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Structure of bicentralizer algebras and inclusions of
type III factors

Hiroshi Ando (Chiba University)*

! E

We investigate the structure of the relative bicentralizer algebra B(N C
M, ) for inclusions of von Neumann algebras with normal expectation
where N is a type III; subfactor and ¢ € N, is a faithful state. We
first construct a canonical flow 5% : Ri ~ B(N C M, ) on the relative
bicentralizer algebra and we show that the W*-dynamical system (B(N C
M, ), 3¥) is independent of the choice of ¢ up to a canonical isomorphism.
In the case when N = M, we deduce new results on the structure of
the automorphism group of B(M, ¢) and we relate the period of the flow
B¥ to the tensorial absorption of Powers factors. For general irreducible
inclusions N C M, we relate the ergodicity of the flow 3% to the existence of
irreducible hyperfinite subfactors in M that sit with normal expectation in
N. When the inclusion N C M is discrete, we prove a relative bicentralizer
theorem and we use it to solve Kadison’s problem when N is amenable.

This is a set of notes for my talk at RIMS conference & T DI ¥ Z DJF32 2021.
This talk is based on a joint work with Uffe Haagerup, Cyril Houdayer and Amine

Marrakchi [AHHM18].

1. Connes’ Classification of hyperfinite factors and the bicen-

tralizer problem

A von Neumann algebra M on a Hilbert space H is called hyperfinite if there exists
an increasing sequence My C My C --- C M of finite-dimensional *-subalgebras of M
whose union is dense in the strong operator topology (SOT). Hyperfinite factors forms
one of the most important class of factors in von Neumann algebra theory. While it has
the simplest structure among factors, they appear in quite a few places in application.
Already Murray and von Neumann showed that there exists only one hyperfinite factor
of type I, denoted by R, up to x-isomorphism. However, their argument does not
apply to prove the uniqueness result for e.g. type Il factors and it was a long standing
open problem to prove that there exist only one hyperfintie I, factor, namely the one
Ry 1 constructed as an infinite tensor product of matrix algebras.

Because the hyperfiniteness is hard to check, one needs to find a characterization of
hyperfiniteness that does not involve finite-dimensional *-subalgebras. Many math-
ematicians have worked on this problem and several conditions (injectivity, semi-
discreteness, Schwarz’ property, - - - ) that imply hyperfiniteness have been introduced.
To cut a long story short, Connes [Co75b] showed that all these properties, especially
the injectivity, are equivalent to hyperfiniteness. M is said to be injective if there exists
a norm one projection E: B(H) — M. Thanks to Tomiyama’s Theorem, E is a condi-
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tional expectation although it is typically non-normal (in fact, E can be chosen to be
normal if and only if M is atomic). The equivalence of injectivity and hyperfiniteness
immediately leads to the theorem that there exists only one factors of type II; and
1T up to x-isomorphism, and any subfactor of the hyperfinite II; factor R is again
hyperfinite. On the other hand, in the early 1970’s Tomita—Takesaki theory has been
invented. This led Connes and Takesaki to their structure theorem for type III factors.
By Connes’ structure theorem for type III factors, any type III, (0 < A < 1) factor is
of the form M = N x4 Z where N is of type I, (and is a factor if A # 0) with 6 a
centrally ergodic action on N which scales down a semifinite trace 7 of V. For the type
III; case, thanks to Takesaki’s duality theorem, there is a continuous decomposition
M = N x4 R where N is a type Il factor and 6 is a flow on N scaling the semifi-
nite trace 7. Then the classification of hyperfinite type III factors is reduced to the
classification of hyperfinite type I1,, factors and of the actions of Z (or R for the III;
case) on them. Then by the classification of automorphisms of R and of Ry, Connes
[CoT2, CoT4b, CoT7ba, Co7hb, Co7bc, CT76, Ta73] showed that for each 0 < A < 1,
there exists only one hyperfinite III, factor, denoted R, and together with the work of
Krieger [Kr76] on ergodic flows, he showed that the isomorphism classes of hyperfinite
111, factors are in 1-1 correspondence with the isomorphism classes of properly ergodic
flows. There only remained the type I1I; case. In order to settle the I1I; case, he found
several strategies to prove the uniqueness. Among them, he discovered the following
[Co85]: let M be an injective III; factor with separable predual and fix a faithful state
€ M, Let T = _13g7r/\' Then N = M Xye Z is an injective type III, factor, hence
N = R, and if we let 6 the dual action of o, then M = R, Xy T. Then if one
shows the uniqueness of the T action on R), the uniqueness result for the III; factor
follows. He then showed that this can be achieved if one can show that ¢ € Inn(M)

(the approximately inner automorphisms). For an automorphism « of a factor N with

separable predual, consider the following conditions:
(i) a € Inn(N).

(ii) o ©id € Aut(N © N°P) extends to an automorphism of the C*-algebra C}_,(NV)
generated by the standard representation of N © N° on L?(N) given by

(a®bP)-€:=aJb*JE, a,be N, £€L*N).

Here, we fix a standard form (N,L2(N), J,L*(N)*). Then always (i)=-(ii), and when
N = M is an injective type III; factor, (ii) is satisfied for every a, and (ii)=-(i) follows
if in addition the bicentralizer B(M, ¢) is trivial (= C). Here, the bicentralizer of M
with respect to ¢ is defined by

B(M, ) = {:r € M | xa, — apz "= 0 strongly, V(a,), € AC(M, go)}

where

AC(M, ) = {(an) € £*(N, M) | lim Jlap — wanl| =0}
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is the asymptotic centralizer of . The question of the triviality of the bicentralizer was
solved affirmatively by Haagerup in [Ha85] for amenable M, thus settling the problem
of the classification of amenable factors with separable predual (see [Co75b, Co85]).
Connes also asked whether or not the bicentralizer is trivial for general type I11; factors
with separable predual.

Nowadays, the bicentralizer problem is still of premium importance. Indeed by
[Ha85, Theorem 3.1], for any type III; factor M with separable predual, M has trivial
bicentralizer if and only if there exists a faithful state ¢ € M, with an irreducible
centralizer, meaning that (M)’ N M = C1. Then by [Ha85, Theorem 3.1] and [Po81,
Theorem 3.2], M has trivial bicentralizer if and only if there exists a maximal abelian
subalgebra A C M that is the range of a normal conditional expectation (see [Ta7l,
Question] where the problem of finding such maximal abelian subalgebras is men-
tioned). For these reasons, Connes’ bicentralizer problem appears naturally when one
tries to use Popa’s deformation/rigidity theory in the type III context (see for instance
[HI15, Theorem CJ). The bicentralizer problem is known to have a positive solution for
particular classes of nonamenable type III; factors: factors with a Cartan subalgebra;
Shlyakhtenko’s free Araki-Woods factors ([Ho08]); (semi-)solid factors ([HI15]); free
product factors ([HU15]). However, the bicentralizer problem is still wide open for
arbitrary type III; factors.

2. Connes’ isomorphism (3, , and the bicentralizer flow 3%
2.1. The relative bicentralizer flow 8¢ ~ B(N C M, ¢)

In his attempt to solve the bicentralizer problem, Connes observed that for any type
IIT; factor M, the bicentralizer B(M, ¢) does not depend on the choice of the state ¢
up to a canonical isomorphism. In around 2012-2013, Haagerup found out that the
idea of Connes’ isomorphism (denoted by fy , below) can be enhanced to construct a
canonical flow (u-continuous action) 8¢: RY ~ B(M, ) with interesting properties.
This flow was independently discovered by Marrakchi and this was the starting point
of our joint research.

Let N C M be any inclusion of o-finite von Neumann algebras with ezpectation,
meaning that there exists a faithful normal conditional expectation Ey : M — N.
Following [Ma03, Definition 4.1], we define the relative bicentralizer BIN C M, ¢) of
the inclusion N C M with respect to the faithful state ¢ € N, by

B(NC M,p) = {1‘ € M | za, — anz "= 0 strongly, ¥(a,), € AC(N, @)} .

Observe that we always have N' N M C B(N € M,¢) C (N,)) N M. When N = M,
we simply have B(N C M, ¢) = B(M, ).

Our first main result deals with the construction of the canonical flow on the relative
bicentralizer B(N C M, ¢).

Theorem A. Let N C M be any inclusion of o-finite von Neumann algebras with
expectation. Assume that N is a type III; factor. Then the following assertions hold:



(i) For every pair of faithful states ¢, % € N,, there exists a canonical isomorphism
By B(N C M, p) — B(N C M)

characterized by the following property: for any uniformly bounded sequence
(an)nen in N and any = € B(N C M, ¢), we have

n—o0 n—r00

lane —vay] = 0 = ayz— Byo(r)a, — 0 *-strongly.

(ii) There exists a canonical flow
B9 Ry A B(N C M, )

characterized by the following property: for any uniformly bounded sequence
(an)nen In N, any z € B(N C M, ¢) and any A > 0, we have

n—o0 n—00

lany — Apan|| = 0 = a,x— B (x)a, — 0 x-strongly.

(iii) We have By, 0, © Bps o1 = Bps.p for every faithful state ¢; € N,, i € {1,2,3}, and
BY 0 By = By 0 BY for every pair of faithful states ¢, ¢ € N, and every A > 0.

(iv) For every pair of faithful states ¥, o € N, and every A > 0, we have
EXionr © Boe = Efvan = Evans © 55

where E%,,, : M — N’ N M is the unique normal conditional expectation such
that E%,,,(z) = ¢(z)1 for all z € N.

The proof of Theorem A uses ultraproduct von Neumann algebras [Oc85, AH12] and
relies on Connes—Stgrmer transitivity theorem [CS76] and the fact that any A > 0 is
an approximate eigenvalue for the faithful state ¢ € N, (see Lemma 8).

The meaning of the compatibility relations given in item (iii) is that the W*-dynamical
system (B(N C M, p), %) does not depend on the choice of ¢ € N, up to the canonical
isomorphism Sy ,. Thus, (B(N C M, ), 5%) is an invariant of the inclusion N C M.
We call it the relative bicentralizer flow of the inclusion N C M. When N = M, we
simply call it the bicentralizer flow of M. In this talk, we study this invariant and we
relate it to some structural properties of the inclusion N C M. In these notes, we also
give proofs to some basic facts needed to the construction of the relative bicentralizer
flow but are omitted in [AHHM18].

Let N C M be any irreducible inclusion of factors with separable predual and with
expectation. In [Po81], Popa proved that if N is semifinite, then there exists a hy-
perfinite subfactor with expectation P C N such that P’ N M = C1. We extend this
theorem to the case when N is a type III, factor (0 < A < 1) in Theorem ??. In
the case when N is a type III; factor, we relate this question to the ergodicity of the
relative bicentralizer flow.
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Theorem B. Let N C M be any inclusion of von Neumann algebras with separable
predual and with expectation. Assume that NV is a type I11; factor. Let ¢ € N, be any
faithful state. The following assertions are equivalent:

(i) B(N € M, )% = N'n M.

(ii) There exists a hyperfinite subfactor with expectation P C N such that PPN M =
N' N M.

We can always choose P = R, to be the hyperfinite type III; factor.

e We can moreover choose P = R) to be the hyperfinite type III, factor (0 < A < 1)
if and only if B(N C M, )X = N’ 0 M.

e We can moreover choose P = R to be the hyperfinite type II; factor if and only
if B(IN C M,p)=NnM.

The proof of Theorem B generalizes the methods developed by Popa in [Po81, The-
orem 3.2] and Haagerup in [Ha85, Theorem 3.1].

Following [Co72, CoT4al, a o-finite von Neumann algebra Q is almost periodic if
@ possesses an almost periodic state, that is, a faithful normal state for which the
corresponding modular operator is diagonalizable. By [Co72, Co74a], any o-finite type
IIT, factor with 0 < A < 1 is almost periodic. When N C M is an irreducible inclusion
of factors with separable predual and with expectation, a sufficient condition for the
relative bicentralizer flow 8¢ : RL ~ B(N C M, ¢) to be ergodic is the existence of
an almost periodic subfactor with expectation @) C N such that @' N M = C1. Using
Theorem B, we derive the following application which is new even in the case when
N =M.

Application 1. Let N C M be any irreducible inclusion of factors with separable
predual and with expectation. Assume that N is a type III; factor and that there
exists an almost periodic subfactor with expectation Q C N such that @' N M = C1.

Then there exists a hyperfinite subfactor with expectation P C N such that P’NM =
Cl.

We point out that it is unclear whether we can choose P as a subfactor of ). We can
do so if ) possesses an almost periodic faithful state ¢ € @, such that its centralizer @,
is a type II; factor. However, when () is a type Il factor, no such almost periodic state
exists on () and so we really need to exploit the ergodicity of the relative bicentralizer
flow to construct the AFD subfactor P C N.

A sufficient condition for an inclusion of factors N C M to be irreducible is the
existence of an abelian von Neumann subalgebra A C N that is maximal abelian in
M. One of Kadison’s well-known problems in [Ka67] asks whether the converse is true
as well. We will say that an irreducible inclusion of factors with expectation N C M
satisfies Kadison’s property if there exists an abelian subalgebra with expectation A C
N that is maximal abelian in M.



Popa proved in [Po81, Theorem 3.2] that any irreducible inclusion N C M with
separable predual and with expectation such that N is semifinite satisfies Kadison’s
property. Combining Theorem B with [Po81, Theorem 3.2], we obtain the following
characterization:

Corollary C. Let N C M be any irreducible inclusion of factors with separable
predual and with expectation. Assume that N is a type III; factor. Then the following
assertions are equivalent:

(i) B(N C M, ) = C1 for some (or any) faithful state ¢ € N,.
(ii) The inclusion N C M satisfies Kadison’s property.

In the case when N C M has finite index, Corollary C follows from [P095, Theorem
4.2]. In order to find new examples of inclusions N C M that satisfy Kadison’s
property, we will prove a relative bicentralizer theorem for discrete inclusions.

Finally, let us point out that in the case M = N, a breakthrough result has been
obtained by Marrakchi:

Theorem 1 (Marrakchi [Ma20]). Let M be a type 111 factor with separable predual and
© a faithful normal state on M. Then the bicentralizer flow 8% is ergodic. Furthermore,
M has trivial bicentralizer if M =2 M®R) holds for some 0 < X\ < 1.

2.2. Ocneanu ultrapower M“ and the Groh—Raynaud ultrapower Mgy,
Let M be a von Neumann algebra with a faithful state ¢ € M,. Let w € SN\N be a free
ultrafilter. Let Z, be the C*-algebra of all bounded sequences (), in M which tends
to 0 x-strongly along w: lim,,_,, ||TT,||§0 =0. Let M* ={x € (M) | 2Z,+ Z,x CL,}
be the normalizer of Z,, in the C*-algebra ¢*°(M) of all bounded sequences in M. The
quotient C*-algebra M* = M¥ /T, is a W*-algebra (the Ocneanu ultrapower [Oc85])
equipped with the faithful normal state ¢“ given by the formula

¢ ((xn)”) = ilguld p(xn), (zn)” € M¥.
Here, (x,,)% is the element in M represented by a sequence (), € M“. We will be
using the following results repeatedly.

Theorem 2 ([AH12]). Let M be a von Neumann algebra with a faithful state p € M,.
Then

(1) of ((2,)*) = (67 (x,))” holds for every t € R and (x,)* € M*. In particular,
(M,)* C M=, holds.

(i) If M is a type 11y factor, then M is a type 111y factor with strictly homoge-
neous state space, meaning tha any two faithful normal states on M are unitarily
equivalent.

i) If M is a type 111y factor, then MY, is a type 11 factor and is independent
@
of ¢ up to a conjugation by a unitary in M*.
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Let A = (M,] - |l)” be the ultrapower Banach space of M with respect to w. Then
A is naturally a C*-algebra but it is not a von Neumann algebra in general. Let A**
be the bidual of A which is a von Neumann algebra. Let (M,)* be the ultraproduct
Banach space of M,. Then (M,)¥ can be naturally identified with a closed subspace
of A* via the embedding

(n)” > ((2)? = lim ()

n—w

The orthogonal of (M,)” in A** defined by
J={z e A™ | VY € (M), ¥(z) =0}

is a weak* closed ideal in the von Neumann algebra A** which means that the quotient
Mg, = A*/3J is a von Neumann algebra. It is called the Groh-Raynaud ultrapower
[Ra02] of M with respect to w. By construction, the predual of Mg, is exactly (M,)~
and My, contains the ultrapower Banach space A = (M, || - |l«)* as a dense C*-
subalgebra. The *-homomorphism M — Mg, : « — z* is not normal in general and
so M is not a von Neumann subalgebra of M¢,. The von Neumann algebra Mg,
is very large (not separable and not even o-finite in general). The main interest in
this ultraproduct comes from the fact that, as explained in [AH12], there is a natural
identification L*(M¥,) = L*(M)*. We have ¢¥ € (Mg,)T but ¢ is not faithful
in general. Let e be the support of ¢* in Mg,. The projection e does not depend
on the choice of ¢ and the corner e(Mgy)e is isomorphic to the Ocneanu ultrapower
M* [AH12]. By the identification e(Mgg)e = M*, we have (M%), = e(M,)“e and
L3 (M%) = e(L*(M)?)e.

2.3. Iterated Ultrapower

Let I, J be directed sets, and let U,V be cofinal ultrafilters on I and J, respectively.
Then the product ultrafilter, denoted U ®V is a filter on I x J (with the partial ordering
(i,7) < (,7) if i <4 and j < j') given by

UV ={AcIxJ{iel;{jeJ;(ij) e A} eV}elU}.

The next lemma is well-known in the theory of ultrafilters and can be checked by a
straightforward computations.

Lemma 3. U®V is a cofinal ultrafilter on I x J. Moreover, if (x; ;)i jyerx. s a doubly
indexed sequence in a compact Hausdorff space X, then
lim x;; = lim lim x; ;.
(i,4)URY i—U j—=V
Proof. The result is well-known, but for the convenience of the reader we include its
proof. For X C I x J and i € I, we write X; = {j € J; (¢,j) € X}. First, we show

that Y ®V is a filter on I x J. It is clear that ) ¢ U ® V. Let A, B C I x J be such that
ACBand AeU ®V. Then foreach i € I, A; C Bi(C J) and {i € I} A; € V} € U.



This shows that {i € I; B; € V} € U, whence B € U ® V. Next, let A,BelU ® V.
Then for each i € I, we have A; N B; = (AN B);, whence

{ie;A,eVin{iel, BieV}c{iel, (AnB);, €V},

which implies that {i € I; (AN B); € V} € U. Therefore AN B € Y ® V. This shows
that U ® V is a filter on I x J.

Next, let (i9,70) € I x J and let S := {(i,j) € I x J; i > iy, j > jo}. For each
el s - {{jeJ; jZzde} (i>io)

) (otherwise)
because V is cofinal. Thus {i € I; S; € V} ={i € I} i > i} € U because U is cofinal.
Therefore U ® V is cofinal. Finally, let A C I x J be such that A ¢ U ® V. Then
because U,V are ultrafilters, we have

,and if 4 > dg, then {j € J;, 7 > jo} € V

{iel; AjevieUs{iel, A;¢ Vel
sliel; (J\A)=UxJ\A);eV}el,

and the last condition is equivalent to I x J\ A € U ® V. Therefore Y ® V is a
cofinal ultrafilter on I x J. This finishes the proof of the first assertion. We show
the second assertion. Set x := lim(;)—uey ;; and z; = lim;,yx;; (i € I). Let
W be an open neighborhood of x in X. Since a compact Hausdorff space is regular,
there exists an open neighborhood W; of z such that € W, ¢ W, c W. Then
{(i,j) e IxJ; zi; e Wi} eU®V, whence Iy :={icI; {jeJ; v;; e Wi} eV}elU
holds. Let ¢ € Iy. Then B :={j € J; z;; € Wi} € V. If V is any open neighborhood
of z;, then B' == {j € J; z;; € V} € V, whence BN B’ € V holds. In particular,
we can take j € BN B'. Then z;; € VN W, # (. Since V is arbitrary, this shows
that x; € W, C W. Therefore U > I, C {i € I; x; € W}, which shows that
{i e I; z; e W} € U. Since W is arbitrary, we have }LH;{ T = 2. O

As a consequence of Lemma 3, we see that for any Banach space F, the natural
isomorphism

(I x J, E) 3 (zij)ajerxs = (Tig)jer)ier € £(1,7(J, E))
induces an isomorphism of the ultrapowers
EYV 3 (2, v ((20))" € (BV).

If we apply this to E = M, where M is a von Neumann algebra, we obtain the following
proposition which extends [CP12, Proposition 2.1] on iterated ultrapowers of II; factors
to arbitrary o-finite von Neumann algebras. We leave the details to the reader.

Proposition 4. Let M be any o-finite von Neumann algebra. There ezists a natural
isomorphism of the Groh—Raynaud ultrapowers

L AUV v \U
mer * Mar” — (MGr)Gr
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characterized by
mar((2i)79Y) = ((2,)V)M for all (w55) gyerxa € L1 x J, M).
Its predual map is the isomorphism
(mar)x = (MUY 3 (i) = (i) ) € (M)
In particular, mgr restricts to an isomorphism between the Ocneanu corners
T MYEY — (MY

Recall that if N C M is a von Neumann subalgebra with faithful normal conditional
expectation E% : M — N, then we have a natural embedding N¥ C MY with faithful
normal conditional expectation EMy = (E) )u : MY — NY,

The conditional expectations satisfy
EMY o BN = EMY o MY = EN" o EM; = EM o EMY,
By applying this to the inclusion M C MY with the canonical faithful normal condi-
tional expectation E%V : MY — M, we obtain the following result.

Proposition 5. Let M be any o-finite von Neumann algebra. Then we have a com-
muting square

M C MY
N N
MY (MY = gueY

where the canonical faithful normal conditional expectations satisfy

JURY U U U VU IM VU v U
BN = B0 o BT = O o BULT = B o BULT = EMY o UL

In particular, we have MY N MY = M.
The following Lemma will be repeatedly used.

Lemma 6. Let X be a Hausdor[f space and let (x,)22, be a sequence in X. If there
exists © € X such that lim x, = x for every w € SN\ N, then lim x, = x.
n—w n—oo

Proof. Let wy := {A C N; N\ A is finite},w’ := {A CN; Vw € SN\ N [A4 € w]|}. We
show that w’ = wy. Clearly wy C ' holds. Assume by contradiction that there exists
A€ w \wp. Then A° = N\ A is infinite by A ¢ wp. In particular, S := wy U {A°}
is a family of subsets of IN with finite intersection property. Therefore there exists a
ultrafilter w; extending S, which is free by wy C w;. But A ¢ wq, contradicting A € w'.
Thus w’ = wp. Then if U is an open neighborhood of 2 in X, then for each w € SN\ N,
(ii) implies that A := {n € N;x, € U} belongs to w. Thus A € w’ = wy. Thus there
exists N € N such that x, € U (n > N). Since U is arbitrary, JI_)HOIC x, = holds. O



2.4. Construction of the ¥

We sketch the construction of the relative bicentralizer flow. The relative bicentralizer
B(N C M, ) has the following ultraproduct interpretation.

Proposition 7. Let N C M be any inclusion of o-finite von Neumann algebras with
expectation. Let ¢ € N, be any faithful state. For any nonprincipal ultrafilter w €
B(N)\ N, we have

B(N C M,¢) = (Nz.) N M.

Proof. Let x € M. If & ¢ B(N C M, ), then there exists (an), € AC(N, ) such
that ||[z, a,]||, does not tend to 0. By passing to a subsequence, we may assume that
[, an]ll, > ¢ > 0 for each n € N. Since |janp — pan| "= 0, (an)n € M¥(N) and
(an)® € Ng. holds. This shows that x ¢ (Ng.)’ N M. Therefore (Ng.)' N M C B(N C
M, ¢) holds. Conversely, if x ¢ (N4.)' N M, then there exists (a,)” € N for which
lim,,,, ||[z, an]|l, = ¢ > 0 holds. By [AH12, Lemma 4.35], lim,_,,, ||an — wa,| = 0.

For each k € N, we have

c 1
o= {neNillnall, 2 5. llonell < 3 <

Since w is free, we may choose inductively n; < ny < --- such that ny € Iy (k € N).
Now (an, )x € AC(N, ), and [|[z,a,,]|| > § (k € N), so that ¢ B(N C M, ). This
shows that B(N C M, ¢) C (N&) N M. O

Lemma 8. Let M be any nontrivial factor with strictly homogeneous state space. Let
¢ € M, be any faithful state. Then M, is a type II; factor and for any A > 0, we can
find a finite family vy, ..., v, of partial isometries in M such that vyp = Apvy for all
k=1,....nand Y ,_ vpvj =1. If X <1, then we can take n = 1.

Proof. By [AH12, Proposition 4.24], M,, is a type II; factor and by the proof of [AH12,

Proposition 4.22], we know that if p, ¢ € M, are two nonzero projections, then we can
— e

©(q)
and ¢, = ﬁpgp. Then by [AH12, Proposition 4.22], there exists a partial isometry

find v € M such that v*v = p, vv* = ¢ and vy wv. Indeed, set ¢, = W(Lq)qgc

v € M such that v*v = supp(l/)p) =, VUt = Supp(q/)q) =gq and 'U'l/Jp’U* — /l/)q- Then by
p,q € M, it follows that

v = vvve = Y(p)vh, = p(p) (VY™ )V

B Loew) )
= (P)Yy 0™ S (v-q)
~ p(p) ¢(p)

= msﬁ(qv )= m‘ﬁv‘

If X <1, we can take ¢ = 1 and p € M, such that p(p) = A and we obtain a partial
isometry v € M such that vy = Apv and vo* = 1. If A > 1, choose n > 1 such that
A < n. Then we can find a finite partition of unity g, ..., ¢, in M, (hence ¢(qx) =
%, 1 < k < n) and some projections p1,...,p, € M, (not necessarily orthogonal) such
that ©(pr) = Ap(gr)(< 1). Then by the first part, we can find a family vy € M of
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partial isometries such that viv, = pg, vev; = ¢ and v = %tpvk = A\pvy as we

wanted. O

Proof of Theorem A. (i) Let wy,ws € B(N) \ N be any nonprincipal ultrafilters. Let
u € U(N®) (resp. v € U(N*2)) such that up“tu* = ¢t (resp. vp*2v* = ¢*2). Then,
inside M“2®“1 we have v*u € N:ﬁﬁg‘j}l. For every x € B(N C M, ¢), we have v*ux =
xv*u which means that uxu* = vxv*. Since uru* € M*“* and vrv* € M*“2, Proposition
5 shows that uru* = vrv* is an element of M. Thus, we have shown that for every
xr € B(N C M, p), there exists an element 8y ,(r) € M given by By, (r) = uru* where
u € NY is any unitary such that up“u* = ¢* and w € S(N) \ N is any nonprincipal
ultrafilter. In particular, if w is a unitary in Nj., we can replace u by wu, so that
we have 8y ,(z) = wuzu*w* = wpy ,(x)w*. This shows that 8y ,(x) € B(N C M, ).
Now, if (ay)nen is a uniformly bounded sequence in N such that ||a,p — va,| — 0,
then it defines an clement a = (a,)* € M* such that ay” = ¢a and so u*a € N%..
This shows that u*ax = zu*a, that is, ax = uzu*a = By ,(x)a. Since the nonprincipal
ultrafilter w € S(IN)\N is arbitrary, by Lemma 6, we conclude that a,,z— By ,(x)a, — 0
*-strongly as n — oo. It is straightforward to check that 3, is a *-homomorphism
and that By, 4, © By = Buser for every faithful state ¢; € N,, ¢ € {1,2,3}. This
shows in particular that 8, , : B(N C M,¢) = B(N C M,%)) is an isomorphism with
inverse f,,. Let Ex : M — N be any faithful normal conditional expectation and use
it to extend ¢ and ¢ to faithful normal states on M. Then we clearly have o3y, = ¢.
Since N’ N M is clearly fixed by By, this implies that

v _ Y
ENon © By = Eniu

(ii) Let wy,ws € B(N) \ N be any nonprincipal ultrafilters and A > 0. By Lemma 8,
there exists a family vq, ..., v, of partial isometries in N*! such that vyp“' = Ap“ vy
forall k€ {1,...,n} and >,_, vgv; = 1. Similarly, let wy., ..., wy, a family of partial
isometries in N“? such that w;p*? = \p*2w, for all I € {1,...,m} and " ww; =
1. Then inside M“2*1 we have vjw, € N:Z‘@“l for all k € {1,...,n} and all [ €

wo @y

{1,...,m}. Then for all x € B(N C M, y), we have
TULW; = VpwT
and so
v (ww)) = (vpvg)wizwy.

By summing over k£ and [, we obtain

n

Z vy = Z WE LW, (1)
k=1 k=1

But the left hand side of (1) lies in M“* and the right hand side of (1) lies in M“2.
Then they are both in M by Proposition 5 and the element 3% (x) = Y _, vpav) € M
is independent of the choice of the nonprincipal ultrafilter w € S(N) \ N and the

family vy,...,v, € N* as above. In particular, if u is a unitary in M., then we



can replace vy, by uvy for all k € {1,...,n} and we obtain 8{(z) = uf¥(x)u*. This
shows that {(x) € B(N C M,¢). Let (a,)nen be a uniformly bounded sequence in
N such that lim, ||ane — Apa,|| = 0. Then it defines an element a = (a,)” € N¥
such that ap” = Ap“a. Then we have via € N, for all k € {1,...,n}. Thus, for all
x € B(N C M, ), we have viar = zvja and so

n n
ar =3 vwvjar = 3 virvfa = B (x)a.
k=1 k=1

Since the nonprincipal ultrafilter w € S(IN) \ N is arbitrary, by Lemma 6, we conclude
that a,z — 55 (z)a, — 0 x-strongly as n — oo.

It is straightforward to check that 8Y is a unital *-homomorphism for all A > 0
and that 8{ o 87 = g5, for all A, > 0. This shows that 5% : A = f{ is a one-
parameter group of automorphisms of B(N C M, ). Also, one checks easily that
ﬂf © By = By o BY for all faithful normal states ¢,1 € N,. Extend ¢ to a state
on M by using any faithful normal conditional expectation from M to N. Then (% is

p-preserving. Indeed, for all A > 0, we have
P(BL() =D ¢ (oemvy) = Y AT (avior) = > A p(x)” (vion)
k=1 k=1 k=1
because x commutes with the factor N¥“. Since ¢“(vjvy) = Ap® (vgv}), we obtain
P(BL(2)) = p()e” (wvy) = p(x).
k=1
Thus 3 is ¢-preserving and since ¥ clearly fixes N’ N M, we obtain

@ ° _ e
EXen ©BY = Exvar

At this point, we have proved all items (i), (ii), (iii) and (iv). It only remains to
check that (¥ is indeed a flow in the sense that it is continuous with respect to the
u-topology on B(N C M, ¢). Take a sequence A, € R’ such that A\, — 1 and A, < 1.
We have to show that 5;\"" — idpvcare) with respect to the u-topology. Since 8¢ is
@-preserving, it is enough to show that 8{ (z) — x strongly for all 2 € B(N C M. ).
Let w; € B(IN) \ N be any nonprincipal ultrafilter and pick, for every n € N, a co-
isometry v, € N*' such that v,p** = \,¢“'v, (possible because A\, < 1). Let wy €
B(N) \ N be any other nonprincipal ultrafilter. Since A, — 1, then v = (v,)“> defines
a co-isometry of N“2®“ with ppw2®1t = w28y Since x € B(N C M, ¢), we get
r = vrv* = (vorv))*? = (B (¢))*2. Since the nonprincipal ultrafilter w, € S(IN) \ N
is arbitrary, by Lemma 6, we conclude that 55 (z) — x strongly as n — oo. O

Example 9. Although it is very likely that B(N, ¢) = C for every I1I; factor N with
separable predual, the relative bicentralizer B(N C M, ¢) need not be trivial even when
the inclusion is irreducible. Let N be any type III; factor with separable predual and
with trivial bicentralizer (e.g. N = Rs,). Choose a faithful state ¢ € N.. Fix p € (0, 1),
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put T' = %&m, define M = N Xy Z and canonically extend ¢ to M. Then M is a
type III, factor by [Co85, Lemma 1] and the inclusion N C M is irreducible and with
expectation. We show that B(N C M, ¢) = L(Z) = L™(R? /u%). Let Ex: M — N
be the canonical conditional expectation and x € B(N C M, ). Then we have the

Fourier series expansion x = . __ z,u™ in the Hilbert space topology where w is the

nez
unitary implementing the o7 in N, and 2, = Ex(z(u")*) € N (n € Z). Let a € Ny..

Then by Proposition 7, ax = xa in M. Moreover, a{iw (a) = a by Theorem 2. Thus

axy, = aEye(z(u™)*) = Eyw(az(u)®) = Eye(za(u™)")
— By (a(u")0%5(@) = Ex(o(u")a)

= x,a.

Thus z, € NZ NN = B(N,p) = C by the hypothesis on N. This shows that
x € W*({u}) =2 L(Z) and therefore B(N C M, ¢) C L(Z). Conversely, it is clear that
u € (Ny)' N M C (N&) NM =B(N C M) holds, whence L(Z) C B(N C M, ¢).
Next, we identify the flow 5¢. Let A > 0, and let vy, ..., v, € N“ be partial isometries

such that vye® = Ap*vy, (1 <k <n)and Y, vpv; = 1. Then for each m € Z,
B{(u™) = vpuop =Y v (vi)u”™
k=1 k=1

= Z oA ™ = Ny,
k=1
We identify Z = R* /p? with [p,1] with the Haar measure dm(t) = dt/t. Let
F: (*(Z) — L*([u, 1], m) be the Fourier transform given by d; + e;, where {d;}/ez
is the canonical orthonormal basis for ¢2(Z) and e, (t) = \/%g#tié. Then for £ =
>rez acee € L ([, 1], m), we have [Fu.Z~1-€](t) = t'f(t), t € [, 1]. Thus FuF ' =
V—=Tlogper. Let 37 = . FBL.Z " acting on L¥([u, 1], m). Let f € L®([u,1],m). Ex-
pand f =Y, aFu'F ' in L*([u,1],m). Then for t € [p, 1],

Bf(f)(f) =76 (Z aﬂ/) F () =F (Z az)\mﬁe) FH1)

leZ LeZ

. . - il
= Z CLg)\thw = Z Qy (Ailfﬁt>

LEZ LeZ

= f(A TR,
Thus, with the identification L(Z) = L*°([u, 1]), the relative bicentralizer flow ¥ :
R* ~ B(N C M, ) is the multiplication action R% ~ R% /u? = [u, 1] given by
BE(t) = Ament,  t e RS/ p?

Let ¢ € (Rw)« be a faithful state, and let M := (M, ¢) * (R, ). Then by [Uel0,
Corollary 3.2] (applied to the case A = N C M; = M in the cited result), we get that
N'NM = NnNM =C. Thus N C M is still an irreducible inclusion with expectation.
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By [Uel0, Corollary 3.2] again (work in M C (M%), ¢*) * (R%,,*) and apply the result
to A= Ng, C Mg, C My = M®),
B(N C M,p) = (N&) N M= (Nz) N (M N M)
-M

= (N;"W)’ NM=B(N C M,yp)=L(Z).

Since B(M, ¢) = C by [HU15], we obtain an irreducible inclusion N C M of III;
factors, both have trivial bicentralizers such that its relative bicentralizer flow is the
tranlsation action R% ~ R /% = [, 1] given above.
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