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Abstract 

The Neumann-Poincare operator (abbreviated by NP) is a boundary integral operator naturally arismg 
when solving classical boundary value problems using layer potentials. If the boundary of the domain, on 
which the NP operator is defined, is C1・" smooth, then the NP operator is compact. Thus, the Fredholm 
integral equation, which appears when solving Dirichlet or Neumann problems, can be solved using the 
Fredholm index theory. Regarding spectral properties of the NP operator, the NP spectrum depends heavily 
on geometry of the surface (or the curve) on which the operator is defined. Our main purpose is to introduce 
recent selected properties of the NP spectrum on convex domains. Then we discuss relationships among the 
NP spectrum and PDEs. 

1 Introduction 

Let us consider a bounded Lipschitz domain n in JR.n (n = 2,3). The (electro-static) Neumann-Poincare 

(abbreviated by NP) operator K,叩：び(80）ぅゅ→だ（ぬ）ぅ km圏 isdefined by 

応o ［心］（x) 三 J 心(y)~E(x,y) dS釦
ぬ 8ny

where 

E(x,y) =｛釘゚[|x!y|, ifn = 2, 
石三—y|' ifn = 3, 

8 dsy is the line or surface element and 7/!;::: is the outer normal derivative on all. If the boundary of the domain 
珈 y

ぬ issmooth, then it is known that Kan is a compact operator onザ（叩） （even on H"(all)) and consists of at 
most a countable number of eigenvalues, with O as the only possible limit point (See e.g. [M, MS] and references 

therein for the details.). It is also known that the eigenvalues of the NP operator (the so-called double layer 

potential integral operator) lie in the interval (-1/2, 1/2] and that the eigenvalue 1/2 corresponds to constant 

eigenfunctions. Here it is worth mentioning that if the boundary has corners (i.e. Lipschitz) then absolute 

continuous spectrum appears on a suitable Hilbert space 1-l (e.g. [HKL, PP]). Especially for the case of smooth 

boundaries, the spectrum of the NP oerator (NP spectrum) on 1-l is the same as one on L2. Thus we shall 

denote the spectrum of the NP operator as a（応m)unless stated otherwise. 

Our purpose here is to introduce some structural properties of the NP spectrum. Micellous properties of 
the ~p spectrum are ongoing topics and they are significant not only in modern physics but also in pure 
mathematics. However, to avoid the condition of being tedious, we shall mention only a few selected properties 

and meanings instead of mentioning enomous results (See references and therein for the details.). To do so, let 

us recall Harmonic Bergman space A刊!1),namely, harmonicび functions:

が（!1)三 {J(x)E L2(!1) I△f = o inn}. (1.1) 

When we denote a single layer potential operator as 

崎］（x）-J心(y)E(x,y)dSか
80 

(1.2) 
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the operator S叩 ： H-1!2(aO)→が（切 isknown to be bijective (See e.g. [AKM2].). Thus an arbitrary operator 
Tao on H-1/2(aO) is comprehended as the corresponding operator To onが(0):

Tn on A2(!1)竺 Sao• T叩• S品 onH―1/2（叩）． (1.3) 

This formulation is a toy model of holographic principles, that is, correspondence between boundary behaviors 

and interior behaviors. It is easily seen that the NP operator Kan is the typical one of boundary integral 
operators. Then the corresponding operator To is the so-called Ahlfors-Beuling operator in the case of two 
dimensions [Ahl, PP]. In fact, M. Perfekt and M. Putinar have shown from (1.3) that the NP operator of 
two-dimensional curvilinear polygon has an essential spectrum, which depends only on the angles of the corners 
[PP]. So we may consider the calculation of the NP spectrum as an example of getting familiar with the principle 
(1.3). 

2 A resent result of the NP spectrum in two dimensions 

Miscellous properties of the NP spectrum have been shown even in two dimensions (See e.g. [AKM2, MS] and 
references therein.). Here we shall introduce one of the interesting properties for thin domains: As in section 
1, it is proved lately in [PP] that if a two-dimensional domain r! has corners on its boundary, then Kan has 
essential spectrum which is a connected interval symmetric with respect to 0, and the end points of the interval 
are completely determined by the smallest angle of the corners. In particular, if r! is a rectangle, then the 
essential spectrum is known to be the interval [-1/4, 1/4]. It is also known that a(Kan) ¥ {1/2} is a closed 
subset of (-1/2, 1/2). In recent work [HKL], a classification method to distinguish eigenvalues from essential 
spectrum has been proposed and implemented numerically to investigate existence of eigenvalues on various 
domains with corners. The numerical experiments reveal that on rectangles more and more eigenvalues of the 
NP operator appear outside the interval [-1/4, 1/4] of the essential spectrum as the aspect ratio of the rectangle 
gets larger. It is also proved that if the aspect ratio is large enough, there is at least one eigenvalue outside 

[-1/4, 1/4]. In [AKMl] we improve this result drastically and prove that the spectra actually fill up the whole 
interval (-1/2, 1/2) in some sense as the aspect ratio gets larger. 

To be more precise, the two-dimensional domains to be considered here are not just rectangles. The long 
sides are lines, but the short sides do not have to be lines, they can be curves. Since the NP operator is dilation 
invariant, we define planar thin domains as follows: for R 2'. 1, let r!R be a rectangle-shaped domain whose 
boundary consists of three parts, say 

anR=rかUば ur五， (2.1) 

where the top and bottom are 

rt= [-R,R] x {1}, rR = [-R,R] x {-1}, (2.2) 

and the side I''k consists of the left and right sides, namely, I''k = rk U r五， whererk and r11 are curves 
connecting points（干R,1) and（干R,-1), respectively. We assume that rk and r五areof any but fixed shape 
independent of R. In other words, rk and r11 are of the form r惧＝r1-(R,O) and r五＝ rr+ (R,O), where r1 
and rr are curves connecting points (0, 1) and (0, -1). If both r1 and rr are line segments, OR is a rectangle. 
The boundary aoR is assumed to be Lipschitz continuous. We say that the domain伽 isof the aspect ratio 
Reven if it is not necessarily a rectangle. It is worthwhile to emphasize that 80R is allowed to be smooth in 
which case the associated NP operator is compact and has eigenvalues accumulating to 0. 

The following theorem is one of our results in two dimensions: 

Theorem 1 ([AKMl]). If {Rサbe an increasing sequence such that R・→oo as j→oo, then 

00 

U疇叩,)= [-1/2, 1/2]. (2.3) 

J=l 

3 Recent results of the NP spectrum in three dimensional convex 

domains 

Three-dimensional bounded domains exhibit the NP spectral structure diザerentfrom two-dimensional ones. In 
two dimensions, the NP spectrum (spectrum of the NP operator) always appears in pair士入 except1/2. In fact, 
we know that the NP eigenvalues on a sphere are 1/(4k+2) fork= 0, l, 2... [Poi], and they are all positive even 
on prolate spheroids [AA]. Thus, the property (2.3) can not hold for prolate spheroids. It is worth mentioning 
that, as far as we are aware of, prolate spheroids are the only domains without negative NP eigenvalues. It is an 
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intriguing question to find geometric conditions which allow only positive NP eigenvalues. It is proved in [MR] 
that the NP operator on the boundary of strictly convex domains in three dimensions can have at most finitely 
many negative eigenvalues. If the boundary of the domain has a concave part, then there are (infinitely) many 
negative eigenvalues (see [AJKKM, JK, MR]). 

Let us begin with the prolate spheroids. Let ITR be a prolate spheroid, namely, for R 2 1, 

｛ 恥：＝ （X1,X2，X3): Xi+ X各＋晨 <1}. (3.1) 

Then we obtain the following theorem for prolate spheroids. 

Theorem 2 ([AKLM]). Let ITR be the prolate spheroid defined by (3.1). If Rj is a sequence of numbers such 
that凡：：：： lfor all j and Rj→oo as j→oo, then 

00 

LJ a(KarrRj) = [O, 1/2]. (3.2) 

J=1 

Theorem 2 shows that totality of eigenvalues of KarrR; is dense in [O, 1/2] regardless of choice of the sequence 
Rj. A natural question arises: whether the property (3.2) is generic for thin, long domains, e.g., long cylinders. 
(If we dilate IIR by R-1, IIR becomes thin. That is why we call them'thin'domains. The spectrum of the NP 

operator is invariant under dilation.) 
There are significant work on the NP spectrum on ellipsoids [Ahn2, AA, ADR, Ma, Ritt]. However, it is 

unlikely that Theorem 2 (and Theorem 4 below) are derived from those results. However, we are able to prove 
the following theorem based on those results, which is in good comparison with Theorem 2: The following 
theorem shows that the totality (in continuum) of the NP eigenvalues on prolate spheroids covers the interval 
(0, 1/2] while Theorem 2 shows that the NP eigenvalues on a sequence of prolate spheroids, which is countable, 
are dense in [O, 1/2] regardless of the choice of the sequence. 

Theorem 3 ([AKLM]). Let IIR be the prolate spheroid defined by (3.1). It holds that for any R。2'.1, 

Uび（応ITR)= (0, 1/2]. (3.3) 
R::>Ro 

The property for oblate spheroids seems a generic property of thin, flat domains as in Theorem 1. To 
demonstrate it, we consider typical thin, flat domains other than oblate ellipsoids. To define such a domain, let 
Ube a bounded planar domain with the Lipschitz continuous boundary au. Let <I> be the domain in配 whose
boundary consists of three pieces, namely, 

a<L> = ~+ u ~- u ~s (3.4) 

where the top and bottom are given by炉＝ Ux｛土1}and匹 isa surface connecting au x { + 1} and aux { -1}. 
We邸 sumethat⑲ is Lipschitz continuous. For R > 0 let 

剣R := {(Rx1,R四，四）： （X1，咋，巧） €叫． (3.5) 

Then we obtain the following theorem. 

Theorem 4 ([AKLM]). Let転 bethe domain defined by (3.5). If Rj is a sequence such that凡→ ooas 
j →oo, then 

00 

LJ a(Ka<I>R,) =［一1/2,1/2]. (3.6) 
J=1 

Here we can also give a property as a consequence of Theorem 3 and Theorem 4: 

Corollary 5. Let -1/2 < c < 0. There exists a smooth convex domain 11 C配 suchthat the minimum NP 
eigenvalue satisfies 

minu（応10)= c. (3.7) 

In fact, the smooth perturbation of domains yields the continuity of minimum eigenvalue [AKMU]. It then 
follows that the oblate-like perturbation of a sphere gives the satisfactory minimum eigenvalue. It is worth 
mentioning that to construct an explicit domain is a formiddable task. 

Thus even in convex regions we can find negative NP spectrum (See also [AJKKMR].). However, we couldn't 
find the domain except for prolate spheroids, in which there are no negative eigenvalues. 
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4 Unsolved problems and conjectures as future prospects 

In section 1 we introduce a toy model of holographic principles, that is, the correspondency between boundary 
behaviors and interior behaviors. The Bergman space A2(0) consists of harmonic functions and the correspon-
dency (1.3) can be denote as the product of single layer potential operators. Here we employed the Bergman 
space as harmonic functions. When we can define single layer potential operators via fundamental solutions of 

linear PDEs, one can expect the analogy of the Bergman space as the solutions of PD Es. In fact, the so-called 
Dirichlet-Neumann map can be denoted by NP operators and single layer potential operators. So one can 
expect a rigorous theory of holographic principles other than 2-dimensional NP operators (See e.g. [LBM] for 

the idea of correspondencies). 
Many applications of NP operators also can be found in mathematical physics. As a significant applicantion, 

we disproved the so-called cloakings by anomalous resonance (abbreviated by CALR), which is one of electro-
magnetic effects, if the boundary &n is convex smooth. We emphasize that such applications deeply depend 
the NP spectrum. In other words, if CALR happens in three dimensions then the NP operator has infinitely 

many negative eigenvalues (See e.g. [AKMN] and references therein.). 
They are ongoing subjects and so we end this article by proposing problems and conjectures: 

Problem 6. Can one find CALR for concave regions such as a torus ? 

We don't have such an example of concave regions at present. The infinitely many negative NP eigenvalues 
are essential. At this point, it is emphasized that we can't find satisfactory conditions for the nonexistence of 
negative eigenvalues (See [AJKKMR].): 

Problem 7. Can one find the rigion except prolate spheloids in which the corresponding NP operator has positive 
eigenvalues only ? 

Corollary 5 similarly allows us to ask problem 8: 

Problem 8. Let｛約｝jENbe a sequence of regions in配． For-1/2 < c < 0, can one construct a sequence such 
that 

00 

U 6（応叫＝ ［c, 1/2]? (4.1) 

J=l 

The maximal eigenvalue other than 1/2 corresponds the so-called Fredholm eigenvalue (See e.g. [Ahl] for 
two dimensions and [MS].). Details of such eigenvalue are significant in PDEs. However they are still unknown 
especially in dimension 3: 

Conjectuだ 9([MS]). Let f! c配 andX =max叫 Ka叫＼｛1/2}.Can one prove 

inf入＝ー
80 6' 

where the infimum is taken over all C00 simply connected closed surfaces? Is the infimum achieved if and only 

ifof! = s砂
The present author confirmed the validity of conjecture 9. When C00 closed surfaces are replaced by 

ellipsoids, this problem is proved in [MS]. Related results can be also found in [AKMU]. 

Conjecture 10 ([M, MR]). Let 01 and 02 be three dimensional bounded regions. If each NP spectrum coincides, 
namely, ap(Kari』=%(Kari,) (i.e. isospectral), then are 01 and 02 similar figures? 

Conjecture 10 is proven only for the c邸 eofぬ＝炉 orぬ＝戸 (CliffordTorus). We suspect that 
conjecture 10 holds true for all of Willmore surfaces. 
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