equivalence relation. Equivalence of maximal green sequences will be considered 

further in [ G W]. 
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