An Intertwining Property of Weyl Operators

Un Cig Ji
Department of Mathematics
Research Institute of Mathematical Finance
Chungbuk National University
Cheongju 361-763, Korea
uncigji@chungbuk.ac.kr

1 Introduction

The Weyl operator $W(u)$ associated with $u \in H$ (a separable complex Hilbert space with the norm $\left.|\cdot|^{2}=\langle\cdot \mid \cdot\rangle\right)$ is defined by

$$
W(u):=e^{-\frac{1}{2}|u|^{2}} e^{a^{a^{*}}(u)} e^{-a(u)}
$$

(see (5.2) and [22]), where $\mathfrak{a}(u)=a(\bar{u})$ with the annihilation operator $a(\xi)$ on the Boson Fock space $\Gamma(H)$ (see Section 3) and $\mathfrak{a}^{\dagger}(u)=a^{*}(u)$ is the creation operator (with the adjoint operator $a^{*}(\xi)$ of $a(\xi)$ with respect to the canonical complex bilinear form $\langle\cdot, \cdot\rangle=\langle\cdot \mid \cdot\rangle$ on $\left.H \times H\right)$. Then it is well-known that the Weyl operator $W(u)(u \in H)$ is unitary and satisfies that for any $u, v \in H$,

$$
W(u) W(v)=e^{-i \operatorname{Im}(\langle u \mid \nu\rangle\rangle} W(u+v),
$$

and so the map $u \mapsto W(u)$ is a projective unitary representation of the additive group H with the multiplier $\boldsymbol{\sigma}(u, v)=e^{-i \operatorname{Im}(\langle u \mid \nu\rangle)}$ (see [22]).

A bijective real linear map $S: H \rightarrow H$ is called a symplectic automorphism if S satisfies (i) S and S^{-1} are continuous, and (ii) $\operatorname{Im}(\langle S u \mid S v\rangle)=\operatorname{Im}(\langle u \mid v\rangle)$ for all $u, v \in H$. Then for each symplectic automorphism S, by defining unitary operator $W_{S}(u)(u \in H)$ on the Boson Fock space $\Gamma(H)$ by

$$
W_{S}(u)=W(S u),
$$

we have another projective unitary representation $W_{S}: u \mapsto W_{S}(u)$ with the multiplier $\sigma(u, v)=e^{-i \operatorname{Im}(\langle u \mid \nu\rangle\rangle}$, i.e., we have

$$
W_{S}(u) W_{S}(v)=e^{-i \operatorname{Im}(\langle u \mid \nu\rangle)} W_{S}(u+v)
$$

for all $u, v \in H$.
We suppose that $H=H_{\mathbb{R}}+i H_{\mathbb{R}}$ the complexification of a real Hilbert space $H_{\mathbb{R}}$. Then every real linear map $S: H \rightarrow H$ is associated with an operator S_{0} on $H_{\mathbb{R}} \oplus H_{\mathbb{R}}$ by defining

$$
S\left(\xi_{1}+i \xi_{2}\right)=S_{11} \xi_{1}+i S_{21} \xi_{1}+S_{12} \xi_{2}+i S_{22} \xi_{2}
$$

and

$$
S_{0}=\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)
$$

In [25], Shale proved that for each symplectic automorphism S of H, there exists a unitary operator \mathcal{U}_{S} on the Boson Fock space $\Gamma(H)$ such that

$$
\mathcal{U}_{S} W(u) \mathcal{U}_{S}^{-1}=W_{S}(u), \quad u \in H
$$

if and only if $S_{0}^{*} S_{0}-I$ is a Hilbert-Schmidt operator on $H_{\mathbb{R}} \oplus H_{\mathbb{R}}$. In such a case, \mathcal{U}_{S} is determined uniquely up to a scalar multiple of modulus unity (see Theorem 22.11 of [22]).

In this manuscript, we consider an intertwining property of the Weyl operators based on the Gelfand triples:

$$
E \subset H \subset E^{*}, \quad(E) \subset \Gamma(H) \subset(E)^{*}
$$

which is a mathematical framework of the white noise theory (see [5, 6, 7, 16, 17, 20]). We consider the operators

$$
V_{K, u}=e^{\frac{1}{2}\langle u, K u\rangle} e^{a^{*}(u)} e^{a(K u)} \in \mathcal{L}((E),(E)) \cap \mathcal{L}\left((E)^{*},(E)^{*}\right),
$$

where $K: E \rightarrow E$ is a real linear operator and $u \in E$. Then for each real linear continuous operator $S: E \rightarrow E$ satisfying certain conditions, we want to find an operator $U_{S} \in \mathcal{L}\left((E),(E)^{*}\right)$ satisfying that

$$
\begin{equation*}
U_{S} V_{K, u}=V_{K, S u} U_{S}, \quad u \in E, \tag{1.1}
\end{equation*}
$$

i.e., U_{S} satisfies the following diagram:

(see Theorem 6.3). For our purpose, by applying the notion of the quantum white noise derivatives developed in $[11,12,13,14,15]$, we derive a quantum white noise differential equation (qwnde) which is equivalent to (1.1), and then by solving the qwnde with the method developed in $[14,15]$, we have an operator $U_{S} \in \mathcal{L}\left((E),(E)^{*}\right)$ satisfying (1.1), which is closely related to the Bogoliubov transformation studied in [1, 8, 13, 14, 15, 23, 24].

2 White Noise Distributions

Let H be a separable complex Hilbert space with the norm $|\cdot|_{0}$ induced by the inner product $\langle\cdot \mid \cdot\rangle$. Let A be a positive, selfadjoint operator in H satisfying that there exist a complete orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ for H and an increasing sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of positive real numbers such that
(A0) $\lambda_{1}>1$,
(A1) for all $n \in \mathbb{N}, A e_{n}=\lambda_{n} e_{n}$,
(A2) A^{-1} is of Hilbert-Schmidt type, i.e.

$$
\left\|A^{-1}\right\|_{\mathrm{HS}}^{2}=\sum_{n=1}^{\infty} \lambda_{n}^{-2}<\infty .
$$

For each $p \geq 0$, put

$$
\begin{aligned}
E_{p} & =\left\{\xi \in H:|\xi|_{p}:=\left|A^{p} \xi\right|_{0}<\infty\right\} \\
E_{-p} & \left.=\bar{H}^{\mid-p} \text { (the completion of } H \text { with respect to the norm }|\cdot|_{-p}\right),
\end{aligned}
$$

where $|\cdot|_{-p}=\left|A^{-p} \cdot\right|_{0}$. Then by identifying H^{*} (strong dual space) and $E_{p}^{*}(p \geq 0)$ with H and E_{-p}, respectively, we have a chain of Hilbert spaces:

$$
\cdots E_{q} \subset E_{p} \subset H \cong H^{*} \subset E_{-p} \subset E_{-q} \subset \cdots
$$

for any $0 \leq p \leq q$, and then by taking the projective limit space of E_{p} and the inductive limit space of E_{-p}, we have the underline Gelfand triple:

$$
\underset{p \rightarrow \infty}{\operatorname{proj} \lim } E_{p}=: E \subset H \subset E^{*} \cong \underset{p \rightarrow \infty}{\operatorname{ind} \lim } E_{-p} .
$$

Then from the condition (A2), the nuclearity of E is guaranteed.
The (Boson) Fock space over E_{p} is defined by

$$
\Gamma\left(E_{p}\right)=\left\{\phi=\left(f_{n}\right)_{n=0}^{\infty} ; f_{n} \in E_{p}^{\widehat{\otimes} n},\|\phi\|_{p}^{2}=\sum_{n=0}^{\infty} n!\left|f_{n}\right|_{p}^{2}<\infty\right\} .
$$

Then we obtain a chain of Fock spaces:

$$
\cdots \subset \Gamma\left(E_{p}\right) \subset \cdots \subset \Gamma(H) \subset \cdots \subset \Gamma\left(E_{-p}\right) \cdots
$$

and, as limit spaces we define

$$
(E)=\underset{p \rightarrow \infty}{\operatorname{proj}} \lim \Gamma\left(E_{p}\right), \quad(E)^{*}=\underset{p \rightarrow \infty}{\operatorname{ind} \lim } \Gamma\left(E_{-p}\right) .
$$

It is known that (E) is a countably Hilbert nuclear space. Consequently, we obtain a Gelfand triple:

$$
(E) \subset \Gamma(H) \subset(E)^{*},
$$

which is referred to as the Hida-Kubo-Takenaka space. The dual space $\Gamma(H)$ is identified with itself through the canonical \mathbb{C}-bilinear form.

By the definition, the topology of (E) is generated by the norms

$$
\|\phi\|_{p}^{2}=\sum_{n=0}^{\infty} n!\left|f_{n}\right|_{p}^{2}, \quad \phi=\left(f_{n}\right)
$$

where $p \geq 0$. On the other hand, for each $\Phi \in(E)^{*}$ there exists $p \geq 0$ such that $\Phi \in \Gamma\left(E_{-p}\right)$ and

$$
\|\Phi\|_{-p}^{2} \equiv \sum_{n=0}^{\infty} n!\left|F_{n}\right|_{-p}^{2}<\infty, \quad \Phi=\left(F_{n}\right)
$$

The canonical \mathbb{C}-bilinear form on $(E)^{*} \times(E)$ takes the form:

$$
\langle\langle\Phi, \phi\rangle\rangle=\sum_{n=0}^{\infty} n!\left\langle F_{n}, f_{n}\right\rangle, \quad \Phi=\left(F_{n}\right) \in(E)^{*}, \quad \phi=\left(f_{n}\right) \in(E) .
$$

3 White Noise Operators

A continuous linear operator from (E) into $(E)^{*}$ is called a white noise operator. The space of all white noise operators is denoted by $\mathcal{L}\left((E),(E)^{*}\right)$. The white noise operators cover a wide class of Fock space operators, for example, $\mathcal{L}((E),(E)), \mathcal{L}\left((E)^{*},(E)\right)$ and $\mathcal{L}(\Gamma(H), \Gamma(H))$ are subspaces of $\mathcal{L}\left((E),(E)^{*}\right)$.

For each $x \in E^{*}$, the annihilation operator $a(x) \in \mathcal{L}((E),(E))$ associated with x is defined by

$$
a(x):(E) \ni \phi=\left(f_{n}\right)_{n=0}^{\infty} \mapsto\left((n+1) x \otimes_{1} f_{n+1}\right)_{n=0}^{\infty} \in(E),
$$

where $x \otimes_{1} f_{n}$ stands for the contraction. The adjoint operator $a^{*}(x) \in \mathcal{L}\left((E)^{*},(E)^{*}\right)$ of $a(x)$ with respect to the canonical bilinear form $\langle\cdot \cdot \cdot \cdot\rangle$ is given by

$$
\left.a^{*}(x):(E)^{*} \ni \phi=\left(f_{n}\right)_{n=0}^{\infty} \mapsto\left(x \hat{\otimes} f_{n-1}\right)_{n=0}^{\infty} \in(E), \quad \text { (understanding } f_{-1}=0\right)
$$

and is called the creation operator associated with x. We note that $a(\zeta) \in \mathcal{L}\left((E)^{*},(E)^{*}\right)$ and $a^{*}(\zeta) \in \mathcal{L}((E),(E))$. More precisely,

Lemma 3.1 For any distribution $\zeta \in E^{*}$, we have $a(\zeta) \in \mathcal{L}((E),(E))$ and $a^{*}(\zeta) \in \mathcal{L}\left((E)^{*},(E)^{*}\right)$. If $\zeta \in E$, then $a(\zeta)$ extends to a continuous linear operator from $(E)^{*}$ into itself and $a^{*}(\zeta)$ restricted to (E) is a continuous linear operator from (E) into itself.

For simple notations, the extension and restriction mentioned in Lemma 3.1 are denoted by the same symbols. It is straightforward to verify the canonical commutation relation:

$$
[a(\xi), a(\eta)]=0, \quad\left[a^{*}(\xi), a^{*}(\eta)\right]=0, \quad\left[a(\xi), a^{*}(\eta)\right]=\langle\xi, \eta\rangle
$$

for all $\xi, \eta \in E$.
The exponential vector (or coherent vector) ϕ_{ξ} associated with $\xi \in H$ is defined by

$$
\phi_{\xi}:=\left(1, \xi, \cdots, \frac{\xi^{\otimes n}}{n!}, \cdots\right) .
$$

Then it is well-known that $\left\{\phi_{\xi}: \xi \in E\right\}$ spans a dense subspace of (E). Therefore, every white noise operator $\Xi \in \mathcal{L}\left((E),(E)^{*}\right)$ is uniquely determined by its symbol $\widehat{\Xi}$ defined by

$$
\widehat{\Xi}(\xi, \eta)=\left\langle\left\langle\Xi \phi_{\xi}, \phi_{\eta}\right\rangle\right\rangle, \quad \xi, \eta \in E .
$$

The following theorem is well-known as analytic characterization theorem for symbols of white noise operators.

Theorem $3.2([19,2,10])$ Let $\Theta: E \times E \longrightarrow \mathbb{C}$ be a function. Then Θ is the symbol of some white noise operator $\Xi \in \mathcal{L}\left((E),(E)^{*}\right)$ if and only iffor each $\xi_{i}, \eta_{i} \in E(i=1,2)$, the function

$$
\begin{equation*}
\mathbb{C} \times \mathbb{C} \ni(z, w) \mapsto \Theta\left(\xi_{1}+z \xi_{2}, \eta_{1}+w \eta_{2}\right) \in \mathbb{C} \tag{3.1}
\end{equation*}
$$

is entire holomorphic, and there exist constants $C, K \geq 0$ and $p \geq 0$ such that

$$
|\Theta(\xi, \eta)| \leq C e^{K\left(|\xi|_{p}^{2}+|\eta|_{p}^{2}\right)}, \quad \xi, \eta \in E .
$$

Furthermore, the function Θ is the symbol of some white noise operator $\Xi \in \mathcal{L}((E),(E))$ if and only if the function given as in (3.1) is entire holomorphic, and for any $\epsilon>0$ and $p \geq 0$, there exist $q \geq 0$ and $C>0$ such that

$$
|\Theta(\xi, \eta)| \leq C e^{\epsilon\left(|\xi|_{p+q}^{2}+|\eta|_{-p}^{2}\right)}, \quad \xi, \eta \in E .
$$

For each $\kappa \in\left(E^{\otimes(l+m)}\right)^{*}$, by applying Theorem 3.2 we can see that there exists a unique operator $\Xi_{l, m}(\kappa) \in \mathcal{L}\left((E),(E)^{*}\right)$, called an integral kernel operator, such that

$$
\widehat{\Xi_{l, m}(\kappa)}(\xi, \eta)=\left\langle\kappa, \eta^{\otimes l} \otimes \xi^{\otimes m}\right\rangle e^{\langle\xi, \eta\rangle}, \quad \xi, \eta \in E,
$$

where $\langle\cdot, \cdot\rangle$ is the canonical bilinear form on $E^{*} \times E$. Note that $\Xi_{l, m}(\kappa) \in \mathcal{L}((E),(E))$ if and only if $\kappa \in E^{\otimes l} \otimes\left(E^{\otimes m}\right)^{*}$. In particular, for each $x \in E^{*}$ we have

$$
a(x)=\Xi_{0,1}(x), \quad a^{*}(x)=\Xi_{1,0}(x)
$$

For the case of $H=L^{2}(\mathbb{R}, d t)$ and $\delta_{t} \in E^{*}$ (for each point $t \in \mathbb{R}$), we write

$$
a_{t}=a\left(\delta_{t}\right), \quad a_{t}^{*}=a^{*}\left(\delta_{t}\right)
$$

In this case, the integral kernel operator $\Xi_{l, m}(\kappa)$ is formally represented by

$$
\Xi_{l, m}(\kappa)=\int_{\mathbb{R}^{l+m}} \kappa\left(s_{l}, \cdots, s_{1} ; t_{m}, \cdots, t_{1}\right) a_{s_{l}}^{*} \cdots a_{s_{1}}^{*} a_{t_{m}} \cdots a_{t_{1}} d t_{1} \cdots d t_{m} d s_{1} \cdots d s_{l}
$$

Quadratic forms of quantum white noise are useful for applications. For each $S \in \mathcal{L}\left(E, E^{*}\right)$, by the kernel theorem there exists a unique $\tau_{S} \in E^{*} \otimes E^{*}$ such that

$$
\left\langle\tau_{S}, \eta \otimes \xi\right\rangle=\langle S \xi, \eta\rangle, \quad \xi, \eta \in E
$$

We put

$$
\Delta_{\mathrm{G}}(S)=\Xi_{0,2}\left(\tau_{S}\right), \quad \Delta_{\mathrm{G}}^{*}(S)=\Xi_{2,0}\left(\tau_{S}\right), \quad \Lambda(S)=\Xi_{1,1}\left(\tau_{S}\right)
$$

Note that $\Delta_{\mathrm{G}}(S) \in \mathcal{L}((E),(E)), \Delta_{\mathrm{G}}(S)^{*} \in \mathcal{L}\left((E)^{*},(E)^{*}\right)$ and $\Lambda(S) \in \mathcal{L}\left((E),(E)^{*}\right)$. For $S=I$ (the identity operator),

$$
\Delta_{\mathrm{G}}:=\Delta_{\mathrm{G}}(I), \quad N:=\Lambda(I)
$$

are called the Gross Laplacian and the number operator, respectively. The operator $\Delta_{\mathrm{G}}(S)$, called a generalized Gross Laplacian, plays an important role in the study of transformation groups [3]. A linear combination of the above quadratic forms is also referred to as a Bogoliubov Hamiltonian, see e.g., [1].

Theorem 3.3 ([20]) For any $\Xi \in \mathcal{L}\left((E),(E)^{*}\right)$ there exists a unique family of distributions $\kappa_{l, m} \in\left(E^{\otimes(l+m)}\right)_{\text {sym }(l, m)}^{*}$ such that

$$
\begin{equation*}
\Xi=\sum_{l, m=0}^{\infty} \Xi_{l, m}\left(\kappa_{l, m}\right), \tag{3.2}
\end{equation*}
$$

where the right hand side converges in $\mathcal{L}\left((E),(E)^{*}\right)$. If $\Xi \in \mathcal{L}((E),(E))$, then so does $\Xi_{l, m}\left(\kappa_{l, m}\right)$ for all l, m and the series (3.2) converges in $\mathcal{L}((E),(E))$.

4 Quantum white noise derivatives

The Fock expansion (see Theorem 3.3) says that every white noise operator Ξ is a "function" of quantum white noise, say, $\Xi=\Xi\left(a_{s}, a_{t}^{*} ; s, t \in T\right)$. It is then natural to consider the derivatives of Ξ with respect to the coordinate variables a_{t} and a_{t}^{*}.

For any white noise operator $\Xi \in \mathcal{L}\left((E),(E)^{*}\right)$ and $\zeta \in E$ the commutators

$$
[a(\zeta), \Xi]=a(\zeta) \Xi-\Xi a(\zeta), \quad-\left[a^{*}(\zeta), \Xi\right]=\Xi a^{*}(\zeta)-a^{*}(\zeta) \Xi,
$$

are well defined as compositions of white noise operators (see Lemma 3.1), i.e., belong to $\mathcal{L}\left((E),(E)^{*}\right)$. We define

$$
D_{\zeta}^{+} \Xi=[a(\zeta), \Xi], \quad D_{\zeta}^{-} \Xi=-\left[a^{*}(\zeta), \Xi\right] .
$$

These are called the creation derivative and annihilation derivative of Ξ, respectively. Both together are referred to as the quantum white noise derivatives (qwn-derivatives for brevity) of Ξ.

Theorem $4.1([12])(\zeta, \Xi) \mapsto D_{\zeta}^{ \pm} \Xi$ is a continuous bilinear map from $E \times \mathcal{L}\left((E),(E)^{*}\right)$ into $\mathcal{L}\left((E),(E)^{*}\right)$.

As explicit examples we record the qwn-derivatives of quadratic forms. The results will be used later.

Lemma 4.2 ([13]) For $S \in \mathcal{L}\left(E, E^{*}\right)$ and $\zeta \in E$ we have

$$
\begin{array}{ll}
D_{\zeta}^{+} \Delta_{\mathrm{G}}(S)=0, & D_{\zeta}^{-} \Delta_{\mathrm{G}}(S)=a(S \zeta)+a\left(S^{*} \zeta\right), \\
D_{\zeta}^{+} \Delta_{\mathrm{G}}^{*}(S)=a^{*}(S \zeta)+a^{*}\left(S^{*} \zeta\right), & D_{\zeta}^{-} \Delta_{\mathrm{G}}^{*}(S)=0, \\
D_{\zeta}^{+} \Lambda(S)=a\left(S^{*} \zeta\right), & D_{\zeta}^{-} \Lambda(S)=a^{*}(S \zeta) .
\end{array}
$$

There exists a separately continuous bilinear map from $\mathcal{L}\left((E),(E)^{*}\right) \times \mathcal{L}\left((E),(E)^{*}\right)$ into $\mathcal{L}\left((E),(E)^{*}\right)$, denoted by $\Xi_{1} \diamond \Xi_{2}$, uniquely specified by the following property:

$$
a_{t} \diamond \Xi=\Xi \diamond a_{t}=\Xi a_{t}, \quad a_{t}^{*} \diamond \Xi=\Xi \diamond a_{t}^{*}=a_{t}^{*} \Xi,
$$

where the right-hand sides are well-defined compositions of white noise operators. We call $\Xi_{1} \diamond \Xi_{2}$ the Wick product or normal-ordered product. It is more clear to define the Wick product by symbols. In fact, the Wick product $\Xi_{1} \diamond \Xi_{2}$ is characterized by

$$
\left(\Xi_{1} \diamond \Xi_{2}\right) \widehat{)}(\xi, \eta)=\widehat{\Xi}_{1}(\xi, \eta) \widehat{\Xi_{2}}(\xi, \eta) e^{-\langle\xi, \eta\rangle}, \quad \xi, \eta \in E
$$

Equipped with the Wick product, $\left(\mathcal{L}\left((E),(E)^{*}\right), \diamond\right)$ becomes a commutative algebra. Also, by applying the characterization theorem for operator symbols [19, 20], we can easily see that $(\mathcal{L}((E),(E)), \diamond)$ is a subalgebra of $\mathcal{L}\left((E),(E)^{*}\right)$.

A continuous linear map $\mathcal{D}: \mathcal{L}\left((E),(E)^{*}\right) \rightarrow \mathcal{L}\left((E),(E)^{*}\right)$ is called a Wick derivation if

$$
\mathcal{D}\left(\Xi_{1} \diamond \Xi_{2}\right)=\left(\mathcal{D} \Xi_{1}\right) \diamond \Xi_{2}+\Xi_{1} \diamond\left(\mathcal{D} \Xi_{2}\right), \quad \Xi_{1}, \Xi_{2} \in \mathcal{L}\left((E),(E)^{*}\right) .
$$

Theorem 4.3 ([13]) The creation and annihilation derivatives $D_{\zeta}^{ \pm}$are Wick derivations.
Given a Wick derivation $\mathcal{D}: \mathcal{L}\left((E),(E)^{*}\right) \rightarrow \mathcal{L}\left((E),(E)^{*}\right)$ and a white noise operator $G \in \mathcal{L}\left((E),(E)^{*}\right)$, we consider a linear differential equation:

$$
\begin{equation*}
\mathcal{D} \Xi=G \diamond \Xi . \tag{4.1}
\end{equation*}
$$

The solution is described as in the case of linear ordinary differential equations. For $U \in$ $\mathcal{L}\left((E),(E)^{*}\right)$ the Wick exponential is defined by

$$
\operatorname{wexp} U=\sum_{n=0}^{\infty} \frac{1}{n!} U^{\circ n}
$$

whenever the series converges in $\mathcal{L}\left((E),(E)^{*}\right)$, for more details see [4].

Theorem 4.4 ([13]) Let $G \in \mathcal{L}\left((E),(E)^{*}\right)$. If there is an operator $U \in \mathcal{L}\left((E),(E)^{*}\right)$ such that $\mathcal{D} U=G$ and $w \exp U \in \mathcal{L}\left((E),(E)^{*}\right)$, then a general solution to (4.1) is given by

$$
\Xi=(\operatorname{wexp} U) \diamond F=F \diamond \operatorname{wexp} U
$$

with a white noise operator $F \in \mathcal{L}\left((E),(E)^{*}\right)$ satisfying $\mathcal{D} F=0$.

5 Weyl Operators

For each $\eta \in E$, by applying Theorem 3.2, we can easily see that

$$
e^{a^{*}(\eta)}, e^{a(\eta)} \in \mathcal{L}((E),(E))
$$

Therefore, by applying the duality, for any $\eta, \zeta \in E$, we have

$$
\begin{equation*}
e^{a^{*}(\eta)} e^{a(\zeta)} \in \mathcal{L}((E),(E)) \cap \mathcal{L}\left((E)^{*},(E)^{*}\right) \tag{5.1}
\end{equation*}
$$

Let $K: E \rightarrow E$ be a real linear operator. Put

$$
V_{K, u}:=e^{\frac{1}{2}(u, K u)} e^{a^{*}(u)} e^{a(K u)}, \quad u \in E .
$$

Then from (5.1), we have

$$
V_{K, u} \in \mathcal{L}((E),(E)) \cap \mathcal{L}\left((E)^{*},(E)^{*}\right),
$$

and for any $\xi, \eta \in E$, we obtain that

$$
\left\langle\left\langle V_{K, u} \phi_{\xi} \mid V_{K, u} \phi_{\eta}\right\rangle\right\rangle=e^{\left.\frac{1}{2}(\overline{\langle u, K u})+\langle u, K u\rangle\right)+\overline{\langle K u, \xi\rangle}+\langle K u, \eta\rangle+\langle\zeta+u \mid \eta+u\rangle} .
$$

Therefore, $\left\langle\left\langle V_{K, u} \phi_{\xi} \mid V_{K, u} \phi_{\eta}\right\rangle\right\rangle=e^{\langle\xi \eta\rangle}$ for all $\xi, \eta \in E$ if and only if

$$
\frac{1}{2}(\overline{\langle u, K u\rangle}+\langle u, K u\rangle)+\langle u \mid u\rangle=0, \quad \overline{\langle K u, \xi\rangle}+\langle\xi \mid u\rangle=0, \quad\langle K u, \eta\rangle+\langle u \mid \eta\rangle=0
$$

for all $\xi, \eta \in E$ if and only if $K u=-\bar{u}$ (see (1) of Example 5.3). Hence for each $u \in E, V_{K, u}$ has an unitary extension to $\Gamma(H)$ if and only if $K=-J$, where J is the complex conjugation, i.e., $J u=\bar{u}$ for all $u \in E$. Then we have

$$
\begin{align*}
V_{-J, u} & =e^{-\frac{1}{2}(u, \bar{u})} e^{a^{*}(u)} e^{-a(\bar{u})}=e^{-\frac{1}{2}|u|^{2}} e^{a^{\ddagger}(u)} e^{-\alpha(u)} \\
& =: W(u) \tag{5.2}
\end{align*}
$$

for all $u \in E$, which is called the Weyl operator (see [22]), where the operator $\mathfrak{a}(u)$ and $\mathfrak{a}^{\dagger}(u)$ are defined by

$$
\mathfrak{a}(u)=\overline{a(u)}=a(\bar{u}), \quad \mathfrak{a}^{\dagger}(u)=(\mathfrak{a}(u))^{\dagger} \quad \text { (the Hermitian adjoint). }
$$

Then we can easily see that $\mathfrak{a}^{\dagger}(u)=a^{*}(u)$. In fact, for any $\xi, \eta \in E$, we obtain that

$$
\begin{aligned}
\left\langle\left\langle\mathfrak{a}^{\dagger}(u) \phi_{\xi}, \phi_{\eta}\right\rangle\right\rangle & =\left\langle\left\langle\phi_{\bar{\eta}} \mid \mathfrak{a}^{\dagger}(u) \phi_{\xi}\right\rangle\right\rangle=\left\langle\left\langle a(\bar{u}) \phi_{\bar{\eta}} \mid \phi_{\xi}\right\rangle\right\rangle=\left\langle\left\langle\langle\bar{u}, \bar{\eta}\rangle \phi_{\bar{\eta}} \mid \phi_{\xi}\right\rangle\right\rangle=\langle u, \eta\rangle\left\langle\left\langle\phi_{\xi}, \phi_{\eta}\right\rangle\right\rangle \\
& =\left\langle\left\langle\phi_{\xi}, a(u) \phi_{\eta}\right\rangle\right\rangle=\left\langle\left\langle a^{*}(u) \phi_{\xi}, \phi_{\eta}\right\rangle\right\rangle .
\end{aligned}
$$

Proposition 5.1 If $K: E \rightarrow E$ is a real linear operator, then we have

$$
\begin{align*}
& V_{K, V} V_{K, u}=e^{\frac{1}{2}(\langle K v, u\rangle-\langle v, K u\rangle\rangle} V_{K, v+u}, \tag{5.3}\\
& V_{K, V} V_{K, u}=e^{\langle K v, u\rangle-\langle v, K u\rangle} V_{K, u} V_{K, v} \tag{5.4}
\end{align*}
$$

for all $v, u \in E$.
Proof. By applying the Baker-Campbell-Hausdorff formula, we obtain that

$$
\begin{aligned}
V_{K, v} V_{K, u} & \left.=e^{\left.\frac{1}{2}(v v, K v\rangle+\langle u, K u\rangle\right)} e^{a^{*}(v)} e^{a(K v)} e^{a^{*}(u)}\right) \\
& =e^{\frac{1}{2}(\langle v, K v\rangle+\langle u, K u\rangle+2\langle K v, u\rangle)} e^{a^{*}(v)} e^{a^{*}(u)} e^{a(K v)} e^{a(K u)} \\
& =e^{\frac{1}{2}(\langle v, K v\rangle+\langle u, K u\rangle+2\langle K v, u\rangle)} e^{a^{*}(v+u)} e^{a(K v+K u)} .
\end{aligned}
$$

On the other hand, since K is real linear, then we obtain that

$$
\begin{aligned}
V_{K, v} V_{K, u} & =e^{\frac{1}{2}(\langle v, K v\rangle+\langle u, K u\rangle+2\langle K v, u\rangle)} e^{a^{*}(v+u)} e^{a(K(v+u))} \\
& =e^{\frac{1}{2}(2\langle K v, u\rangle-\langle v, K u\rangle-\langle u, K v\rangle)} e^{\frac{1}{2}(v+u, K(v+u)\rangle} e^{a^{*}(v+u)} e^{a(K(v+u))} \\
& =e^{\frac{1}{2}(\langle K v, u\rangle-\langle v, K u\rangle)} V_{K, v+u},
\end{aligned}
$$

which proves the first assertion. From (5.3), we obtain that

$$
\begin{aligned}
V_{K, v} V_{K, u} & =e^{\frac{1}{2}(\langle K v, u\rangle-\langle v, K u\rangle)} V_{K, v+u} \\
& =e^{\frac{1}{2}(\langle K v, u\rangle-\langle v, K u\rangle)} e^{-\frac{1}{2}(\langle K u, v\rangle-\langle u, K v\rangle)} V_{K, u} V_{K, v} \\
& =e^{\langle K v, u\rangle-\langle v, K u\rangle} V_{K, u} V_{K, v},
\end{aligned}
$$

which proves (5.4).

Proposition 5.2 Let $K: E \rightarrow E$ be a real linear operator. Then for any invertible operator $S \in \mathcal{L}(E, E)$, we have

$$
\Gamma\left(S^{-1}\right) V_{K, u} \Gamma(S)=V_{S^{*} K S, S^{-1} u}
$$

Proof. For any $\xi, \eta \in E$, we obtain that

$$
\left\langle\left\langle V_{K, u} \phi_{\xi}, \phi_{\eta}\right\rangle\right\rangle=\left\langle\left\langle e^{\frac{1}{2}\langle u, K u\rangle} e^{a^{*}(u)} e^{a(K u)} \phi_{\xi}, \phi_{\eta}\right\rangle\right\rangle=e^{\frac{1}{2}\langle u, K u\rangle+\langle K u, \xi\rangle+\langle u, \eta\rangle+\langle\xi, \eta\rangle},
$$

and so we obtain that

$$
\begin{aligned}
\left\langle\left\langle V_{K, u} \Gamma(S) \phi_{\xi}, \phi_{\eta}\right\rangle\right\rangle & =\left\langle\left\langle V_{K, u} \phi_{S \xi}, \phi_{\eta}\right\rangle\right\rangle \\
& =e^{\frac{1}{2}\langle u, K u\rangle+\langle K u, S \xi\rangle+\langle u, \eta\rangle+\langle S \xi, \eta\rangle} \\
& =e^{\frac{1}{2}\left\langle S^{-1} u, S^{*} K S S^{-1} u\right\rangle+\left\langle S^{*} K S S^{-1} u, \xi\right\rangle+\left\langle S^{-1} u S^{*} \eta\right\rangle+\left\langle\xi, S^{*} \eta\right\rangle} \\
& =\left\langle\left\langle V_{S^{*} K S, S^{-1} u} \phi_{\xi}, \Gamma\left(S^{*}\right) \phi_{\eta}\right\rangle\right\rangle,
\end{aligned}
$$

from which we have the assertion.

From now on we assume that there exists complete real subspace $E_{\mathbb{R}} \subset E$ such that

$$
E=E_{\mathbb{R}}+i E_{\mathbb{R}} .
$$

We denote $\mathcal{L}_{\mathbb{R}}(E, E)$ the (real) space of all continuous real linear operators from E into itself. For each $S \in \mathcal{L}_{\mathbb{R}}(E, E)$, define operators $S_{j k}$ (for $1 \leq j, k \leq 2$) in the real nuclear space $E_{\mathbb{R}}$ by

$$
S(x+i y)=S_{11} x+i S_{21} x+S_{12} y+i S_{22} y
$$

for $z=x+i y \in E$ with $x, y \in E_{\mathbb{R}}$. More precisely, we define the real linear operators $S_{i j}$ by

$$
\begin{array}{ll}
S_{11} x=\frac{1}{2}(S x+\overline{S x}), & S_{21} x=\frac{1}{2 i}(S x-\overline{S x}), \\
S_{12} x=\frac{1}{2}(S(i x)+\overline{S(i x)}), & S_{22} x=\frac{1}{2 i}(S(i x)-\overline{S(i x)})
\end{array}
$$

for any $x \in E_{\mathbb{R}}$. By expressing any vector in $E_{\mathbb{R}} \oplus E_{\mathbb{R}}$ as a column $\binom{u}{v}$ for some $u, v \in E_{\mathbb{R}}$, and define

$$
S_{0}\binom{u}{v}=\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)\binom{u}{v} .
$$

Example 5.3 (1) Let $J: E \rightarrow E$ be the complex conjugation, i.e., for any $\xi=\xi_{1}+i \xi_{2} \in E$ with $\xi_{i} \in E_{\mathbb{R}}, J \xi=\xi_{1}-i \xi_{2}$, we have

$$
J \xi_{1}=\xi_{1}, \quad J\left(i \xi_{2}\right)=-i \xi_{2}, \quad \xi_{1}, \xi_{2} \in E_{\mathbb{R}}
$$

from which we have

$$
J_{11}=I, \quad J_{21}=0, \quad J_{12}=0, \quad J_{22}=-I .
$$

Therefore, we have $J_{0}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
(2) Let $L: E \rightarrow E$ be a complex linear operator. Then for any $\xi=\xi_{1}+i \xi_{2} \in E$ with $\xi_{i} \in E_{\mathbb{R}}$, we have $L \xi=L \xi_{1}+i L \xi_{2}$ and so we have $L \xi_{1}=L_{11} \xi_{1}+i L_{21} \xi_{1}$ and

$$
\begin{aligned}
L_{12} \xi_{2}+i L_{22} \xi_{2} & =L\left(i \xi_{2}\right)=i L \xi_{2}=i\left(L_{11} \xi_{2}+i L_{21} \xi_{2}\right) \\
& =-L_{21} \xi_{2}+i L_{11} \xi_{2}
\end{aligned}
$$

from which we have $L_{12}=-L_{21}$ and $L_{22}=L_{11}$ and hence we have

$$
L_{0}=\left(\begin{array}{cc}
L_{11} & -L_{21} \tag{5.5}\\
L_{21} & L_{11}
\end{array}\right)
$$

(3) Let $M: E \rightarrow E$ be a real linear operator. Then for any $\xi=\xi_{1}+i \xi_{2}, \eta=\eta_{1}+i \eta_{2} \in E$ with $\xi_{i}, \eta_{i} \in E_{\mathbb{R}}$, we obtain that

$$
\begin{aligned}
\langle M \xi, \eta\rangle & =\left\langle M_{11} \xi_{1}+M_{12} \xi_{2}+i\left(M_{21} \xi_{1}+M_{22} \xi_{2}\right), \eta_{1}+i \eta_{2}\right\rangle \\
& =\left\langle\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}, \sigma_{3}\binom{\eta_{1}}{\eta_{2}}\right\rangle+i\left\langle\left(\begin{array}{cc}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}, \sigma_{1}\binom{\eta_{1}}{\eta_{2}}\right\rangle,
\end{aligned}
$$

where $\sigma_{1}:=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $\sigma_{3}:=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ are Pauli matrices. Therefore, we have

$$
\begin{align*}
\langle M \xi, \eta\rangle & =\left\langle\left(\sigma_{3}^{*}+i \sigma_{1}^{*}\right) M_{0}\binom{\xi_{1}}{\xi_{2}},\binom{\eta_{1}}{\eta_{2}}\right\rangle . \\
& =\left\langle\left(\sigma_{3}+i \sigma_{1}\right) M_{0}\binom{\xi_{1}}{\xi_{2}},\binom{\eta_{1}}{\eta_{2}}\right\rangle . \tag{5.6}
\end{align*}
$$

(4) Let $L \in \mathcal{L}(E, E)$ be a complex linear continuous operator. Then L_{0} is given as in (5.5), and from (5.6), we obtain that

$$
\begin{aligned}
\left\langle L^{*} \xi, \eta\right\rangle & =\langle\xi, L \eta\rangle=\left\langle\binom{\xi_{1}}{\xi_{2}},\left(\sigma_{3}+i \sigma_{1}\right) L_{0}\binom{\eta_{1}}{\eta_{2}}\right\rangle \\
& =\left\langle\left(L_{0}\right)^{*}\left(\sigma_{3}+i \sigma_{1}\right)\binom{\xi_{1}}{\xi_{2}},\binom{\eta_{1}}{\eta_{2}}\right\rangle,
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left(\sigma_{3}+i \sigma_{1}\right)\left(L^{*}\right)_{0}=\left(L_{0}\right)^{*}\left(\sigma_{3}+i \sigma_{1}\right) . \tag{5.7}
\end{equation*}
$$

Proposition 5.4 Let $L \in \mathcal{L}(E, E)$ be a complex linear continuous operator. Then L is symmetric, i.e. $L^{*}=L$ if and only if L_{11} and L_{21} are symmetric, i.e., $L_{11}^{*}=L_{11}$ and $L_{21}^{*}=L_{21}$.

Proof. From (5.5) and (5.7) we obtain that

$$
\begin{aligned}
\left(\begin{array}{cc}
1 & i \\
i & -1
\end{array}\right)\left(\begin{array}{cc}
L_{11} & -L_{21} \\
L_{21} & L_{11}
\end{array}\right) & =\left(\sigma_{3}+i \sigma_{1}\right) L_{0}=\left(\sigma_{3}+i \sigma_{1}\right)\left(L^{*}\right)_{0}=\left(L_{0}\right)^{*}\left(\sigma_{3}+i \sigma_{1}\right) \\
& =\left(\begin{array}{cc}
L_{11}^{*} & L_{21}^{*} \\
-L_{21}^{*} & L_{11}^{*}
\end{array}\right)\left(\begin{array}{cc}
1 & i \\
i & -1
\end{array}\right)
\end{aligned}
$$

which is equivalent to

$$
\left(\begin{array}{cc}
L_{11}+i L_{21} & -L_{21}+i L_{11} \\
-L_{21}+i L_{11} & -L_{11}-i L_{21}
\end{array}\right)=\left(\begin{array}{cc}
L_{11}^{*}+i L_{21}^{*} & -L_{21}^{*}+i L_{11}^{*} \\
-L_{21}^{*}+i L_{11}^{*} & -L_{11}^{*}-i L_{21}^{*}
\end{array}\right),
$$

which is equivalent to $L_{11}^{*}=L_{11}$ and $L_{21}^{*}=L_{21}$.
Let $K: E \rightarrow E$ be a real linear operator. Consider the map $\sigma_{K}: E \times E \rightarrow \mathbb{C}$ defined by

$$
\sigma_{K}(u, v)=\frac{1}{2}(\langle K v, u\rangle-\langle v, K u\rangle), \quad u, v \in E .
$$

Then for any $u_{j}, v_{j} \in E_{\mathbb{R}}$ for $j=1,2$, we obtain that

$$
\begin{align*}
\sigma_{K}(u, v) & =\frac{1}{2}(\langle K v, u\rangle-\langle v, K u\rangle) \\
& =\frac{1}{2}\left(\left\langle\left(\sigma_{3}^{*} K_{0}-K_{0}^{*} \sigma_{3}\right)\binom{v_{1}}{v_{2}},\binom{u_{1}}{u_{2}}\right\rangle+i\left\langle\left(\sigma_{1}^{*} K_{0}-K_{0}^{*} \sigma_{1}\right)\binom{v_{1}}{v_{2}},\binom{u_{1}}{u_{2}}\right\rangle\right) . \tag{5.8}
\end{align*}
$$

In particular, if $K=-J$, then we have $K_{0}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ and so we have

$$
\sigma_{3}^{*} K_{0}-K_{0}^{*} \sigma_{3}=0, \quad \sigma_{1}^{*} K_{0}-K_{0}^{*} \sigma_{1}=2\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Therefore, we have

$$
\begin{aligned}
\sigma_{-J}(u, v) & =\frac{1}{2}(-\langle\bar{v}, u\rangle+\langle v, \bar{u}\rangle)=\frac{1}{2}(\langle u \mid v\rangle-\langle v \mid u\rangle)=i\left\langle\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{v_{1}}{v_{2}},\binom{u_{1}}{u_{2}}\right\rangle \\
& =i \operatorname{Im}(\langle u \mid v\rangle)
\end{aligned}
$$

Proposition 5.5 Let $K, S: E \rightarrow E$ be real linear maps. Then S is a σ_{K}-symplectic map, i.e., $\sigma_{K}(S u, S v)=\sigma_{K}(u, v)$ if and only if

$$
\begin{align*}
& S_{0}^{*}\left(\sigma_{3}^{*} K_{0}-K_{0}^{*} \sigma_{3}\right) S_{0}=\sigma_{3}^{*} K_{0}-K_{0}^{*} \sigma_{3}, \\
& S_{0}^{*}\left(\sigma_{1}^{*} K_{0}-K_{0}^{*} \sigma_{1}\right) S_{0}=\sigma_{1}^{*} K_{0}-K_{0}^{*} \sigma_{1} . \tag{5.9}
\end{align*}
$$

In particular, S is a σ_{-J}-symplectic map if and only if

$$
S_{0}^{*}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) S_{0}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

(see (22.6) of [22]).
Proof. The proof is straightforward. From (5.8), by direct computation we have that $\sigma_{K}(S u, S v)=\sigma_{K}(u, v)$ for all $u, v \in E$ if and only if

$$
\begin{aligned}
& \left\langle\left(\sigma_{3}^{*} K_{0}-K_{0}^{*} \sigma_{3}\right) S_{0}\binom{v_{1}}{v_{2}}, S_{0}\binom{u_{1}}{u_{2}}\right\rangle+i\left\langle\left(\sigma_{1}^{*} K_{0}-K_{0}^{*} \sigma_{1}\right) S_{0}\binom{v_{1}}{v_{2}}, S_{0}\binom{u_{1}}{u_{2}}\right\rangle \\
& \quad=\left\langle\left(\sigma_{3}^{*} K_{0}-K_{0}^{*} \sigma_{3}\right)\binom{v_{1}}{v_{2}},\binom{u_{1}}{u_{2}}\right\rangle+i\left\langle\left(\sigma_{1}^{*} K_{0}-K_{0}^{*} \sigma_{1}\right)\binom{v_{1}}{v_{2}},\binom{u_{1}}{u_{2}}\right\rangle
\end{aligned}
$$

for all $u, v \in E$ if and only if (5.9) holds.
Corollary 5.6 Let $K: E \rightarrow E$ be a real linear operator. For any real linear operator $\sigma_{K^{-}}$ symplectic operator $S: E \rightarrow E$, we have

$$
\begin{aligned}
V_{K, S \nu} V_{K, S u} & =e^{\sigma_{K}(u, v)} V_{K, S(v+u)}, \\
V_{K, S \nu} V_{K, S u} & =e^{2 \sigma_{K}(u, v)} V_{K, S u} V_{K, S v}
\end{aligned}
$$

for all $v, u \in E$.
Proof. The proof is immediate from Proposition 5.1.

6 An Intertwining Property of Weyl Operator

Let $S: E \rightarrow E$ be a real linear operator. We want to find an operator $U_{S} \in \mathcal{L}\left((E),(E)^{*}\right)$ such that

$$
\begin{equation*}
U_{S} V_{K, u}=V_{K, S u} U_{S}, \quad u \in E, \tag{6.1}
\end{equation*}
$$

i.e., U_{S} satisfies the following diagram:

$$
\begin{align*}
&(E) \xrightarrow{U_{S}}(E)^{*} \\
& V_{K, u} \downarrow \tag{6.2}\\
&(E) \xrightarrow[U_{S}]{ } \downarrow^{V_{K, S u}} \\
&(E)^{*}
\end{align*}
$$

A family of operators $\left\{\Xi_{\lambda}\right\} \subset \mathcal{L}((E),(E))$ is said to be equicontinuous if for any $p \geq 0$, there exist a $q \geq 0$ and a constant $K \geq 0$ such that

$$
\left|\Xi_{\lambda} \phi\right|_{p} \leq K|\phi|_{q}, \quad \phi \in(E)
$$

for all λ (see [21, 20]).
Theorem 6.1 Let $\left\{T_{t}\right\}_{t \geq 0} \subset \mathcal{L}((E),(E))$ and $\left\{S_{t}\right\}_{t \geq 0} \subset \mathcal{L}\left((E)^{*},(E)^{*}\right)$ be continuous semigroups of continuous linear operators with the equicontinuous generator $T \in \mathcal{L}((E),(E))$ and $S \in$ $\mathcal{L}\left((E)^{*},(E)^{*}\right)$, respectively. Let $V \in \mathcal{L}\left((E),(E)^{*}\right)$. Then $V T_{t}=S_{t} V$ for all $t \geq 0$ if and only if $V T=S V$.

Proof. For any $\phi \in(E)$, we obtain that

$$
S V \phi=\lim _{t \rightarrow 0} \frac{S_{t} V \phi-V \phi}{t}=V\left(\lim _{t \rightarrow 0} \frac{T_{t} \phi-\phi}{t}\right)=V T \phi
$$

from which we see that $S V=V T$. Conversely, suppose that $S V=V T$. Then since S and T are equicontinuous, we construct continuous semigroups $\left\{T_{t}\right\}_{t \geq 0} \subset \mathcal{L}((E),(E))$ and $\left\{S_{t}\right\}_{t \geq 0} \subset \mathcal{L}\left((E)^{*},(E)^{*}\right)$ with infinitesimal generators T and S by

$$
T_{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} T^{n}=e^{t T}, \quad S_{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} S^{n}=e^{t S}, \quad t \geq 0
$$

Therefore, since $S V=V T$, for all $t \geq 0$, we obtain that

$$
S_{t} V=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} S^{n} V=V\left(\sum_{n=0}^{\infty} \frac{t^{n}}{n!} T^{n}\right)=V T_{t}
$$

which is the desired assertion.
For each $t \geq 0$, put

$$
V_{K, u}(t)=e^{\frac{1}{t^{2}}\langle\langle, K u)} e^{t a^{*}(u)} e^{t a(K u)},
$$

where $K: E \rightarrow E$ is a real linear operator.
Proposition 6.2 Let $u \in E$ be given. Then the family $\left\{V_{K, u}(t)\right\}_{t \in \mathbb{R}} \subset \mathcal{L}((E),(E)) \cap \mathcal{L}\left((E)^{*},(E)^{*}\right)$ is a differentiable one-parameter group with the infinitesimal generator $a^{*}(u)+a(K u)$.

Proof. For any $s, t \geq 0$, by applying the Baker-Campbell-Hausdorff formula, we obtain that

$$
\begin{aligned}
V_{K, u}(t) V_{K, u}(s) & =e^{\frac{1}{2}\left(s^{2}+t^{2}\right)\langle u, K u\rangle} e^{t a^{*}(u)} e^{t a(K u)} e^{s a^{*}(u)} e^{s a(K u)} \\
& =e^{\frac{1}{2}\left(s^{2}+2 s t+t^{2}\right)\langle u, K u)} e^{t a^{*}(u)} e^{s a^{*}(u)} e^{t a(K u)} e^{s a(K u)} \\
& =e^{\frac{1}{2}(t+s)^{2}\langle u, K u\rangle} e^{(t+s) a^{*}(u)} e^{(t+s) a(K u)} \\
& =V_{K, u}(t+s),
\end{aligned}
$$

from which we see that $\left\{V_{K, u}(t)\right\}_{t \in \mathbb{R}}$ is a one-parameter group and it is easy to see that $\left\{V_{K, u}(t)\right\}_{t \in \mathbb{R}}$ is differentiable with the infinitesimal generator $a^{*}(u)+a(K u)$.

Therefore, by Theorem 6.1 and Proposition 6.2, we see that a white noise operator $U_{S} \in$ $\mathcal{L}\left((E),(E)^{*}\right)$ satisfies the intertwining property given as in (6.1) if and only if U_{S} satisfies the intertwining property:

$$
U_{S}\left(a^{*}(u)+a(K u)\right)=\left(a^{*}(S u)+a(K S u)\right) U_{S}, \quad u \in E,
$$

i.e., U_{S} satisfies the following diagram:

which is equivalent to

$$
\begin{aligned}
{\left[U_{S}, a^{*}(u)\right]-\left[a(K S u), U_{S}\right] } & =-a^{*}(u) U_{S}-U_{S} a(K u)+a^{*}(S u) U_{S}+U_{S} a(K S u) \\
& =\left(a^{*}((S-I) u)+a(K(S-I) u)\right) \diamond U_{S}, \quad u \in E .
\end{aligned}
$$

Therefore, we have the quantum white noise differential equation:

$$
\begin{equation*}
\left(D_{u}^{-}-D_{K S u}^{+}\right) U_{s}=\left(a^{*}((S-I) u)+a(K(S-I) u)\right) \diamond U_{S}, \quad u \in E . \tag{6.3}
\end{equation*}
$$

By solving (6.3), we obtain the white noise operator $U_{S} \in \mathcal{L}\left((E),(E)^{*}\right)$ satisfying the equation (6.1).

Now, to apply Theorem 4.4 to solve the quantum white noise differential equation given as in (6.3), we want to find white noise operator $G \in \mathcal{L}\left((E),(E)^{*}\right)$ satisfying

$$
\begin{equation*}
\left(D_{u}^{-}-D_{K S u}^{+}\right) G=a^{*}((S-I) u)+a(K(S-I) u) \tag{6.4}
\end{equation*}
$$

Consider the white noise operator $G \in \mathcal{L}\left((E),(E)^{*}\right)$ given as in

$$
\begin{equation*}
G=\Delta_{\mathrm{G}}^{*}(L)+\Lambda(M)+\Delta_{\mathrm{G}}(N) \tag{6.5}
\end{equation*}
$$

where $L, M, N \in \mathcal{L}\left(E, E^{*}\right)$. Then from Lemma 4.2, we obtain that

$$
\begin{aligned}
D_{u}^{-} G & =a^{*}(M u)+a(N u)+a\left(N^{*} u\right), \\
D_{K S u}^{+} G & =a^{*}(L K S u)+a^{*}\left(L^{*} K S u\right)+a\left(M^{*} K S u\right),
\end{aligned}
$$

from which we have

$$
\left(D_{u}^{-}-D_{K S u}^{+}\right) G=a^{*}\left(\left(M-L K S-L^{*} K S\right) u\right)+a\left(\left(N+N^{*}-M^{*} K S\right) u\right)
$$

On the other hand, since the operators $\Delta_{\mathrm{G}}^{*}(L)$ and $\Delta_{\mathrm{G}}(N)$ are uniquely determined by symmetric operators L and N, respectively, we may assume that L and N are symmetric, i.e., $L^{*}=L$ and $N^{*}=N$. Then we have the quantum white noise differential equation:

$$
\begin{equation*}
\left(D_{u}^{-}-D_{K S u}^{+}\right) G=a^{*}((M-2 L K S) u)+a\left(\left(2 N-M^{*} K S\right) u\right) . \tag{6.6}
\end{equation*}
$$

Then by comparing Equations (6.4) and (6.6), we have

$$
a^{*}((S-I) u)+a(K(S-I) u)=a^{*}((M-2 L K S) u)+a\left(\left(2 N-M^{*} K S\right) u\right)
$$

for all $u \in E$, which is equivalent to

$$
\begin{equation*}
S-I=M-2 L K S, \quad K(S-I)=2 N-M^{*} K S, \tag{6.7}
\end{equation*}
$$

where the operators L, M and N are unknown.

Theorem 6.3 Let $K, S: E \rightarrow E$ be real linear operators. Suppose that there exist operators $L, M, N \in \mathcal{L}\left(E, E^{*}\right)$ such that the equations given as in (6.7) hold. Then there exists a white noise operator $U_{S} \in \mathcal{L}\left((E),(E)^{*}\right)$ such that the diagram given as in (6.2) commutes. Furthermore, the white noise operator $U_{S} \in \mathcal{L}\left((E),(E)^{*}\right)$ is given by

$$
\begin{align*}
U_{S} & =\left(\operatorname{wexp}\left(\Delta_{\mathrm{G}}^{*}(L)+\Lambda(M)+\Delta_{\mathrm{G}}(N)\right) U\right) \diamond F \\
& =F \diamond \operatorname{wexp}\left(\Delta_{\mathrm{G}}^{*}(L)+\Lambda(M)+\Delta_{\mathrm{G}}(N)\right) \tag{6.8}
\end{align*}
$$

with a white noise operator $F \in \mathcal{L}\left((E),(E)^{*}\right)$ satisfying $\left(D_{u}^{-}-D_{K S u}^{+}\right) F=0$.
Proof. By above discussions, we see that

$$
\left(D_{u}^{-}-D_{K S u}^{+}\right) G=a^{*}((S-I) u)+a(K(S-I) u)
$$

under the assumptions, where the white noise operator $G \in \mathcal{L}\left((E),(E)^{*}\right)$ is given as in (6.5). Therefore, by applying Theorem 4.4, we see that a general solution U_{S} of the quantum white noise differential equation given as in (6.3) is given as in (6.8), and hence U_{S} satisfies the intertwining property given as in (6.1).

Acknowledgements This paper was supported by Basic Science Research Program through the NRF funded by the MEST (NRF-2016R1D1A1B01008782).

References

[1] L. Bruneau and J. Dereziński: Bogoliubov Hamiltonians and one-parameter groups of Bogoliubov transformations, J. Math. Phys. 48 (2007), 022101.
[2] D.M. Chung, T.S. Chung and U.C. Ji: A simple proof of analytic characterization theorem for operator symbols, Bull. Korean Math. Soc. 34 (1997), 421-436.
[3] D. M. Chung and U. C. Ji: Transforms on white noise functionals with their applications to Cauchy problems, Nagoya Math. J. 147 (1997), 1-23.
[4] D. M. Chung, U. C. Ji and N. Obata: Quantum stochastic analysis via white noise operators in weighted Fock space, Rev. Math. Phys. 14, 241-272 (2002)
[5] T. Hida: "Analysis of Brownian Functionals," Carleton Math. Lect. Notes, no. 13, Carleton University, Ottawa, 1975.
[6] T. Hida: "Brownian Motion," Springer-Verlag, 1980.
[7] T. Hida, H.-H. Kuo, J. Potthoff and L. Streit: "White Noise: An Infinite Dimensional Calculus," Kluwer Academic Publishers, 1993.
[8] F. Hiroshima and K. R. Ito: Local exponents and infinitesimal generators of canonical transformations on Boson Fock space, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7 (2004), 547-571.
[9] U. C. Ji and N. Obata: Quantum white noise calculus, in "Non-Commutativity, InfiniteDimensionality and Probability at the Crossroads (N. Obata, T. Matsui and A. Hora, Eds.)," pp. 143-191, World Scientific, 2002.
[10] U. C. Ji and N. Obata: A unified characterization theorem in white noise theory, Infin. Dimen. Anal. Quantum Probab. Rel. Top. 6 (2003), 167-178.
[11] U. C. Ji and N. Obata: Admissible white noise operators and their quantum white noise derivatives, in "Infinite Dimensional Harmonic Analysis III (H. Heyer, T. Hirai, T. Kawazoe, K. Saito, Eds.)," pp. 213-232, World Scientific, 2005.
[12] U. C. Ji and N. Obata: Quantum stochastic gradients, preprint, 2007.
[13] U. C. Ji and N. Obata: Implementation problem for the canonical commutation relation in terms of quantum white noise derivatives, J. Math. Phys. 51 (2010), no. 12, 123507.
[14] U. C. Ji and N. Obata: Quantum white noise calculus and applications, in "Real and Stochastic Analysis," pp. 269-353, World Sci. Publ., Hackensack, NJ, 2014.
[15] U. C. Ji and N. Obata: An implementation problem for boson fields and quantum Girsanov transform, J. Math. Phys. 57 (2016), no. 8, 083502.
[16] I. Kubo and S. Takenaka: Calculus on Gaussian white noise I-IV, Proc. Japan Acad. 56A (1980), 376-380; 411-416; 57A (1981), 433-437; 58A (1982), 186-189.
[17] H.-H. Kuo: "White Noise Distribution Theory," CRC Press, 1996.
[18] P.-A. Meyer: "Quantum Probability for Probabilists," Lect. Notes in Math. Vol. 1538, Springer-Verlag, 1993.
[19] N. Obata: An analytic characterization of symbols of operators on white noise functionals, J. Math. Soc. Japan 45 (1993), 421-445.
[20] N. Obata: "White Noise Calculus and Fock Space," Lect. Notes in Math. Vol. 1577, Springer-Verlag, 1994.
[21] N. Obata: Constructing one-parameter transformations on white noise functions in terms of equicontinuous generators, Monatshefte Für Mathematik, 124 (1997), 317-335.
[22] K. R. Parthasarathy: "An Introduction to Quantum Stochastic Calculus," Birkhäuser, 1992.
[23] S. N. M. Ruijsenaars: On Bogoliubov transforms for systems of relativistic charged particles, J. Math. Phys. 18 (1976), 517-526.
[24] S. N. M. Ruijsenaars: On Bogoliubov transforms, II. The general case, Ann. Phys. 116 (1978), 105-134.
[25] D. Shale: Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962) 149-167.

