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1 Introduction 

Electronic energy levels (eigenvalues of electronic Hamiltonians) govern the 
properties of molecules such as stable structures and dynamics and are cen-

tral to quantum chemistry. The electronic Hamiltonian for N electrons acting 
on L憚州 iswritten as 

N N 
1 

H(R1,...,R叫：＝ーうこ△r,＋どV(ri)＋こ 1 

lri-rjl' i=l i=l 1:<:;i<j:<:;N 

M 

V(r)：＝ーと
A=l 

ZA 

lr-RAI' 

where R1,...,RM E 配 arepositions of M nuclei, Z1,..., ZM E N atomic 
numbers of M nuclei, r1,..., r N E配 positionsof N electrons andふ isthe 

Laplacian for ri. Let E(R1,..., R叫 bean eigenvalue of H(R1,..., RM). The 
equilibrium structures of the molecule are minimum points of the function 

F(R1,...,RM):= E(R1,...,RM)＋区 ZAZB 

1:c:;A<B:c:;M IRA-R引'

of the nuclear positions R1,..., RM. The rate of chemical reactions are also 
determined by the graphs of F(R1,..., RM) over curves connecting two equi-

librium positions. (The whole system may split into subsystems, in which case 
the equilibrium position is at infinity.) 

Enormous time and effort are spent on the evaluation of the eigenvalues. 
However, most of the results are concerned with upper bounds by the varia— 
tional method (Rayleigh-Ritz method based on the min-max principle) or some 

perturbation or expansion theory. As for the perturbation or expansion theory, 
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it would be hopeless to give practical error estimates between the values calcu-

lated by the method and the true eigenvalues. As for the variational method, 

only upper bounds are obtained and it is obviously impossible to obtain error 
estimates by the variational method only. 

A method to obtain error estimates is to obtain both upper and lower 

bounds. If we obtain an upper bound Eub and a lower bound Ezb of an eigen-

value E, we obviously have IE-Eubl, IE-Ezbl:::; Eub -Ezb-Thus Eub and Ezb 
are approximations to E with an error estimate Eub -Ezb• This is the reason 
why we seek lower bounds. Despite the obvious motivation there has not been 
significant progress for lower bounds. There is no general method for lower 
bounds without strong additional restriction or information about the operator, 

known methods often do not have enough accuracy, and quantities needed in 
the estimates are usually very difficult (impossible at present) to evaluate. 

The most successful method for lower bounds would be the method by Tem-

ple's inequality (cf. [8, 15]). The lower bound by Temple's inequality is known 

to have high accuracy at least for simple systems, but in the inequality we need 
a lower bound to the eigenvalue next to the evaluated one. Therefore, it is 

impossible to obtain lower bounds by Temple's inequality only, and we need 
to find rough lower bounds by other methods. The most promising method 

for that purpose would be the Weinstein-Aronszajn intermediate method (cf. 
[17, 2]) or rather methods derived from that method (cf. [16, 4]). However, in 

the application of the Weinstein-Aronszajn method, we confront integrals for 
which no method of accurate evaluation have been known. The integral has the 
form 

［か(rA)砂(rB)I応(r'e)匹(r'o)l

1 
:= f f匂(rA)心(rB) ゅ＊（’）ゆ('

Ir -r'l2 
; (r0)'lj;4 (rn)drdr', 

R3 配

(1.1) 

where rA = r-RA E配 and仇， i= 1,..., 4 are the Slater type orbitals (STO). 
If the factor Tr叶 isreplaced by the usual Coulomb potential ~可,the

integral is the multi-center integral whose evaluation is the central subject of the 
calculation of the variational upper bounds of electronic Hamiltonians. In the 

variational method when all STOs are centered at the same point (i.e. RA = 

RB= Re= R叫， wecan calculate the integral using the Laplace expansion 
(see e.g. [18, 7]) 

oo l l 
1 l r 

|r-r’|＝4心と 2l+1芯1z;,.(0'ぷ）加(0,r.p), 
l=O m=-l 

where (r,0,r_p) and (r',0',r_p') are polar coordinates of rand r'respectively, 

仄＝ min{r,r'｝，ち＝ max{r,r'}, and如 isthe spherical harmonics. 
The case of RA= RB cJ Re= Rn can also be evaluated using the Laplace 

expansion. When RA = ReヂRB= Rn, the integral for the usual Coulomb 
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potential can be calculated using the Neumann expansion (cf. [11, 14]) 

1 2 
oo l 

(l -lml)! 
|r-r’I＝心と（一1)叫2l+1)（（l+|m|）＇) 

2 

x pl|m|（し）Q戸（ら）P)ml(ry)P)ml (ry')eim<p e―im又

where (l, rJ,ゃ） and(t, ry','P') are ellipsoidal coordinates of r and r'respectively 
1ml with foci RA and R圧 l<= min{l,l'｝，ら＝ max{l,t},P)ml and Qjml are the 

associated Legeandre functions, and R = IRA -R引． Forthe other cases we 
use the translation of STO (cf. [13]). We expandゆ(r叫 bySTOs (()j centered 

at RA as 
00 

ゆ (r叫＝~Cj(()j(rA)-
j=l 

In the case of multi-center integrals for lower bounds of the eigenvalues we 

need to deal with ~ instead of ~. Therefore, we can not use either the |r-r | |r-r’| 
Laplace and Neumann expansions, and similar expansions are not known for 

the squared Coulomb potential. By methods free from such expansions analytic 
expressions and expressions by one-dimensional integrals have been derived for 

fundamental one-center and two-center integrals by the author (cf. [3]). A re-
duction scheme of three and four-center integrals to the fundamental one and 
two-center integrals with error estimates have also been derived. Numerical cal-

culations of the fundamental one and two-center integrals have been performed 
by these expressions. Fundamental hybrid two-center integrals were also eval-
uated using the results for the fundamental one and two-center integrals. The 

results obtained using the expressions by one-dimensional integrals were found 

to have high accuracy and would be reasonable for the calculations of lower 
bounds for energy levels of small molecules. 

2 Lower bound methods 

2.1 Temple's inequality 

Let us denote isolated eigenvalues of a lower semibounded operator H in as-

cending order as 
μ1 ::::; μ2 ::::;... ::::; μ00, 

where μ00 is the infimum of the essential spectrum of H. When μi is the lowest 

isolated eigenvalue, we interpret μj for j > i as μj = μ00. The following Temple's 
inequality gives highly accurate lower bounds at least for simple systems (see 
[8, 4]). 

Theorem 2.1 (Temple's inequality). IfゆED(H),||心||＝l and μ(k+l)lb satisfy 

〈心，H切 <μ(k+l)lb::::;μk+l, we have the following Temple's inequality: 

μk：：：：：〈心，H心〉一
〈心，H％〉-〈心，H心〉2

叫＋l)lb-〈心，Hゆ〉．
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Here μ(k+l)lb must be a lower bound to μk+l・ A variational upper bound to 

叫＋1is not allowed. Since 〈心， H2心〉一〈心， H心戸＝〈ゆ，（H- 〈ゆ， H切）2心〉~ 0, 
the second term in the right-hand side is negative. Thus it is predicted that for 

accurate lower bounds we need〈心，Hゅ〉 2限 (Thisinequality always holds for 

k = 1). Therefore, we need μ(k+l)lb > μk, that is, μ(k+l)lb separates μk and 
μk+l・ Moreover, the larger μ(k+l)lb is, the larger the right-hand side is. In order 
to apply Temple's inequality we need to obtain lower bounds μ(k+l)lb by other 
methods. 

2.2 Weinstein-Aronszajn intermediate problem method 

Actually, we do not have many methods for lower bounds. A method which 

seems to have a possibility to give a value μ(k+l)lb which satisfies μ(k+l)lb > μk 
is the Weinstein-Aronszajn intermediate problem method and methods derived 
from that method (although this speculation is groundless). The idea of these 

methods is summarized as follows (see [16, 4]). 

• If operators A and B satisfy A~ B, then μt ~ μf. 

• If C is a finite-dimensional operator, μ is an eigenvalue of A + C if and 
only if μ is a zero of det W (μ), where W (μ) is a finite-dimensional matrix 

expressed using A, μ and a basis of Ran C. 

lfA < A+c < B, we have A < A+C B μf: S μ-;;-rv S μ1f:. Moreover, in some cases the 
calculation of the zeros of det W(μ) can be executed. Thus we can calculate 

a lower bound μ:+c ofμ: which improves a trivial lower bound μt in such 
a case. In all methods derived from the Weinstein-Aronszajn method, B must 

be an operator represented as a sum A + G of A whose eigenvalue problem is 
solvable and a positive operator G. 

In the case of the electronic Hamiltonian we regard H as a sum A + G of 

N N 

A:= —こ△r, ＋ ~V(ri),
i=l i=l 

and a positive operator 

G:＝区 1 

ピi<j：：：：N
lri-rjl. 

Although the eigenvalue problem of A is not solvable, it is a sum of one-body 

operators, and it would be better to handle such a one-body operators first than 
handling the eigenvalue problem of H directly. When we apply the Weinstein-
Aronszajn method in the next step, we need to calculate the integral〈w,G瑾〉
where Wis an approximation of the eigenfunction of H. In fact, the same kind of 
integral is needed in all lower bound methods including the method by Temple's 

inequality 
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3 Structure of the eigenfunction 

3.1 Exponential decay 

A well-known property of the eigenfunction of the electronic Hamiltonian is the 

exponential decay (cf. Agmon [l]). Let us introduce a few notations to express 

the decay rate. 
For I <;;; {l, ・ ・ ・, N} we define a subset兄 of股3Nby 

Xr := {(r1,...,rN) E股3N: ri = 0 if i f'-J}. 

We also define an operator Hr onび（ふ） by

1 
HJ:＝一区△m＋LV(r』＋ こ

lri -rjl ・ 
iEI iEI 1：：：：にこj：：：：N

i,jEI 

Set Ar := inf(J（HりforI =J 0 and Ar:= 0 for I= 0. For any (r1,...,rN) E 

恥3N¥ {O} denote by I(r1,..., rN) the subset of integers i E {1, • • •, N} such 
that ri = 0. For E < infびess(H) let us denote by p(r1,..., r N) the geodesic 
distance from O to (r1,..., r N) with respect to the Riemannian metric 

N 

d討＝（Ar(r1,...,rN)-E)区|dri|乞
i=l 

Here Id研：＝ （d叩戸十 (dyi戸＋ （dz況 where(x 疇， zi)is the Cartesian coor-
dinates of ri E配． Usingthe distance the exponential decay is expressed as 

follows. 

Theorem 3.1 ([1, Theorem 4.12]). Let l]i be an eigenfunction associated with 

an eigenvalue E < inf(J'ess (H). Then fo'f'any E > 0 the'f'e exists a constant 
C, > 0 such that 

l'1i(r1,..,,rN)I::; C,e―(l-,)p(r1,..,,rN) 

a.e. on股3N.

3.2 Kato's cusp condition 

Another important property of the eigenfunction is the cusp condition (cf. Kato 

[9]). 

Theorem 3.2 (Kato's cusp condition [9]). Let r E配 bea position of an 
electron and r E股3(N-l)be the position of the other electrons. Then an eigen-

8,JJA 
function ¥J!(r, r) satisfies ~ I.  = -Z謹 (RA,r) except at some points r of 

BrA 
TA=O 

a set of lower dimension, where r A=  Ir -RAI, and炉 isthe average value of 

¥JI taken over the sphere r A = const for a fixed value of r. 
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An approximation to the eigenfunction is constructed as a linear combination 
of Slater determinants 

W(r1,...,rN) := (N!）―1/2区 (sgnT)か(rr(l))・ ・ ・応(rr(N))-
rESN 

According to Kata's cusp condition we can expect thatか(r)with a radial factor 
e―<r, (> 0, r := lrl is suitable for the approximation. Such a function is in 
general called a Slater type orbital (STO). 

4 Slator type orbital (STO) 

Let us denote the Cartesian coordinates and the polar coordinates of r E配

by x, y, z and r, 0, cp respectively. Here we consider the following unnormalized 
STO: 

x似(r,() := Z["(r)rn-le―<r, 

where n, l E N, m E Z, -l ::; m ::; l, (> 0 is a parameter, and Z『(r)is the 
spherical function defined by 

Z『(r):= im+lmlrlprl(cos0)eim汽

that are actually homogeneous polynomials of x, y, z of degree l. Here庁 (t)
is the associated Legendre function defined by Pi叫t)= (1 —柱）m/2伍P1(t),
where P1(t) is the Legendre polynomial. It is well known that Z『satisfiesthe 
Laplace equation▽誓＝ 0.We also define知 (0,cp) by 

知 (0,cp):=im+lml (~)112 P)ml 
41r(l + lml)! 

!1m1 (cos 0)eim<.p 

(2l + l)(l -lml)!¥ 112 
＝ （年(l+ |m|）！）口Z団(r).

Then Yim are spherical harmonics, and they are orthogonal to each other in 
び(Sり， i.e.

「J27r饂 (0，ゃ）い(0，'P)sin 0d0d'{) = i5砂 mm’・

0 JO 

(4.1) 

5 Fundamental one and two-center integrals 

5.1 fundamental one-center integral 

When all functions in (1.1) are centered at the same point (i.e. RA = RB = 
Re = Rv) and each function is STO, the integral (1.1) is reduced to the 
following fundamental one-center integral. 

[心|x丘］
1 

:= f f,；応(r,()x丘(r',(')drdr'. 
炉股3 Ir -r 
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5.1.1 analytic expression 

We can prove that [x似Ixに］ ＝0 unless l = l'and m = m'(cf. Subsection 
5.2). Moreover, when l = m = 0, we have the following analytic expression for 

［対o|x訴］．

[x贔Ix屈］ ＝l61r2 ( 
8 ¥ n (8  ¥ n'log (-logぐ

―茨）（—亮） 巴一〈'2 . 
(5.1) 

For the calculation of the derivatives in the right-hand side of (5.1) we need the 

formula ([12, (A.3)]) 

（羹）ツ＝と <2k-u/3;:(t立 k

k=［芳l ）`， (5.2) 

which can be easily confirmed by induction with respect to v, where/3;;: = 
2k-vッ！

(v-k)!(2k-v)! and [t] is the greatest integer less than or equal to t. Using this 

equation and for derivatives equation of the form 

l d l 

r dr (s + r平
2k 

(s + r2)k+l' (5.3) 

we obtain 

,_, !ノ

区 (-1)K2K<2k-V牒 区 2代2k'-v’閲

k=[~] k’=［方1]

げノ 伊' 1 

紋V灰'v'(2_ ('2 

X (k + k')! 
1 

炉ーぴ）k+k'+l.

The right-hand side of (5.1) is easily calculated using this formula. 

5.1.2 expression by one-dimensional integrals 

If we allow one-dimensi we allow one-dimensional integrals to remain in an expression of [x似凶伍],
we have the following expression which is valid even if lヂ0and mヂ0.

n 

[心|xr:,,,l 
， 

=(-l)n+n'0砂 mm’alm 〉 <2p-n/3：
p=［デl

n' (5.4) 

x 区くl2q-n1~;’字Iら，

q=[~] 

where 
22l+3(l!）2(l + |m|）！召

alm :＝ 
(2l + l)(l -lml)!' 
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富：＝ （ー2)p+q
(l + p + q)! 

l!' 
and 

Il 
1 州＋P(l-u)l+q 

匹：＝l炉U＋翌（1-U））l+p+q+1du. (5.5) 

5.2 fundamental two-center integral 

When the condition RA = RB =J Re = Rv is satisfied in (1.1) and each 
function is STO, the integral is reduced to the following fundamental two-center 
integral. 

[ n I n' 1 狐 Xv~,]R := !3 1rn股3|r -r’|2X似(rA)X丘（r~)drdr'

=f f 1 
即股aIr -r'-Rl2 

x似(r)x如,(r')drdr',

where R := RB -RA. If we choose the direction of Ras the direction of the axis 
of the polar coordinates of x似andxf加， theintegral depends only on R = IRI. 

Thus using the parameter R we have denoted the integral by [x似げ'm’]R.For 
the two-center integrals we can prove 

[心|xf~,]R = 0, m =J m'. 

We need the following formula for products of加：

lmax 

知ぷ岡＝区 c}ml'm'Yrm+m'' (5.6) 

l=lmin 

where G~ml'm'is called the Gaunt coefficient (cf. [18, Appendix Cl). Here the 

summation limits in (5.6) are given by 

Zmax = l + l', 

Zmin = { 
μmin, if Zmax + μmin is even, 

min (5.7) 
μmin+ 1, if Zmax +μminis odd, 

μmin= max{IZ -Z'I, Im+ m'I}. 

5.2.1 analytic expression 

We have the following analytic expression of [x似Ix加謡

lmax 
[心|x此]R= (-l)n+n'+l'+m+ls召区 Dv-m)l'mc}(-m)l'm

l 

l=lmin 
△l 

XLE杷R2△l-2pz『(R)
p=O 

x (U虚'~p(R, ＜ぶ）＋ U畠ぢ(R,<' ，く）），
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where 

D曰 'm':=( 

1/2 

l (2l+1)（2l'＋1)（l-m|）！（l'-m’|）！（i+|m+m’|）!）， 

El△l 2P△l!r（△z+f+3/2) 
p ：＝ 

p!（△l -p)!r（△l + [ -p + 3/2)' 

皿 d

u;ln'l'(R,<，く＇）：＝旦じ）戸(:)碍，1，μ l-u(<，<＇）w炉(R,(), 

with 

叫 1( 

8 n1 1 8 l1 8 n2 1 8 l2 1 

髯l2く，＜＇）＝只）（口氏） （で記）び一(92'

w炉(R,＜）=（羹）μ(［羹）u（点羞）q]か
Here 

g(t) := e―tEi(t) -etEi(-t), 

where Ei(t) is the exponential integral defined by 

00 e-s 
Ei(t) := -p.v. [;  ~ds. 

-t s 

It remains to calculate v~~;~ ((, (') and w~v(R, (). With the help of (5.2) 
皿 d(5.3) we obtain 

n1 
喝l：に，＜＇） ＝ （ーl)li L (-1) 入 l 炉＋l1/3悶く応—n1

ふ＝『デ］

X 
又炉＋l噂 誓2-n2 （入1＋ h十入2+ b)！ （ぐ―ぴ）入1+li＋入2+ら＋1.

心＝『デ］

As for w『(R,() using (5.2) one finds 

μ 

w炉(R, ＜)＝と平加ーµw~+u(R,(), 

6=［デ］

where 

碍(R,():= (i羹）s(土嘉）q,誓
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Since呵(R,() is symmetric with respect to the exchange of the pairs ((, s) and 

(R, q), it remains to derive an expression for呵(R,() with s ~ q. Here we need 
the following formulas for operators: 

（二）q玉＝芦CJR2j-2q-1（三）］，（5.8)

with 

CJ= 
匹！叫(2j-2i+l)

(q -j)!(2j + 1)!' 

皿 d

じ羹）T=昇-l?-"'B区K,-2T（羹）K,'

with 

尻：＝
(2T-K-1)! 

2T-"(T -K)!(K -1)!' 

which can easily be confirmed by induction with respect to q and T respectively. 
Note that責in(5.8) is a multiplication operator, and that the left hand side 

does not mean application of（責森）qto責． Combiningthese equations and 

one has 

碍(R,() 

q s-j+l 

l a l a g(M)にR)

＜沢 R8R ( 

g(M+2)（くR)

＜ 

=LCJ と(-l)s-j+l一汀B:-J+1ぐ―2(s-j+l)だj-2q十氏ー2,(2J十氏ー1)にR).

J=O 氏＝1

(5.9) 

The derivatives of g in the last expression is expressed by direct calculations as 

M 

g(2M)(t)＝ーと 2(2i-2)！
炉—1

i=l 

M 

g(2M+ll(t)＝区 2(2i-1)！
t2i 

j=l 

+ g(t), 

-etEi(-t) -e―tEi(t). 

5.2.2 expression by one-dimensional integrals 

Also for two-center integrals if we allow one-dimensional integrals to remain in 

狙 1expression, we have the following expression: 

lmax ， 
[x似lxv:,,]R= AばL (2f + 1)1l2c~―mlImM開，（5.10)

Z=lmin 
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where 

1/2 
A闊＝ （ー1)l'+mil＋呵＋l'+3z!『！T (7r(l + |m|）！（l'＋ |m|）！)  

(2Z + 1)(2Z'+ l)(Z -lml)!(l'-lml)!)' 

叫

n 

M瓢（ l)n+n'L 平 2p-n(-2)P
(l + p)! = -

l! 
p=［号］

n 
， 

X t (3岱く92p'-n'（-2)p'(l'＋p'）！U+pl'＋p' 
l’! i△l'  

L£+P l'+p' 
i△l 

P'=［唸1]

=(21r)3f2(-i)l Rl+l'+2p+2p1 +2 

(5.11) 

X 1= dk. (5.12) 
o (（くR)2+炉）l十p+l(（ぐR)2+炉）l'+p'+l

dk. 

Here J, l+1/2 is the Bessel function. 

6 Three and four-center integrals 

For three and four-center integrals we expand STO by a complete orthogonal 
system of STO. A complete orthogonal system of STO is given by 

庁 (cos0)eimがe―rL;l+2(2r), 

where p, l E N, m E Z, Z 2'. 1ml and L;1+2(s) i p s) is the associated Laguerre poly-
nomial [5]. Using this system we can expand STO centered at RB by those 
centered at O as 

(（  

P戸(cos8)RN-le-R=〉 pl州cos0)(2μr)1e―μさこ噂LML;l+2(2μr), (6.1) 

l=M p=O 

where R := Ir -R出， 8is the angle between the z邸 isand r -R8 and μ > 0. 
Recurrence relations for the calculation of Cf:, LM  have been obtained by Rico lp 
and Lopez [13], 

In the following arguments we consider expansions by a complete orthonor-

mal system'Pi of STO generally. We expand加(rB) and'lj;4(r'v) of [11 (r A)咋(r叫
I 心3(r~ ）心4(r'v)] in (1.1) by STOs'Pj centered at RA and Re respectively: 

00 

加(r叫＝どc凸（rA),
j=l 

00 

四(r'n)＝ど6k匹 (r砂
k=l 
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The equation (6.1) is an example of such an expansion. Let us assume that 
'Pi can be written as a linear combination of Xzm. Then with the help of the 
Gaunt coefficients each［加（rA)叫 rA)I如(re)匹 (re)l can be written as a finite 
sum of fundamental one or two-center integrals. Since in practical calculations 
we need to truncate the expansions up to a finite sum虹 (rA)＝区J 

j=1 位］•（rA)
and <I>K(rc)＝区K 

k=1 6四 k(r0),we h we have to estimate the error by the truncation 
written as follows: 

［か(rA)応(rB)|店(re）四(r'n)l-［か(rA油J(rA)I応(re）もK(rc)l

＝ ［か(r心（砂(r叫― <PJ(rA))I如(r'c)匹(rら）］

＋ ［叱(r心<PJ(rA)I如(rし）（切(r'D)一ふK(rc))].

Using the Fourier transform and the Hardy inequality we can obtain the follow-
ing estimate: 

［か(rA)応(rB)I応(r'c)叩(r'n)]-[1/;1(rA)虹 (rA)I如(r'c)ふK(rc)l

:S 4召1|か||L00llr'如(r')IIL00

X (11応(r叫ー虹(rA)||||加|＋||的||1凸(r'D)-％（叱）11),

where 11・11 is the L2-norm and ll・IILoo is the L00-norm. Note here that since i.f!j is 
an orthonormal system, the L2-norms of的 and訟(r叫ー如(rA) are evaluated 
as 

J 

||虹||2=Llc氾，
J=l 

J 

II如(r叫ー虹(rA)ll2=||白||2_Llc氾．
j=l 

The other norms are evaluated from the explicit form of STO. 

7 Fundamental hybrid two-center integral 

Fundamental hybrid two-center integrals are defined by 

亭 11xf2いに]R

:= f f xに(rA,(1)~x~ら (r公，くり炉 ＇ 
艮3艮3 |r -r | 

応 3(rB,＜砂drdr

= L J艮3;?,ふ(r,＜l) |r -1r’|2xrら (r',＜叫xrら (r五匂drdr',

where RAナRBandrhg = r'-RB+RA. The integral (1.1) with RA = RB = 
ReヂRDis reduced to integrals of this form using the Gaunt coefficient. We 
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apply the method in Section 6. For the expansion of XGら (r公Bふ） weuse the 
following formula [13] which is identical to (6.1): 

00 00 

Pf (cos8)r靡 e―TAB=L と噂LMW贔(r,μ), (7.1) 

k=Mp=O 

for N,L,M EN, L ~ M, μ > 0, where TAB= lrABI and 

w贔(r,μ)= P{:(cos0)(2μr)ke-μrL;k+2(2μr). 

The coefficients Cf/M can be calculated by recurrence relations depending on 

μ and R = IRE -RAI-Since the functions叫匂(r,μ),k=M,M+l,..., p= 
0, 1,... form a complete orthogonal system, we can apply the arguments in 
Section 6. 

The formula (7.1) and the expression of the Laguerre polynomial yield the 
expansion 

00 00 p 

迅如(rABふ） ＝ ＜3na-l叶 lL LLT:::i血 3x[土13(r，如）， （7.2) 
k=Mp=Oq=O 

where T叫血3
k =C  pq -~kp (n叶 l3)l3Im|（一1)q(2k+p+2)＋（如）k+q,and Cは凸）lalmalde-

p-q I q! 
pends onく3R.Using this expansion we obtain 

00 00 p 

[x~ふ Ix贔ぷ元］R= 気四ーla+l ここ区T~;；血3[xfふ Ix乙x%tり，
k=|四 |p=Oq=O

where 

[x「ふlxG2m2こl:＝ff 1 
x「1加 (r,(1)~x四

即股3 |r -r’|2 hm2 
(r'，＜叡に13(r'，ふ）drdr'.

Using (5.6) we can see that 

[ n1 | n2 Xq+1 
Xhm1 xhm2 km3] 

= 8 Dhm2km3 bm2km3 m m+q+b+K-ll 
叫叩＋叩） l1 位 [xhm1 |xhm1 位＋匂],

(7.3) 

n1 匹＋q+l2+k-li
for l2+l3 ~ li ~ lmin and it vanishes in the other cases. Here [x~';,,,, Ix - - hm,1hm,1 
((2 + (3)] is the fundamental one-center integral with the index〈2+ (3 of the 
second STO, and lmin is the natural number defined by (5.7) with l,l',m,m' 

replaced by l2, k, m2, m3. From (7.3) we can see that [x「五lxfa"m2XG3m3伍＝ 0 
unless m1 =匹＋ m3.In practical calculations we truncate the expansion of 

x「い(rAB)in (7.2) up to finite terms. We denote the finite sum by見 (r)as in 
Section 6, that is, if we use the terms up to k = kmax and p = Pmax, 

kmax Pmax 
虹 (r):= im3+lm3leim<p(3ns-l叶 1LL噂3+l叫3|叩 |wf1m3l(rふ）．

k=lm3I p=O 
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Following the arguments in Section 6 we have the error bound of the truncation 

図ふIx悶n2XG土］Rー [x悶れ1|x悶匹的］1

:s; 41r2llr訊加(r)llllx悶れ2||L~ ||xrら (rAB) —的(r) 11 

く 81r
2, 1r(2n1 + 2li + 2)!(li + Im叶）！ 四十 l2-1 匹＋ls-l(l2 + lm2I)! 

- 4 I図）2m+2h+3(2h+1)（h-|m叶）！ （く2 ) l以

Xe―n2-l2+1||xfふ(rAB)―的(r)11, 

(7.4) 

where 

[x「1五Ix「ふ凡Jl:= f f 1 
x「五 (r,(1)~x「~2m2 (r''＜叫虹(r')drdr'.

即 R3 |r -r | 

8 N umerical results 

8.1 fundamental one and two-center integrals 

The accurate significant figures of the one-center integral [x似Ix監lfor (= 1, 
ぐ＝ 0.5were determined by the expression (5.4) and numerical one-dimensional 

integration. Examples are given in Table 1. The one-dimensional integral I!q in 

Table 1: The accurate significant figures of [x似Ix似l
n n I l m [x似Ix似] Nae 

2 3 

゜
0 l.56939270526650(4) 14 

2 3 5 4 3.425716931848(16) 
2 3 10 9 l.0469905487775(39) 
4 4 

゜゚
1.953591848090(6) 13 

4 4 5 4 5.8161756391883(19) 
4 4 10 9 6.7706640231478(42) 
6 5 

゜゚
6.77033700568(8) 11 

6 5 5 4 l.5712472039294(23) 
6 5 10 9 5.9442801255419(46) 
8 8 

゜゚
8.8795833287(13) ， 

8 8 5 4 2.22546915631(29) 
8 8 10 9 4.332795650516(53) 
11 10 0 

゜
5.5789551(19) 7 

11 10 5 4 7.1529791758(35) 
1110109 5.881306549(60) 
14 14 0 

゜
2.5509(28) 4 

14 14 5 4 3.91588207(45) 
14 14 10 9 1.642355950(71) 

The notation (v) signifies xlO又

(5.5) was evaluated approximating the integrand by the Chebyshev interpolation 
with typical order 1000 and integrating the polynomial. The accurate significant 

figures were obtained by determining invariant figures by varying the order of 
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the Chebyshev interpolation. For l = m = 0 the evaluation by the analytic 
expression was also executed. The number of the accurate figures Nae of the 

value by the analytic expression are also shown in Table 1. The number Nae was 
determined comparing the value obtained by using the expression (5.1) and the 
value by the one-dimensional integrals obtained above as a reliable reference. 

Th e accurate significant figures of the two-center integral [x似Ix加訪 for
R = 4, (= 1,ぐ＝ 0.5were determined by the expression (5.10) and numer-
ical one-dimensional integration. Examples are given in Table 2. The integral 
L~+P l'+p' 
l△l 

in (5.12) was evaluated using the Chebyshev interpolation with typ-
ical order 1000 as in the case of one-center integral. Typically integration on 

the interval [O, 100] is enough, because that on [100, oo) is relatively very small 
and negligible owing to the decay of the integrands. The accurate significant 

figures of [x似Ix加詠 wereobtained by determining invariant figures varying 
the order of the Chebyshev interpolation and the interval of the integration of 
l+p l'+p' 
［△l 

L~-r,.~'Tl'. The evaluation by analytic expression was also executed as in the 

case of one-center integrals and the number of the accurate figures Nae of the 

value by the analytic expression are given. 

Table 2: The accurate significant figures of [x似因畠］R

n l n'l'm [x似Ixに］R Nae 
3 2 3 2 1 2.2243751772625(7) 10 
3 2 3 3 1 -2. 7566722179287(8) 10 
2 4 4 5 4 -l.3610327905104(16) 6 
2 4 4 6 4 2.0420467016732(17) 4 
2 5 2 6 4 -5.4090782928132(16) 3 
2 6 2 6 4 4.986742283667(17) 1 
2 7 2 6 5 2. 73141199999476(20) 1 
2 7 2 7 5 8.0955544928731(21) 

゜5 ， 5 10 3 -l.0629407232265(33) 

゜5105103 9.83626880416(33) 

゜10 5 10 4 2 3.8326037195(29) 

゜10 5 10 5 2 6.9193761122(31) 

゜The notation (v) signifies xlO又

In contrast to the high accuracy of the method by one-dimensional integrals, 
the accuracy of the analytic expression deteriorates rapidly as Z, l', n and n' 

increase, and the results are completely meaningless for the parameters greater 

than moderate values. It was observed that in the calculation of 面~ in (5.9) q 

enormous cancellations of significant digits happened. 

8.2 fundamental hybrid two-center integral 

The fundamental hybrid two-center integrals were evaluated by the method in 

Section 7. For the evaluation of the one-center integrals in the right-hand side 

of (7.3) the expression by one-dimensional integrals was used. Here recall that 
闊五 Ix闊砂X~3mふ＝ 0 unless m1 =叩＋ m3.Examples for (1 = 1.0, (2 = 
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0.5,ふ＝ 1.0,R = 0.5 are presented in Table 3. Terms in (7.1) corresponding 
to k :s; 15 and p :s; 15 were used for the calculation. The error bounds of the 

errors by this truncation given after土 inTable 3 were calculated from (7.4). 

Table 3: The accurate significant figures of [x如11(m叶 m3Jlx贔ぷ3m」R

n1 l1 n2 l2 m2 n3 l3 m3 [ n1 I匹 n3 ] 
xh（加＋叫） Xl四 2Xl血 3R 

1 1 1 1 

゜
3 2 1 2.00918士0.00042(3)

1 1 1 1 

゜
4 2 1 8.49388士0.00039(3)

1 2 1 1 1 3 2 1 -5.6044土0.0084(3)
1 2 1 2 1 4 2 1 5.77148士0.00035(5)
3 2 1 1 

゜
4 2 1 -1.8072土0.0054(4)

3 2 1 2 1 4 2 1 1.573420士0.000095(7)

The notation (v) signifies x 10,.,. 

9 Multiple precision calculation 

In order to evaluate three and four-center integrals by the method in Section 6 
we need more accuracy for one and two-center integrals. The main reason of 

the loss of accuracy in the evaluation of the fundamental one and two-center 

integrals is the cancellation of significant digits in the summations in expressions 
(5.4), (5.10) and (5.11). Since a double precision number has only 53 bits 
in its significand, it can keep at most only 15 digits as a decimal number. 
Therefore, even if we calculate the one-dimensional integrals numerically with 

the best accuracy in double precision, the cancellation of significant digits in 
the summations causes low accuracy. The only solution of this problem would 
be the calculation by higher precision. 

Because currently no commercial CPU supports arbitrary precision calcu-
lations at the level of computer architecture, we need to use a module of pro-

grams which supports arbitrary precision calculations at the level of software. 
A famous module (library) of C programming language for arbitrary precision 

calculations is GNU MP (GMP) (see e.g. [10]). For floating point numbers a 
library called MPFR which is based on GMP is available. In order to use C++ 

libraries and write readable codes using the four basic arithmetic operations 

we also use the MPFR C++ wrapper by Holoborodko (cf. [6]). Using these li-
braries we can easily evaluate the integrals numerically with very high accuracy. 

Even several hundreds of accurate significant digits can be obtained easily. For 
example the first 200 accurate significant figures of the integral I品in(5.5) is 
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given as follows. 

砧＝0.07664094942893281828397749119614244898576630389125840252214941

5914026951207585817558339758721247143374374291248115193609879247 

6474965688533369608952446389071642438871068908406568618914484331 

69594302624 

For the evaluation we used the Chebychev interpolation with typical order 1000 
and integration of the polynomial as in Section 8. The accurate significant 
figures were obtained by determining invariant figures by varying the order of 
the Chebyshev interpolation. 

When we evaluate each integrals with such high accuracy and subsequent 
summations in (5.4), (5.10) and (5.11) by multiple precision calculation, even 
if cancellation of dozens of significant figures happens, we will have more than 
a hundred of accurate significant digits for the fundamental one and two-center 
integrals. Thus we can also evaluate three and four-center integrals with very 
high accuracy. 
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