
1

Analysis of phase transitions in the BCS model with 

imaginary magnetic field 

Yohei Kashima 

The Natural Math Exploration Laboratory 

https://natmathexplab.org 

E-mail: yohei.kashima@gmail.com 

1 Introduction 

This article is essentially a summary of the author's talk given in 10:00-10:50, December 

6th, 2021 as part of the online workshop "Mathematical Aspects of Quantum Fields 

and Related Topics". We are going to present mathematical propositions and theorems 

explained in the talk. However, we do not provide any proof for the claims here. Instead, 

we provide clear citations so that the readers can find the proofs in the original research 

papers [4], [5], [6], [7], mostly in [6], [7]. The author hopes that this article helps the 

readers recall his talk and could be an introduction to [4], [5], [6], [7]. 

2 The BCS model with imaginary magnetic field 

Let us begin by defining the BCS model with imaginary magnetic field. Let b, d, L E N. 

Let {vj}ff=1 be a basis of配 and代｝］＝1be its d叫 basis.The spatial lattice r and the 
momentum lattice r• are defined by 

r := {t,四V] 四 E{O, 1, ・ ・ ・, L -1} (j = 1, ・ ・ ・, d)}, 
r* = ｛]:九も九 E{ 0，2f,4i, ,2汀一丁｝ （J ＝ 1, ,d)｝ 

In fact we consider a more general spatial lattice which has b sites in its unit cell. Set 
B := {1, • • •, b }. The generalized spatial lattice is identified as B x r. Here we assume 
that the one-particle free Hamiltonian E satisfies the following conditions with momentum 

variables. 

EE  C00（記Mat(b,C)), 

E(k) = E(k)*, 

E(k + 21rも） ＝E(k), 
E(k) =~, VkE記 jE {1, ・ ・ ・, d}. 
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The free Hamiltonian E。,theBCS interaction V, the BCS model Hare defined as oper-
ators on the Fermionic Fock space F_八び(Bxr x｛↑，↓｝））． 

1 
H。:＝戸 L L Lei〈x-y,k〉E(k)(p,TJ)ゅ；X6心nyU9

(p,x),(r,,y)EBxr aE {• ,•} kEr• 
u 

V :＝戸どゅ；x↑ゅ；x↓ゆny↓心ny↑,U< 0, 
(p,x),(ry,y)EBxr 

H :=H。+v.
The parameter U (E恥0)controls the strength of attractive interaction between Cooper 
pairs. Because of the simplicity that the spatial variables x, y move independently, V is 

sometimes called the reduced BCS interaction. Since it has the reduced interaction, H 

is sometimes called the reduced BCS model. The main novelty of the series [4], [5], [6] 
is that the interaction with imaginary magnetic field is modeled by adding the operator 

饂 tothe Hamiltonian, where t E股andふisthe z-component of spin operator defined 
by 

ふ：＝； と （い；xt1Ppx↑―ぢ這px↓)．
(p,x)El3xr 

The operator H + itSz is non-hermitian, which makes well-definedness of thermodynamic 
quantities such as free energy density or thermal expectation values non-trivial. We 

explicitly derived their infinite-volume limit in [4], [5], [6]. For instance the infinite-volume 
limit of the 4-point correlation function 

Tr(e―f3H+itS叩；x↑叫；ぶ叫ny↓腐ny↑)
lim 
L •~ Tr e-f3H+itSz 
LEN 

was derived and proved to show off-diagonal long range order, which is a characteristic of 

superconducting order. Let us explain the applicability of the main theorems when the 

free dispersion relation is that of nearest-neighbor hopping electron, namely 

d 

E(k) = 2I:coskj―μ, k E記
j=l 

• [4, Theorem 1.3] applies to the case where d E N and lttl < 2d. 

• [5, Theorem 1.3] applies to the case where d E {3, 4} and lμI = 2d. 

• [6, Theorem 1.3] applies to the case where d E N and lμI > 2d. 

In [6] we introduced a set of one-particle Hamiltonians E(emin, emax) (0 < emin ~ emax) 
as follows. EE £(emin, emax) if and only if 

EE  C00（記Mat(b,C)), 

E(k) = E(k)*, 

E(k + 21rも） ＝E(k), 
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E(k) = E(-k), Vk E記 jE {1, ・ ・ ・, d}, 

inf_ in~ IIE(k)ullcb = em加
k嗅 d uECb 
with llullcb~, 

sup IIE(k) llbxb = Emax, 
kEJRd 

where 11 ・ llcb is the canonical norm of (Cb and 11 ・ llbxb is the operator norm of Mat(b, q. 
Fix E E £(emin, emax) and U E股<0sufficiently close to 0. Within the framework of 
[6] we can derive the infinite-volume limit of thermodynamic quantities for any inverse 

temperature/3(E恥＞0)and imaginary magnetic field t(E恥）． Phasetransitions are proved 
to occur. Moreover, the phase diagram is fully drawn in the 2D plane of (inverse tem-
perature, imaginary magnetic field). This means that we have more freedom to analyze 

the phase transition driven by temperature and imaginary magnetic field than in [4], [5] 
where the range of these parameters are restricted. For this reason we wish to focus on 

the situation of [6]. Our aim is to analyze the free energy density derived in [6]. 

Theorem 2.1 ([6, Theorem 1.3]). There exists c'E (0, 1] depending only on d, b, (vj)ff=1 
and the quantity 

sup sup n竺E(k)
kE賊dmJENu{0} 8k. 
（た1,・・・,d)
j=1 J bxb 

1 
四1=1叫 5d+2

such that for any U E（一¥min{ emin, e~闊｝， 0),/3 E応o,t E股

昌(—/3hlog(Tre―(,H+itSz)) 

＝冒— ?16odk Tr log (2 cosじ） e―(,E(k) 
+ er,(”声 E(k))+e―8（亨声E(k))),

where Dd := I <let（立・・・，Vd)1-1(21r）ーd'

もE[0,2吋(j= 1, ・ ・ ・, d)} .
J
 

^
V
 
.
J
 

^
K
 

d

▽
]
[
 
｛
 
l-. 

*
0
0
 
r
 

and△ E股;::,ois defined as follows.△ ：＝ 0 if 

責＋Ddl心dkTr(~二塁~)<o
Otherwise, •~ 0 is the unique solution to 

-］ +DdfdKn ( sinh((3覆げ国） ） ＝0. 
IUI'-~ lr~ -----¥ (cos(t/2) + cosh((3VE(k)2 ＋凶））VE(K)2＋△2 
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The singularity of the function 

t f---+}悶(-。しlog(Tre―fJH+itSz)) 
indicates existence of dynamical phase transition at positive temperature. To the author's 

knowledge, the concept was first introduced in [1], [3], though the zero temperature version 
goes back earlier. In this context "t" is considered as the real time variable. 

To set up our goals, let us explicitly define the free energy density as a function of 

((3, t) E瓦oX艮． Firstwe need to make clear the well-posedness of our gap equation. For 
EE  [(emin, emax), define the function gE:艮＞0X恥 x股→股 by

昨 (x,t, z) := -WI+ Dd 16o dk Tr (~ごご二; ~) 
Our gap equation is to find△ E恥osuch that 9E((3，t,△） ＝0. The next lemma charac-
terizes unique solvability of the gap equation. 

Lemma 2.2 ([6, Lemma 1.1]). Let ((3，t) E応oX良． Thereuniquely exists△ E恥0such 
that 9E((3，t,△） ＝0 if and only if 9E((3，t, 0) 2: 0. 

Based on the above lemma, we can define the gap function△ ：恥。 x股→恥。 as
follows. If 9E((3，t, 0) 2: 0，△((3,t) is the solution to 9E((3，t,△） ＝0. If 9E((3，t, 0) < 0, set 
△((3，t) := 0. Substitution of the gap function enables us to define the free energy density 
as a function of ((3，t) E尾oX良．

凡((3,t)＝△（；t)2-号 1~ dk Tr log (2 cosじ） e―f!E(k) 
+efi(:三 E(k))+e―9（亨戸＋E(k))).

After these preparations we can summarize what we want to achieve. 

• Characterize the boundary of the set of ((3，t)(c!R>。x民） where△((3，t)> 0. In 
other words this is to analyze the phase boundary. 

• Characterize the regularity of ((3，t)←応((3,t). By analogy with the Ehrenfest 
classification this is to analyze the order of phase transition. 

We will explain these projects in the rest of this article. 

3 Analysis of the phase boundary 

Define the subset Q+, Q_, Q。of恥。 x艮by

Q+ := {(/3，t) E艮＞。 x政 I9E(/3,t, 0) > O}, 

Q_ := {(/3，t) E艮＞。 x政 I9E(/3，t, 0) < O}, 
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Q。:＝ ｛（/3，t) E恥＞。 x政 I9E(/3，t, 0) = O}. 

One can see that 

恥＞oX股＝ Q+LJQ_ LJQ。,Q+= {(/3, t) E恥＞oX良 I△(/3, t) > O}. 

Let us call Q。phaseboundary. We must confirm that the phase boundary is non-empty. 
The next lemma not only answers this question but ensures that the critical inverse 
temperature exists as a terminal point of the phase boundary. 

Lemma 3.1 ([6, Lemma 1.2, Lemma 2.2]). Assume that IUI＜竺ユ． Thenthere uniquely 
exists f3c E (0,二tanh―1（三）］ suchthat the following statements hold. 

• gE(/3，t, 0) < 0, V/3 € （/3c,oo),tE股

• SUPtElR gE(/3c, t, 0) = gE(/3c, 27r, 0) = 0. 

• V/3E (0, /3』ヨ！T(/3）E(7r, 27r) s.t. gE(/3，T(/3），0) = 0. 

Moreover, TE C刊(0喜））， limf3/'f3cT(/3） ＝limf3¥,0 T(/3） ＝ 2冗

From here we always assume IUI＜竺皿 sothat we can apply the above lemma. We 
can characterize Q。byparity and periodicity as follows. 
Lemma 3.2 ([6, (2.3)]). 

Q。=｛（/3，6T(/3） ＋47rm) I/3E (0, /3』,r5E {1, -1}, m E Z} U {(/3c, 27r + 47rm) I m E Z}. 
The lemma implies that Q。isa union of copies of 

{((3，T((3）） | (3E (0,(3』｝u{((3，-T((3） ＋41r) I(3E (0,(3c)} U {((3c, 21r)}. 

Based on this fact, we can sketch the phase diagram as in Figure 1. In view of the 

conventional physics of the BCS theory, it is counter-intuitive that the gap function△(/3，t) 
can be positive only in high temperature. 

Remark 3.3. Not to mislead the readers, we remark that our notion of phase diagram 

is different from the dynamical phase diagrams defined in the physics literature (e.g. 

[10], [2], [8], [9]). Our phase diagram corresponds to the boundary of a set of (inverse 

temperature, real time) where the gap equation has a positive solution. On the other 

hand, the dynamical phase diagrams in [10], [2], [8], [9] correspond to the boundary of a 

set of 2 parameters which do not include the real time variable. The 2 parameters plus 

the real time variable control a dynamical analogue of free energy density called return 
rate function. The 2 parameters belong to the set if the return rate function shows a 

particular singularity with respect to the time variable while these 2 parameters are fixed. 

To analyze the phase boundary, it suffices to focus on the representative curve Q。
defined by 

Q。:＝ ｛（/3，T(/3）），（/3，-T(/3） ＋41r) I /3 E (0, /3c)} U {(O, 21r), (/3c, 21r)}. 

This curve is in fact a nice mathematical object. 
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47r Q_ 
△((3，t) = 0 

37r t = -T(/}_) + 47r 

21r 

刀―

8
 

Figure 1: The schematic phase diagram 

Proposition 3.4 ([6, Proposition 2.4]). Q。isa 1-dimensional real analytic submanifold 
of記

However, the graph { ((3，T((3）） | (3E (0,(3』}behavesin various ways. 

Example 3.5 ([6, Proposition 2.25]). Consider the one-particle Hamiltonian E 

(E £ (emin, Emax)) of non-hopping electron defined by 

E(k) = (`山口Ib-b’ ）， b：：：：： 2, b'E {1, 2, ・ ・ ・, b -1}, 
where In is the n x n unit matrix for n E N. In this case T((3） （(3E (0,(3砂） isexactly 
obtained as below. 

T((3） ＝2 arccos ( 
-Dげ ✓Di-4D。
2)， 

D。:＝ cosh((3emax)cosh((3emin) 

ーい (~sinh((3emax)cosh((3emin) + ~ cosh((3emax) sinh((3emin)), 2 ¥ emaX - V -""~~/ --- V -'"°'"I. emin 

IUI (b'_. 1 / o ¥, b -b' 
D1 := cosh((3emax) + cosh((3emin) ―了 (~sinh((3emax)+ ~ sinh((3emin)), 

where arccos : [-1, 1]→ ［0, 1r] is the inverse function of cos l[o,1r]・ For example let b = 
8, b'= 7, U = -½, emin = 1. Then for emax = 6, 7, 9 we can visualize the graph 
{ ((3, T(/3)) I /3 E (0喜）｝ byimplementing the exact solution in our PC. From (a) we can 
see that T(・) with emax = 6 has only one local minimum point. By zooming separately in 

(b) we can see that T(・) with emax = 7 has two local minimum points. Picture (c) shows 

that T(・) has only one local minimum point when emax = 9. 

The observation in the above example leads to the following question. What is a 

condition for T(・) to have only one local minimum point. The following theorem answers 

this question. 
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Theorem 3.6 ([6, Theorem 2.19]). The following statements are equivalent to each other. 

(i) There exists Ui。E(0, 2了） suchthat T(・) has only one local minimum point for any 
U E [-lJi。,0),EE £(emin, emaの）．

(ii) = > ~⑫. 
4 Analysis of the phase transition 

According to the Ehrenfest classification, the order of phase transition is defined by reg-

ularity of the free energy. So let us study the regularity of the function (/3, t)←FE(/3, t). 
It is relatively straightforward to confirm the following. 

Proposition 4.1 ([6, Proposition 2.5 (i)]). 

恥 Q+uQ_E Cw(Q+ U Q_), FEEび（応OX JR.). 

However, the free energy density FE is not smooth on the phase boundary Q。.More
detailed analysis reveals jump discontinuity of FE on Q。asfollows. 
Proposition 4.2 ([6, Proposition 2.5 (ii), (iii)]). 
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(i) For any (/3。,to)E Q。,lim(/3,t)→(/30,to),(/3,t)EQ+~霊 (/3,t), lim(/3,t)→(/30,to),(/3,t)EQ-~棗 (/3,t)
converge to finite values. Moreover, for any /30 E (0, /3砂

lim 
伊FE
(/3。,t)< 陀FE

t→t。 8t2 lim 
t→t。 8t2(/3。，t),

(f30,t)EQ+ (f30,t)EQ_ 

(ii) For any ((3o, to) E Q。,lim(/3,t)→(f3o,to),(f3,t)EQ十聾((3,t),lim信，t）→(f3o,to),(/3，t)EQー璧訳(3,t)
converge to finite values. Moreover, for any(3o E (0,(3c) with靡((3o)=J 0 

lim がFE がFE
f3→Bo 8(32 

((3，t0) < Jilll 
9→Bo 0(32 

((3，to). 
(fJ,to)EQ+'(fJ,to)EQ_ 

(iii) For any (30 E (0,沈） with靡(/30)= 0 

lim 序FE 陀FE
B→fJo of32 

(f3, to) ＝ lim 
/3→Bo of32 

(/3, ta). 
(/3,to)EQ+'(/3，to)EQ_ 

By analogy with the Ehrenfest classification the phase transition driven by t is of 2nd 

order. The phase transition driven by(3is of 2nd order on most of the boundary points. 

According to (iii) of the above proposition, it may be higher order on a stationary point 

of the phase boundary. So we have the following question. How is a higher order phase 

transition (HOPT) driven by(3related to a stationary point of inflection (SPI) of the 

phase boundary ? To answer this question systematically, we have to prepare several 

notions. First we classify the phase boundary Q。intothe subsets Q+，―,Q-,+ defined by 

QP,1/ := { ((3o, to) E Q。ョc> 0 S.t. ~~: !~~ :図’9：： ：仇， C`］(3~~'}
for (p, ry) = (+, -), (-, +). For any point of QP,1/ there is a horizontal line passing through 
the point from Qp to Q11. We will study jump discontinuity of the derivatives of FE along 

such a line. The curve Q。consistsof Q+,―, Q_，十 pluslocal minimum/maximum points 
as sketched in Figure 2. 

For ((3o, to) E民＞0X 恥， nEN, (p,TJ) E {(+,-),(-,+)} we define the conditions 
(PT)n,(r,11) ((3o, to), (PT)n,(r,11) by 

(PT)n,（p,n)（(3O, to) : 

((3o, to) E Q研 9

加 FE 加 FE
lim lim t 
8/Bo o(3m 

((3，to), 
ら Boo(3m 

((3，0) converge for any m E {O, 1, ・ ・ ・, n }, 

加 FE
lim ((3，to) ＝ lim 

加 FE

り /3of)(3m B¥Bo o(3m 
((3，t0), Vm E {O, 1, ・ ・ ・,n -1}, 

lim加FE びFE
卵n
((3，to）ナ lim((3，ta).り /3ofJ(3n,,-, ~u;, (i",,--go f)(3n 
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Figure 2: A classification of subsets of Q0. 

(PT)n,(p,,.,) : 

ヨ(/3。,to)E見。 x股s.t.(PT)n,(p,'1)(/3。,t0)holds. 
Moreover, we need to recall the definition of SPI. 

Definition 4.3. Let a, b, c E恥 satisfya< c < b. Let f E C1((a, b)，股）．

• We call c rising SPI if there exists E > 0 such that (c -E, c + E) C (a, b)，忍(c)= 0, 
忍(x)> 0,'vx E (c -E, c + c)¥{c}. 

• We call c falling SPI if there exists E > 0 such that (c -E, c + E) C (a, b)，忍(c)= 0, 
墨(x)< 0,'vx E (c -E, c十ど）＼｛c}.

Then we define the properties (SPI)e(/3o), (SPI)E for f E {r, f},/3。E応 0as follows. 
(SPI)r(/3o) :/3。isa rising SPI of T(・) : (0,沈） →恥
(SPI)1(/3o) :/3。isa falling SPI of T(・) : (0,/3e） →恥
(SPI)E :ヨ/3oE (0,/3c) s.t. (SPI)e(/30) holds. 

The relation between HOPT and SPI can be organized in terms of these notions. 

Theorem 4.4 ([7, Theorem 1.5]). Let (t, p, 77) E { (r, +, -), (f, -, +)} and(3o E (0,(3ふ

(i) (SPlJe((30) holds if and only if there exists n E 4N + 2 (= {6, 10, 14, • • •}) such that 
(P乃n,(p,71)((3O, T((30)) holds. 

(ii) (SPlJe does not hold if and only if (P乃2,(p,71)((3，t)holds for any ((3，t) E Q研

(iii) ((3，t) E Qp,71 and (P応，（p,71)((3，t)does not hold if and only if there exists n E 4N + 2 
such that (P冗，（p，n)（(3，t)holds. 

The above theorem itself does not imply existence of HOPT or equivalently SPI. The 
next theorem not only implies the existence but also provides a necessary and sufficient 
condition for the existence in terms of血皿．

emax 
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T({J) (left),靡（fJ)(right) with emax = 8.342. 

Theorem 4.5 ([7, Theorem 1.6]). The following statements are equivalent to each other. 

(i) For any Ui。E(0,号），（P,TJ)E {(+,-),（一，＋）｝ thereexist U E [-Ui。,0),EE  
£(emin, emax), n E 4N + 2 (= {6, 10, 14, ・ ・ ・}) such that (PT)n,（研） holds.

(ii) For any Ui。E(0,予），[E {r, f} there exist U E [-Ui。,0),EE £(emin, emax) such 
that (SPI)e holds. 

(iii) 

emn ：：：：凸口`
emax 

Example 4.6 ([7, Figure 2]). In the same exact solution as in Example 3.5 let us take emax 

to be 6.643, 8.342. In these cases~::;~< ~- According to Theorem 4.5, 
emax _.: 6.643 

there is a chance that we can find a one-particle Hamiltonian in E(emin, emax) so that the 
phase boundary has a SPI. By plotting the graphs we can observe that the exact solution 
with emax = 6.643, 8.342 has a rising SPI, a falling SPI respectively. Theorem 4.4 implies 
that HOPTs must be happening there. 
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