DESIGNS ON TAUTOLOGICAL BUNDLE

YUYA IKEDA

1. Introduction

In the area of combinatorics, many researchers have studied point arrangements called "designs". Roughly speaking, "designs" are "good" point arrangements with approximate given space. Here, we introduce a difinition of spherical t-design.

Definition 1.1. (Delsart, Gothals, Seidel(1977) [4]) Let

$$(1.1) S^{n-1} = \{(x_1, x_2, \cdots, x_n) \in \mathbb{R}^n \mid x_1^2 + x_2^2 + \cdots + x_n^2 = 1\}.$$

A finite subset X of S^{n-1} is called a spherical t-design if

(1.2)
$$\frac{1}{|S^{n-1}|} \int_{S^{n-1}} f d\mu = \frac{1}{|X|} \sum_{u \in X} f(u)$$

for any polynomial $f(x_1, \dots x_n)$ of degree t or less.

For spherical designs, refer to [2]. Also designs on following spaces have been studied:

- Unitary groups [5]
- Grassmannian spaces [1]
- Compact symmetric spaces [3]

In this paper, we see a new definition of designs and its examples.

2. Definition of τ -design

Definition 2.1. Let

- Ω :a set,
- $W, \mathcal{H} : \mathbb{C}$ -vector spaces.
- \mathcal{H}_0 : a subset of \mathcal{H} ,
- $\{V_p\}_{p\in\Omega}$:a family of vector spaces,
- $\{e_p: \mathcal{H} \to V_p\}_{p \in \Omega}$:a family of linear maps,
- $\tau: \mathcal{H}_0 \to W$: a linear map.

For a finite subset $X \subset \Omega$ and linear functions $\lambda_x : V_x \to W$, a pair $(X, \{\lambda_x\}_{x \in X})$ is a τ -design if for any $s \in \mathcal{H}_0$ the following equation holds:

(2.1)
$$\tau(s) = \sum_{x \in X} (\lambda_x \circ e_x)(s)$$

Example 2.2. Now, we rewrite the spherical design with the definition of τ -design. Let

- $\Omega = S^{n-1}$,
- $V = \mathbb{R}, \mathcal{H} = C^{\infty}(\mathbb{R}^n), \mathcal{H}_0 = \text{Pol}_{\leq t}(\mathbb{R}^n)|_{S^{n-1}},$
- $V_p = \mathbb{R} \ (p \in \Omega), e_p : \mathcal{H} \to V_p, f \mapsto f(p),$

(2.2) $\tau: \mathcal{H}_0 \to W, f \mapsto \frac{1}{|S^{n-1}|} \int_{S^{n-1}} f d\mu$

where μ is a radon measure of S^{n-1} ,

• For $x \in X \subset \Omega$

(2.3)
$$\lambda_x: V_x \to W, z \mapsto \frac{1}{|X|} z.$$

Then, it is easy to see that

X is a spherical t-design \Leftrightarrow (X, λ) is a τ -design.

3. Designs on Tautological bundle

3.1. Tautological bundle

We define an action $SU(2) \curvearrowright \mathbb{C}P^1$ as follows:

$$(3.1) g \cdot V = \{ gv \mid v \in V \}$$

and let $v_0 = \{(x, 0) \mid x \in \mathbb{C}\}.$

Proposition 3.1.

(3.2)
$$\varpi : SU(2) \to \mathbb{C}P^1, g \mapsto g \cdot v_0$$

is a principal bundle. Moreover, an isotropy subgroup

(3.3)
$$\operatorname{Iso}_{v_0}(\operatorname{SU}(2)) := \{ g \in \operatorname{SU}(2) \mid g \cdot v_0 = v_0 \} = \operatorname{S}(\operatorname{U}(1) \times \operatorname{U}(1))$$

leads the following isomorphism:

(3.4)
$$\mathbb{C}P^1 \cong \mathrm{SU}(2)/\mathrm{S}(\mathrm{U}(1) \times \mathrm{U}(1)),$$

that is (3.2) is a principal $S(U(1) \times U(1))$ -bundle.

Now, we define the following action $S(U(1) \times U(1)) \curvearrowright \mathbb{C}$:

(3.5)
$$g \cdot x = g_1 x \quad \left(g = \left(\begin{array}{c|c} g_1 & 0 \\ \hline 0 & g_2 \end{array} \right) \in \mathcal{S}(\mathcal{U}(1) \times \mathcal{U}(1)), x \in \mathbb{C} \right).$$

Then,

$$\pi: T_{2,1} \to \mathbb{C}P^1$$

denotes an associated bundle to (3.2) with fiber \mathbb{C} .

Lemma 3.2.

(3.7)
$$T_{2,1} = \{ (V, v) \in \mathbb{C}P^1 \times \mathbb{C}^2 \mid v \in V \}.$$

The right-hand side of (3.7) is called a tautological bundle.

3.2. Section of Tautological Bundle

In this section, we see a decomposition of $\Gamma(T_{2,1})$, which is a set of smooth section of $T_{2,1}$.

Proposition 3.3. $\Gamma(T_{2,1})$ has the following irreducible decomposition of SU(2) representation:

(3.8)
$$\Gamma(T_{2,1}) = \bigoplus_{k>1} \Gamma^{2k}(T_{2,1}),$$

where $\dim_{\mathbb{C}} \Gamma^{2k}(T_{2,1}) = 2k$.

From the general theory of representations in SU(2), we can see $\Gamma^{2k}(T_{2,1})$ as a symmetric tensor.

Lemma 3.4. Let $S^n(\mathbb{C}^2)$ be the set of all symmetric tensors of order n defined on \mathbb{C}^2 and we define

(3.9)
$$s: S^{2k-1}(\mathbb{C}^2) \to \Gamma^{2k}(T_{2,1})$$

as

$$(3.10) s_{\alpha}(l) = \left(l, \alpha_k^l \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}\right) \quad (\alpha \in S^{2k-1}(\mathbb{C}^2), l \in \mathbb{C}P^1)$$

where α_k^l is a coefficient of $e_1^k e_2^{n-k}$ of α when the basis of \mathbb{C}^2 are $e_1=(x,y), e_2=(-\overline{y},\overline{x})$ for $l=[x,y]((x,y)\in S^3)$. Then, s gives a homeomorphism between $S^{2k-1}(\mathbb{C}^2)$ and $\Gamma^{2k}(T_{2,1})$.

Then, let
$$H = \bigoplus_{k=1}^{5} \Gamma^{2k}(T_{2,1})$$
 and

$$\tau: H \to \Gamma^2(T_{2,1})$$

be the projection.

3.3. τ -design

Recalling that the associated bundle to (3.2) is

$$\pi: T^{1}_{2,1} \to \mathbb{C}P^{1},$$

$$\Omega = \mathbb{C}P^1, \mathcal{H} = \Gamma(T_{2,1}) \text{ and } \mathcal{H}_0 = \mathcal{H}(=\bigoplus_{k=1}^5 \Gamma^{2k}(T_{2,1})). \text{ Also, let } \{V_l\}_{l \in \mathbb{C}P^1} = \{l \in \mathbb{C}P^1\} \text{ and } \mathcal{H}_0 = \mathcal{H}(=\bigoplus_{k=1}^5 \Gamma^{2k}(T_{2,1})).$$

(3.13)
$$e_l: \Gamma(T_{2,1}^1) \to l, e_l(s) = s^{(2)}(l).$$

where $s^{(2)}(l)$ is the second component of s(l).

Now we define a G-invariant polynomial ring.

Definition 3.5. For a subgroup $G \subset \mathrm{GL}(n,\mathbb{C})$, we define

(3.14)
$$\mathbb{C}[x_1, \dots, x_n]^G = \{ f \in \mathbb{C}[x_1, \dots, x_n] \mid f(Ax_1, \dots, Ax_n) = f(x_1, \dots, x_n) \}$$

and $\mathbb{C}[x_1,\cdots,x_n]_d^G$ denotes a set of all elements of $\mathbb{C}[x_1,\cdots,x_n]^G$ whose degree is d. The following series is called Hilbert series:

(3.15)
$$P_n^G(t) = \sum_{d=0}^{\infty} (\dim_{\mathbb{C}} \mathbb{C}[x_1, \cdots, x_n]_d^G) t^d.$$

Then, let

$$(3.16) \hspace{1cm} S = \left(\begin{array}{cc} \varepsilon^3 & 0 \\ 0 & \varepsilon^2 \end{array} \right), T = \frac{1}{\varepsilon^2 - \varepsilon^3} \left(\begin{array}{cc} \varepsilon + \varepsilon^4 & 1 \\ 1 & -\varepsilon - \varepsilon^4 \end{array} \right), U = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right)$$

where ε is an primitive 5th root of 1.

Proposition 3.6.

$$(3.17) G_{icosa} = \langle S, T, U \rangle$$

is a subgroup of SU(2) and $\#G_{icosa} = 120$.

$$(3.18) P_2^{G_{icosa}}(t) = \frac{1 + t^{30}}{(1 - t^{12})(1 - t^{20})} = 1 + t^{12} + t^{20} + t^{24} + \cdots$$

For a subset $X \subset \mathbb{C}P^1$, linear functions $\lambda_x : V_x \to \Gamma^2(T_{2,1})$ and $g \in G \subset \mathrm{SU}(2)$, we define

(3.19)
$$\Psi_{(X,\lambda)}: H \to \Gamma^{2}(T_{2,1}), \Psi_{(X,\lambda)}(s) = \sum_{x \in X} \lambda_{x} \circ e_{x}(s),$$

and

$$(3.20) \qquad \Psi_{g\cdot(X,\lambda)}: H \to \Gamma^2(T_{2,1}), \Psi_{g\cdot(X,\lambda)}(s) = \sum_{x \in Y} (g \cdot \lambda_x) \circ e_{gx}(s)$$

where

$$(3.21) g \cdot \lambda_x : V_{qx} \to \Gamma^2(T_{2,1}), (g \cdot \lambda_x)(z) = g \cdot \lambda_x(g^{-1}z).$$

For subsets $X, Y \subset \mathbb{C}P^1$, we define the sum of (X, λ_X) and (Y, λ_Y) as follows:

$$(3.22) (X, \lambda_X) + (Y, \lambda_Y) = (X \cup Y, \lambda_{(X \cup Y)})$$

where

(3.23)
$$\lambda_{(X \cup Y)}(z) = \begin{cases} \lambda_X(z) & (z \in X \setminus Y) \\ \lambda_X(z) + \lambda_Y(z) & (z \in X \cap Y) \\ \lambda_Y(z) & (z \in Y \setminus X) \end{cases}.$$

Then, we define

(3.24)
$$G \cdot (X, \lambda) = \sum_{g \in G} (g \cdot X, g \cdot \lambda_x).$$

Lemma 3.7. Let G be a finite subset of SU(2) and $(Y, \lambda_Y) = \frac{1}{\#G}G \cdot (X, \lambda_X)$. Then, $\Psi_{(Y, \lambda_Y)}$ is a G-intertwining operator.

Theorem 3.8. For a subset $X \subset \mathbb{C}P^1$, if $\operatorname{tr}_{\mathbb{C}}(\Psi_{(X,\lambda)}) = 2$, $(Y,\lambda_Y) = \frac{1}{\#G_{icosa}}G_{icosa} \cdot (X,\lambda)$ is a τ -design.

This theorem insists that

(3.25)
$$\Psi_{(Y,\lambda)|_{\Gamma^{2k}(T_{2,1})}} = \begin{cases} \text{id} & (k=1) \\ 0 & (k=2,3,4,5) \end{cases}.$$

Finally, we compose a τ -design. Let $x_0 = \{(x,0) \mid x \in \mathbb{C}\}$ and $\lambda_0 : x_0 \to \Gamma^2(T^1_{2,1})$ be

(3.26)
$$\lambda_0(x,0)(l) = (l, 2\operatorname{pr}_l(x,0)).$$

Then, $\operatorname{tr}_{\mathbb{C}}(\Psi_{(x_0,\lambda_0)})=2$. Therefore, from Theorem 3.8,

$$\frac{1}{\#G_{icosa}}G_{icosa}\cdot(x_0,\lambda_0)$$

is a τ -design. That is

(3.28)
$$\tau = \frac{1}{120} \sum_{g \in G_{icosa}} (g \cdot \lambda_0) \circ e_{gx_0}$$

Furthermore, since the following lemma, we can calculate the equation (3.28) as follows:

(3.29)
$$\tau = \frac{1}{12} \sum_{i=1}^{12} (g_i \cdot \lambda_0) \circ e_{g_i x_0}$$

where $\{g_i\}$ are the representatives of $G_{icosa}/\text{Iso}_{x_0}(G_{icosa})$.

Lemma 3.9.

$$#Isox0(Gicosa) = 10$$

and

(3.31)
$$\forall k \in \# \operatorname{Iso}_{x_0}(G_{icosa}), k \cdot \lambda_0 = \lambda_0,$$

References

- [1] Christine Bachoc, Eiichi Bannai, and Renaud Coulangeon. Codes and designs in Grassmannian spaces. Discrete Math., 277(1-3):15–28, 2004.
- [2] Eiichi Bannai and Etsuko Bannai. A survey on spherical designs and algebraic combinatorics on spheres. European J. Combin., 30(6):1392-1425, 2009.
- [3] Eiichi Bannai and Stuart G. Hoggar. On tight t-designs in compact symmetric spaces of rank one. Proc. Japan Acad. Ser. A Math. Sci., 61(3):78–82, 1985.
- [4] P. Delsarte, J. M. Goethals, and J. J. Seidel. Spherical codes and designs. Geometriae Dedicata, 6(3):363–388, 1977.
- [5] Aidan Roy and A. J. Scott. Unitary designs and codes. Des. Codes Cryptogr., 53(1):13-31, 2009.

GRADUATE SCHOOL OF ADVANCED SCIENCE AND ENGINEERING, HIROSHIMA UNIVERSITY Email address: ikedayuya@hiroshima-u.ac.jp