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The Weyl operator W(u) associated with u E H (a separable complex Hilbert space with 

the norm I ・ 12 =<•| •>)isdefined by 

W(u) := e—½lul2 e•t(u)e—a(u) 

(see (5.2) and [22]), where a(u) = a(u) with the annihilation operator a(f) on the Boson Fock 
space「(H)(see Section 3) and at(u)＝が(u)is the creation operator (with the adjoint operator 

が(f)of a（ど） withrespect to the canonical complex bilinear form <•, •>=<71.> on H x H). 
Then it is well-known that the Weyl operator W(u) (u EH) is unitary and satisfies that for any 

u,vEH, 

W(u)W(v) = e―iim(〈ulv〉)W(u+ v), 

and so the map u曰 W(u)is a projective unitary representation of the additive group H with 
the multiplier cr(u, v) = e―,1m(〈ulv〉)(see[22]). 

A bijective real linear map S : H→H is called a symplectic automorphism if S satisfies 
(i) Sand S —1 are continuous, and (ii) Im(〈SulSv〉)＝Im(〈ulv〉)forall u, v EH. Then for each 
symplectic automorphism S, by defining unitary operator W8(u) (u E H) on the Boson Fock 

space「(H)by

Ws(u) = W(Su), 

we have another projective unitary representation Ws : u 日 W8(u)with the multiplier 
cr(u, v) = e―Am(〈ulv〉)，i.e.,we have 

Ws(u)Ws(v) = e―iim(〈ulv))Ws(U+ v) 

for all u, v E H. 

We suppose that H = H良十 iHRthe complexification of a real Hilbert space H尺． Then

every real linear map S : H→H is associated with an operator S。onHR EB凡 bydefining 
S（ふ＋ iも）＝ S11ふ＋iS21ふ＋S12g2+ iS22g2 

and 

S。=（ロド）．
In [25], Shale proved that for each symplectic automorphism S of H, there exists a unitary 

operator'Us on the Boson Fock space「(H)such that 

叱 W(u)'lls1= Ws(u), u EH 
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if and only if S ~S 。 -J is a Hilbert-Schmidt operator on H良EBH艮． Insuch a case,払 is
determined uniquely up to a scalar multiple of modulus unity (see Theorem 22.11 of [22]). 

In this manuscript, we consider an intertwining property of the Weyl operators based on 

the Gelfand triples: 

E c H c E*, (E) c f'(H) c (E)*, 

which is a mathematical framework of the white noise theory (see [5, 6, 7, 16, 17, 20]). We 

consider the operators 

VK,u = e½ 〈u,Ku〉eが(u)ea(Ku) E.£,((£), (E)) n.£,((£)*, (£)*), 

whereK: E→E is a real linear operator and u E E. Then for each real linear continuous op-
erator S : E→E satisfying certain conditions, we want to find an operator Us E.£,((£), (£)*) 
satisfying that 

UsVK』 =VK,suUs, u EE, 

i.e., Us satisfies the following diagram: 

Us 

(E)一(E)*
吋↓VK,Su

(E)一(E)*
Us 

(1.1) 

(see Theorem 6.3). For our purpose, by applying the notion of the quantum white noise 

derivatives developed in [11, 12, 13, 14, 15], we derive a quantum white noise differential 
equation (qwnde) which is equivalent to (1.1), and then by solving the qwnde with the method 

developed in [14, 15], we have an operator Us E L((E), (E)*) satisfying (1.1), which is closely 
related to the Bogoliubov transformation studied in [1, 8, 13, 14, 15, 23, 24]. 

2 White Noise Distributions 

Let H be a separable complex Hilbert space with the norm I ・|。inducedby the inner product 
<•| •>.LetA be a positive, selfadjoint operator in H satisfying that there exist a complete 
orthonormal basis {en};;'=1 for Hand an increasing sequence {An};;'=1 of positive real numbers 
such that 

(AO)ふ＞ 1,

(Al) for all n E N, Aen＝心en,

(A2) A―1 is of Hilbert-Schmidt type, i.e. 

00 

IIA― 11に＝〗ばく oo.
n=l 

For each p ~ 0, put 

佑＝｛fEH: lflp := IAPflo < oo}, 
—|•1-p 

E_P = H ・ y (the completion of H with respect to the norm I ・ 1-p), 
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where I ・ 1-p = IA―P • lo-Then by identifying H* (strong dual space) and E; (p ~ 0) with Hand 
E_p, respectively, we have a chain of Hilbert spaces: 

. ・・Eq C Ep CH=げ CE_p C E_q C... 

for any O :s; p :s; q, and then by taking the projective limit space of Ep and the inductive limit 

space of E_p, we have the underline Gelfand triple: 

projlimEp =: E c H c E・=indlimE_p・ 
p→OO p→OO 

Then from the condition (A2), the nuclearity of E is guaranteed. 

The (Boson) Fock space over EP is defined by 

叫＝｛¢ ＝仏）;:'=0;fnEE:尺||¢II; = ~ n! I fn I; < OO} ・ 
Then we obtain a chain of Fock spaces: 

・ ・ ・ C f'(Ep) C ・ ・ ・ C f'(H) C ・ ・ ・ C f'(E_p) ・・・

and, as limit spaces we define 

(E) = projlim「(Ep), (E)* = indlimf'(E砂
p→OO P→OO 

It is known that (E) is a countably Hilbert nuclear space. Consequently, we obtain a Gelfand 

triple: 
(E) c [(H) c (E)*, 

which is referred to as the Hida-Kubo-Takenaka space. The dual space f(H) is identified with 

itself through the canonical IC-bilinear form. 
By the definition, the topology of (E) is generated by the norms 

00 

11</JII; = In! If,』;， ¢ =(fn)， 
n=O 

where p：：：：：゚． Onthe other hand, for each <l> E (E)* there exists p：：：：：゚ suchthat <l> E f(E_p) 
and 

00 

II<I>||2-p三 In!IF土 <oo, <l> ＝(F心
n=O 

The canonical C-bilinear form on (E)* X (E) takes the form: 

00 

《①,¢》=In!〈Fn,fn〉, <D = (Fn) E (E)べ </J= (fn) E (£). 
n=O 
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3 White Noise Operators 

A continuous linear operator from (E) into (E)* is called a white noise operator. The space 

of all white noise operators is denoted by L((E), (£)*). The white noise operators cover a wide 

class of Fock space operators, for example, L((E), (E)),.£((£)*, (E)) and L(f'(H), f'(H)) are 

subspaces of.£((£),(£)*). 

For each x E E*, the annihilation operator a(x) E L((E), (E)) associated with xis defined 

by 

a(x): (E)ラ¢＝は立。→ ((n+ l)x釣 fn+I応。 E(E), 

where x剣 fnstands for the contraction. The adjoint operator a*(x) E.£((£)*, (E)*) of a(x) 

with respect to the canonical bilinear form <•, •> is given by 

が(x): (E)* 3 ¢ = (in応。 H (xRfn-i);;:0 E (E), (understanding f-1 = 0), 

and is called the creation operator associated with x. We note that a(?) E.£((£)*, (E)*) and 

が(?)E L((E), (E)). More precisely, 

Lemma 3.1 For any distribution? E E*, we have a(?) E L((E), (E)) and a*(?) E L((E)*, (E)*). 
If? E E, then a(?) extends to a continuous linear operator from (E)* into itself and a*(?) re-

stricted to (E) is a continuous linear operator from (E) into itself. 

For simple notations, the extension and restriction mentioned in Lemma 3.1 are denoted 

by the same symbols. It is straightforward to verify the canonical co皿 nutationrelation: 

[a（ど），a(T/)]= 0, [a*（ど），a*(T/)]= 0, [a（ど），a*(T/)]=〈g,n〉

for all g, T/ E E. 
The exponential vector (or coherent vector)吟associatedwithどEH is defined by 

¢1; := (1,t, ・ ・ ・, ~. ・ ・ ・). 
Then it is well-known that {¢g : {EE} spans a dense subspace of (E). Therefore, every white 

= noise operator 3 E.£,((E), (E)*) is uniquely determined by its symbol 3 defined by 

取，TJ)=《号吋）， g, 1J EE. 

The following theorem is well-known as analytic characterization theorem for symbols of 

white noise operators. 

Theorem 3.2 ([19, 2, 10]) Let 8 : E x E→ C be a function. Then 8 is the symbol of some 
white noise operator S E L((E), (E)*) if and only if for each fi, 1Ji EE (i = I, 2), the function 

CXCう(z,W)日 0（ふ＋zど2,1]1 + W加 EC (3.1) 

is entire holomorphic, and there exist constants C, K :C:: 0 and p :C:: 0 such that 

10(g, 17)1 ~ CeK（辱＋ITJ協）， g,17EE. 

Furthermore, the function 0 is the symbol of some white noise operator 3 E,£,((E), (E)) if and 
only if the function given as in (3.1) is entire holomorphic, and for any E > 0 and p :C:: 0, there 
exist q :C:: 0 and C > 0 such that 

10(g, 17)1 ~ CeE(I叫＋ITJIぢ）， g,17EE. 
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For each K E (ER(l+ml)*, by applying Theorem 3.2 we can see that there exists a unique 

operator 31,m(K) E.£,((E), (E)*), called an integral kernel operator, such that 

己r;::Ji<)(f,T/) =〈K,n⑭lRf⑭m)がq,T/〉' f,T/ EE, 

where <•, •> is the canonical bilinear form on E* x E. Note that 81,m(K) E.£,((E), (E)) if and 
only if K E ER1 R (ERm)*. In particular, for each x E E* we have 

a(x) = S。,1(X)，が（x)=却(x).
For the case of H = L％艮，dt)andふEE* (for each point t E R), we write 

化＝a（ふ）， a;=が（ふ）．

In this case, the integral kernel operator 81,m(K) is formally represented by 

81,m(K) = ll+m K(s1,...'Sj；加，・・ ・, t1)a;1 ・ ・ ・ a：心・ • • at, dt1 ・ ・ ・ dtmds1 ・ ・ ・ ds1. 
Rl+m 

Quadratic forms of quantum white noise are useful for applications. For each S E.£,(E, E*), 

by the kernel theorem there exists a unique Ts E E* R E* such that 

〈Ts,TJRf〉=〈Sf,TJ〉, f,T/ EE. 

We put 

AG(S) = 3。,2(rs), ~も(S) =三:2,o(rs), A(S)＝三:1,1(Ts). 

Note that AG(S) E £((£), (£)), AG(S)* E £((£)*, (E)*) and A(S) E £((£), (£)*). For S = I 
(the identity operator), 

知：＝知(I), N := A(/) 

are called the Gross Laplacian and the number operator, respectively. The operator AG(S), 

called a generalized Gross Laplacian, plays an important role in the study of transformation 
groups [3]. A linear combination of the above quadratic forms is also referred to as a Bogoli-

ubov Hamiltonian, see e.g., [l]. 

Theorem 3.3 ([20]) For any 3 E £((£), (£)*) there exists a unique family of distributions 
K/,m E (£R(/+ml); 

sym(l,m) such that 
00 

己＝I81,m(Kz,m), (3.2) 
l,m=O 

where the right hand side converges in.£,((E), (E)*). If 8 E.£,((E), (E)), then so does己l,m(Kz,m)
for all l, m and the series (3.2) converges in.£,((E), (E)). 

4 Q uantum white noise derivatives 

The Fock expansion (see Theorem 3.3) says that every white noise operator 8 is a "func-

tion" of quantum white noise, say, 8 = 8(a,, a;; s, t E T). It is then natural to consider the 
derivatives of 8 with respect to the coordinate variables a1 and a;. 
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For any white noise operator三EL((E), (E)*) and? E Ethe commutators 

[a((), S] = a(()S -Sa((), -[a*(D, 3] = Sa*(() -a*（［）己，

are well defined as compositions of white noise operators (see Lemma 3.1), i.e., belong to 

£(（E)，(E)＊)． Wedefine 

D；三＝ ［a{D, 3], D戸＝ー[a℃)，3].

These are called the creation derivative and annihilation derivative of 3, respectively. Both 
together are referred to as the quantum white noise derivatives (qwn-derivatives for brevity) 

of 3. 

Theorem 4.1 ([12])（ふS)日 Df3 is a continuous bilinear map from Ex L((E), (E)*) into 
L((E), (E)*). 

As explicit examples we record the qwn-derivatives of quadratic forms. The results will 

be used later. 

Lemma 4.2 ([13]) For S E L(E, E*) and? E Ewe have 

D；知（S)= 0, D；知（S)= a(S ?) + a(S* ?), 

Dl!i~(S) = a*(S?) + a*(S*?), D?li~(S) = 0, 

DlA(S) = a(S*?), D?A(S)＝が(S?).

There exists a separately continuous bilinear map from £,((E), (E)*) x L((E), (E)*) into 

L((E), (E)*), denoted by 31◇三2,uniquely specified by the following property: 

at◇S= S ◇ai = 3ai, a;◇三＝三◇叫＝ a;2,

where the right-hand sides are well-defined compositions of white noise operators. We call 

己1年 2the Wick product or nonnal-ordered product. It is more clear to define the Wick product 

by symbols. In fact, the Wick product 31◇32 is characterized by 

偶◇己2只t,n)＝忌(§,n)82(f,TJ)e―〈g,n〉,q,TJEE. 
Equipped with the Wick product, (£,((E), (E)＊），◇）becomes a commutative algebra. Also, by 
applying the characterization theorem for operator symbols [19, 20], we can easily see that 

(L((E), (E)），◇）is a subalgebra of £,((E), (E)*). 

A continuous linear map 1J: £,((E), (E)＊)→ L((E), (E)*) is called a Wick derivation if 

の（三1◇三2)= (1..)31)◇三2十三1◇(1)三2), 31，三2E £,((E), (E)*). 

Theorem 4.3 ([13]) The creation and annihilation derivatives D土areWick derivations. 

Given a Wick derivation 1J : £,((E), (E)＊）→ L((E), (E)*) and a white noise operator 
GE £,((E), (E)*), we consider a linear differential equation: 

1)S = G◇三． (4.1) 

The solution is described as in the case of linear ordinary differential equations. For U E 
.£,((£), (E)*) the Wick exponential is defined by 

u 1 wexp U = I-f:,u◇n 
n! 

n=O 

whenever the series converges in.£.,((E), (E)*), for more details see [4]. 
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Theorem 4.4 ([13]) Let GE.£,((£),(£)*). If there is an operator U E.£,((£),(£)*)such that 
VU  = G and wexp U E.£,((E), (£)*), then a general solution to (4.1) is given by 

三＝（wexpU)◇F=F◇wexpU

with a white noise operator FE.£,((£),(£)*) satisfying VF= 0. 

5 Weyl Operators 

For each 7J EE, by applying Theorem 3.2, we can easily see that 

eが(17),ea(17) E,£((£), (E)). 

Therefore, by applying the duality, for any 7J, (EE, we have 

eが('llea(i;lE,£((£), (E)) n,£((£)*, (E)*). 

LetK: E→E be a real linear operator. Put 

VK,u: = e2 L〈u,Ku〉が(u)-a(Ku)e e,  U E E. 

Then from (5.1), we have 

VK,u E L((E), (E)) n L((E)*'(E)*), 

and for any q, 17 EE, we obtain that 

《VK,u</JglVK，ふ》 ＝ e½ （〈U,Ku〉+〈u,Ku〉)+〈Ku，ど〉＋〈Ku,TJ〉+〈ど十ulTJ+U〉.

Therefore,《VK,u</JglVK，ふ》＝ eほIn〉forall q, 17 E E if and only if 

1 
5 (〈U,Ku〉+〈u,Ku〉)＋〈ulu〉=0, 〈Ku，ど〉＋〈どlu〉=0, 〈Ku,17〉+〈U|n〉=0 

(5.1) 

for allど刀 EE if and only if Ku = -u (see (1) of Example 5.3). Hence for each u E E, VK,u 
has an unitary extension to f(H) if and only if K = -J, where J is the complex conjugation, 

i.e., Ju= u for all u EE. Then we have 

V-1,u = e―}〈u,u〉eが(u)e―a(UJ= e—½lul2 ea1(u)e―a(u) 

=: W(u) (5.2) 

for all u E E, which is called the Wt州 operator(see [22]), where the operator a(u) and at(u) 
are defined by 

a(u) =而＝ a(u), at(u) = (a(u)/ (the Hermitian adjoint). 

Then we can easily see that at(u)＝が(u).In fact, for any{, 17 E E, we obtain that 

〈(at(U)¢g,¢5T/)） ＝〈(¢,,Iat(u)¢t)) =〈(a(ii)¢7|¢t)）＝〈〈〈ii,ii〉¢7|¢§〉〉=〈U,n〉(〈¢ど9¢T/〉〉

＝《吟 a（嶋》＝《が(u)吟吋）．
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．． 
Proposition 5.1 If K : E→E is a real linear operator, then we have 

VK,vVK,u = e2 
L(〈Kv,u〉-〈v,Ku))V

K,v+u, 

VK,vVK,u = e 
〈Kv,u〉-〈v,Ku〉

VK,uVK,v 

forallv,u EE. 

(5.3) 

(5.4) 

氏 ooF. By applying the Baker-Campbell-Hausdorff formula, we obtain that 

VK,vVK,u = e2 
l (〈v,Kv〉+〈u,Ku〉)が(v)na(Kv)が(u)na(Ku)

e e e e 

= e½(〈v,Kv〉+〈u,Ku〉+2〈Kv,u〉)eが(v)eが(u)ea(Kv) ea(Ku) 

=eうl(〈v,Kv〉+〈u,Ku〉+2〈Kv,u〉)が(v+u)na(Kv+Ku) e e 

On the other hand, since K is real linear, then we obtain that 

VK,vVK,u = e2 
l•(<v,Kv>+<u,Ku>+2<Kv,u>)a'(v+u)na(K(v+u)) e-・'"・・・,e 

= e} （2〈Kv,u〉ー〈v,Ku〉一〈u,Kv〉)e½ 〈v+u,K(v+u)〉eが(v+u)ea(K(v+u)) 

=eが〈Kv,u〉ー〈v,Ku〉)V
K,v+u, 

which proves the first assertion. From (5.3), we obtain that 

VK,v VK,u = e'i 
1(〈Kv,u〉-〈v,Ku〉)V

K,v+u 

= e2 1(〈Kv,u〉-〈v,Ku〉) -1(〈Ku,v〉ー〈u,Kv〉)e-'j¥¥1'U, V/-¥U,1'V//VK,u VK,v 

=e 
〈Kv,u〉ー〈v,Ku〉

VK,uVK,v, 

which proves (5.4). ー

Proposition 5.2 Let K : E→E be a real linear operator. Then for any invertible operator 
S E L(E, E), we have 

「(S―1)VK,u「(S)= Vs•Ks,s-1u 

匝 ooF. For any f, 17 EE, we obtain that 

《VK,u外崎＝《e½ 〈u,Ku〉eが(u)ea(Ku)吟崎＝ e½ 〈u,Ku〉+〈Ku,§〉+〈U,1/〉+〈g,n〉'

and so we obtain that 

《VK,ur(S)転吋）＝《VK,u'P乾 9 ¢n》
= e2 -〈u,Ku〉+〈Ku,Sq〉+〈U,TJ〉+〈Sq,TJ〉

= e½ <s-1u,s•KS s-1u〉+〈s·Kss-1立〉＋〈s-1u,S'TJ〉+〈g,s•T/〉

=《Vs•Ks,s-1u吟， r（SWT/》,

from which we have the assertion. ー
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From now on we assume that there exists complete real subspace ER c E such that 

E=届＋iE良・

We denote LR(E, E) the (real) space of all continuous real linear operators from E into itself. 

For each S E LR(E, E), define operators S jk (for 1 ~ j, k ~ 2) in the real nuclear space ER by 

S (x + iy) = S 11X + iS 21X + S 12Y + iS 22Y 

for z = x + iy E E with x, y E E艮． Moreprecisely, we define the real linear operators S ij by 

SnX= ｝｛応＋瓦），

S12x = ½(S(ix) ＋叫），
Sぃ＝古{Sxー瓦），

S22x = t (s(ix)一躙）

V) for any x E E11t. By expressing any vector in ER 〶底 as a column (~) for some u, v E E記

and define 

S。(~)= (t: t~)(~) 
Example 5.3 (1) Let J : E→E be the complex conjugation, i.e., for any f =ふ＋ iをEE
with f; E ER, Jf =ふーi6,we have 

Jふ＝ふ， J(if2) = -i&， ふふ EE記

from which we have 

Jn = I, J21 = 0, J12 = 0, J22 = -I. 

Therefore, we have Ii。=(・  1 0 0 -l) 
(2) Let L : E→E be a complex linear operator. Then for any f =ふ＋ iも EEwith 
f; E ER, we have区＝屁I+i屁2and so we have L{1 = L11ふ＋iL21ふand

L1ふ＋iLiふ＝L(iら） ＝ i区ら＝ i(L11も＋iLi必）

= -L21も＋iL11f2,

from which we have L12 =-Li1 and伍＝L11and hence we have 

Lo= (力古）． (5.5) 

(3) Let M: E→E be a real linear operator. Then for any g＝ふ＋it2,1J = 1]1 + i172 E E 
with t;, 1]; E ER, we obtain that 

〈M§,n〉=〈M面＋M函＋i(M的＋M函），nl＋枷〉

= ((z〗 z:~) （な）， <T3(塁）） + i((z>::)（な）,<T1 (~:)), 
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whereび1:= (『~) andび3:= (~ ~l) are Pauli matrices. Therefore, we have 

〈Mt,n〉=（応＋ l可）M。(t),(塁））
＝ （応＋icr1)M,。 (t),(~:)) (5.6) 

(4) Let LE L(E, E) be a complex linear continuous operator. Then Lo is given as in (5.5), 
and from (5.6), we obtain that 

〈L•ど， n〉＝〈ど， L1J〉= （（t），応＋i→（塁））
= （山）＊屈＋叩）（t),(塁）），

which implies that 

（び3+ iび1)(L*)o = (Lo)＊（び3+ i<r1), (5.7) 

Proposition 5.4 Let L E L(E, E) be a complex linear continuous operator. Then Lis symmet-

ric, i.e. L* = L if and only if L11 and伝 aresymmetric, i.e., L~1 = L11 and L;1 = L2]・

胚ooF. From (5.5) and (5.7) we obtain that 

(！ -l) （カ -L~I)=応＋i叫 o=応＋妬）（L*)o= (Lo)＊応＋iび］）

＝ （塩仇）（！ー'.i),
which is equivalent to 

（ 知＋zL21 ー伝＋zL11)＝( 砧 +l鯰 —鯰＋ lL;1)
—伝＋ iL11 -Lu -i伝ーLふ＋iLii -Li1―iL;l J' 

which is equivalent to見＝L11and鯰＝L21・
LetK: E→Ebe a real linear operator. Consider the map a-K : Ex E→C defined by 

1 
a-K(u, v) = ~(<Kv, u〉-〈v,Ku〉)， u,vEE. 

2 

Then for any u戸 jE ER for j = I, 2, we obtain that 

1 
a-K(u, v) = ~(<Kv, u〉-〈v,Ku〉)

2 

= ；((（Oiko-K;。"3)(:~), (:~))+i((a-i~。 -K~a-1) (:~), (:~))) ・ (5.8) 

ー

In particular, if K = -J, then we have Ki。=（閑『）andso we have 

び；K。 -K砂＝ 0, 可K。 -K記＝ 2(~1 ~) ・ 
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Therefore, we have 

1 1 
四 (u,V)＝ぅ(-〈v,u〉+〈V，五〉） ＝ 5 （〈ulv〉-〈vlu〉)＝ i(（-l 

= ilm(〈ulv〉)

~)(::), (::)) 
Proposition 5.5 Let K, S : E→Ebe real li e real linear maps. Then S is a o-rsymplectic map, i.e., 
げK(Su,Sv)＝びK(u,v) if and only if 

s;（吋K。-K切・3)S。＝吋Ko-K~a-3, 
s;（CiK。-K紅1)S。=CiK。-K如び1・ 

In particular, S is a a--rsymplectic map if and only if 

(5.9) 

s;(-l;)ふ＝（ー1;） 
(see (22.6) of [221). 

氏ooF. The proof is straightforward. From (5.8), by direct computation we have that 

びK(Su,Sv)＝びK(u,v) for all u, v EE if and only if 

((O1K。-K;。-3)S。(::)'s。(：;)）+ l(（O1K。 -K~cr1)S。(::)'s。(::))
= ((OぅK。-K;。万）（：：）9（：:））＋ l(（o1K。-K;。-1)(::),(::))

for all u, v E E if and only if (5.9) holds. ー

Corollary 5.6 Let K : E→E be a real linear operator. For any real linear operator互
symplectic operator S : E→E, we have 

VK,Sv VK,Su = e心 (u,v)yK,S(v+u), 

VK,Sv VK,Su = e2CTK(u,v)vK,Su VK,Sv 

forallv,u EE. 

匝ooF. The proof is immediate from Proposition 5.1. ー

6 An Intertwining Property of Weyl Operator 

Lets: E→Ebe a real linear operator. We want to find an operator Us E.£,((£), (£)*) 
such that 

UsVK』 =VK,suUs, u EE, 

i.e., Us satisfies the following diagram: 

Us 

(E)一(E)*
VK,u l l収Su
(E)一(E)*

Us 

(6.1) 

(6.2) 
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A family of operators固｝ cL((E), (E)) is said to be equicontinuous if for any p ~ 0, 

there exist a q ~ 0 and a constant K ~ 0 such that 

|S叫p:,; Kl</Jlq, <p E (E) 

for all,l (see [21, 20]). 

Theorem 6.1 Let {Tふoc L((E), (E)) and {S贔 c.£,((£)*,(£)*)becontinuous semigroups 
of continuous linear operators with the equicontinuous generator T E.£,((£), (E)) and S E 

L((E)*, (£)*), respectively. Let V E.£,((£), (£)*). Then VT1 =ふVfor all t ~ 0 if and only if 
VT= SV. 

氏ooF. For any ¢ E (E), we obtain that 

SV<(J 
ふV¢-V¢ Tゆー¢
= lim 
t→O 

= V(lim)＝ VT¢, 
t→0 t 

from which we see that S V = VT. Conversely, suppose that S V = VT. Then since S 

and T are equicontinuous, we construct continuous semigroups {'I'.ふoc L((E), (E)) and 
{S 1}i;,:0 c,£,((£)*,(£)*)with infinitesimal generators T and S by 

00 

Tt=こtn 
00 tn 

n=0訂yn= etT, ふ＝こ戸＝ etS, tこ0.

Therefore, since S V = VT, for all t ~ 0, we obtain that 

研＝二長V=V（tfiTn) = VT1, 
which is the desired assertion. 

For each t ~ 0, put 

VK,u(t) = e2 ザ〈u,Ku〉ta'(u)~ta(Ku) e e 

whereK: E→E is a real linear operator. 

ー

p roposition 6.2 Let u EE be given. Then the family WK,u(t)}iER c L((E), (E)) n,£,((E)*, (E)*) 
is a differentiable one-parameter group with the infinitesimal generator a*(u) + a(Ku). 

匝ooF. For any s, t ~ 0, by applying the Baker-Campbell-Hausdorff formula, we obtain 

that 

VK,uCtWK,u(s) = eHs叫）〈u,Ku〉eta'(u)e1a(Ku) esa'(u) esa(Ku) 

= eHs2+2s1+12)〈u,Ku〉e1a'(u)esa'(u) e1a(Ku) esa(Ku) 

=e杯＋s）2〈u,Ku〉e(t+s)が(u)e(t+s)a(Ku) 

= VK,uCt+ s), 

from which we see that WK,u(t)}1E良isa one-parameter group and it is easy to see that {V K,u(t) }iER 

is differentiable with the infinitesimal generator a*(u) + a(Ku). I 
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Therefore, by Theorem 6.1 and Proposition 6.2, we see that a white noise operator Us E 

£,((E), (E)*) satisfies the intertwining property given as in (6.1) if and only if Us satisfies the 

intertwining property: 

Us（が（u)+ a(Ku)) = (a*(Su) + a(KSu)) Us, u EE, 

i.e., Us satisfies the following diagram: 

which is equivalent to 

Us 

(E)一(E)*
a•(u)+a(Ku)• ↓が(Su)+a(KSu)

(E)一(E)*
Us 

[Us, a*(u)] -[a(KS u), Us]＝ーが(u)Us-Usa(Ku)＋が(Su)Us+ Usa(KSu) 

＝ （が((S-I)u) + a(K(S -I)u)）◇ Us, uEE. 

Therefore, we have the quantum white noise differential equation: 

(D;-D;Su) Us =（が((S-I)u) + a(K(S -I)u)）◇ Us, u EE. (6.3) 

By solving (6.3), we obtain the white noise operator Us E.£,((E), (E)*) satisfying the equation 

(6.1). 

Now, to apply Theorem 4.4 to solve the quantum white noise differential equation given 

as in (6.3), we want to find white noise operator G E.£,((£), (E)*) satisfying 

(D~-DhJG =が（（Sー[)u)+ a(K(S -[)u). 

Consider the white noise operator GE L((E), (£)*) given as in 

G=A訊L)+A(M)＋知(N),

where L, M, N E L(E, E*). Then from Lemma 4.2, we obtain that 

D~G= が（Mu)+ a(Nu) + a(N*u), 

DisuG =が（LKSu)+ a*(L*KSu) + a(M*KSu), 

from which we have 

(D~ -DisJG =が（（M-LKS -L* KS)u) + a((N + N* -M* KS)u). 

(6.4) 

(6.5) 

On the other hand, since the operators位(L)and知(N)are uniquely determined by symmetric 
operators L and N, respectively, we may assume that L and N are symmetric, i.e., L* = Land 

N* = N. Then we have the quantum white noise differential equation: 

(D~ -Di8JG = a*((M -2LKS)u) + a((2N-M*KS)u). (6.6) 

Then by comparing Equations (6.4) and (6.6), we have 

が((S-I)u) + a(K(S -J)u)＝が((M-2LKS)u) + a((2N -M*KS)u) 

for all u EE, which is equivalent to 

S-l=M-2LKS, K(S-l)=2N-M*KS, 

where the operators L, M and N are unknown. 

(6.7) 
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Theorem 6.3 Let K, S : E→E be real linear operators. Suppose that there exist opera-
tors L, M, N E.£,(E, E*) such that the equations given as in (6.7) hold. Then there exists a 

white noise operator Us E.£,((E), (E)*) such that the diagram given as in (6.2) commutes. 

Furthermore, the white noise operator Us E.£,((E), (E)*) is given by 

Us = (wexp (/1~(L) + A(M)＋知(N))U)◇F 

=F◇wexp (/1~(L) + A(M)＋知(N))

with a white noise operator FE.£((£),(£)*) satis,_かing(n~ -D叫 F=O.

氏ooF. By above discussions, we see that 

(D;-D;Su)G ＝が（（S-I)u) + a(K(S -I)u) 

(6.8) 

under the assumptions, where the white noise operator G E L((E), (£)*) is given as in (6.5). 

Therefore, by applying Theorem 4.4, we see that a general solution Us of the quantum white 

noise differential equation given as in (6.3) is given as in (6.8), and hence Us satisfies the 

intertwining property given as in (6.1). I 
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