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Abstract 

This paper is written as a technical report for our talk given at the RlMS workshop on quantum 
fields and related topics, held on 6th-8th December 2021. In this talk we introduced our recent 
works [23, 24, 25, 26] in formal language theory to the community of mathematical physics, 
which concern some interplay between algebraic language theory, galois theory and class field 
theory. In this paper we discuss some conceptual contents of our recent works [23, 24, 25, 26] 
in more detail. 

1 Introduction 

The purpose of this paper is to discuss some conceptual aspects of our recent works [23, 24, 25, 26] on 

interplay between algebraic language theory, galois theory and classical class field theory, especially 
aiming to highlight geometric ideas behind theory of computation. Algebraic language theory on 

one hand is a branch of theory of computation (or formal language theory) that has been developed 
since the 1960s (cf. [17]); galois theory, on the other hand, belongs in the context of number theory 

and geometry. As this history shows, these two theories have been developed independently, but as 

discussed in [23, 24], algebraic language theory can now be reviewed as a monoid extension of galois 
theory in a certain precise (categorical) sense; more importantly, this viewpoint sheds a new light on 

classical class field theory in the sense we discussed in [25, 26]. In view of that some mathematical 

physicists are concerned with a version of Langlands program (i.e. today's well-recognized approach 
to non-abelian class field theory) in relation to its physical analogues in particular, it would not be so 

meaningless to introduce this recent development [23, 24, 25, 26] to the community of mathematical 

physics too in that our results in [23, 24, 25, 26] might provide some new viewpoint for non-abelian 
class field theory. 

In this relation, it should be mentioned further that there have been several physical/ conceptual 

(hence, more than pragmatic) discussions on communication between physics and theory of compu-
tation (e.g. [1, 13, 16]); in fact these are relevant to our naive motivation behind the considerations 

in [23, 24, 25, 26]. It is true that physics and theory of computation are quite different as scientific 
disciplines in several respects, say, in their objectives, methodologies and mathematical languages; 
however, it is also true that these disciplines have been communicating with each other at several 
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levels: For instance, at the first level, some key ideas in theory of computation (say, computational 

complexity) play a key role in analysis of several statistical mechanical models [16]. Not only this, 

at the second level, there are more fundamental discussions to reduce our computability concept to 
some more basic physical principle, in relation to the physical Church-Turing thesis, cf. [13]: some 

version of this thesis argues that, roughly speaking, a function is computable in the formal sense of 
Church-Turing (i.e. definable by some formal Turing machines) if and only if it can be realized by 

some actual physical system of any form (either of classical or quantum), not limited to our familiar 

electric devices. Apparently, this thesis involves not only a claim on computability concept but also 
a strong claim relevant to principles of physics; in this way, physics and theory of computation even 

share a common fundamental interest. 
Indeed, despite ostensible differences, physics and theory of computation are equally concerned 

with their respective classes of (continuous/discrete) dynamical systems, and have developed "geo-
metric" frameworks to analyze them (namely, frameworks ofsymplectic manifolds or C*-dynamical 

systems/various computational models such as Turing machines). In view of the above-mentioned 
fundamental intersection between these subjects, it seems essential to investigate, in mathematically 

systematic way, what they share implicitly or explicitly, not just looking at their differences. Indeed, 
in the literatures, several authors (cf. e.g. [1]) have been concerned with this issue and developed 
their respective fruitful frameworks, which motivated the current work too. 
It is in this relation that we regard it reasonable to introduce our developments in [23, 24, 25, 26] 

to mathematical physicists, which indicate intrinsic connection of algebraic language theory to class 
field theory, hence possibly to non-abelian class field theory, which in turn has something solid to do 

with physical variant of Langlands correspondence as a matter of geometry. In fact, our intention 
is to re-locate theory of computation coherently in some geometric context as mathematical physics 

(or as its discrete fragment), especially in seamlessly hierarchical manner. Indeed, to our thought, 

this is the very subject of (relative) theory of languages, or foundation of mathematics, which should 
be able to answer to the famous question concerning "unreasonable effectiveness of mathematics" 

[27] in natural science (cf. §4). 

In this paper, we will start with a conceptual discussion on general languages in linguistic sense, 

aiming to review algebraic language theory in wider perspective (§2). Although algebraic language 
theory itself has eventually been developed almost separately from linguistics, it indeed has its roots 
in the work of Chomsky in the 1960s; recalling this roots is not for historical purpose, but necessary 

to highlight the linguistic role/ aspect of mathematics (or geometry) for physics in particular. After 

this discussions, we proceed to our recent works [23, 24, 25, 26] that demonstrate intrinsic connection 
of algebraic language theory to classical class field theory (§3). The most interesting ingredients of 

this results are in fact found in our technicalities凸butnot only technicalities, we are also concerned 
with conceptual ingredients equally. From this standpoint, the subject of §3 is to relocate algebraic 
language theory in an unconventional context, i.e. that of general geo-metry, by highlighting some 

analogies based on [23, 24, 25, 26]; through this relocation, we then compare (mathematical language 

of) theory of computation with (that of) physics in §4. 

Acknowledgement We are grateful to Izumi Ojima, Hayato Saigo, and Yoshihiro Maruyama for 
long-time discussions concerning languages and quantum mechanics, which heavily influenced the 

1Therefore, for those who are not concerned with conceptual discussions, it is safer (and in fact logically possible) 
to read [23, 24, 25, 26] purely as arithmetic results; we separated the current consideration from the arithmetic paper 
[26]. To our thought, nevertheless, it seems inevitable to enter into basic linguistic (and cognitive-scientific) issues if 
we are concerned with common grounds shared by physics and theory of computation, cf. §4. 
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of Bio-Science and Technology; and to the organizer of the RIMS workshop for inviting us to give 
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2 Formal theory of languages 

Here we recall some linguistic backgrounds of our works [23, 24, 25, 26]. These linguistic discussions 
are intended to highlight the fact that the studies of languages are indeed comparable to physics, 
and for some preparation of our arguments in the last section §4; we will come back to this linguistic 
discussion after some geometric comparisons (§3) of our works with the galois theory of differential 
equations. 

2.1 Linguistic background 

As outlined in §1, we are first concerned with considering the principal role of languages in general; 
indeed this is deeply related to our major concern in understanding the "unre邸 onableeffectiveness 
of mathematics" in a mathematical way. Unarguably it is through languages (in a broad sense) that 
our subjective thoughts are externalized and informed to others; furthermore, arguably though, we 
might manipulate, control and build our own subjective thoughts with the aid of language. In this 
respect, a classical approach in linguistics was to investigate the structure of languages (or written 
texts) as a clue to study our mind (or linguistic ability) indirectly. 
To clarify the point, this approach in linguistic can be naturally compared to traditional methods 
in physics, namely, measurements by specific instruments: For instance, in thermodynamics, there 
had been long discussions on the mechanism of sensation of heat (and cold); but it was recognized 
that the heats of gas are correlated to gas expansions. Since the volume of gas itself can be measured 
objectively (or quantitatively), one can utilize this phenomenon as symbol of heats, whatever they 
are; this led to invention of thermometer, with which thermodynamics could step toward an exact 
science. Of course, thermometers themselves do not tell us mechanisms of heat phenomena; however 
they provide objective clues to develop and test our theories of heat [28, 15]. 
The same is true for linguistic phenomena: Although it is mysterious neuro-scientifically what 
happens actually in our brane when we write/read some sentences, in other words, how symbols (or 
texts) are connected with our thoughts (or the meanings) inside brane, it is unarguable that written 
texts themselves are externalized and hence objectively observable; and also that the structures of 
texts, if grammatical, represent the writer's mind. For an apparent instance, the text that the reader 
is reading right now represents (approximately) what the current author has in mind; and without 
this texts, we would never be able to convey our personal thoughts to the reader; this is the very role 
of language in general. Similarly to the above relation between thermometers and heat phenomena, 
text data themselves do not tell us mechanisms behind linguistic phenomena; nevertheless, as what 
thermometers did in thermodynamics, observable text data provide us objective clues to develop 
and test our theories of linguistics. 
Indeed, in his famous work [11, 12], Chomsky analyzed texts carefully to develop a fruitful theory 
concerning generative grammars, which theorizes mechanism of human ability to judge and create 
"grammatically correct" sentences: For instance (cf. [12]), for those who are familiar with English, it 
is not hard to see that the sentence "Colorless green ide邸 sleepfuriously" is grammatically correct, 
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while the sentence‘、Furiouslysleep ideas green colorless" is not, despite both sentences are equally 
non-sense and consist of the same set of words; this exemplifies that the grammatical correctness is 

not equivalent to meaningful-ness; hence we judge, as grammatically correct, even sentences that we 
never use in our daily communications. He then proceeded to show, by examples, the empirical fact 

that we have the ability to create grammatically correct sentences from very limited experiences; 
from these, he argued that our ability to learn grammatically correct sentences cannot be explained 

by statistical leaning models but might have some more innate mechanism. Importantly, his theory 

satisfies several criteria for exact sciences in that it is based on careful analysis of observable text 
data, and by them, proposes rigorously defined mathematical models (i.e. generative grammar) for 

grammatical structures of languages, by which he could analyze several linguistic issues; in relation 
to our current work, it is also of concern that his models are in fact equivalent to Turing machines 

(cf. §2.2). 

2.2 Formal theory of languages and computation 

To be more formal, notice first that English sentences by themselves are sequences of alphabetical 
symbols, namely, capital/small letters, periods, commas and spaces; however, not just sequences but 

being ordered correctly, such sequences of symbols can be "grammatical" to make sense; otherwise, 
the sequences of symbols are "grammatically incorrect" to have no meaning. Here, the grammar of 

English is by definition a rule to prescribe the "correct" English sentences; of course, since English is 

a natural language, we do not know in advance any God-given rule (or grammar) of correct English 
sentences in the same sense as that in physics we do not know the God-given rule of our universe in 

advance; the theory of generative grammars was introduced to describe grammars of languages in 

a rigorous mathematical manner, and to discuss and test them by comparing with observable text 
data in the same way as we use mathematical models in physics. 

To be specific, let ~E := { a, b, c, ・ ・ ・, z, A, B, C, ・ ・ ・} be the above mentioned set of alphabetical 
symbols for English. Then an English sentence is a priori a sequence of symbols in刃E;denote by刃；

the set of all finite sequences w = a氾 2··•an of letters a; in ~E (also called as finite words over the 

alphabet ~E), Of course,邸 mentionedabove, not all sequences of letters in ~E are (grammatically) 
correct; hence, the set伍 ofall (grammatically) correct sentences is a proper subset of均E,that is, 
LE C ~E- A major subject of English grammar is to specify the patterns that characterize correct 
sentences, or more formally, patterns that determine the members of LE and distinguish them from 
general w E況； sucha set of patterns, if possible to specify, is called a grammar of English. The 
concept of generative grammar is then a mathematically formal definition of the informal term 

"grammar (or patterns)" here, which prescribes admissible phrase structures of sentences in terms 
of combinatorics of finite words. 

The precise definition of generative grammars is not necessary for the aim of the current paper, 
cf. [12]; but briefly speaking, the basic idea is to abstract the traditional procedure of analyzing the 

phrase structures in sentences: For instance叉wenotice that the sentence "Thom plays the piano" 
consists of three major parts, i.e. the subjective noun (SN) "Thom", the verb (V) "plays", and the 
objective phrase (OP) "the piano"; furthermore, the objective phr邸 e(OP) by itself has the inner 
structure consisting of the definite article (DA) "the", and the noun (N) "piano". In other words, 

2For more nicer examples of phrase analysis, the reader is referred to some literature in linguistics, say, [12]. The 
point here is that we have a formally defined mathematical model (generative grammar) of the procedure of phrase 
structure analysis of sentences. The reader who is not concerned with linguistic models can skip to §2.3, where we 
di 1scuss our maJor concern. 
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this sentence can be analyzed into the following purse tree, which represents an abstract structure 
of the sentence, and where each intermediate symbol (e.g. SN, V, etc.) represents the abstract-level 
grammatical (semantic) role of each phrase: 

s 

/1~ 
(2.1) 

SN V 0|p¥ 
DA N 

Thom plays the piano 

Looking from the root of this tree (namely the vertex S, representing "sentence"), this tree indicates 
the fact that this "sentence" S consists of three parts SN, V, OP; and the phrase OP consists of two 
parts DA, N; each of these parts is then replaced by the concrete words ("Thom", "plays", "the", 
"piano"). Thus, more formally, this procedure of phrase structure analysis can be seen as (inverse of) 
that of repeatedly rewriting finite words: S→SNV OP→SNVDAN→Thom plays the piano. 
The formal definition of generative grammars is a mathematical abstraction of this procedure; and 
rigorously, a generative grammar <§ is given as a finite set of rewriting rules over finite words such 
as S→SN V OP and DA→the. Given such a set of rewriting rules (i.e. a generative grammar) <§ 
over the alphabet I:E, it naturally defines L夜） C::I:E, namely L僧） consistsof finite words w E I:E 
which can be deduced from the root symbol S by repeatedly applying the rewriting rules of免 we
say that the generative grammar <§ generates the language L復） C::I:E; further, for a given L C:: I:E 
(say, L砂 wesay that <§ is a grammar of L if L = L僧）．
By definition, the membership w E L僧） meansthat there exists a finite-step deduction S→ 
...→ w of w from S by applications of rewriting rules of妬 intuitively,this deducibility says that 
the sequence w E羽 matchesthe admissible pattern that the grammar <§ prescribes. In this way, 
a generative grammar <§ could define the language L僧） C::I:E in a deductive way. But the phrase 
structure analysis, or the way in which we understand the phrase structure of a sentence, is more 
inductive in that the procedure of understanding the phrase structure of a sentence w is inverse to 
the deductive procedure S→...→ w. Therefore, technically speaking, it is not apparent from this 
definition whether the membership w E L（<§) is effectively decidable; this issue would be of natural 
concern from the standpoint of linguistics too, in view of the empirical fact that we can somehow 
detect, often immediately, the phrase structure of a sentence just from written or verbal text data. 
Concerning this, a fundamental result on generative grammars is that a language L C::均Ecan be 
generated by some generative grammar in the above formal sense (i.e. L = L(<§) for some generative 
grammar <§) if and only if L can be recognized by some Turing machine.4, i.e. computational 
model with which our computability concept is formally defined; in particular, when this is the case, 
a sequence w E羽 isa member of L（初 ifand only if the Turing machine.d recognizes w (cf. [21]); 
in other words, generative grammars are Turing complete. More generally the hierarchy of formal 
languages defined in terms of (restriction of) generative grammars (i.e. the Chosmky hierarhcy) is 
known to be in a good correspondence with hierarchy of computational models given in terms of 
their ability of memory. 
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Notable here is that, as shown in the history of physics, we can sometimes explain phenomena of 

concern by formal analysis of formal models叫thisis also true for the theory of generative grammars 
[11]. What we can do with this formal theory is to compare formal language models L憚）こ羽with
the actual language LEこ喜 throughindividually observable text data w E LE4; indeed this can 
be naturally compared to the relationship in physics between mathematical models (or theories) of 
physical phenomena and their observable experimental data. Therefore the validity of each formal 

model inevitably depends on the results of comparisons to their respective target phenomena; but 

nevertheless, it is thanks to formally defined models that we can formulate rigorously testable claims 
on our target issue. Indeed, for instance, Chomsky [12] concluded that the set LE of correct English 
sentences is not a regular language (cf. §3.1)5 by showing that the language LEこ喜doesnot satisfy 
a certain combinatorial property that every regular language must satisfy. This is a good example 

that formal language models and their purely mathematical analysis could deduce a linguistically 

interesting consequence. 

2.3 0 ur maJor concern 

In general, beyond the context of linguistics (hence, beyond natural languages such as L砂 formal
language theory studies the structure of arbitrary languages, namely, arbitrary sets L ~ご offinite 

words over arbitrary alphabet E of letters; the above Turing completeness of generative grammars 
holds in this general setting. At a practical level, the framework of formal languages and generative 

grammars has been applied to the design of artificial languages (i.e. programming languages). But 

our major concern is in the point that, at this abstract level, the classical theory of formal languages 
and computation is not only about languages or computers but actually would have a broader scope 

of applications in nature. To highlight the point, it would be meaningful to compare our subject to 

physics, or more specifically, to the classical Newtonian mechanics: Based on experiments, physicists 
developed a framework of classical mechanics, where the differential calculus plays a key role in its 
mathematical formulation and developments as exact science; but the differential calculus itself has 

a broader scope of applications, apart from its original context; this is simply because the concept 

of real numbers and their differential calculus could have independent meaning in their own right, 
apart from their physical interpretations. The same is true for the theory of formal languages and 

computations: at the most abstract level, this discipline can essentially be about discrete dynamical 

systems of any form, and amongst others, best characterized by its unique concept of computational 
complexity and formal method to measure computational complexity in quantitative manner, which 

makes sense for any kind of discrete space/time series, thanks to the abstractness of the concept of 

finite words w = a1a2 ・・・an. 
To be precise the hierarchy of computational complexity (of languages) is conventionally defined 
with respect to several measures of complexity and ability of formal computational models such as 

Turing machines, pushdown automata (cf. [21]), and finite automata (cf. §3.1). The major differences 
between these computational models are in the structure of the memory devices that they can use in 

3This is related to our major concern on "unreasonable effectiveness of mathematics". 
4We note that the language LE C::況 (of"correct" English sentences) itself is actually not well-defined unless we 
can define the meaning of "correct", which in nature makes sense only through observations on individual sentences. 
5 A language L C::刃＊ isregular if it is recognized by finite automata; this is equivalent to that the language L has 
a grammar W。fa certain restricted form, i.e. a type-3 grammar in the Chomsky hierarchy. Therefore Chomsky's 
result says that the language LE of correct English sentences is never defined by type-3 grammar in principle. 
吋hisshould be compared to the fact that the concept of real numbers can be used to parametrize any continuum 
data, thanks to their independence from any physical interpretation. 
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their computational procedures: For instance, Turing machines use their Turing tapes, where they 
can read/rewrite symbols and their pointer can move both to the left and the right on their tape; 
compared to Turing machines, pushdown automata have slightlyrestricted memory devices, where 
they can also read/rewrite symbols but they can edit their register from some restricted directions 
only; hence (some version of) pushdown automata can access to their past memories only from the 
nearest past, while Turing machines can access to their past memory at any depth if they want (cf. 
[21]). Then it is known that this restriction of access to past memories makes an essential difference 
on the ability of these computational models in the sense that the class of languages that can be 
recognized by pushdown automata (or equivalently, languages definable by context-free grammars) 
is a proper subset of the class of languages that c皿 berecognized by Turing machines (equivalently, 
languages defined by arbitrary (i.e. type-0) grammars); some language can be recognized by Turing 
machine but never recognized by any pushdown automata due to the limitation of their ability to 
refer to the past history of computational procedure. 
Having developed these characteristic results on formal languages and computational models, 
the theory of formal languages and computations has several notable aspects comparable to physics: 
The first one is that, while physics has developed mathematical understanding of our universe (or the 
external reality), this discipline tries to develop equally mathematical understanding of our mind (or 
the internal realit砂 indeed,back to the linguistics (cf. §2.1), formal language theory targeted at a 
mathematical understanding of our linguistic abilities；皿dthe theory of computations, historically, 
also targeted at mathematical understanding of our computability concept. In their nature, if rightly 
developed, these disciplines might be complementary to each other (cf. §4). The second one is that, 
while the mathematical language for the classical mechanics, namely the differential calculus, could 
have their own meaning apart from their physical interpretation and be mathematically fruitful in 
their own right so that the differential calculus has a broader scope of applications, the mathematical 
language for the study of linguistics and computability, namely the theory of formal languages and 
computational models, have their own meaning apart from the linguistic/logical interpretations and 
be mathematically fruitful in their own right so that its unique idea of computational complexity can 
play key roles in our understandings and classifications of several (mathematical/physical) objects, 
say, statistical mechanical models, cf. [16]. The third one is that, furthermore, while it is unarguable 
that the development of physics has profound influences on our technology to understand the nature, 
it becomes more and more unarguable today that the development of the theory of formal languages 
and computations (or practically, computer science) has significant influence on our technology too; 
in fact, while physics has been recognized as the king of natural science, computer science has been 
growing its presence in natural science (or actually any sciences) both practically and conceptually 
(cf. §1; see also [1, 13]). 
Of course, as mentioned in §1 too, these two disciplines are still far from each other, in particular 
in their mathematical 1皿 guages.However, in view of the first (complementary) aspect above, as well 
as the fundamental intersection between these disciplines discussed in §1, it seems essential for both 
subjects that we are able to compare them not at a philosophical level but at some mathematically 
formalized level. To this end, we compare their traditional mathematical languages, namely, (linear) 
differential equations and finite automata. Starting from some vague analogy between them (§3.1), 
we formalize this analogy with some categorical terms (§3.2); based on this, we then try to highlight 
some common/distinct points between these two mathematical languages (§4). 
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3 Algebraic language theory, revisited 

Having this program in mind, we start by reviewing the classical branch in formal language theory 

known as algebraic language theory (cf. [17]) (more specifically, Eilenberg's variety theory [14]). As 
emphasized above, formal language theory and theory of computation are best characterized by the 

idea of computational complexity and their hierarchical classifications. Algebraic language theory 
belongs in this context and is characterized by its methodology, where we use algebraic methods to 

classify languages; among others, the hierarchy of regular languages (or equivalently, the languages 

generated by type-3 grammars) admits most systematic classification by means of finite semigroup 
theory 7. 

This theory on regular languages is analogous to that of linear differential equations at several 
levels: firstly, at an equational level (in terms of Brzozowski derivatives of languages), and secondly, 

at a cateogry-theoretic level. In fact, as discussed in [23, 24], this theory can be regarded as a monoid 
extension of galois theory through a certain duality theorem8 which is a natural discrete analogue 

of a duality theorem9 known in differential galois theory (i.e. the galois theory for linear differential 

equations); interestingly, this unification then sheds a new light on classical class field theory, or in 

particular, the theory of complex multiplication, cf. [25, 26] (§3.2). 

3.1 The first-level analogy 

As mentioned above, there are two levels of analogies between finite automata (resp. their regular 

languages) and systems of linear differential equations (resp. their solutions). The first-level analogy 

is that any regular language L satisfies a certain system of equations on Brzozowski derivatives of 
languages, which represents the (minimum) deterministic finite automaton that recognizes L. The 

second-level analogy is that there is a classification theory of such "differential equations" (Eilenberg 
theory), which can be axiomatized in terms of the duality theorem for semi-galois categories [23, 24] 

in the same way as the galois theory of linear differential equations can be axiomatized in terms of 
the duality theorem for Tannakian categories [22, 18] (cf. §3.2). 
Concerning the first-level analogy, let L ~区＊ be an arbitrary language over an alphabet E; for 

each letter a E E, we define the Brzozowki derivative of L by a E E, denoted 8aLこゞ， asfollows: 

8aL := {wE~*lawEL}. 

This Brzozowski derivative L←8aL satisfies the following Leibniz-like rules10: 

8a(L + R) = 8aL + 8aR 

8a(L ・ R) = (8aL) ・ R+  c(L) ・ (8aR), 

(3.1) 

(3.2) 

(3.3) 

where the sum L + R <;;;汀 denotesthe union of L and R <;;;汀， andthe concatenation L • R <;;; I:* 
denotes the language defined by L • R := {uv I u E L,v ER}; also 1c(L)こゞ isdefined to be { E} if 
E E L, and 0 otherwise. 

7We call this fragment as Eilenberg's variety theory; but here we almost identify algebraic language theory with 
Eilenberg's variety theory. 
8To be precise, a duality theorem between profinite monoids and semi-galois categories [23, 24], which is a natural 
extension of the duality theorem between profinite groups and galois categories (cf. §3.2). 
9The duality theorem between algebraic group schemes and (neutral) Tannakian categories; but there are several 
variants [18]. 
10These are somewhat analogous to the rules satisfied by Fox derivatives on group nngs. 
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In general, the orbit応 L:= {8砂 a2.．．仇LIa1,・・・,an E ~,n ~ O} of a language LC:::~• 
with respect to the actions of Brzozowski derivatives 8a (a E ~) is an infinite set; but it is well-known 
that a language L C:::ゞ isregular (i.e. recognized by some finite automata 11) if and only if this orbit 
is a finite set; moreover, if this is the case, the orbit aE.L gives rise to the minimum deterministic 
finite automaton (DFA) recognizing L. To be more specific, let S:＝応L= {Lぃ・ • ・,Ln} be the 
state set (with L1 = L) and define the transition function o: S x刃→ Sby o(Li, a) := 8ふ ES.
This data defines a DFA (S, o) that recognizes the original regular language L with the initial state 
s0 := L1 =LES and the final states F :={RES IEE R}. By definition, the regular languages 
Li E S satisfy a system of "differential equations" with respect to Brzozowski derivatives in that, 
for each Li ES and a E ~, we have 8aLi ES, thus 8aLi = Lj for some j; and this relationship is 
equivalent to the data (S, o), in other words, the DFA (S, o) can be identified with this system of 
differential equations. 
Conversely, regular languages can be seen as solutions to such "differential equations" (DFAs): 
Given a DFA (S, o) over a finite alphabet ~ := { a1, • • •, am}, we shall symbolically denote this data 
by the following differential-equational form: let S = { sぃ...,sn}and denote Sij := o(si,aj) Es, 
then 

ds1 = a1 ・ s11 + ・ ・ ・ + am ・ s1m 

dsn = a1 ・ Sn1 +・•· +am ・Snm 

This system of equations is equivalent to the data (S, 8). 
Now fix final states F <;;; S, and for each Si E S, we associate the regular language Li recognized 
by the DFA (S, 8, Bi, F). Then these regular languages Li give the solutions to the above system of 
differential equations in that, if we replace Si with Li (recall that each Sij are some Bk E S) and dsj 
with dLj := Lj ¥ { E} (namely dLj is Li minus the "constant term" E), these regular languages Li and 
dLj satisfy the above equations by interpreting + the union of languages and ・ the concatenation. 
To see this, the best way is to consider some example. 

Example 3.1.1. For instance, suppose that~= {a,b} and the DFA (S,8) is given as follows: 

ao 

11 For some notations and terminology on DFAs and regular languages, see the Appendix A. 
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then the corresponding differential equations are the following: 

ds1 = a ・ s2 + b ・ s3 
ds2 = a・ 砂＋b・ S1 

ds3 = a ・ s1 + b ・ s2 

(3.4) 

(3.5) 

(3.6) 

This is because, by definition, we have s11 = o(s1, a)= s2, and s12 = o(s1, b) = s3 and so on. If we 
take, for instance, the final state F := {s3}, and then associate to each si ES the regular languages 

Li := L(S, o, si, F), these regular languages Li, L2, L3 and dL1, dL2, dL3 defined above satisfy the 
following equations of languages: 

dL1 

dL2 

dL3 

a・ L2 + b ・ L3 
a・ら＋b・ L1 

a・ L1 + b ・ L2 

(3.7) 

(3.8) 

(3.9) 

Note that these equations are equivalent to the following equations written in terms of Brzozowski 

derivatives: 

8aL1 = L2 

8aら＝ L2

8aら＝ L1

f)bム＝ L3
f)bら＝ L1 

f)bら＝ L2

(3.10) 

(3.11) 

(3.12) 

Further notice that, if languages L1, L2, L3 satisfy this system of differential equations, then they 
are necessarily all regular languages by their orbit finiteness. 

Remark 3.1.2. To highlight the analogy, we regard the equations for the DFA (S, 8) as an analogue 
of the following differential equations on three functions Jiふふ withtwo variables x, yin terms 
of their d直erentialI-forms: 

dfi = dx ・ h + dy ・ h 
df2 = dx • f2 + dy ・ fl 
dh = dx ・ Ii + dy ・ h 

Equivalently, comparing this with the following general definition of differential 1-forms: 

dfl 
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the above equations on differential 1-forms are equivalent to the following equations similar to the 
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language equations in terms of Brzozowski derivatives: 
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Compare these equations of two forms with those of the form of the DFA (S, 5) and of the Brzozowski 
derivatives of regular languages L;. 

3.2 The second-level analogy 

Thus, at least on this equational level, DFAs (resp. their regular languages) are explicitly analogous 
to systems of linear differential equations (resp. their solutions); this analogy is not superficial than 
one might first think in that we can further develop this equational-level analogy to the higher level, 
which is a natural analogue of the categorical framework of the galois theory for linear differential 
equations [23, 24]; this higher-level analogy is also compatible with the first-level one. In fact, the 
classical Eilenberg theory [14] can now be seen as a DFA counterpart to the galois theory of linear 
differential equations. 
Before proceeding to their categorical frameworks, it is essential to recall briefly what such galois 
theories (and Eilenberg theory) provided us: On the one hand, a characteristic result in the galois 
theory of linear differential equations (or d~.fferential galois theory for short) is a characterization of 
Liouvillian extensions L of a differential field K, i.e. those differential-field extensions L/ K which 
can be obtained by extending the functions in K by the operations of (i) integrals, (ii) exponentials 
ef, and (iii) solutions to algebraic equations with coefficients in K; to be more specific, a (Picard-
Vessiot) extension L/K is Liouvillian in the above sense if and only if the identity component of 
its galois group Gal(L/ K) is soluble (cf. e.g. §1.5, [18] for more detail). This theory is, of course, a 
differential-equational analogue of the classical galois theory for fields, which also has an analogous 
result; to be specific, the classical result in this theory states that a (galois) extension L/Q can be 
obtained by extending the numbers in Q by the operations of (i) four arithmetic operations, and 
(ii) roots, if and only if its galois group Gal(L/Q) is soluble. Moreover, as discussed in [23, 24], 
Eilenberg theory also has analogous results to these two theories. For instance, according to the 
theorem of Schiitzenberger [20]12, which is the origin of Eilenberg theory, a regular language L is 
definable by the first-order fragment of Biichi's monadic second-order logic (MSO) over finite words 
if and only if the syntactic monoid M (L) of L contains only trivial subgroups (cf. e.g. [17] for more 
details). As these results indicate, the galois theories (and Eilenberg theory) equally provided us 
a method to reduce problems on some expressibility of solutions of differential equations, algebraic 
equations and those of DFAs (i.e. regular languages) to purely algebraic problems on groups (and 
monoids). 
It is notable that there exist their respective duality principles behind these analogous results; in 
fact, the last two theories could now be unified by a single duality theorem for semi-galois categories 
in a precise sense discussed in [23, 24]; and this unification makes the above analogy between DFAs 
and linear diザerentialequations a bit more formal. Technically, the differential galois theory can be 

12Together with the works of McNaughton and Papart; see e.g. [17] for some historical background. 
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formulated in terms of the duality theorem between (pro-) algebraic groups (schemes) and (neutral) 

Tannakian categories [18]; the classical galois theory for field extensions (as well as its analogue for 

covering spaces) can also be formulated in terms of the duality theorem between profinite groups 
and galois categories [22]; and further Eilenberg theory can be formulated in terms of the duality 
theorem between profinite monoids and semi-galois categories [23, 24]. In the sense that our last 
duality theorem includes the second one (for galois theory), we may say that Eilenberg theory is the 

monoid variant of the classical galois theory; and in this relation, notable for our current subject is 

that Tannakian categories too are formally defined as the vector-space enriched variants of (semi-) 
galois categories. 13 

Therefore, at this stage, we observe that Eilenberg theory and differential galois theory share a 
common theoretical structure, despite of their ostensible difference; this comparison also highlights 

where these two theories are actually different. In particular it seems most characteristic that, while 

(semi-)galois categories become equivalent to those ofrepresentations of profinite groups (monoids) 
in finite sets, Tannakian categories become equivalent to those of representations of suitable compact 
groups in finite-dimensional vector spaces14; and this difference also appears in the fineness of the 

topology of their dual fundamental groups (or monoids) (cf. §4). 
The geometric ingredient of this difference is best clarified when we consider concrete examples. 

Thanks to the fact that both classes of categories are defined axiomatically, it is often the case that a 

cat,egory <ef', wh~ch co~sists of ?comc~~i~ ~bjccts ~~d scc_mi~gly has nothing to_ do ~ith (lincar/~nitc 
set) representations of groups (monoids), is actually equivalent to a category of such representations. 
In the following we see how such categorical equivalences arise, by three geometric examples: The 

first example is a Tannakian category known in differential galois theory; the second one is also a 

related Tannakian category and intended for a comparison to the third one, which is the semi-galois 
category introduced by Borger and de Smit [5, 6, 7] and the main objective of our study in [25, 26]. 

Example 3.2.1. For instance, let <ef'be the category of complex vector bundles with connections 
over a connected Riemann surface S, say, S := P八{O,oo }; then <ef'forms a Tannakian category, and 
equivalent to the category Rep"'(S) of finite-dimensional complex representations of the fundamental 

group 1r1(S)＝町(S,1)':::'Z. (See [18] for more detail.) 

To be specific, this equivalence F : <ef'→Rep"'(S) is given by taking the monodromy representa-
tions of a system of differential equations arising from (V，▽）： Indeed, by definition, each object of 
<ef'is a pair X = (V，▽） of a vector bundle V over S and a connection▽ :V →応0V, where !1s 
denotes the line bundle of holomorphic differential 1-forms on S. In our example S = P1 ¥ {O, oo }, 
we have a global coordinate z so that !1s = Osdz, where Os is the sheaf of holomorphic functions 
on S; and every V is free, i.e. V'::::'0尽． Therefore,giving a connection V : V→!1s 0 V is equivalent 
to giving the composition: 

▽ d: V→Osdz 0 V 若01
右

――→V; (3.16) 

hence, if we take a basis { e1, ・ ・ ・, em}<;;; V(S) over Os, we have A=(%) with aij E Os(S) so that 
▽ei＝区ja砂z0 ej, and thus,▽（区，恥）＝どij（磨＋ai山）dz0 ei for fi E Os; in other words, 

13To be more precise, at least to the best of our knowledge, we do not yet know whether there exists a formally 
common framework that unifies (several variants of) Tannakian categories and (semi-) galois categories, except for 
the discussion of Bruguieres [8]; see also the work of Schiippi [19] for a unification of several Tannakian categories. 
14There are several variants of Tannakian categories [19]. Also, in terms of the mythical field with one element lF1, 
finite sets are considered as vector spaces (or affine spaces) over lF 1; therefore, at least in this mythical (or intuitive) 
sense, (semi-)galois categories can be informally considered as special cases of Tannakian categories, where the base 
field is the "smallest field" lF 1・
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the operator▽:'. is represented as▽-1,=羞＋Awith respect to the basis { ei} on V(S); and▽is 
石

determined by A. 
GivenX = (V，▽） E't', we can define the sheaf Wx on S of solutions to the differential equation 

•~ = 0 by Wx(U) := {~ E V(U) I •~ = O} for each open subset U <;;; S. Then Wx forms a locally 
constant sheaf of complex vector spaces of the same rank m. As above, if { eぃ・ • ・, em} is a basis 
of V(S), the differential equation •~ = 0 is equivalent to the system of linear differential equations 
告＋区凸/j= 0 (i = 1, ・ ・ ・, m), or equivalently: 

羞[)=-A [)• (3.17) 

By a;j E Os (S), we can choose { e;} so that A is locally constant; and the local solution space Wp 
of this equation at each point p E S is of dimension m over <C. Then each -y E 1r1 (S, l) gives rises 
to a <C-linear automorphism px('Y) :罰→罰 byanalytic continuation of local solutions along -y, 
hence a linear representation p x : 1r1 (S, l)→ GL（罰）． Theequivalence F :杉→ Rep1r,(S)is given 
by this correspondence X→F(X) := (W1,Px). 

Example 3.2.2. Let (K, 8) be the differential field given by K := <C(z) and 8:＝羞； andlet <t'be 
the category of pairs (V，▽）， where Vis a finite-dimensional vector space over K = <C(z) and▽is a 
regular singular connection▽ : V →flR V with singular locus in { 0, oo}こP1(cf. §6.4, [18]), where 
fl := <C(z)dz denotes the meromorphic differential 1-forms on the Riemann sphere P1 = <C U { oo}. 
Then <t'forms a Tannakian category, equivalent to the category Repz of finite-dimensional complex 
representations of the additive group Z = 1r1 (P1 ¥ {O, oo }, 1). In particular, in relation to the next 
example of semi-galois categories, we are concerned with the result that every irreducible module 
（V，▽） E <t'arises as the generic fiber of some vector bundle (V，▽） on P1 with a regular singular 
connection▽(Theorem 6.22, §6.5, [18]). 

Example 3.2.3. Let K be a number field and OK the ring of integers in K; the semi-galois category 
緑 introducedby Borger and de Smit [6] consists of A-rings finite etale over K with integral models 
(cf. §2, [25]). To highlight some analogy, we briefly recall basic concepts; for more details, the reader 
is referred to the original sources [6, 5, 2, 25, 26]. 
For a flat OK-algebra A, a A-structure on A is defined as a family｛咋： A →A}p of OK-algebra 
endomorphismsゆP:A→A indexed by the maximal ideals p E PK of OK such that, for all a EA 
and p,q E P氏

1.咋a-aNPE pA; 

2.咋四＝四咋；

where Np denotes the absolute norm of p. The first condition says that咋 isa Frobenius lift; and 
the second says that they commute with each other. A pair (A，咋） ofa flat OK-algebra A and a 
A-structure｛咋｝ onA is called a A-ring; in particular, if Xis a K-algebra, any commuting family 
｛咋｝ ofK-algebra endomorphisms on X satisfies the two conditions, and the pair (X島） formsa 
A-ring. In the sense we discussed in §2.1 [25], the A-structure can be seen as a kind of "differential 
structure" on A; see also [9, 10]. 
The category緑 isdefined in [6, 5] as the one consisting of finite etale A-rings X over K having 
integral models; this means that X has a sub A-ring AこXfinite over OK such that X = K R A; 
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or in other words, (Spec(X)，ゆp)is the generic fiber of (Spec(A)，ゆp).It was shown by Borger and 
de Smit [5, 6] that the (opposite) category咋 formsa semi-galois category together with th~ fiber 
functor FK:句？→Sets1 being given by taking the geometric points FK(X) := Hom瓜X,K)and 
the fundamental monoid町（咋，FK)is isomorphic to the Deligne-Ribet monoid DRK, the inverse 
limit of certain ray class monoids DRt (f E IK), cf. §2 [26]; most importantly, their proof clarified 
an intrinsic connection between classical class field theory and (generalized) A-rings [3], which have 
an origin in special入＿ringsin Grothendieck K-theory (§1, [5]); moreover, we showed in [26] that the 
galois objects of <ef'K for imaginary quadratic fields K admit natural analytic description in terms of 
deformation families of Fricke's modular functions fa (a E守／Zり． Inview of these results, it seems 
that the framework of (generalized) A-rings [3, 4] and their semi-galois categories緑 [5,6, 7, 25, 26] 
provide us a right angle to look at classical class field theory. 
In order to see that the A-structure on rings can be seen as a kind of differential structure, and 
to highlight some analogy with the above examples of Tannakian categories, we here rephrase the 
above construction of <ef'K in terms of the arithmetic jet spaces [4]; in fact, this can be phrased in 
terms of a more generic topos theory as we mentioned in §5.1 [25] too, which might be useful when 
one constructs other examples. 
Let汐bea (connected Grothendieck) topos and P:忍→汐bea left exact comonad; a geometric 
example due to [4] is the topos,fJ of spaces over Spec(Z) and the left exact comonad P :汐→忍
associating to each space X E汐thearithmetic jet space P(X) (cf. also [2]). Then (or equivalently), 
there is a surjective geometric morphism四：汐→今 tothe topos心 ofP-comodules (X，▽）， 
where we call the structure map▽ : X →P(X) as a connection on X E rfJ. (We shall regard them 
as lF 1-analogues of connections▽ : V →!1 RVon vector bundles V; in the case of [2], P-comodule 
strucrueres are equivalent to A-structures, cf. [2]; see also [10]) 
Given a P-comodule (B, V) E今， wecan define a category <ef'(B，▽） consisting of P-comodule 
maps (X，▽） → (B，▽） such that X→B is locally finite and locally constant inぷ， and欽 comodule
maps over (B，▽）； denoting by C§B the galois category of locally finite and locally constant objects 
X →B over Bin汐， wehave a natural forgetful functor U :荀B，▽） → ％， which is by construction 
exact and reflects isomorphisms; C§B having a fiber functor p* : C§B→Sets f induced from a point 
p: Sets→ぷofぷ， thecomposition F := p* o U : <ef'(B，▽） → Sets1 i is exact and reflects isomorphisms 
so that the pair (<ef'(B，▽），F) forms a semi-galois category (cf. Proposition 6, [25]). 
The construction of咋 isrephrased in these topos-theoretic terms applying to the framework 
of A-algcbraic gcomctry [2]. To bc morc spccific, lct汐 bethe topos of spaces over Spec(0い(i.e.
sheaves on affine schemes over Spec(OK) with respect to the etale topology, cf. [4]); and P:汐→ぷ
be the comonad associating to each space X Eぷitsarithmetic jet space P(X) E汐． Asthe base 
P-comodule (B，▽） E心， wetake B = Spec(K) together with the trivial A-structure▽K (i.e. 1/)p's 
are all the identity), which induces a semi-galois category<ef'(Spec(K)，▽K) as above. Nevertheless, this 

知pec(K)心） itselfis not equal to the target <ef'K, i.e. <ef'K consists of those (X, V) E<ef'(Spec(K)心）
which have integral models, in other words, arise as the generic fiber of some affine A-scheme finite 
over Spec(OK), 

Remark 3.2.4. It is notable that these d叫 itytheories for Tannakian categories and semi-galois 
categories equally play the role in reducing geometric objects (such as vector bundles (V,▽） with 
connections/finite etale A-rings over fields) to more concise objects that at least seemingly have less 
information than the original geometric raw data: In the case of the Tannakian category of vector 
bundles (V，▽） on Riemann surfaces with connections (Example 3.2.1), these geometric data could 
be classified (up to isomorphisms) by their monodromy representations (W1, p x), which seemingly 
contain quite local information on the fiber space W1; similarly, in the case of semi-galois category 
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of finite etale A-rings over K with integral models (Example 3.2.3) too, the A-rings (X，咋） couldbe 
classified by their geometric fiber sets FK(X) together with the action of心p.The major difference 
is that, while the former needs linear-space data, the latter needs only finite sets (i.e. 0-dimensional 
data) for their classifications; we note that these distinction can be equally stated as the distinction 
of the class of geometry. 

4 Comparisons 

As mentioned in §1 and §2, physics and theory of formal languages and computation are still quite 
different disciplines in several respects; but as we observed in the above arguments (§3), it also seems 
true that their mathematical languages do share some common (or analogous) theoretical structure 
at least when restricted to their respective simplest cases, i.e. linear differential equations and finite 
automata. In view of the several aspects discussed in §2.3 concerning these two disciplines, it would 
be in order to discuss here some geometric and conceptual ingredients of these observations; it also 
seems reasonable to wonder whether these observations extend to higher computational models and 
non-linear differential equations (or in other words, more contextual systems). The latter problem 
(on the extendibility) will be discussed elsewhere; in this section, we focus on the former conceptual 
issue to summarize this paper. 
On the whole, as briefly mentioned in §1 too, this paper tried to re-locate the classical theory of 
formal languages and computations coherently in a wider geometric context, aiming to rebuild this 
discipline so as to be comparable to physics in some mathematically formalized manner. Historically 
speaking, the studies on languages and computability concept are deeply relevant to understanding 
of the mechanism of our mind and logical thoughts; but in nature of the subject, we are immediately 
faced to several methodological challenges about which we were not bothered in physics: Indeed the 
objects of study in this discipline are our experiences in our internal reality, hence, inevitably sub-
jective in nature. In this difficulty, formal language theory focused on the combinatorial structures 
of (formal) languages (i.e. sets of finite words, or texts) so that we can discuss linguistic issues in a 
more quantitative or qualitative manner with formally defined mathematical models, i.e. generative 
grammars (§2); this methodology was fruitful enough so that the paradigm has been influential to 
diverse disciplines, say, psychology, cognitive science, and computer science. 
With this background, this paper was devoted to highlight some analogies between the simplest 
fragments of the mathematical languages traditional in theory of computation and physics, namely, 
DFAs (resp. regular languages) and linear differential equations (resp. their solutions). As discussed 
in §3, the analogies between them are multi-layered from an equational-level to a categorical level, 
and seem to be more than superficial. Conceptually, both (discrete/continuous) dynamical systems 
(i.e. DFAs/linear differential equations) have a common characteristic feature that their behaviors 
are both determined locally; these features best appeared in their equational descriptions (cf. §3.1); 
these analogies could be strengthened by the categorical axiomatizations of their traditional classi-
fication theories (i.e. Eilenberg theory and differential galois theory) in terms of the d叫 itytheories 
for semi-galois categories and Tannakian categories (cf. §3.2). In the informal sense that semi-galois 
categories can be regarded as the simplest case (or the Boolean-valued case) of Tannakian categories 
(i.e. those over the smallest field lF1; cf. the footnote in the 12-th page), our categorical comparisons 
of the two classical theories re-locates them in a single context, clarifying where these two theories 
are actually different. 
To be more specific, as mentioned in §3.2 too, it is characteristic that, technically speaking, fiber 
functors on (semi-) galois categories are finite-set valued, while those of Tannakian categories are 
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vector-space valued; these difference was more clarified when we consider their geometric examples 
(Example 3.2.1, Example 3.2.3): The A-rings XE緑 finiteetale over a field K could be classified 
(or determined) up to isomorphism only by the data of their fiber sets FK(X), while vector bundles 
(V，▽） €鈴 on Riemann surface with connections are classified (or determined) up to isomorphism 
by the data of their linear space W1 of local solutions. On the one hand the objects X of the former 
semi-galois category筍Kare geometrically 0-dimensional (generally, etale over the base), and thus, 
they could be determined only by their fiber sets; however, in the case of the objects (V，▽） E ~sin 
the latter Tannakian category, the local solution space訊 ofthe differential equation •~ = 0 is a 
linear space over the complex number field C, and the analytic continuation along each'YE 1r1(S, 1) 
defines a C-linear automorphism on W1. In view of that it is already a non-trivial fact that the 
whole structure X = (V，▽） is determined only by such quite local information (W1, p x), it would 
be generally impossible in principle to reduce this linear-space data to further sparse data such as 

finite fiber sets for recovering the original geometric raw data (V, V). In other words, according to 
the geometric structure/complexity of objects to be classified, necessary data to parametrize them 
(or classify them up to some identification) can vary; in some sense, the topology of necessary data 
of such parametrization represents their geometric complexity in a qualitative manner. 
With these geometric comparisons in mind, let us come back to our consideration on linguistic 
and computational issues (§2). As mentioned above, formal language theory conventionally studies 
formal languages, i.e. mathematically, sets L C:: I:* of finite words, which combinatorially model text 
data sets in natural language. Similarly, several computational models such as Turing machines too 
model our computational procedures (such as, to write down some symbols on a paper, then read the 
symbols to process the computations) with some sorts of discrete dynamical systems (i.e. dynamical 
systems whose state spaces have the discrete topology). In this way, the classical theory of formal 
languages and computations models our linguistic/logical activities with models of discrete kinds, 
while physics conventionally models the time evolutions of the universe with models of continuum 
kinds (i.e. their states are parametrized by real/complex numbers) such as symplectic manifolds or 
C* -dynamical systems. 
It seems that, nevertheless, the discrete nature of mathematical models traditional in the former 
discipline is not intrinsic in the subject itself; rather, it seems that such a topological sparseness of 
conventional models comes from the technological limitation (in the early days of this discipline) 
of measurements of (physical) quantities relevant to our linguistic and logical activities. In view of 
the recent development of neuro-science, this old technological limitation of measurements will be 
overcome sooner or later to develop new kind of linguistic/computational/logical models. (Actually 
there are already many of such neuroscience-based models.) 
In any case, however, we will continue to use some mathematical language of geometry; and this 
is why we emphasized that we re-locate the classical theory of formal languages and computations 
in general geo-metric context (cf. §1); in fact, we regard the activity of developing a mathematical 
theory of physics (or any mathematical sciences) on the whole as the very linguistic activity, hence, 
the very scope of our language theory in an extended and unconventional sense, where all classes of 
geometry are our formal models of general languages, not limited to the discrete one. To highlight 
the point a bit more, remember that we said in §2.3 that we compare the traditional "mathematical 
languages" of physics and theory of computations rather than saying that we compare "physics and 
theory of computations" since the comparisons of languages (in our extended sense) are possible at 
mathematical level because it just concerns comparisons of geometries, hence, is purely the matter of 
geometry. Indeed, geometries (such as differential, non-commutative, discrete ones etc.) have been 
our formal languages to parametrize entities and their dynamics of concern in the external reality; 
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the only essential difference in these mathematical-scientific activities is in the kind of geometries 
(or mathematical languages) that we utilize. In this respect, comparisons of geometries constitute 
a notably large fragment of general language theory in our extended sense, which themselves would 
be mathematically formalizable within geometry豆

A Notations on DFAs and regular languages 

Let Ebe an arbitrary alphabet (finite or infinite). By definition, a language L <;;; E* over Eis called 
a regular language if it is recognized by some dete77ninistic finite automaton (DFAs for short) over 
刃． Tobe precise, DFAs over刃aredefined as follows: 

Definition A.0.1 (DFAs). A dete77ninistic finite automaton (DFA) over Eis a pair A=  (S, 15) of 
a finite set S and a map i5 : S x E→S, where the elements of Sare called the states of A and the 
map i5: S x刃→ Sis called the transition function of A. 

Given a DFA A = (S, o) over江 thetransition function i5 : S x刃→ Snaturally extends to a 
map i5: S xど＊ →S by induction on the length of finite words w E ：ゞ namely,o(s,2) :=sand 
o(s, ua) := i5(i5(s, u), a) for u E刃＊ anda E E; also, given an initial state s0 E S and a set FこSof 
final states, we can define the language L(A, so, F)こゞ asfollows: 

L(A,so,F) := {w EI:* I <5(so,w) E F}. (A.1) 

Definition A.0.2 (regular language). A language L こ~• is called a regular language if there exist 
a DFA A=  (S, i5), initial state so E S and a set F <;;; S of final states, we have L = L(A, so, F). 
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