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1 Introduction

This article is essentially a summary of the author’s talk given in 10:00-10:50, December
6th, 2021 as part of the online workshop “Mathematical Aspects of Quantum Fields
and Related Topics”. We are going to present mathematical propositions and theorems
explained in the talk. However, we do not provide any proof for the claims here. Instead,
we provide clear citations so that the readers can find the proofs in the original research
papers [4], [5], [6], [7], mostly in [6], [7]. The author hopes that this article helps the
readers recall his talk and could be an introduction to [4], [5], [6], [7].

2 The BCS model with imaginary magnetic field

Let us begin by defining the BCS model with imaginary magnetic field. Let b, d, L € N.
Let {v;}9_, be a basis of R* and {v;}7_, be its dual basis. The spatial lattice I and the
momentum lattice I'* are defined by
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In fact we consider a more general spatial lattice which has b sites in its unit cell. Set
B :={1,---,b}. The generalized spatial lattice is identified as B x I". Here we assume
that the one-particle free Hamiltonian F satisfies the following conditions with momentum
variables.

E € C*(RY Mat(b, C)),

E(k) = E(k)",

E(k + 27v;) = E(k),

E(k) = E(-k), Vk e R? j e {1,---,d}.




The free Hamiltonian Hy, the BCS interaction V', the BCS model H are defined as oper-
ators on the Fermionic Fock space Fy(L*(B x I' x {1,]})).
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The parameter U(€ R.g) controls the strength of attractive interaction between Cooper
pairs. Because of the simplicity that the spatial variables x, y move independently, V' is
sometimes called the reduced BCS interaction. Since it has the reduced interaction, H
is sometimes called the reduced BCS model. The main novelty of the series [4], [5], [6]
is that the interaction with imaginary magnetic field is modeled by adding the operator
itS, to the Hamiltonian, where t € R and S, is the z-component of spin operator defined
by
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The operator H +itS, is non-hermitian, which makes well-definedness of thermodynamic
quantities such as free energy density or thermal expectation values non-trivial. We
explicitly derived their infinite-volume limit in [4], [5], [6]. For instance the infinite-volume
limit of the 4-point correlation function
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was derived and proved to show off-diagonal long range order, which is a characteristic of
superconducting order. Let us explain the applicability of the main theorems when the
free dispersion relation is that of nearest-neighbor hopping electron, namely

d
E(k) = 2Zcoskj -, keR%
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o [4, Theorem 1.3] applies to the case where d € N and |u| < 2d.
o [5, Theorem 1.3] applies to the case where d € {3,4} and |u| = 2d.
o [6, Theorem 1.3] applies to the case where d € N and |u| > 2d.

In [6] we introduced a set of one-particle Hamiltonians € (emin, €maz) (0 < €min < €mas)
as follows. E € E(€min, €max) if and only if

E € C*(RY Mat (b, C)),
E(k) = E(k)",
E(k +27v;) = B(k),



E(k) = E(-k), Vk e RY je{1,---,d},
inf inf  ||E(k)ullcy = emins
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where || - || is the canonical norm of C” and || - [[xs is the operator norm of Mat(b, C).

Fix E € E(emins €maz) and U € R sufficiently close to 0. Within the framework of
[6] we can derive the infinite-volume limit of thermodynamic quantities for any inverse
temperature J(€ Ryg) and imaginary magnetic field ¢(€ R). Phase transitions are proved
to occur. Moreover, the phase diagram is fully drawn in the 2D plane of (inverse tem-
perature, imaginary magnetic field). This means that we have more freedom to analyze
the phase transition driven by temperature and imaginary magnetic field than in [4], [5]
where the range of these parameters are restricted. For this reason we wish to focus on
the situation of [6]. Our aim is to analyze the free energy density derived in [6].

Theorem 2.1 ([6, Theorem 1.3]). There exists ¢’ € (0,1] depending only on d, b, (v;)%_,

and the quantity
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such that for any U € (—270, min{ein, €4-11,0), B € Ryg, t €R

L—o00
LeN

A% Dy t
= — -2/ dkTrlog |2 — ) eAE)
|U| 3 /Foo og( cos<2)e

1 SWERPFA-EK) | 66(\/E(k)2+A2+E(k))>

1 o
lim (BL"Z log(Tr e_BHJ“”éZ))

)

k; € [0,2n] (j—l,---,d)}

and A € Rxq is defined as follows. A =0 if

B . sinh(BE(k))
7] + Dy /Ff;o dk'T’ ((cos(t/?) + COSh(ﬂE(k)))E(k)> <

Otherwise, A > 0 is the unique solution to

L r sinh(6/E(k)? + A?) —
T +Dd,/r;o dk T ((Cos(t/Q)+COSh(/6\/E(k)2+A2))\/E(k)2+A2) =0.




The singularity of the function

. 1 BH1i
t lim (—mlog(Tre AH+ tS"))

LeN

indicates existence of dynamical phase transition at positive temperature. To the author’s
knowledge, the concept was first introduced in [1], [3], though the zero temperature version
goes back earlier. In this context “t” is considered as the real time variable.

To set up our goals, let us explicitly define the free energy density as a function of
(8,t) € Ryg x R. First we need to make clear the well-posedness of our gap equation. For
E € E(emins €maz), define the function gp : Ryg X R x R = R by

sinh(z+/E(k)? 4 22) ) ‘
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Our gap equation is to find A € Rsq such that gg(8,t,A) = 0. The next lemma charac-
terizes unique solvability of the gap equation.

Lemma 2.2 ([6, Lemma 1.1)). Let (8,t) € Rog x R. There uniquely exists A € Rsq such
that gr(B8,t,A) =0 if and only if gp(5,t,0) > 0.

Based on the above lemma, we can define the gap function A : Ryp x R — Ry as
follows. If gr(B,t,0) > 0, A(S5,t) is the solution to gr(5,t,A) = 0. If gg(8,t,0) < 0, set
A(B,t) :== 0. Substitution of the gap function enables us to define the free energy density
as a function of (4,1) € Ryg x R.
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After these preparations we can summarize what we want to achieve.

o Characterize the boundary of the set of (8,t) (C Rsg x R) where A(8,t) > 0. In
other words this is to analyze the phase boundary.

o Characterize the regularity of (8,t) — Fg(8,t). By analogy with the Ehrenfest
classification this is to analyze the order of phase transition.

We will explain these projects in the rest of this article.

3 Analysis of the phase boundary
Define the subset Q4, Q_, Qg of Ry X R by

Q+ ={(8,t) € Rog xR | gp(8,1,0) > 0},
Q- = {(th) ER, xR ‘ gE(B»tvo) < 0}



Qo = {(ﬁ,t) S R>() X R | gE(ﬁvtvo) = 0}

One can see that

R>O XR:Q-}-HQ—HQO? Q+ :{(ﬂvt) E]R>0 x R ‘ A(ﬂvt) >O}

Let us call @)y phase boundary. We must confirm that the phase boundary is non-empty.
The next lemma not only answers this question but ensures that the critical inverse
temperature exists as a terminal point of the phase boundary.

Lemma 3.1 ([6, Lemma 1.2, Lemma 2.2]). Assume that |U| < % Then there uniquely
exists . € <O 2_tanh™! (Mﬂ such that the following statements hold.

? €min 2€emin

e gp(f,t,0) <0, VS € (B, ), t €R.

o sup,cp 95(Be. t.0) = gr(f.. 27, 0) = 0.

e V3 € (0,8) 37(B) € (m,2n) s.t. ge(B3,7(8),0) =0.
Moreover, T € C¥((0, 5.)). limg qg, 7(8) = limg\ o 7(5) = 27.

From here we always assume |U| < 26”7”‘" so that we can apply the above lemma. We

can characterize (g by parity and periodicity as follows.

Lemma 3.2 ([6, (2.3)]).
Qo =1{(B8,67(B) +4mm) | 5 € (0,08.), 6 € {1,-1}, m € Z} U{(B., 27 + 47wm) | m € Z}.

The lemma implies that )y is a union of copies of

{(B,7(8) | B€(0,8)y U{(B, =7(8) +4m) | B € (0,5c)} U{(B, 2m)}.

Based on this fact, we can sketch the phase diagram as in Figure 1. In view of the
conventional physics of the BCS theory, it is counter-intuitive that the gap function A(S, t)
can be positive only in high temperature.

Remark 3.3. Not to mislead the readers, we remark that our notion of phase diagram
is different from the dynamical phase diagrams defined in the physics literature (e.g.
[10], [2], [8], [9]). Our phase diagram corresponds to the boundary of a set of (inverse
temperature, real time) where the gap equation has a positive solution. On the other
hand, the dynamical phase diagrams in [10], [2], [8], [9] correspond to the boundary of a
set of 2 parameters which do not include the real time variable. The 2 parameters plus
the real time variable control a dynamical analogue of free energy density called return
rate function. The 2 parameters belong to the set if the return rate function shows a
particular singularity with respect to the time variable while these 2 parameters are fixed.

To analyze the phase boundary, it suffices to focus on the representative curve QO

defined by
Qo :={(8,7(8)), (8,—7(8)+4m) | B € (0,8)} U{(0,2), (B.,2m)}.

This curve is in fact a nice mathematical object.
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Figure 1: The schematic phase diagram

Proposition 3.4 ([6, Proposition 2.4]). Qo is a 1-dimensional real analytic submanifold
of R2.

However, the graph {(8,7(8)) | B € (0, 8.)} behaves in various ways.

Example 3.5 ([6, Proposition 2.25]). Consider the one-particle Hamiltonian F
(€ E(emin, €max)) of non-hopping electron defined by

_ emam[b’ 0 / o
E(k) = ( A ) b>2 0 e {12, b1},

where I, is the n X n unit matrix for n € N. In this case 7(8) (8 € (0, 3.)) is exactly
obtained as below.

— 2 -
7(8) = 2arccos ( Dut \/QW),
Dy = cosh(femaz) cosh(Bemin)

_ M < b sinh(Bemaz) cosh(Bemin) + b-b cosh(Bemaz) sinh(ﬂemm)> ,

2 Emazx Emin

/ /
Dy := cosh(femaz) + cosh(Bemin) — 1 ( b sinh(Bemas) + b-b sinh(ﬁemm)) ,

2 Cmazx Cmin

where arccos : [—1,1] — [0, 7] is the inverse function of cos|j .. For example let b =
8, bV =17, U = —é, emin = 1. Then for e, = 6,7,9 we can visualize the graph
{(B,7(8)) | 8 € (0,5.)} by implementing the exact solution in our PC. From (a) we can
see that 7(-) with €,,4, = 6 has only one local minimum point. By zooming separately in
(b) we can see that 7(-) with €4, = 7 has two local minimum points. Picture (c¢) shows
that 7(-) has only one local minimum point when e,,,, = 9.

The observation in the above example leads to the following question. What is a
condition for 7(+) to have only one local minimum point. The following theorem answers
this question.
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Theorem 3.6 ([6, Theorem 2.19]). The following statements are equivalent to each other.

i) There exists Uy € (0, 2emin) sych that 7(-) has only one local minimum point for any
b
U € [-U,0), E € E(emin, €maz)-

(i7) Cmin > \/17 — 12+/2.

Cmax

4 Analysis of the phase transition

According to the Ehrenfest classification, the order of phase transition is defined by reg-
ularity of the free energy. So let us study the regularity of the function (5,t) — Fg(f,t).
It is relatively straightforward to confirm the following.

Proposition 4.1 ([6, Proposition 2.5 (i)]).
FE‘Q+UQ7 ECW(Q_»,_UQ,), FEECI(R>OXR).

However, the free energy density Fg is not smooth on the phase boundary )y. More
detailed analysis reveals jump discontinuity of Fr on @y as follows.

Proposition 4.2 ([6, Proposition 2.5 (ii), (iii)]).
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(i) For any (Bo,to) € Qo, ima - (80.10).(8,)c0+ %(ﬁi)y hm(ﬁ,t)ﬁ(ﬂo,to),(5,t)€Q_ dtz 2(B,1)
converge to finite values. Moreover, for any By € (0, 5.)

) PFy . PFg
tlg}[l) W(ﬁo,t) < tlgfno o —— (6o, 1)
(Bo.0€Q (PoH)EQ_

.. . 2 . 52
(ii) For any (Bo,to) € Qo, im(snao.10).0.0e0+ (B, 1): ims - o0 sneq- G5 (B:1)
converge to finite values. Moreover, for any By € (0, 5.) with dT (ﬂo) #0

, 0*Fg , 0*Fg
fim 8—52(/7’7750) < lim a—/gg(ﬂito)
(B,tg)€Q ¢ (Bytg)€Q—
(iii) For any By € (0, B.) with 4% % (Bo) =
. 0*Fg . 02y
lim 8—62(B’t0) = lim W(ﬁio)
(B,t9)€Q ¢ (B,t9)€Q—

By analogy with the Ehrenfest classification the phase transition driven by ¢ is of 2nd
order. The phase transition driven by £ is of 2nd order on most of the boundary points.
According to (iii) of the above proposition, it may be higher order on a stationary point
of the phase boundary. So we have the following question. How is a higher order phase
transition (HOPT) driven by S related to a stationary point of inflection (SPI) of the
phase boundary ? To answer this question systematically, we have to prepare several
notions. First we classify the phase boundary )y into the subsets Q4 _, ¢ + defined by

de > 0 s.t.

Qo = {(ﬁo,to) € Qo

(ﬁ,to) S Qpa Vﬁ S (BO _5a60)7
(ﬁato) S QT]’ vﬁ € (/30’50 +€)

for (p,n) = (+,—), (—, +). For any point of ), ,, there is a horizontal line passing through
the point from @), to @,. We will study jump discontinuity of the derivatives of Fj along
such a line. The curve @)y consists of Q1 —, Q_ 4 plus local minimum/maximum points
as sketched in Figure 2.

For (Bo,t0) € Rog xR, n € N, (p,n) € {(+,—),(—,+)} we define the conditions
(PT)n o (B0 to), (PT ), (o) DY

(PT)n,(p,n)(/607 tO) :
(ﬁ(ht()) S Qp,?ﬂ

Bhfﬁo aaﬁ—FmE(ﬂ, lo), ﬁi\nﬁlo %ﬁ—Ff(/)’,to) converge for any m € {0,1,--- n},
O™ Fg 0" Fg
li t li t 1.ovo.n—1
a7h Opm (8,t0) = Jimm. opm G (Brte), Ym € {01, n — 1},
nF ’"/FE
li 3, t0).
Bl/r‘IBlo dﬁn ( )7&3\[3 aﬁn (ﬁv 0)
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Figure 2: A classification of subsets of Q.

(PT)n, o) -
H(ﬁo,to) S R>0 X R s.t. (PT)n,(p,n)(ﬁ()vtO) holds.

Moreover, we need to recall the definition of SPI.
Definition 4.3. Let a,b,c € R satisfy a < ¢ < b. Let f € C'((a,b),R).

+ We call ¢ rising SPI if there exists £ > 0 such that (¢ —e,¢+¢) C (a,b), L(c) =0,
4 (x)>0,Vz € (c—ecte)\{c}
« We call ¢ falling SPI if there exists € > 0 such that (¢ —,¢+ <) C (a,b), L(c) =0,
I(z)<0,Vz € (c—e.ct+e)\{c}
Then we define the properties (SPI)¢(5), (SPI)¢ for & € {r, f}, Bo € R as follows.
(SPI),(Bo) : fo is a rising SPT of 7(-) : (0, 8.) — R.
(SPI)¢(By) = By is a falling SPT of 7(-) : (0, 8,) — R.
(SPI)¢ : 36, € (0, 4.) s.t. (SPD)e(fy) holds.

The relation between HOPT and SPI can be organized in terms of these notions.
Theorem 4.4 ([7, Theorem 1.5]). Let (&, p,n) € {(r,+,—),(f,—,+)} and By € (0, 5.).

(i) (SPI)¢(fo) holds if and only if there exists n € 4N + 2 (= {6,10, 14, ---}) such that
(PT)npm) (Bo, T(Bo)) holds.

(ii) (SPI)¢ does not hold if and only if (PT)a,pm(5,t) holds for any (8,t) € Q,y.

(iii) (B,t) € Qpn and (PT)a o) (B,t) does not hold if and only if there exists n € 4N+ 2
such that (PT)y, (o) (3,t) holds.

The above theorem itself does not imply existence of HOPT or equivalently SPI. The
next theorem not only implies the existence but also provides a necessary and sufficient
condition for the existence in terms of £z,

max
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7(B) (left), $5(8) (right) With €pqe, = 8.342.

Theorem 4.5 ([7, Theorem 1.6]). The following statements are equivalent to each other.

(i) For any Uy € (0,2min) (p,n) € {(+.—).(—,+)} there exist U € [~Upy,0), E €
E(emins €maz), M € AN+ 2 (= {6,10,14, - - }) such that (PT)y ) holds.

(ii) For any Uy € (0, %) & € {r, f} there exist U € [~Uy,0), E € E(€min, €mas) Such
that (SPI)¢ holds.

(iii)

Smin —[17 —12v/2.

e’"L[Ll'

Example 4.6 ([7, Figure 2]). In the same exact solution as in Example 3.5 let us take €44
to be 6.643, 8.342. In these cases 2min < L < /17 — 12¢/2. According to Theorem 4.5,

emas — 6.643
there is a chance that we can find a one-particle Hamiltonian in &€ (€min; €maz) $0 that the
phase boundary has a SPI. By plotting the graphs we can observe that the exact solution
with €4, = 6.643,8.342 has a rising SPI, a falling SPI respectively. Theorem 4.4 implies

that HOPTs must be happening there.
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