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INFRARED-CRITICAL SPIN BOSON MODEL 
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Abstract 

We review recent results on the existence of ground states for the infrared-critical spin boson 
model, which describes the interaction of a massless bosonic field with a two-state quantum 
system. Explicitly, we derive a critical coupling入c> 0 such that the spin boson model exhibits 
a ground state for coupling constants入with 入I<入c・ The proof combines a Feynman-
Kac-Nelson formula for the spin boson model with external magnetic field, a lD-Ising model 
correlation bound and a compactness argument in Fock space. Elaborating on the connection 
to a long-range lD-Ising model, we briefly discuss the conjecture that the spin boson model 
does not have a ground state at large coupling. This note is based on joint work with David 
Hasler and Oliver Siebert. 

1 INTRODUCTION 

In models describing the interaction of a quantum mechanical particle with a quantum field of 

massless bosons, one encounters an infrared problem. Intuitively, this can be explained by the 

circumstance that a finite energy fluctuation might lead to the creation of infinitely many low-

energy (sometimes called'soft') bosons. Mathematically speaking, such an infrared catastrophe is 

reflected in the fact that the Hamilton operator describing the system does not exhibit a ground 

state, i.e., a stable state at lowest energy. However, it has been observed that underlying symmetries 

of quantum systems can lead to a mutual cancellation of infrared divergences. Prominently, this 

has been observed for the model of non-relativistic quantum electrodynamics, see for example 

[GLLOl, BCFS07, HS20] and references therein. 

The spin boson model is also a model which exhibits an underlying symmetry. It describes 
a two-state quantum mechanical system linearly coupled to a field of bosons. Previously, in 

[HHll, BBKMl 7], it has been shown that the spin boson model exhibits a ground state for small 

coupling const皿 ts,by perturbative methods. In the articles [HHS21, HHS22a, HHS22b], we pre-

sented the first non-perturbative proof for existence of ground states below an explicitly derived 

critical coupling constant. In this note, these articles are reviewed. Additionally, we enhance the 

compactness argument from [HHS21] based on arguments presented in [Mat16, HM叫 whichallows 
for a more general choice of dispersion relations. 

To emphasize the role of the so-called spin flip symmetry in the cancellation of infrared diver-

gences, we discuss the spin boson model in presence of an external magnetic field. Whereas the 
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external magnetic field has no influence on the existence of ground states in the infrared-regular 

case, it is crucial that the magnetic field vanishes for a ground state to exist if the model is infrared-
critical. 
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2 NOTATION, MODEL AND MAIN RESULT 

Let us start a more thorough discussion of our results with the following simple definition. 

Definition 2.1. Given a selfadjoint lower-semibounded Hilbert space operator H, we say H has a 
ground state if inf O"(H) is an eigenvalue. We say H has a unique ground state if the corresponding 
eigenspace is one-dimensional. 

Throughout this note, we fix the following three objects describing the spin boson model. 

Dimension: d E N 

Dispersion Relation: selfadjoint multiplication operator w :配→ [O,oo) acting on £2国） and
satisfying w > 0 almost everywhere 

Form Factor: v E V(w―112), where V(•) denotes the domain of a Hilbert space operator 

We call the spin boson model infrared-regular if v E V(w―1). Otherwise, we call it infrared-critical. 

Given MC記 wewill also use the following notation: 

lM denotes the characteristic function of M. 

CM denotes the set of all smooth functions {! :配→ ［0, 1] satisfying supp{! C Mc. 

Finally, given x E図 forsome n E N, we define the translation operator Tx acting on f E L2国）
as Txf(p) = J(p + x). 
The definition of the spin boson model requires the us叫 bosonicFock space F overび（配），
given by 

00 

F=〶庁 with F(O) = C, F(k) = L;ymぼり forkEN, 
n=O 

where we symmetrize over the k d-dimensional variables. Further, for a selfadjoint multiplication 

operator m:配→瓦 wedefine its second quantization as 

oo n 

df(w) =〶 dr(nl(w), with drC0l(w) = 0 and dr(nl(w)(k1,..., k砂＝ Lw(ke)for n EN. 
n=O £=1 
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Given f Eび（配）， wedefine the邸 sociatedannihilation operator邸

(a(!)心）（n)(k1,...,似） ＝五口Jf(K)q)（n十l)(k,柘，．．．，似）dk
and the corresponding field operator as the sclfadjoint operator given by 

訓f)= a(f) + a(f)*, 

where ・ as usually denotes the operator closure. 
The spin boson Hamiltonian now acts on the tensor product Hilbert space 

1i=(['.2⑭r竺 r⑤F, (2.1) 

where the unitary equivalence is implemented by (a1, a2) 0ゆ← a1心①a2ゅ． TheHamilton operator 
itself is defined邸

H（入，μ)= C,z@』+dr(w)@』＋叩R（知(v)+ μ]), (2.2) 

where c,ェ＝ (~ 6) and c, z = (6 _fl1) denote the usual Pauli matrices. Here, the constant 入€股 is
the coupling of spin and field, whereas μ E股isthe strength of the external magnetic field. Using 
standard estimates and the Kato-Rellich theorem, it follows that H（入，μ)is a selfadjoint operator 
with domain D(]_＠dr(w)) for all values of入，μ E股， see[HHS21, Lemma 2.2] for details. Note that 
the assumption v E D(w―112) is crucial in this perturbative argument, since it implies that rp(v) is 

infinitesimally bounded w.r.t. dr(w). 
For our main theorem, we will need the following assumption on the dispersion relation. 

Hypothesis A. There exists a nowhere dense set M such that, for all g E CM and p E配 withIPI 
sufficiently small, 

今(p)=esssupe(k) 
w(k+p)-w(k) 

KE良d W(K) 
< CX) 皿 d 今（p)二 0. (2.3) 

Remark 2.2. We note that (2.3) is especially satisfied if w is differentiable with bounded derivative 

and strictly positive outside of any nowhere dense set, by the mean value theorem. 

Our main theorem summarizes all positive results for existence of ground states in the spin 

boson model with external magnetic field. 

Theorem 2.3. Assume Hypothesis A holds. 

(i) (Infrared-Regular Case) If w―lv E £2圏） andllw―1(rpv -v)II IPI→O 2―→ 0, then H（入，μ)has a 
ground state for all values of入，μE良

(ii) (Infrared-Critical Case) Assume w(k) = w(-k) and v(k) = v(-k) for almost all k E配．

Further. assume that llw― 
IP|→O 

llw-1l2(rpv -v)ll2ー→ 0.If|入|＜ ||w―112vll2リ⑯， thenH（入，0)has a 
unique ground state. 

Remark 2.4-The existence of ground states for the infrared-regular case is a standard result, see for 

example [Spo89, BFS98, GerOO]. Since our compactness argument in Section 3 provides a simple 
proof of this case under very general assumptions, we treat it here nevertheless. 
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Remark 2.5. In the infrared-critical case v E'D(w―i/2) ¥ V(w―1), a ground state心canonly exist 
if〈腐（四R])ゆ〉＝ 0,see for example [AHH99]. Hence, the only situation in which a ground state 
might exist due to cancellations of divergences is the case μ = 0, which we treat in (ii) of above 

theorem. For an extended discussions of the absence of ground states due to infrared divergences, 

we refer to [Spo98, LMS02, Hin22]. We emphasize that the expectation〈心，（四R]）い〉 vanishesin 
the case μ = 0, due to the underlying spin-flip symmetry in this case, i.e., that H（入，0)commutes 
with四R(-1),dr(1). This plays a crucial role in the proofs of Theorem 4.l and Corollary 4.6 below. 

Example 2.6 (Physical Example). Let us discuss the typical physical example ind= 3 dimensions. 
The massless dispersion relation is given by w(k) = lkl, whereas the form factor is v(k)＝1,,(k)lkl-a 

with"':配→ [O,1] being a suitable cutoff function ensuring v Eび（配）， suchas the characteristic 
function of a ball around zero or叩(k)= e-ck2 for some c > 0. Given this choice, the model 
is infrared-regular for a E (0, ½)- Our result on the infrared-critical case holds for any choice of 
aE［ふ1),where the physically most interesting case is given by a = ½- We note that for a 2': 1, 
the assumption V E'D(w―1/2) is not satisfied and hence the interaction is not bounded w.r.t. the 
free operator anymore. 

For the remainder of this note, we discuss the proof of Theorem 2.3. In Section 3, we present 
the compactness argument which is essential for both parts of the statement and based on [HHS21, 
HM叫 Themain result therein is stated in Theorem 3.3. In Section 4, we then review the results 
from [HHS22a, HHS22b] and show how to verify the assumption of Theorem 3.3 in the infrared-
critical case for coupling constants smaller than the critical value. In Section 5, we summarize the 
proof of Theorem 2.3 and conjecture the behavior of the spin boson model at large coupling. 

Since many details of our proofs are deferred to the articles [HHS21, HHS22a, HHS22b], we 
point the reader to [Hin22] for a detailed and extensive proof of Theorem 2.3 (ii). 

3 THE COMPACTNESS ARGUMENT 

In this section, we present the compactness argument which is essential to our proof for existence of 

ground states. It can essentially be found in [HHS21] and is based on [GLL叫 However,similar to 
[Mat16, HM21], we replace the Rellich criterion by the Frechet-Kolmogorov theorem, which allows 

for a simpler proof and more general choices of the dispersion relation w. 
The main idea is to approximate the massless model by the massive one, i.e., by introducing an 

artificial mass of the bosonic field. Then it is a well-known result that a ground state exists, due to 
the presence of a spectral gap. 

Theorem 3.1. If ess infkE股dw(k) > 0, then H（入，μ)has a unique ground state for all入，μE良

Proof. Proofs for this statement in the case μ = 0 can, for example, be found in [AH95, DM20]. 
An explicit proof including the external magnetic field is given in [HHS22b, Appendix D]．ロ

The value mw = ess infkE配 w(k)can be interpreted as a boson mass. We are interested in taking 

”知→ 0.To ensure strong convergence of the ground states in this limit, we need to prove that 
they form a relatively compact set. Therefore, we will employ the following compactness criterion. 
A similar (or in fact stronger) statement can be found in [HM21, Proposition 3.8]. Nevertheless, for 
the convenience of the reader, we give the nice proof here, which is based on the Frechet-Kolmogorov 

theorem. 
For the use therein and later on, we define the pointwise annihilator ak. Givenゆ(n+1)E F(n+1) 
for some n EN。,themap k→ゅ(n+l)(k,• • •) is an element ofび（配；F{nl),by the Fubini-Tonelli 
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theorem. Hence, the prescription 

a砂(n+1l(k1,...,似） ＝り「丁恥(n+l)(k,k1,..., k砂

yields a well-defined element akゅ(n+l)E F(n) for almost all k E配． Thedefinition directly implies 

||臼 ||~(n) =¾!Ila砂(n) ll~(n-l)dk 

(3.1) 

(3.2) 

We remark that, for心EF, the vector a砂＝ （a砂(n+l))nEN。isnot necessarily an element of F. 
The following statement can be found in the standard literature and will be employed in the 
following proofs: If A :配→ [O,oo) is measurable and心EV(dr(A)112), then a砂 EF for almost 
every k E配 and

lldf(A)1121/Jll2 = J A(k)lla喜 dk. (3.3) 

Theorem 3.2. Let工cF be bounded and let M c配 benowhere dense. Assume that there exists 
an f Eび（配） suchthat 

llakゆIIS lf(k)I for allゆE'Iand almost every k E股.d. (3.4) 

Further, assume that for all f2 E C店thereexists (g炉）pEJRdCL如） withllg~Q) ll2 見竺~ 0 such that 

llf2(k + p)ak+pゆー Q(k)ak心Islg砂(k)I for allゆEI and almost every k E恨］ （3.5) 

Then I is relatively compact. 

Proof. Throughout this proof, given a measurable B :配→ ［0, 1], we define the contraction 
operator 

00 

f(B) =④r(nl(B) with rC0l(B) = 1, r(nl(B)(k1,..., k砂＝ B(k1)・ ・ ・ B(k孔forn E N (3.6) 
n=O 

acting on F. 
We split the proof into two steps. 

Step 1. We fix n E N and f.2 E CM and prove that {(f(Q)心）（n):心 EI} is a relatively compact 
subset of F(n). 

By the Frechet-Kolmogorov theorem, this is equivalent to showing that 

sup ||1{| |＞R} （r(Q)心）（n)IIF(n).!!:.ゴ➔ O
心€工

sup ll(rp―])（r(O)心）（n)IIF(n)
記•”3IP|→O
) 0. 

心€工
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where l{l-l>R} is treated as multiplication operator on F(n) = L;ym（股り・
For arbitrary心E'I,using (3.2) and (3.4) as well as the permutation symmetry of罰(n),we find 

lil{l·l>R}(r(o) い）（n)ll~(n)'.S ll'>Rln II疇 (g)叶 dKこ1|1||＞R/nf||g. 
lkl>R/n 

Taking R→0, this implies (3. 7). 
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By a similar argument, for p = (P1,...,P砂E配・nand if; E'I, we find 

n n 

ll(Tp―11)(r(a)い）(n)ll}{n) :'S苔/lla(k+ Pe)ak+p,ゆ-g(k)a砂杞dk:S:tllg岱112,
l=l 

(o) 11 IPI→O 
using (3.5). Therefore, llg~Y%--—➔ 0 proves (3.8). 
This finishes the first step. 

Step 2. We can now prove the statement. 

To that end, let（切）£ENbe a sequence in I and fix some c > 0. We choose NE E N, M C ME C配
and f2E EC訂suchthat 11 J||合/（N戸 1)＜ 5, ||1恥 1112< f and (20 = 1 on M;, which is possible since M 
is nowhere dense. W.l.o.g. (otherwise restrict to a subsequence), by the boundedness of I and Step 1, 
we can assume（切） isweakly convergent to some 1Jr E F and that s;-lim(r(＆切）（n）＝ （r(&)w)（n) 

£→OO 
for all n = 0,..., NE・

Let PE denote the orthogonal projection onto the subspace畠五 ofF. This implies 
n=O 

llwll2 2:: IIP£r(r2,)wll2 = e丹~IIP,r(r2£)砂伯＝£丹g〈切，P£r（砂）切〉

ミlimsup(||切||2-11(1-P,)切112)-sup〈¢,Pe(l -r(g2)）¢〉.
£→oo </JEエ

Now, by (3.2) and (3.4), we have 

11(1 -PE)疇＝n=t+l~f llak砂叫l2dk:S &, j llak疇 dk:S~ <E 
Further, looking at then-particle subspace F(n), we see 

r(n) （砂）（K1,．．．，K砂＝n応(K]){ : ： 
j=l lE[0,1] 

ifヨjE {2,..., n} : kj E (supp&）尺
if k1,..., kn E M~, 

else. 

Hence, 1 -r(12;）:S dr(l叫 Using(3.3) and (3.4), this implies 

他凡(1-r（尻））の〉 :S!Me llak叩dK5||1Mcf||2 < e for all ¢ € 1. 
M, 

(3.9) 

Inserting these observations into (3.9), we find IIWll2 ~ lim sup£→OO ||切||2-2s.Taking c→0, we have 
IIW||~ limsupl→OO ||切||． Further,th e weak lower-semicontinuity of norms and W = w-limt→OO砂
imply IIW||:S liminf［→oo I|西||． Hence,IIWII = lime→OO ||切||， whichproves（砂） infact converges to 
1¥ strongly. 
This finishes the proof. ロ

We now want to approximate H（入，μ)by a sequence of spin boson Hamiltonians with massive 
bosons. Hence, we fix a sequence (wn)nEN satisfying 

(i)凸：配→ ［0, oo) is measurable, positive almost everywhere and v E D(w;;112) for all n EN, 

(ii) Wn(k + p) -Wn(k):S w(k + p) -w(k) for all k,p E配， nEN,
GROUND STATES IN THE INFRARED-CRITICAL SPIN BOSON MODEL 
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(iii)（叫 is(a.e. pointwise) monotonically decreasing and converges to w uniformly, 

(iv) ess inf屈配叫(k)> 0 for all n E N. 

We remark that possible choices for this sequence are Wn=←戸戸祠 or凸＝ w+叫 forsome 
strictly decreasing zero-sequence (mn) c (0, oo). The parameter mn > 0 can be interpreted as the 
artificial boson mass described above. 
By Theorem 3.1, the operators Hn（入，μ)obtained from (2.2) by replacing w by Wn have a unique 

ground state for each n E N and all values入，μE股． Fromnow on, let凶，μ)be a normalized ground 
state of几（入，μ)and denote En（入，μ)= inf O"(Hn（入，μ)).Using Theorem 3.2, the convergence of 

（紺叫 tothe ground state of H（入，μ)can be deduced if a resolvent bound is satisfied. 

Theorem 3.3. Fix入，μE良． Further,assume Hypothesis A holds. If there exists a measurable 

h:配→ [O,oo) such that v, TpV E'D（h)forpE配 smallenough, llh(TpV -v)ll2 且~O and 

ll(Hn（入，μ)-En（入，μ)+ Wn(k））ー1(四R』）ル11 ::; h(k) for almost all k E配，（3.10)

then H（入，μ)has a unique ground state. 

Remark 3.4, In our proof of Theorem 2.3, we will (up to a positive constant) choose h E { w―1,W―1/2}. 

Proof. Throughout this proof, we fix入，μE股andwrite 

凡(k)=（几（入，μ)-Eふ，μ)＋叫(k)）―1.

Further, we drop tensor products with the identity. 
The connection between the considered resolvents and the assumptions of Theorem 3.2 is given 
by the pull-through formula 

疇~>-,µ) = -v(k)尾 (k)O"叫；入，μ) for almost all k E記 (3.11)

where ak acts onゅi入，μ)component-wise in the sense of (2.1) For proofs, see for example [BFS98, 
GerOO] or [Hin22, Lemma 6.13]. 

（入，μ)
We now want to apply Theorem 3.2 to the bounded setエ＝｛叫： nE N}, where the nowhere 
dense set Mis chosen as in Hypothesis A. By the assumption, (3.4) follows from (3.11) with the 
choice f = hv. Further, by the resolvent identity, we find 

r2(k + p)ak+p心；入，μ)-r2(k)a砂t入，μ)= r2v(k)凡(k)O"砂い入，μ)-r2v(k + p)凡(k+p)望；入，μ)
= (r2v(k) -r2v(k + p)）凡(k)疇；入μ)

+r2v(k+p)凡(k+p)（凸(k+ p) -Wn(k)）凡(k)疇巴．

Hence, Hypothesis A, the standard bound 

IIRn(k)||―1 :s:凸 (k)―i:S: w(k)-1 

皿 dthe assumptions on (wn) imply 

llf2(k + p)ak+p心i.¥，μ)-Q(k)a砂i.¥，μ)||
凸 (k)一叫(k+p) 

さh(k)(v(k)-v(k + p)) + Q(k + p)~h(k)v(k + p) 
叫 (k+ p) 
w(k)-w(k+p) 

:S: h(k)(v(k) -v(k + p)) + Q(k + p)~h(k)v(k + p) 
w(k + p) 

GROUND STATES IN THE INFRARED-CRITICAL SPIN BOSON MODEL 
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Therefore, (3.5) is satisfied with the choice g炉＝ h(Tpv-v)＋ふ(p)hv,whereふ(p)is defined as 
in (2.3). This proves I is relatively compact. 

W.1.o.g., we can now assume that the sequence（ゆ炉入，μ))is strongly convergent to some normalized 
い0E F. It remains to prove that珈 isa ground state of H（入，μ).To that end, we first observe 
that, by (3.3), (3.11) and (3.12), we have 

lldf(w)112叫叫12= / w(k)lla砂い叫12::::: llvll~-

This implies thatゆoE D(df(w)112) = D((H（入，μ)-E（入，μ))112).Further, by the 1 e lower-semicontinuity 
of closed quadratic forms and using both the monotonicity and the uniform convergence of (wn), 
we find 

ll(H（入，μ)-E（入，μ))1/2少oll2=〈心o,(H（入，μ)-E（入，μ)）心o〉

< liminf （入，μ)〈島，（H（入，μ)-E（入，μ)）硲叫
n→OO 

三li四隠f〈心；入，μ),(H凸 μ)-E（入，μ））外入，μ)〉

:::; liminf（広（入，μ)-E（入，μ))= 0. 
n→OO 

Hence, (H（入，μ)-E（入，μ))1/2心o= 0 E V((H（入，μ)-E（入，μ))112)and therefore心oE V(H（入，μ))
with H（入，μ）心o=E（入，μ）心O・
The uniqueness of the ground state can be inferred from positivity arguments, see [HHS22b, 

Proposition 3.6] for details. This finishes the proof. ロ

4 PROOF OF RESOLVENT BOUND 

In this section, we show how to prove the resolvent bound (3.10) with h = w―1/2 if μ = 0 and|入|
is smaller than a critical value. This is essential for the proof of existence of ground states in the 

infrared critical case, cf. Theorem 2.3 (ii). Proofs for the statements presented in this section can 
be found in [HHS22a, HHS22b]. Many of our results only hold for the case of massive bosons, i.e., 

if 

mw := ess_i,~fw(k) > 0. 
KERd 

We will emphasize this fact, if this is the case. Throughout this section, we write 

E（入，μ)= info(H（入，μ)).

The first observation we make is that the desired resolvent bound follows, if a bound on the second 
derivative of the ground state energy w.r.t. the external magnetic field is satisfied. This statement 

does not carry over to the case μ cJ 0, since the proof significantly builds on the spin-flip symmetry 
in the case μ = 0. To ensure the differentiability of the ground state energy, we need to assume 

the Hamiltonian has a spectral gap, which is the case if mぃ＞ 0.The proof uses simple techniques 
from perturbation theory. 

Theorem 4.1 ([HHS21, Lemmas 4.3, 4.4]). Let入E政 andassume mw > 0. Fu廿her,assumeゆis
a normalized ground state of H（入，0),which exists by Theorem 3.1. Then E（入，μ)is analytic in μ 
and we have 

ll(H(〉し，0)-1り(〉¥,0)+ w(k)）―1（アx'IPII~ (-o;E(〉¥，μ)1μ=0)1/2し）―112(k) for all k E股d.
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The remainder of this section, we prove that the derivatives呪E（入，μ)are bounded uniformly in 
mw. To that end, we first use the well-known connection between the operator semigroup and the 
ground state energy of an operator, also referred to as Bloch's formula, to rewrite these derivatives 

as expectation values w.r.t. the ground state of the free operator H(O, 0). We refrain from giving 
a proof here, but emphasize that the generalization of Bloch's formula to derivatives of the ground 

state energy is again only possible due to the spectral gap of H（入，μ).In the statement, let 

Q↓ = （：）⑳(1, 0, 0,...) E C2⑳ r 

denote the ground state of the free operator H(O, 0). 

Theorem 4.2 ([HHS22b, Lemma 2.9, Theorem 2.10]). Fix入，μE恥．
Then 

Further, if mw > 0, we have 

1 
E（入，μ）＝ lim--8 ln〈n.j,,e―TH（入，μ）Q↓〉・

T→oo T μ 

1 
び（入，μ）＝ limーーがln〈叫e-TH（入，μ）切〉 for all CE N. 

T→oo T μ 

To prove that the expectation on the right hand side is bounded, we now exploit the connection to 

a continuous one-dimensional Ising model. To make this statement more precise, let（ふ）t＞。 bea 
continuous-time Markov process taking values in｛士1}, satisfying lP[X。=I]=lP[X。=-I]=½ 
and having Poisson-distributed jump times with parameter 1, i.e., 

1 
JP［ふ＝ x|ふ＝yl = -（1十心，ye-2lt-sl-Ox,-ye-2lt-sl) fort, s > 0, x, YE｛士1}, 

2 

where o.,. denotes the usual Kronecker delta. The connection to the operator semigroup is now 
given by a Feynman-Kac-Nelson (FKN) type formula. Whereas we prove the full FKN formula in 

[HHS22b], we here only present the version obtained when treating the expectation w.r.t. n-l-and 
integrating out the field degrees of freedom. We emphasize that this statement also holds in the 

massless case mw = 0. 

Theorem 4.3 ([HHS22b, Coroll紅 y2.6]). Assume w(k) = w(-k) and v(k) = v(-k) holds for 

almost all k E配． Further,we define 

w(t) ＝ ] JRd |v(K)|2e―|tlw(k)dk. 

Then, for all入，μE股 andT > 0, we have 

e―T〈切，e-TH（入，μ）切〉＝ lE[expい1T1T W(t-s)Xふ dtds-μ［ふdt)].
Remark 4.4. The integrals on the right hand side are Riemann integrals. If X is realized as a 
random variable on a probability space P, then the function t→ふ(p)has only finitely many 
discontinuities in the interval [O, T] for almost every p E P. Combined with the continuity of W, 
this implies the existence of the integrals. Further, the continuity also implies that the expression 

on the right hand side is uniformly bounded in p E P. Hence, the expectation value exists and is 
finite, by the dominated convergence theorem. 
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Remark 4-s. The right hand side can be interpreted as the partition function of an Ising model over 
股withinteraction function W and external magnetic field μ. This connection between spin boson 
and Ising models has for example been used in [EL74, FN88, Spo89, Abdll, HHL14]. 

Combining Theorems 4.2 and 4.3, we find that the derivatives of the ground state energy can 
be calculated as correlation functions of the continuous Ising model described in Remark 4.5. To 
simplify notation, given a continuous function I :恥→ [O,oo), let us define the partition function 

T 

zい（入，μ)= lE [expい1T1T  I(t-s)Xふ dtds-μ 1 ふdt)]
゜Further, given a random variable Y defined on the same probability space as X, we define its 

expectation value 

1 T T T 

《Y》乳µ=摩（入， ~lE [Yexpい1111I(t -s)Xふ dtds-μ1ふdt)]
Corollary 4.6. Let W be as defined in Theorem 4.3.釦 ther,we assumemw > 0 andw(k) = w(-k) 
as well as v(k) = v(-k) for almost all k E配． Then

1 T 
2 (W) 

亨（入，μ)1μ=0=一三バ（［ふdt)））T，入，0 for all 入€賊．

Proof. From the definition, it is easy to observe that Z四（入，μ)is infinitely often differentiable 
w.r.t. μ and the first two derivatives are 

”四（入，μ)= -IB[［ふdtexpい1T1T  I(t -s)Xふ dtds-μ［ふdt)]
叫 w)（入，μ)＝厄［（［ふdt)2 expい1T1T  I(t -s)Xふ dtds-μ［ふdt)]

Since, by definition of X, both X 皿 d-X are equivalent stochastic processes, this implies 

0μz四（入，μ)1μ=0= 0. 

Now inserting the second derivative into Theorem 4.2 and applying Theorem 4.3 on the right hand 
side, we find 

1 
亨（入，μ）＝ -limー虎(lnZ四（入，μ)+ 1) 

T→(X)T 

= -lim 
1呪Z四（入，μ)

T→(X)T Z四（入，μ)

Combining above observations proves the statement. 口

Let us finish this section, with the last ingredient of our proof. Treating the continuous-time Ising 
model as a continuum limit of a discrete Ising model, we prove the following upper bound for 
correlation functions in [HHS22a]. 
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Theorem 4. 7 ([HHS22a, Theorem 1.2],[Hin22, Theorem 4.21]). For all E: E (0, t), there exists 
C0 > 0 such that for all continuous and even I E £1（政） withI 2': 0 and IIIII 1 < c, we have 

1 T 
2 (I) 

h仇呼テ（（（［ふdt)））い0::;Cs 
Let us now combine the results presented in this section. 

Corollary 4.8. Assume w(k) = w(-k), v(k) = v(-k) for almost all k E配几rther,let入E股
with|入|＜ ||W―I/2vll-1 /汲． Then,there exists a C > 0 such that the following holds: 
Let匂beany dispersion relation satisfying 11如＞ 0,w(・) = w(-・) as well as w ~ w almost everywhere. 
Further, let 

且（入，μ）＝びzR].＋].@dr（臼） ＋a℃ ⑭ （入t.p(v)+ μ].） and 方（入，μ)=info（且（入，μ))

and let心bea normalized ground state of H（入，0),which exists due to Theorem 3.1. Then 

ll(H（入，o)-R（入，0)＋w(k)）―la豆!II::;Cw(k)―112 for all k E股d.

Remark 4.9. We emphasize that we do not assume mw > 0. Hence, the uppper bound especially 
holds for any approximating sequence (wn) of w as described in the previous section and is uniform 
mn. 

Proof. Since w satisfies the assumptions of Corollary 4.6, we have 

T 2 (W) 

妙（入，μ)1μ=0＝ーロ(((1ふdt)））T,μ,0 1 
with和(t)= i入2J lv(k)l2e―|t匝(k)dk.

Further, we easily calculate II~也＝入2||z;;-112vll§ s入211w―1/2V||3.If |入|＜ ||w―1;2v||―1 /v'5, then 
there is an EE  (0, ½) such that IIWll1 < E. Hence, we can apply Theorem 4.7 and there exists C > 0 
such that 

0 2 8：恥，μ)lμ=o~ -C. 
Inserting this into Theorem 4.1 finishes the proof. 口

5 CONCLUSION & CONJECTURE 

We now show how to combine the arguments presented in the previous two sections to the 

Proof of Theorem 2.3. The statement (i) directly follows from Theorem 3.3 and the standard 
resolvent bound (3.12), s叫 ingh=w―1.Further, (ii) follows from Theorem 3.3, by setting h = 
Cw―1/2, where C is the constant from Corollary 4.8. In this case, the resolvent bound is satisfied 

since we can set w = Wn in Corollary 4.8 for any n EN. □ 

In Theorem 2.3 and Remark 2.5, we have intentionally left one case open. Explicitly, it is an 
open problem to rigorously treat the spin boson model without magnetic field at large coupling. 

However, some heuristic intuition comes from the connection to a long-range one-dimensional Ising 
model presented in Theorem 4.3 and Remark 4.5. 
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Considering the physical infrared-critical situation in d = 3 dimensions with w(k) = I k I and 
v(k) ~ lkl-1/2 for small lkl, the interaction function W(t) defined in Theorem 4.3 decays as 1/t2 as 
t →oo. In the discrete Ising model, it is well-known that long-range Ising models with interaction 
decaying this way exhibit a phase transition [ACCN88, IN88]. In this sense, we do not expect that 

the f in Theorem 4. 7 can be taken arbitrarily large. Therefore, it is reasonable to assume that the 

resolvent bound required in Theorem 3.3 and proven in Corollary 4.8 might cease to hold for|入|
becoming large. 

Hence, we conclude this note with the following 

Conjecture. Assume v E D(w―1/2) ＼ D(W―1). Then there exists入c> 0 such that H（入，0)has no 
ground state for|入|＞心

It should be mentioned that a similar result for KMS states was proven in [Spo89]. Therefore, 

the conjectured statement is also expected from this point of view. 
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