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1 Introduction

Recently there has been a growing interest in finite multiple zeta values (FMZVs)
and symmetric multiple zeta values (SMZVs). Kaneko and Zagier |7] conjectured
that there is a certain correspondence between them and as supporting evidence
many relations of the same form were found such as sum formulas, Ohno-type
relations and so on (see, for example, [4, 12, 15, 16]). One of the main interests
may be the reason of this correspondence. However we do not have a complete
answer to this question yet. There is a trial to explain from the viewpoint
of g-zeta functions: they recover FMZVs and SMZVs when ¢ goes to 1 in an
algebraic sense and an analytic sense respectively [1]. The purpose of this article
is to try to give another reason of this correspondence from the viewpoint of the
theory of polytopes. First, we define FMZVs associated with polytopes and give
their values in terms of a generalization of Ehrhart polynomials and Bernoulli
polynomials. Secondly, we construct unified multiple zeta functions (UMZFS)
from the integral representation of FMZVs by changing the start point of integral
and observe that special values of UMZFs recover FMZVs, and that UMZFs can
be regarded as an interpolation of SMZVs. Furthermore we see that classical
Ehrhart—Macdonald reciprocity means the relation between multiple zeta values
(MZVs) and multiple zeta-star values (MZSVs).

Let A = (Hp Z/pZ> / (@p Z/pZ), where p runs over all primes and
Zs = Z/(((2)2), where Z =3, Q((k) be the Q-span of MZVs ((k). Then it
is known that A and Zs are Q-algebras. For ki,...,k, € Z>1,k. > 2, FMZVs
and SMZVs are defined respectively by

Calk,y ... ky) = (gp(k‘l,...,kr) modp)pGA, (1.1)
Cs(k'la oo ,k,,\) = C;(kla (R 7k7”) mod (C(Q)) € ZS7 (12)
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where

1
(ks k) = > - €Q (1.3)
0<ny<-<np<N 1T

G5k, k) =Y (= 1)F T e (g k)G (s Rig) €R, - (14)
i=0

and ¢*(k1,...,k,) denotes the harmonic regularized value.
To see what is generalized in this article, we review the previous work [11].
It is well known that the ordinary multiple zeta function defined by

1
((s1,n8) = Y s (1.5)
0<ny <<, LT
1 r

is analytically continued to a meromorphic function on C” with singularities on
infinitely many hyperplanes when r > 2. However the natural interpolation of
C&(kq,. .., ky) defined by

Qulstyose) =3 (1) (s, 8i)C (s, Siq1) (1.6)
=0

with (—1)% = €™ has the following remarkable properties.

Theorem 1 ([11]). Cu(s1,...,sr) is entire. For ky,... ky € Z>1,
Cu(k17"'vk7“):C:é(klv"'va) (k17~~-akT22)a
Culkr, .. kr) =C5(k1, ... k) (mod miZ[mi]) (ki =1).

From the above theorem and the fact that (k1 ..., k) € Z[xi] for (ki,...,k.) €
7" shown in [14], it is natural to define SMZVs on whole integers by the special
values of (y(s1,...,S,), that is,

Cs(kiy o k) o= Culk,. .. k) mod miZ[ri] (1.7)

for (k1,.... k) €Z".
Since FMZVs are naturally defined on nonpositive integers, we are led to
compare them.

Theorem 2 ([11]). For ky,...,k, € Z>o,

_ _ _ 0 ((klv"'va) 7&(0"--70)),

CU( k17-.-, kr) {(_1)7‘ ((k17...7kT) _ (0770)) (18)
_ _ — (O)P ((klaakr)#((L ,O 5

C.A( k17' R k’f) {((1)r)p ((klw » 7k'r‘) _ (07 . (19)

Furthermore their values on other integers were also shown to coincide in
the double zeta cases.



Theorem 3 ([11]). For ki € Z>1 and ke € Z<y,

0 (ky > —ky + 1),
Cs(ky ko) = 1—ky—k L—ky \Bik—k, o
_1 1 2 T lTRi1—R2 Z < _ 1 )
(-1) 1k k) TRy mod i Z[ri] (k1 < —ko+ 1)
(1.10)
0)p (k1> —ka +1),
CA(k17k2) = 1=k —ko 1— ko 31,]“7]62 -
=1 Lk —ky) 1k 4P (k1 < —k +1).
(1.11)

Finally it was shown that the behavior on the whole region is reduced to
that on the positive region.

Theorem 4 ([14]). Under the Kaneko—Zagier conjecture, one to one correspon-
dence between (s(k) and (4(k) holds for all indices k € Z".

To realize FMZVs and SMZVs in a function, we introduced UMZF of them,
which is a further generalization of (y(s1,...,8,). For si,...,8q,t,t1,t2 € C
with sufficiently large Rsq, ..., Rs, and Rt, Rtq, Rt2 < 1, we define

C(s1,.0y8m1) = Z !

(ng —t)s1 -+ (n, —t)s’

0<ny <--<n
r
Cg(sh ooy Spy t17t2) = Z(*1)8i+l+m+srg(81, oy S t1)<(8T7 ey Sia1s t2).
=0
(1.12)

Theorem 5 ([11]). (5(s1,...,8.;5t1,t2) is holomorphic for si,...,s, € C and
t1,t0 € C\ZZL

We describe (K1, . .., k) and (s(K1, . . ., k) in terms of ((s1, ..., 5,511, t2).
Here we set t; = 0 and explain the roles of the variables 1, t5 in the last section.
For t € C\ Z>1, we abbreviate

G815y 8m3t) i= Cg(51,. .. ,5.50,1)
- y . 1.13
=) (=1)sHrtEse (s 0 8)C(Spy e S5 t). (1.13)
i=0
Theorem 6 ([11]). Let Rs; <0 ors; =0 for j=1,...,r. For N € Z>1,
C(s15- w580 N) == lim (81, ..., 573 N — €) converges and (1.14)
e—0

CN(k17"'7k:7‘) (N S ZZl, kl,...,kr S Zgo),

(k1. ke N) =
CM( ' ) {Cu(kla"'7k’l‘) (N:O’ k;l"..7kT6Z).

(1.15)



Theorem 7 ([11]). Forky,... k. € Z,

Calkr, - k) = (G(~KP,.., kP p) mod p)p, o {p -k (k>0),
Cs(ha, . k) = Cqka, ..k 0) mod i Z[mi]. —k (k <0).
(1.16)

Thus we unified all multiple zeta values (o (o € {0,A,S}) by (5. As noted
below Theorem 1, FMZVs are defined naturally on the whole integers while the
existence of the corresponding SMZVs are unclear. A hint for the construction
of SMZVs or UMZFs may be the following expression derived via the integral
expression

(N (s1582) = ((51,82) — ((51)C" (825 N) + (" (2, 515 V), (1.17)
where (*(s1,...,8,; N) is the Hurwitz zeta-star function defined by
1
(5100 n8mia) = Y . (1.18)

0<ny <--<n, (a+na)m - (atn)>
The form (1.17) strongly suggests that of the corresponding SMZVs. In the next
sections, we will indeed construct SMZVs and UMZFs via the integral expression
of FMZVs associated with polytopes.

Remark. The cases o € {A,8} can also be described by ¢z [11].

2 Polytopes

Let P C R" be a convex polytope, which is defined as the bounded intersection
of finite half-spaces. P is called a lattice polytope if all vertices are on Z". P is
called a simple polytope if each vertex is the intersection of unique r hyperplanes.

Let {F;} be the set of all facets of P, that is, (r — 1) dimensional faces, and
u; be the inward-pointing primitive integral normal vector of the facet F;. For
a vertex v of P, let G, = Z" / ©Dr, 5, Zui be a finite abelian group. Then a
simple lattice polytope P is a Delzant polytope if G, = {0} for every vertex v
of P.

Fix a simple lattice polytope P defined as the intersection of d half-spaces:
P={zeV|(u,z)+X>0,1<i<d}, (A=(A1,...,\))- (2.1)

For each vertex v, there are unique r facets and let U, := {u; | F; 3 v} be the
set of all normal vectors of the facet F; containing v, &, := {e | F; > v}, the
set of their dual basis, that is, (u;, en’) = &;;.

We define associated polytope P(t) with P as

Pt)={zeV|(u,z)+t>01<i<d}, (t=(t,....ta)).  (2.2)



Then P()\) = P and if ¢ is in a neighborhood of A\, P(¢) is indeed a polytope.
Note that each vertex v(t) of P(t) is naturally analytically continued in ¢ because
it is determined by several linear equations of the form

(ui, ac) +t; =0. (23)

We note that the faces v(t), F;j(t) are dependent on t while G, (), Uy 1), Eur)» etc.
are independent of ¢ and coincide with G,,,U,, E,, etc. of the original polytope
P.

3 Generalized Faulhaber’s formula
Fix a simple lattice polytope P. For z = (z1,...,24) € C1, k = (k1,...,ky) €

2%, a=(ar,...,ay) € CU, B = (bj); 5421 € C", t € C?and R = P or P°
(interior of P), we define

S(k; R;a,B) = Z H aj +bjng + -+ bjm, )k (3.1)
(n1,..., ny)ERJ=1
and
—z(Bv(t)+a) 1
e
F(z;t; P;a,B) = , . (3.2)
’UZ\;GX |GU| QGZG Heegu (1 o 627”(%6)67ZB6)
—z(B'U(t)Jra) 1
F(z;t; P’ a,B) = (—1)" . .
v:\;ex | gGZG: Hee&,(]‘ — 62m(976)ezBe)
(3.3)
Theorem and Definition 8.
k1 qu
F(z;t;R,a,B) = Z Z Q(ky, ... kg t; R; a, B)k ' kiql (3.4)
k1=0  kq=0

Moreover Q(ku, ... kg t; Ry a, B) is a polynomial of degree at most ky+- - -+kqg+r
in t and all coefficients are rational if a and B are rational.

Theorem 9 (Generalized Faulhaber’s formula). If P(t) is a lattice polytope,

S(k; R(t (f[ ) (k1 ... kgit; R;a, B) € CJt]. (3.5)

Remark. Although we can treat the factor of the form 2™ (k1ni+-+urnr) in the
definition of S(k; R;a, B), we omit it here for simplicity.

We explain that the polynomials @ are a generalization of Bernoulli polyno-
mials and Ehrhart polynomials. To this end, for ¢ € Z>1, let L(R,t) = tRNZ"|,



that is, the number of integer points contained in R. Then it is known that
L(R,t) is a polynomial in ¢ and is called the Ehrhart polynomial. Further-
more L(P% t) and L(P,t) have the following simple relation, which is called the
Ehrhart—-Macdonald reciprocity.

Theorem 10 (Ehrhart—Macdonald reciprocity).
L(P°,t) = (—1)"L(P, —t). (3.6)

The following example illustrates the meaning of the Ehrhart polynomials
and the Ehrhart—-Macdonald reciprocity.

Example 1. P =[0,1]%. Then L(P°,t) = (t — 1)?, L(P,t) = (t + 1)%

Thus the Ehrhart polynomials correspond to the special cases of the Faul-
haber formulas for L(R,t) = S(0;tR;*), where either a or B does not affect
this polynomial because k = 0.

The Ehrhart—-Macdonald reciprocity is generalized as follows in terms of
generating function.

Theorem 11 (Ehrhart-Macdonald reciprocity for generating function).
F(z;t;P%a,B) = (~1)"F(—z; —t; P; —a, B). (3.7)

Remark. Certain special cases of the above polynomials ) were introduced and
studied in a different approach in [3].

3.1 Example

We give an example of double FMZVs and observe that the Ehrhart—Macdonald
reciprocity describes the relation between FMZVs and FMZSVs.

In this case, we have a = (0,0), B =1, P(t) ={(z,y) | 0 <z <y <t}. If
t € Z>1, then

Ct(_kl7_k2) = Z n1k1n2k2 = Z n1k1n2k2

0<ng <na<t (n1,m2)€EPO(t) (3.8)
= (=) *R2Q(ky, kost).

We see that P is a Delzant simplex, that is, G, = {0}. Thus the generating
function is simplified and given by

Pl Pa ) = (7 Y o
- - v:vertex Heegv(l - e(z,e))

—tz1—tzo —tzo 1

I—e)(lemn=)  I—e)l-e=)  (—entm)l—e2)
(3.9)




For FMZSVs, if ki, ko > 1,

f(—k1, —ko) = ny"ng™ = n1 " ny*?
t

0<ni <na<t 0<n<no <t

— E n1k1n2k2

(n1,m2)€EP(t)

(3.10)

is obtained by the Ehrhart—-Macdonald reciprocity.

4 FMZ(S)Vs to UMZFs

In this section, we construct (3.3) directly in the case of double MZVs and
explain how to create the corresponding UMZF. This method can be applied to
the general cases with some knowledges of polytopes and yields (3.3).

By use of the integral expression

11
—_— = — 22570 4.1
ns  I'(s) ,/0 €~ = (4.1)

we have

1 1 /oo /OO s1—1 _sa—1
= z z dz1dz
Z ny%1ngs? Hj:1,2 L(s;j) Jo Jo ! : e

0<ni<na <N

1 oo (o] 1 1
== 232 dad
Hj=1,2 F(Sj)/o /0 o e
e

—2z1—Nzo e*NZl*NZQ

7217222 e

8 ((1 Tema)(l_e ) (1_em)l_em)  (1_ea)(l- 6*21*22)>7

which gives the expression (1.17). If we replace the interval (0,00) with the
Hankel contour H and set si,s2 € Z<q, we have

1 1 / / s1—1_so—1
_ _ 20T 252 Ndzdee
Z n151n952 Hj:l,Z [(sj)(e*misi — 1) |21|=€ J|22]|=€ ' ’

0<ny <nag <N
e—Nzl—sz

e—Zl—NZQ 6—21—222

8 ((1 eI _emm) (e )1 o) (1 _emnm) 1 e‘zﬁ)>7
(4.2)

and we see that this gives FMZVs. Thus the integrand of the above leads to the
generating function of polynomials Q.

To obtain the corresponding UMZF, we have only to compare (1.17) and the
double case of (1.13) and note that (4.2) does not depend on the end point or
the start point of the Hankel contour as long as they coincide. Hence arbitrary



choice seems possible, one of which leads us to the definition

C(s1,825t) = (=1)7F°2((sg, 513 t) + (—1)°2((s1)C (523 ) + ((s1, 52)

1 e~ tz1—tz2 o 1d .
1—1 _s2—
F(51)F 52) / / (1—e= (1*6_21—22)21 2 21022
—2z1—tzo 1 )
T2 dand
Sl)f 82 / / (] —e z1 (1 6_22)21 21029

e #1— 22z
s1—1 52 d d
Sl)r 82 / / 1*6 21— 22)(176_22)21 210423
(4.3)

It should be emphasized that this heuristic construction is justified only after
the proof that this function recovers FMZVs.

In the following, we apply the above procedure to general cases. Assume
Rbjx, > 0, Ra; > 0. For simplicity, we assume P is Delzant. Then for k € Z%,,

S(—k; R;a, B)
—z(B'U(t)—Hi) q

q 1 N
:]Ulr(s])(e2—/ 3 T IEE

1<j<r vivertex
e€&,

s=—k
(4.4)

Fix a vertex v and we choose the direction of the end and start point of
the integral for the vertex so that the integral converges, that is, the integrand

decreases rapidly in the chosen direction. Let ¢q,...,¢, € {—1,1} and put
C = diag(c1,...,¢q). Let E = (€)cce, where e is regarded as a column vector.
Let .

C(S; a, B) = Z H(CL]' + bjl’fbl + -+ bjTTLr)_S] . (45)

(n1,...,n)ELL ; j=1

Theorem 12. We have

e “ e~=(Bv(H)+a) s1—1 sg—1
o) T (o) / o e Q-eomt At
(—1)Zeess decit .o c2a((s; C(a+ B(v(t) — Ed)),CBED), (4.6)

if there exists c1,...,cq € {—1,1} such that for all e € &,,
RCBe € (R>0)"U(R<))\{0} and RC(a+B(v(t)—Ed)) € (Rs0)?. (4.7)

Here D = diag((—1)%), d = (d.)ece, is a column vector with d, = 0 if RCBe €
(R>0)7\ {0} and d. =1 otherwise.



Assume that there exists ), introduced above for each vertex v. Then we
define

C(s;t; Poa, B)
= > (~h)Zeces et oo ehuC(s;Coa+ B(u(t) — Budy)), CoBE,Dy).
vivertex

(4.8)

Although that (;(s;t; P,a, B) depends on the choice of C,, their special
values on nonpositive integers recover FMZVs in any cases.

Theorem 13. Assume P(N) is a lattice polytope. Then we have

lim - lim (5(s;t; P,a, B) = S(k; P(N);a, B). (4.9)

s1——k1 Sq—— k t=N

The proof consists of the following argument: each limy, , , ---limy ., x, ((s;a, B)
is described by iterated residues [8, 9] and after the summation ), . . the
iterated residues become the ordinary residues and coincide with the values for
FMZVs.

However the holomorphy of (;(s;¢; P,a, B) does not hold necessarilly.

We give an example of Mordell-Tornheim type, which is defined in [6] by

ﬁA,MT(krh/m;ks):( Y = ! ) . (4.10)
p

k
ni,n2>0 g (nl +7”L2) i
ni+nz<p

The corresponding SMZVs with g-analogues are given in [2]. In [13], .Z, S-
generalizations are studied and in [5], U-generalization is introduced.
To realize the double Mordell-Tornheim MZVs in our framework, we set

10
a=(0,0), B= (0 1) and P(t) = {(z,y) | z,y > 0,z +y < t}. Then

11
Z nkink2 (ny 4+ ng)ks = Z n1*1no"2 (g + ng)ke (4.11)
ni,n2>0 (n1,m2)EPO(t)
ni+no<t

and (3.3) reads

—sz(t)
F(z;t; P°; a, B) Ty
vivertex Heeg 1 —¢ 6)
B 1 N eftzl —tz3 (4 12)
- (1 _ 621+23)(1 _ 622+Zs) (1 _ 6_21+22)(1 _ 6—21—23)

e—tzz —tzs

t e —e )




10

which gives one of the UMZFs as

Car (1,823 831) = Qur(s1, 525 83) + (—1) T2 Qurr (52, 835 5131)

N (4.13)
+ (—1)*2"**Cur(s1, 83; 25 ),
where
i 1
,59;83:1) = . 4.14
CMT(SI 52583 ) . zn:_l nil(nz _ t)S2 (nl +ng — t)33 ( )
1,M2—

This UMZF with ¢ = 0 reduces to that in [5] up to factor (—1)%*3.

5 Reciprocity, Kontsevich’s order and negative
values

In this last section, we explain the role of t1,f2 in the definition (1.12) of
C(s1,- .., 8p3t1,t2). Let < denotes Kontsevich’s order defined on Z \ {0}:

(0)<1<2<-+<(co==00) < +=<=2=<-1=<(0). (5.1)
Then we have the following in the sense of Theorem 6 and 7 (for the detail, see
[11]):
1 Cs(kiy .o kr) (t1 =0,t2 = 0),
Z W ‘=7 CN(kl,...,kT) (t1:07t22N6221),
~fa<maesine <tz T " Chy .o kr) (t1 = 0,y = 00).
(5.2)

From this observation, we see that —t; and ¢y are the extreme points of the
sum.
By the Ehrhart—-Macdonald reciprocity, we can show that

3 bk (if M <N) (0,

A(—k1,...,—k.;—M,N) = M<ng<-<n.<N
Cu( 1 ) (-1 Z n’fl ---nff*, (if M > N) (¢,

N<n,<--<n <M

(5.3)
which adds the following to the list (5.2)
1 « ” Tk
> % =" (D', k) (i=—N €Z>1,12=0).
—ty =<y <<ty 1T
(5.4)

The reason why (;(s1,...,52;t1,t2) describes both
FMZVs and FMZSVs, is well understood by Kontse-
vich’s order. To explain this phenomenon, we consider
the dep = 1 case for simplicity.




Since the sum of n* over all integers except 0 is

(s(=k)= > nF=—bo (5.5)

0<n=<0

we see that for f € Z[t] with f(0) =0,

> fn) =0, (5.6)

0<n=0

which can be regarded as a discrete analogue of Cauchy’s integral theorem:

/ f(z)dz = 0. (5.7)
c
The equation (5.6) implies

Yo fmy== > fn), (5.8)

M=<n<N N=nzM

that is, the upper extreme point is also the lower extreme point, and vice versa.
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