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1 Introduction

The Weyl operator W(u) associated with u € H (a separable complex Hilbert space with
the norm | - |> = (-|-)) is defined by

W(u) := ¢ 21 et @@

(see (5.2) and [22]), where a(u) = a(u) with the annihilation operator a(¢) on the Boson Fock
space I'(H) (see Section 3) and a'(u) = a*(u) is the creation operator (with the adjoint operator
a*(¢) of a(¢) with respect to the canonical complex bilinear form (-, -) = (7|-) on H X H).
Then it is well-known that the Weyl operator W(u) (u € H) is unitary and satisfies that for any
u,veH,

W)W () = e ™MWy + ),

and so the map u — W(u) is a projective unitary representation of the additive group H with
the multiplier o(u, v) = e~ ™) (see [22]).

A bijective real linear map S : H — H is called a symplectic automorphism if S satisfies
(i) S and S~! are continuous, and (i) Im((S u| S v)) = Im((u| v)) for all u, v € H. Then for each
symplectic automorphism S, by defining unitary operator Ws(«) (u € H) on the Boson Fock
space I'(H) by

Ws(u) = W(Su),

we have another projective unitary representation Wy : u +— Wgs(u) with the multiplier
o(u,v) = e ™) e we have

Ws@)Ws(v) = €™ We (u +v)

forall u,v € H.
We suppose that H = Hy + iHy the complexification of a real Hilbert space Hz. Then
every real linear map S : H — H is associated with an operator S on Hy @ Hy by defining

S +i&) =511 +iS2é + S 126 +iSné

Su Snp
So = .
0 ( Sa S» )
In [25], Shale proved that for each symplectic automorphism S of H, there exists a unitary
operator Us on the Boson Fock space I'(H) such that

and

UsWwU;"' = Ws(u), ueH



if and only if S;S¢ — I is a Hilbert-Schmidt operator on Hr © Hg. In such a case, Us is
determined uniquely up to a scalar multiple of modulus unity (see Theorem 22.11 of [22]).

In this manuscript, we consider an intertwining property of the Weyl operators based on
the Gelfand triples:

EcHCE", (E)cT(H)c(E),

which is a mathematical framework of the white noise theory (see [5, 6, 7, 16, 17, 20]). We
consider the operators

Vi = €2 K0 e 0 e L((E), (E)) N LWEY, (E)),

where K : E — E is areal linear operator and u € E. Then for each real linear continuous op-
erator § : E — E satisfying certain conditions, we want to find an operator Ug € L((E), (E)*)
satisfying that

UsVku = VksuUs, ué€ekE, (1.1)

i.e., Uy satisfies the following diagram:

(E) — (E)"

Vku l lVK.Sxt

(E) — (E)

Us

(see Theorem 6.3). For our purpose, by applying the notion of the quantum white noise
derivatives developed in [11, 12, 13, 14, 15], we derive a quantum white noise differential
equation (qwnde) which is equivalent to (1.1), and then by solving the qwnde with the method
developed in [14, 15], we have an operator Us € L((E), (E)") satisfying (1.1), which is closely
related to the Bogoliubov transformation studied in [1, 8, 13, 14, 15, 23, 24].

2 White Noise Distributions

Let H be a separable complex Hilbert space with the norm | - |, induced by the inner product
(:|-). Let A be a positive, selfadjoint operator in H satisfying that there exist a complete
orthonormal basis {e,} ", for H and an increasing sequence {4, )", of positive real numbers
such that

(A0) A, > 1,
(A1) foralln € N, Ae, = A,e,,
(A2) A7!is of Hilbert-Schmidt type, i.e.
A s = 25407 < o
n=1
For each p > 0, put
E, = (£ € H: ¢, := |A%ly < o),

=l

E_,=H  (the completion of H with respect to the norm | - |_,),
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where | - |-, =|A7" - |o. Then by identifying H" (strong dual space) and E;, (p > 0) with H and
E_,, respectively, we have a chain of Hilbert spaces:

--E,cE,cH=H"CE_,cE_,C---

for any 0 < p < ¢, and then by taking the projective limit space of E, and the inductive limit
space of E_,, we have the underline Gelfand triple:

projlimE, =: EC HC E" =indlimE_,.

p—oo p—0o0

Then from the condition (A2), the nuclearity of E is guaranteed.
The (Boson) Fock space over E,, is defined by

I(E,) = {¢ = (et fo € B NI0IE = D 1 £ 2 < oo}.

n=0

Then we obtain a chain of Fock spaces:
CF(EI,)C CF(H)C Cr(E_p)
and, as limit spaces we define

(E) = projlimI'(E)), (E)" = indlimT(E_)).
p—©

p—o

It is known that (E) is a countably Hilbert nuclear space. Consequently, we obtain a Gelfand
triple:

(E) cT(H) c(E),
which is referred to as the Hida—Kubo—Takenaka space. The dual space I'(H) is identified with

itself through the canonical C-bilinear form.
By the definition, the topology of (E) is generated by the norms

oo

el =Y n1AR. 6=,

n=0

where p > 0. On the other hand, for each ® € (E)" there exists p > 0 such that ® € T'(E_))
and

)

I0I2, = > nl[F 2, <co, @ =(F,).
n=0

The canonical C-bilinear form on (E)* X (E) takes the form:

o

(D, ¢ = Zn! Fu, f),  ©@=(F)e(E), ¢=(h)e ).

n=0



3 White Noise Operators

A continuous linear operator from (E) into (E)" is called a white noise operator. The space
of all white noise operators is denoted by L((E), (E)"). The white noise operators cover a wide
class of Fock space operators, for example, L((E), (E)), L((E)*,(E)) and L(I'(H),['(H)) are
subspaces of L((E), (E)).

For each x € E*, the annihilation operator a(x) € L((E), (E)) associated with x is defined
by

a(x) : (E) 2 ¢ = (fu)eo P> (n+ DX @1 fur1),2o € (E),
where x ®; f, stands for the contraction. The adjoint operator a*(x) € L((E)*, (E)*) of a(x)
with respect to the canonical bilinear form (:, -)) is given by

a’(x):(E)" 3¢ =(f)y (®f—1)ey € (E), (understanding f-; = 0),

and is called the creation operator associated with x. We note that a({) € L((E)*, (E)*) and
a*({) € L((E), (E)). More precisely,

Lemma 3.1 For any distribution { € E*, we have a({) € L((E),(E)) and a*({) € L((E)", (E)").
If { € E, then a({) extends to a continuous linear operator from (E)* into itself and a*({) re-
stricted to (E) is a continuous linear operator from (E) into itself.

For simple notations, the extension and restriction mentioned in Lemma 3.1 are denoted
by the same symbols. It is straightforward to verify the canonical commutation relation:

[a(€),am] =0, [a"(),a’M] =0, [a(&),a ] =& m

forallé,n e E.
The exponential vector (or coherent vector) ¢ associated with & € H is defined by

é_‘@ﬂ
¢f: (1’&'7 ’F’)

Then it is well-known that {¢, : & € E} spans a dense subspace of (E). Therefore, every white
noise operator Z € L((E), (E)") is uniquely determined by its symbol E defined by

=& m = (20 ¢,)), & neE

The following theorem is well-known as analytic characterization theorem for symbols of
white noise operators.

Theorem 3.2 ([19, 2, 10]) Let ® : E X E — C be a function. Then © is the symbol of some
white noise operator & € L((E), (E)*) if and only if for each &;,n; € E (i = 1,2), the function

CXCB(Z,W)H@(fl +Z§2,T]1 +WT]2)€C (31)
is entire holomorphic, and there exist constants C, K > 0 and p > 0 such that
0, ) < CeKUEh1E) £ pe E.

Furthermore, the function @ is the symbol of some white noise operator 2 € L((E), (E)) if and
only if the function given as in (3.1) is entire holomorphic, and for any € > 0 and p > 0, there
exist ¢ > 0 and C > 0 such that

10, )| < CeWEhatn) - & e E.
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For each k € (E®*™)* by applying Theorem 3.2 we can see that there exists a unique
operator Z;,,(k) € L((E), (E)*), called an integral kernel operator, such that

EnE ) = (&, 1" @ ™) P, gnek,

where (-, -) is the canonical bilinear form on E* X E. Note that Z;,,(k) € L((E), (E)) if and
only if k € E® @ (E®™)*. In particular, for each x € E* we have

a(x) = Eo 1 (x), a(x) = Eqp(x).
For the case of H = L*(R, dt) and 6, € E* (for each point ¢ € R), we write
a, = a(6,), a, =a’(o,).

In this case, the integral kernel operator &, () is formally represented by

— . * *
Eim(k) = f K(St, 5 S13 by ,ll)aS, ’ "aslatm"'andfl o dtydsy - ds.
Rl+m

Quadratic forms of quantum white noise are useful for applications. Foreach S € L(E, E*),
by the kernel theorem there exists a unique 75 € E* ® E* such that

(15, m® &) =(S& ), &neE.
We put
AG(S) = Eoa(ts),  AGS) = Epo(ts),  A(S) = E1(ts).

Note that Ag(S) € L((E),(E)), Ac(S)” € LUE)",(E)") and A(S) € L((E),(E)"). For § =1
(the identity operator),
Ag := Ag(I), N :=A)

are called the Gross Laplacian and the number operator, respectively. The operator Ag(S),
called a generalized Gross Laplacian, plays an important role in the study of transformation
groups [3]. A linear combination of the above quadratic forms is also referred to as a Bogoli-
ubov Hamiltonian, see e.g., [1].

Theorem 3.3 ([20]) For any & € L((E),(E)") there exists a unique family of distributions

Kim € (E®(”’”)):ym(l!m) such that

=)

E= ) Enlkin), (3.2)

1,m=0

where the right hand side converges in L((E),(E)"). If 2 € L((E), (E)), then so does E;,(K;m)
for all I, m and the series (3.2) converges in L((E), (E)).

4 Quantum white noise derivatives

The Fock expansion (see Theorem 3.3) says that every white noise operator = is a “func-
tion” of quantum white noise, say, = = E(ay, q; ; s,t € T). It is then natural to consider the
derivatives of = with respect to the coordinate variables a, and a;.



For any white noise operator Z € L((E), (E)*) and { € E the commutators
[a({), E] = a())= - Ea({), —[a"(0),E] = Ea* () — a"()E,

are well defined as compositions of white noise operators (see Lemma 3.1), i.e., belong to
L((E),(E)"). We define

D;E=[a).El,  D;Z=-[a'((),EL

These are called the creation derivative and annihilation derivative of =, respectively. Both
together are referred to as the quantum white noise derivatives (qwn-derivatives for brevity)
of E.

Theorem 4.1 ([12]) ({,E) — DEE is a continuous bilinear map from E x L((E), (E)*) into
L((E), (E)).

As explicit examples we record the qwn-derivatives of quadratic forms. The results will
be used later.

Lemma 4.2 ([13]) For S € L(E,E*) and { € E we have

D} AG(S) =0, D;A(S) = a(SO) +a(S™Y),
D{AG(S) = a’ (SO +a’(S°0), D;AG(S) =0,
D;A(S) = a(S™0), D A(S)=a (S9).

There exists a separately continuous bilinear map from L((E), (E)") X L((E),(E)*) into
L((E),(E)"), denoted by E, ¢ =,, uniquely specified by the following property:

%
1

[1]
[1]

aqoZ=E20q = Ea,, ao==E%a

)
=a,&,

=%

where the right-hand sides are well-defined compositions of white noise operators. We call
EoE, the Wick product or normal-ordered product. Tt is more clear to define the Wick product
by symbols. In fact, the Wick product E, ¢ =, is characterized by

E105) Em =E1ENEE e,  £nek.

Equipped with the Wick product, (L((E), (E)*), ¢) becomes a commutative algebra. Also, by
applying the characterization theorem for operator symbols [19, 20], we can easily see that
(L((E), (E)), ©) is a subalgebra of L((E), (E)*).

A continuous linear map D : L((E), (E)") = L((E), (E)") is called a Wick derivation if

D(E| ¢ Er) = (DE) 0 Ep + Ey 0 (DE,), E1, 5y € L((E), (E)).

Theorem 4.3 ([13]) The creation and annihilation derivatives D? are Wick derivations.

Given a Wick derivation D : L((E),(E)*) — L((E),(E)") and a white noise operator
G € L((E), (E)"), we consider a linear differential equation:

Z==GoZ. 4.1)

The solution is described as in the case of linear ordinary differential equations. For U €
L((E), (E)") the Wick exponential is defined by

S 1 on
wexp U = Z_; HU

whenever the series converges in £((E), (E)*), for more details see [4].
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Theorem 4.4 ([13]) Let G € L((E), (E)*). If there is an operator U € L((E), (E)*) such that

DU =G and wexp U € L((E), (E)"), then a general solution to (4.1) is given by
E=(wexpU)oF=FowexpU

with a white noise operator F € L((E), (E)") satisfying DF = 0.

5 Weyl Operators
For each i € E, by applying Theorem 3.2, we can easily see that

ea*(ﬂ)’ e ¢ L((E),(E)).

Therefore, by applying the duality, for any 7, { € E, we have
e MO € L((E), (E) N LUE), (E)"). CRY

Let K : E — E be areal linear operator. Put

VK,u - = e%(u, Ku)ea*(u)ea(Ku), ueckE.

Then from (5.1), we have
Viu € LU(E), (E)) N LUE), (E)),

and for any &,n € E, we obtain that
L —
<< Viu ¢§| Viu ¢n>> — e§(<u, Kuy+(u, Ku>)+(1<u,§>+<1<u,n>+<.f+u|n+u>_

Therefore, << VK,,A¢§| VK,MQS,,» = ¥ for all &, 1 € E if and only if
1 -
3 (Cu Kuay + Q. Kup) +Culuy = 0, (Ku, &+ (€luy =0, (Ku, n)+(uln) =0
for all ¢, € E if and only if Ku = —u (see (1) of Example 5.3). Hence for each u € E, Vg,
has an unitary extension to I'(H) if and only if K = —J, where J is the complex conjugation,

i.e., Ju = u for all u € E. Then we have
Vo= o~ T 0" W) g=a@ _ =3Il Ha @) j—a(u)
(5.2)

=: W(u)
for all u € E, which is called the Weyl operator (see [22]), where the operator a(x) and a'(u)
are defined by

a(u) = a(u) = a(@),

Then we can easily see that a’(u) = a*(u). In fact, for any &, 17 € E, we obtain that
(o' @z, ¢)) = ((¢7] o' e )) = (a@ets| ¢c)) = (G0, 7 da] b)) = . ) (2. 1))
= ({¢e: atsn)) = (@' @e, 91))

a’(u) = (a(u))’  (the Hermitian adjoint).



Proposition 5.1 If K : E — E is a real linear operator, then we have

1 N
Vi, Vigu = e o kiy, (5.3)
VK,V VK,u e(KV, (v Ky VK,u VK,V (5 4)

forallv,u € E.

Proor. By applying the Baker—Campbell-Hausdorft formula, we obtain that

VK,v VK,u e%((v,KV>+<u, Ku))ea*(v)ea(l(v)ea*(u)ea(l(u)

e%((w,[(w)ﬂu, Ku)+2(Kv, u))ea*(v)ea*(u)ea(Kv)ea(Ku)

e%((v, Kv)+{u, Ku)+2(Kv, u))ea*(v+u)ea(Kv+Ku).

On the other hand, since K is real linear, then we obtain that

e%((v, Kv)+{u, Kuy+2{Kv, u))ea*(v-m)ea(l((vﬂt))

VK,VVK,u
o3 UKV 0)=(v. Kuy=(u. Kv)) o 3 (v, K(v+0)) pa" (v+) ja(K (v+10)

— e%((l(v, u)—(v, Kuy) VK,V+M?
which proves the first assertion. From (5.3), we obtain that

VK v VK u e % (v~ Ki)) VK v+u

_ e%((l{v,w—(v, Ku)) e—%((Ku, V)—(u,Kv))VK’u Vi

= e<KV‘ =t Kw VK,u VK,V?

which proves (5.4). |

Proposition 5.2 Let K : E — E be a real linear operator. Then for any invertible operator
S € L(E,E), we have

TS YVk,[(S) = Vs-ks.5-1

Proor. For any &,n € E, we obtain that

(Viute &) = «e%w, K w kg, ¢, V) = 3 KK+ )+

and so we obtain that

(VkaT(S)te, b))

(Viusse. )

= o3 KuyH(Ku, SE+(u, m)+(S&, 1)

o2 (57 . STKSS T uy+(S KSS T u £)+(S T . S ) +(£, 5 )

<< Vs*KS,S-lu(ﬁf’ I'(S *)¢77>> ’

from which we have the assertion. |
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From now on we assume that there exists complete real subspace Er C E such that
E = Ep + iER.

We denote Lz (E, E) the (real) space of all continuous real linear operators from E into itself.
For each S € Lx(E, E), define operators S j (for 1 < j, k < 2) in the real nuclear space Ex by

S(x+ ly) =S x+ iS21x+S12y+ iSzzy
for z = x + iy € E with x,y € Ex. More precisely, we define the real linear operators S ;; by

Snx= (Sx+§), Szlxzé(Sx—ﬁ),
2i

(S@0+5@).  Snx=3(Sin) -S)

ISTE ST B

S 12X =
for any x € ER. By expressing any vector in Ex @ Ey as a column ( Z ) for some u,v € Ex,
Ry uy\ _ S 11 S 12 u
Nv )7\ Sy Sn f\v)

Example 5.3 (1) Let J : E — E be the complex conjugation, i.e., for any & = &, + i&; € E
with & € Eg, J€ = & — i&,, we have

and define

JE =&, J(i&) = —i&, &,& € Eg,
from which we have

J||=I, JZI:O’ JIZZO’ 122:_I~

Therefore, we have J, = ( (1) _01 )

(2) Let L : E — E be a complex linear operator. Then for any ¢ = &, + i&; € E with
& € Eg, we have LE = L& + iL&, and so we have L&) = L&) + il,&, and

L& + ilnéy = L(i&) = iLé, = i(L & + ily1&r)
==Ly & + il &,

from which we have L, = —L,; and Ly, = L;; and hence we have

Ly =Ly
Ly = . 5.5
0 (LZI Ln) (5:5)

(3) Let M : E — E be areal linear operator. Then for any & = &, + i&,np=n, + i, € E
with &, n; € Er, we obtain that

(ME, n)y = (M1& + Mi2&) + i(My &y + M), n1 + ina)

| My My (& m A My My \[ & m
o [0 R 0 R i [ (A R
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where o := ( (1) (1) ) and o3 := ( (1) -1 ) are Pauli matrices. Therefore, we have
e, ) = (o5 v £ ). ()
; & m
. & m
= + M, , . 5.6
<(0'3 i) 0(&) (772 )> (5.6)

(4) Let L € L(E, E) be a complex linear continuous operator. Then L is given as in (5.5),
and from (5.6), we obtain that

(L'¢, )y = (¢, Lip) = <( ? ), (o3 +i0'1)L0( n )>
G2 m

- <(Lo)* (3 +i01)( 2 ) ( m )>

(o3 + i) (L) = (Lo)* (o3 + ioy). (3.7

Proposition 5.4 Let L € L(E, E) be a complex linear continuous operator. Then L is symmet-
ric, i.e. L' = Lif and only if Ly and Ly, are symmetric, i.e., L}, = Ly and L, = L.

which implies that

Proor. From (5.5) and (5.7) we obtain that

i B =La) o io) L = (o3 4 i) (LY = (Lo)' (03 + i)
l —1 Lz[ L“

— LTI LZI 1 l

B _L§1 LTI i =)

Lll + iLz[ _L21 + iLU ) _ LII + lL;1 _L;l + lL);l
—L21 + iL]l _Lll - iL21 —L;l + lLT1 _LTI - lL;1 ’

which is equivalent to

which is equivalent to L}, = L;; and L}, = L,,. |

Let K : E — E be areal linear operator. Consider the map og : E X E — C defined by
1
og(u,v) = 3 (Kv, uy —(v, Ku)), u,veEL.
Then for any u;,v; € Eg for j = 1,2, we obtain that

1
ox(u,v) = 3 (Kv, uy — (v, Ku))

fmm b2 el 22 )

-1
In particular, if K = —J, then we have K, = ( 0 (1) ) and so we have

1
(J'§K0—KSO'3=O, ()’TKO—K:;O']:Z( _01 O)
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Therefore, we have

1 1
(V) = 5 (= T, uy+ (v, ) = §(<u|v>—<v|u>)=,~<( _01 (1) )( V) ) ( iy )>
= iIm((ul v))

Proposition 5.5 Let K,S : E — E be real linear maps. Then S is a og-symplectic map, i.e.,
ox(Su,Sv) = og(u,v) if and only if

SS((T;KO—KSO'3)SQ =O'§K0—KSO'3,
SS(UTKO—Kggl)SQZUTKO—Kggl. (59)

In particular, S is a o_;-symplectic map if and only if
0 1 (0 1
si( 5o Jso=(5 o)
(see (22.6) of [22]).

Proor. The proof is straightforward. From (5.8), by direct computation we have that
ox(Su,Sv) = ok(u,v) for all u,v € E if and only if

% " Vv u . « " 1% u
<(O’3K0—K00'3)S()( V; ),So( u; )>+l<(0’1K0—K00'1)So( V; ),So( Lt; )>

~(esso=tion (3 (5 )+ o sion () (1)

for all u,v € E if and only if (5.9) holds. |

Corollary 5.6 Let K : E — E be a real linear operator. For any real linear operator o g-
symplectic operator S : E — E, we have

— Lok(uy)
VK,SVVK,Su = e’ VK,S(V+M)’

_ 20k(uy)
Vs Visu = €7 Vs Visy

forallv,u € E.

Proor. The proof is immediate from Proposition 5.1. 1

6 An Intertwining Property of Weyl Operator

Let S : E — E be a real linear operator. We want to find an operator Ug € L((E), (E)")
such that

US VK,u = VK,SuUSs ue Es (61)

i.e., Uy satisfies the following diagram:
(E) — (Y

Ve l lvm (6.2)

() —— (B)



A family of operators {Z,} ¢ L((E),(E)) is said to be equicontinuous if for any p > 0,
there exist a ¢ > 0 and a constant K > 0 such that

=g, < Klly, ¢ € (E)
for all A (see [21, 20]).

Theorem 6.1 Let {T,}~0 C L((E), (E)) and {S }=0 C L(E)", (E)*) be continuous semigroups
of continuous linear operators with the equicontinuous generator T € L((E),(E)) and S €
L(E)",(E)"), respectively. Let V € L((E),(E)*). Then VT, = S,V for all t > 0 if and only if
VT =SV.

Proor. For any ¢ € (E), we obtain that

SVe-Vé _ V(lim
! —0

SVé = lim
5

—0

from which we see that SV = VT. Conversely, suppose that SV = VT. Then since S
and T are equicontinuous, we construct continuous semigroups {7;},»0 € L((E),(E)) and
{S:}i=0 € L((E)", (E)") with infinitesimal generators 7" and S by

0o [«

_ r n _ T _ 1 n _ _tS
T,—Z—'T =7, S,—Z—S =5, t>0.

|
s n. oy n:

Therefore, since SV = VT, for all t > 0, we obtain that
N tn n N tn n
SrV:Z_;;S V:V(Z;ET)z VT,
which is the desired assertion. |

For each ¢ > 0, put
VK,u(t) — e%t2<u, Ku}em*(u)em(l(u)’
where K : E — E is a real linear operator.

Proposition 6.2 Let u € E be given. Then the family {Vi ()} er € L(E), (E))NL(E)", (E)*)
is a differentiable one-parameter group with the infinitesimal generator a*(u) + a(Ku).

Proor. For any s,7 > 0, by applying the Baker—Campbell-Hausdorft formula, we obtain
that

VK,u(t)VK,u(s) e%(szﬂz)(u, Ku}eta*(u)eta(l(u)em”(u)esa(Ku)
— e%(32+25t+12)<u, Ku)eta*(u)esa‘(u)eta(Ku)esa(Ku)

e%(l+s)2(u, Ku) e(H—s)u* (u)e(t+s)a(KLt)

VK,u(t + S),

from which we see that {V,(f)}er is a one-parameter group and it is easy to see that { Vg, (f)};er
is differentiable with the infinitesimal generator a*(u) + a(Ku). |
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Therefore, by Theorem 6.1 and Proposition 6.2, we see that a white noise operator Us €
L((E), (E)") satisfies the intertwining property given as in (6.1) if and only if Uy satisfies the
intertwining property:

Us (a"(u) + a(Ku)) = (a"(Su) + a(KSu)) Ug, uc€eE,
i.e., Ug satisfies the following diagram:
(E) —— (Ey
a*(u)+a(Ku)l la*(s u)+a(KSu)

(E) —— (E)

Us

which is equivalent to

[Us,a" ()] —[a(KSu),Us] = —a"(w)Us — Usa(Ku) + a*(Su)Us + Usa(KS u)
=@ (S —Dhu)+a(K(S —Du)) o Us, ucekE.

Therefore, we have the quantum white noise differential equation:
(D, = Dy, ) Us = (@ (S — Du) + a(K(S — Du)) o Us, u€ekE. (6.3)

By solving (6.3), we obtain the white noise operator Ug € L((E), (E)*) satisfying the equation
(6.1).

Now, to apply Theorem 4.4 to solve the quantum white noise differential equation given
as in (6.3), we want to find white noise operator G € L((E), (E)*) satisfying

(D, — Dxs,)G =a (S — Du) + a(K(S — Du). (6.4)
Consider the white noise operator G € L((E), (E)*) given as in
G = AG(L) + AM) + Ag(N), (6.5)
where L, M, N € L(E, E*). Then from Lemma 4.2, we obtain that

D,G = a*(Mu) + a(Nu) + a(N"u),
D5, G = a’(LKSu) + a’(L*KSu) + a(M"KSu),

from which we have
(D, = Dxs,)G =a" (M —LKS — L'KS)u) + a((N + N" — M"KS)u).

On the other hand, since the operators A;;(L) and Ag(N) are uniquely determined by symmetric
operators L and N, respectively, we may assume that L and N are symmetric, i.e., L* = L and
N* = N. Then we have the quantum white noise differential equation:

(D, = Dxs,) G = a" (M —2LKS)u) + a(2N — M"KS)u). (6.6)
Then by comparing Equations (6.4) and (6.6), we have
a (S —Du)+a(K(S — Du) =a" (M —2LKS))u) + a(2N — M"KS )u)
for all u € E, which is equivalent to
S—-I1=M-2LKS, K( -1)=2N-MKS, (6.7)

where the operators L, M and N are unknown.



Theorem 6.3 Let K,S : E — E be real linear operators. Suppose that there exist opera-
tors L, M,N € L(E, E") such that the equations given as in (6.7) hold. Then there exists a
white noise operator Us € L((E),(E)*) such that the diagram given as in (6.2) commutes.
Furthermore, the white noise operator Us € L((E), (E)") is given by

Us = (wexp (AG(L) + A(M) + Ac(N)) U) o F
= F o wexp (AL(L) + A(M) + Ag(N)) (6.8)

with a white noise operator F € L((E), (E)") satisfying (D; — D}Su) F=0.

Proor. By above discussions, we see that
(D, = Dis,) G = a*((S = Du) + a(K(S — Du)

under the assumptions, where the white noise operator G € L((E), (E)*) is given as in (6.5).
Therefore, by applying Theorem 4.4, we see that a general solution Uy of the quantum white
noise differential equation given as in (6.3) is given as in (6.8), and hence Ug satisfies the
intertwining property given as in (6.1). |

Acknowledgements This paper was supported by Basic Science Research Program through
the NRF funded by the MEST (NRF-2016R1D1A1B01008782).

References

[1] L. Bruneau and J. Dereziniski: Bogoliubov Hamiltonians and one-parameter groups of
Bogoliubov transformations, J. Math. Phys. 48 (2007), 022101.

[2] D.M. Chung, T.S. Chung and U.C. Ji: A simple proof of analytic characterization theo-
rem for operator symbols, Bull. Korean Math. Soc. 34 (1997), 421-436.

[3] D. M. Chung and U. C. Ji: Transforms on white noise functionals with their applications
to Cauchy problems, Nagoya Math. J. 147 (1997), 1-23.

[4] D. M. Chung, U. C. Ji and N. Obata: Quantum stochastic analysis via white noise oper-
ators in weighted Fock space, Rev. Math. Phys. 14, 241-272 (2002)

[5] T. Hida: “Analysis of Brownian Functionals,” Carleton Math. Lect. Notes, no. 13, Car-
leton University, Ottawa, 1975.

[6] T.Hida: “Brownian Motion,” Springer—Verlag, 1980.

[7] T. Hida, H.-H. Kuo, J. Potthoff and L. Streit: “White Noise: An Infinite Dimensional
Calculus,” Kluwer Academic Publishers, 1993.

[8] F. Hiroshima and K. R. Ito: Local exponents and infinitesimal generators of canonical
transformations on Boson Fock space, Infin. Dimens. Anal. Quantum Probab. Relat. Top.
7 (2004), 547-571.

[9] U. C.Jiand N. Obata: Quantum white noise calculus, in “Non-Commutativity, Infinite-
Dimensionality and Probability at the Crossroads (N. Obata, T. Matsui and A. Hora,
Eds.),” pp. 143-191, World Scientific, 2002.

43



44

[10] U. C. Ji and N. Obata: A unified characterization theorem in white noise theory, Infin.
Dimen. Anal. Quantum Probab. Rel. Top. 6 (2003), 167-178.

[11] U. C. Ji and N. Obata: Admissible white noise operators and their quantum white noise
derivatives, in “Infinite Dimensional Harmonic Analysis III (H. Heyer, T. Hirai, T. Kawa-
zoe, K. Saito, Eds.),” pp. 213-232, World Scientific, 2005.

[12] U. C.Ji and N. Obata: Quantum stochastic gradients, preprint, 2007.

[13] U. C. Ji and N. Obata: Implementation problem for the canonical commutation relation
in terms of quantum white noise derivatives, J. Math. Phys. 51 (2010), no. 12, 123507.

[14] U. C. Ji and N. Obata: Quantum white noise calculus and applications, in “Real and
Stochastic Analysis,” pp. 269-353, World Sci. Publ., Hackensack, NJ, 2014.

[15] U. C. Ji and N. Obata: An implementation problem for boson fields and quantum Gir-
sanov transform, J. Math. Phys. 57 (2016), no. 8§, 083502.

[16] I. Kubo and S. Takenaka: Calculus on Gaussian white noise I-IV, Proc. Japan Acad.
56A (1980), 376-380; 411-416; 57A (1981), 433-437; 58A (1982), 186-189.

[17] H.-H. Kuo: “White Noise Distribution Theory,” CRC Press, 1996.

[18] P-A. Meyer: “Quantum Probability for Probabilists,” Lect. Notes in Math. Vol. 1538,
Springer-Verlag, 1993.

[19] N. Obata: An analytic characterization of symbols of operators on white noise function-
als, J. Math. Soc. Japan 45 (1993), 421-445.

[20] N. Obata: “White Noise Calculus and Fock Space,” Lect. Notes in Math. Vol. 1577,
Springer-Verlag, 1994.

[21] N. Obata: Constructing one-parameter transformations on white noise functions in terms
of equicontinuous generators, Monatshefte Fiir Mathematik, 124 (1997), 317-335.

[22] K. R. Parthasarathy: “An Introduction to Quantum Stochastic Calculus,” Birkhéuser,
1992.

[23] S. N. M. Ruijsenaars: On Bogoliubov transforms for systems of relativistic charged par-
ticles, J. Math. Phys. 18 (1976), 517-526.

[24] S. N. M. Ruijsenaars: On Bogoliubov transforms, II. The general case, Ann. Phys. 116
(1978), 105-134.

[25] D. Shale: Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962)
149-167.



