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STUFFLE REGULARIZED MULTIPLE EISENSTEIN SERIES REVISITED 

HENRIK BACHMANN 

ABSTRACT. Multiple Eisenstein series are holomorphic functions in the complex upper-
half plane, which can be seen as a crossbreed between multiple zeta values and classical 
Eisenstein series. They were originally defined by Gangl-Kaneko-Zagier in 2006, and since 
then, many variants and regularizations of them have been studied. They give a natural 
bridge between the world of modular forms and multiple zeta values. In this note, we give 
a new algebraic interpretation of stuffle regularized multiple Eisenstein series based on the 
Hopf algebra structure of the harmonic algebra introduced by Hoffman. 

1. INTRODUCTION 

In this note, we will give an overview of the regularization of multiple Eisenstein series and 
present a new Hopf algebraic approach for the construction of stuffie regularized multiple 
Eisenstein series. Multiple Eisenstein series were introduced in the depth two case by Gangl-
Kaneko-Zagier in [GKZ], and for higher depth, they were studied in [BO],[Bl],[B2] and [BT]. 
Similar to multiple zeta values, there exist two regularizations, the shuffle and stuffie regu-
larizations, which were introduced in [BT] and [Bl], respectively. We will focus on the stuffie 
regularisation in this work and give a new algebraic interpretation for them. 
As the main building block for all the objects appearing in this note, we define for an index 

k = (k1,..., kr) E Z~1 of depth r :::> 1, x E C¥Z<o and N :::> 1 the truncated multiple Hurwitz 
zeta function by 

ふ(k;x)：＝ふ(k1,...,k心） ：＝区
1 

N>n1>…>nr>O 
(x + n1)k1... (x + nr)kr ・ 

(1.1) 

The index k is also allowed to be empty (i.e. r = 0), in which case we setふ(0;x) := 1. We 

write〈N(k)= (N(k; 0) for the truncated multiple zeta values. In the case k1 :::> 2 or k = 0 
the index k is called admissible and we can take the limit N →oo to obtain the multiple 
zeta values ((k) = limN→00ぶ(k),which specialize to the Riemann zeta values ((k) in the 
depth r = 1 case. By Z we denote the (()!-vector space spanned by all multiple zeta values. 
The Riemann zeta values also appear as the constant term in the Fourier expansion of the 
Eisenstein series G(k), which can also be constructed out of (1.1) in the following way: For 
k, N :::> 1 and x E C¥Z we define 

1 
こ

1 
wN(k;x) := (N(k;x) +—+ （-l)k⑮(k; -x) = 

” N>n>-N 
(x+n)k ・ 
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Let TE lHI = {z EC I 8'(z) > O} be an element in the upper-half plane and assume k 2'. 2. In 
this case, the limit w(k; T) := limN→00 wN(k;T) exists and we get by the Lipschitz formula 

1 
屯(k;T)＝こ＝ (-2n:i)k 

(T+n)k (k-1) 
，こゆ—lq叫

nEZ ¥'''"I ¥'" ~;- d>O 

(1.2) 

where q = e21r:iT. In particular, we can also replace T by mT and take the sum over all m;::: 1 
to obtain 

Lw(k;mT) = 
(-2面）k~ dk-lqd 

m~l 
(K-1)！区 1-qd'

d>O 

which is, up to the constant termく(k),exactly the Fourier expansion of the Eisenstein series 
of weight k. This shows that the truncated multiple Hurwitz zeta function (1.1) can be used 
to construct both multiple zeta values as well as the classical Eisenstein series. The purpose 
of this note is to show that they can also be used to construct multiple Eisenstein series. This 
will then be used to show that the regularization of the multiple Hurwitz zeta function gives 
a, in some sense, natural way of de恥 ingstuffie regularized multiple Eisenstein series. This 
construction is based on the Hopf algebra structure of quasi-shuffie algebras, which we will 
recall in Section 3 after recalling the basic calculation of multiple Eisenstein series in Section 
2. In Section 4, we then show how (truncated) multiple Eisenstein series can be constructed 
out of the truncated multiple Hurwitz zeta function (1.1) using the convolution product and 
standard regularization techniques in the harmonic algebra. In the end, we mention some 
new results on the comparison between the stuffie and shuffie regularized multiple Eisenstein 
series, which will be discussed in more detail in the master thesis of Thran in [T]. Finally, 
we mention that the construction we present in Section 4 is similar to the one used in [BB] 
to construct combinatorial multiple Eisenstein series. 

Acknowledgement: This project was partially supported by JSPS KAKENHI Grants 
19K14499 and 21K13771. 

2. MULTIPLE EISENSTEIN SERIES 

In this section, we recall basic facts on multiple zeta values, multiple Eisenstein series, and 
the calculation of their Fourier expansion. Details can be found in [BO], [Bl],[B2],[B3], and 
[BT]. For k1,..., kr 2': 2 and TE IHI the multiple Eisenstein series are defined1 by 

G(Kい•.．， kr;T) ：＝こ kl
1 

入1>--…>入砂-0入1 ・・・沖
(2.1) 

入iEZT+Z

where the order >---on the lattice ZT + Z is defined by m汀十 n1>---m汀＋ n2iff叫＞匹

or m1 = m2 /¥柘＞ n2.Since <G(k1,..., kらT+ 1) = <G(k1,..., kr; T) the multiple Eisenstein 
series possess a Fourier expansion, i.e., an expansion in q = e2"i7, which was calculated in 

1 In the case k1 = 2 we need to use Eisenstein summation as done in Section 4 
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[GKZ] for the r = 2 case and for arbitrary depth by the first author ([B2]). In depth one, 
we have for k ~ 2 

G(k;T)＝ど 1 
＝ 入k

入EZT+Z
入>-0

1 1 
ど (mT+n)Kパ(k)＋どと (mT+n)K
m>O','m>O  nEZ 

V (m=OAn>O) -------.,』
=:w(k;mT) 

For even kミ4,these are just the classical Eisenstein series, which are modular forms for 
the full modular group. Here the w(k; T) are exactly the function we saw in (1.2), and we 
refer to them as the monotangent function ([Bo]). By the Lipschitz formula (1.2) we obtain 

(-m)K 
IG(k; T) = ((k)＋区魁(mT)= ((k) + ，区dk-lqmd=：く（k)+ (-21ri)切(k).

(k -1)! 
m>O m>O 

d>O 

Here the g(k) are the generating series of the divisor-sums, and for higher depths, multiple 
versions of these q-series appear, which are defined for k1,... kr 2: 1 by 

k1 -1 ~kr-1 
g(k1,..., kr; T) = g(k1,..., kr)＝ L ~... ~qm,n,+…+m団r. (2.2) 

(k1 -1)!... (kr -1)! 
ml>•••>mr>O 
n,,...,nr>O 

These q-series were studied in detail in [B2], [BK] and they can be seen as q-analogues of 
multiple zeta values since one can show that for k1 ~ 2 

lim(1 -q)柘＋・十krg(k1, • • • , kr) ＝ く(k1,.. , , kr) -
q→1 

In the Fourier expansion of (multiple) Eisenstein series, the q-series g always appear together 
with a power of -2而， andtherefore we set for k1,..., kr ~ 1 

g(k1,..,,kr;T) =g(k1,..,,kr) := (-2が）ki+・+krg(k1, • • •, kr) • 

With this, a multiple version of IG(k; T) = ((k) + g(k) is given by the following. 

Theorem 2.1 (r = 1, 2 [GKZ], r ~ 1 [B2]). For k1,..., kr ~ 2 there exist explicit integers 

心，9;：乞 EZ, such that for q = e加 iTwe have 

<G(k1,..., k五T)＝く(K1,．．．，Kr）＋こ心，，．．，i［：］〈（lい...,lj)g(lj+l,..., lr) + g(k1,..., kr). 
O<j<r 

li+・・-+lr=k1+…+kr 
l1こ2,l2,…，lr2'.1

In particular, G(k1,..., kバT)＝く(k1,...,kサ＋区n>Oak,,...,kr(n)qnfora柘，．．，dn)E Z［叫

We will sketch the proof of Theorem 2.1 in the following and then give an explicit example at 
the end of the section. First, observe that for k1,..., kr 2 2 we have by the Lipschitz formula 
(1.2), that the q-series g can be written as an ordered sum over monotangent functions 

9(K1,．．．，Kr) ＝ど屯(k1;m汀）・ •.W(kr;m汀）． (2.3) 
m1>…＞mr>O 
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In general, the multiple Eisenstein series can be written as ordered sums over multitangent 
functions ([Bo]), which are for k1,..., kr ~ 2 and TE]HIdefined by 

¥Jr(k1,..., kご）：＝区
1 

n1>…＞n?`  
(T十凡）k1...(T+nr)kr0 

niEZ 

These functions were originally introduced by Ecalle and then in detail studied by Bouillot 
in [Bo]. To write <G(k1,..., kr; T) in terms of these functions, one splits up the summation in 
the definition (2.1) into 2r parts, corresponding to the different cases where either mi= mi+l 
or mi > mi+l for入i=m汀十 niand i = 1,..., r（入r+l= 0). Then one can check that the 
multiple Eisenstein series can be written as 

G(k1,..., kr; T)＝文g*(k1,...,kぷ(kH1,...,kr), 
J=O 

where the q-series g* are given as ordered sums over multitangent functions by 

『(k1,...,kr) := >] 

J rr W(Kr9-1+1,．．．，Kr,; m汀）．

(2.4) 

(2.5) 
l:'.::j:'.::r i=l 

O=ro<r1<…＜巧ー1<r;=r 
m1>・・・＞叫＞O

Further, one can show ([Bl, Construction 6.7]) that the q-series『 satisfythe harmonic 
product formula, e.g. g*(k心 (k2)＝g*(k1,k砂＋『（k2,k1)＋ず(k1+ k2). We will reformulate 
this construction in Section 4. To obtain the statement in Theorem 2.1, one then uses the 
following theorem. 

Theorem 2.2. [Bo, Theorem 6] For k1,..., kr 2 2 with k = k1 + ・ ・ ・ + kr the multitangent 
function can be written as 

鱈 ...,kバT)＝ 区 （ー1)h++lJ-1十朽十KII (；9t _ -］）(([1,..., lj-1)虹(T)((Zr, lr-1,.. •, lj+1) • 
1:'.::j勺 1SiSr

h+…+lr=k i#j 

Moreover, the terms with l[T(l; T) vanish. 

Proof. This follows by using partial fraction decomposition 

1 
＝と II(

J-1(-1沖(!言） （一1)K+KJ r (t芦）
(T+n1)柘．・ • (T + nr)Kr 1<J<r 9=1 n, -n炉 (T+ n]）ら且 (n]―n,)ら・

h+…＋lr=k 

In order to show that the terms with l[T(l; T) vanishes, one observes that their coefficient is 
exactly given by the formula in Proposition 3.3. And therefore, we will see later, as a simple 
application of the antipode relation, that these vanish. 

ロ

Applying Theorem 2.2 to (2.5), we see by (2.3) that the『 canbe written as a Z-linear 
combination of g. This proves Theorem 2.1 since one can also show that all the appearing 
multiple zeta values have the correct depth. 
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Example 2.3. We give one explicit example in depth two. To write G(k1, k砂assums over 
W we consider the following 

G(k心；T)＝ど
1 

(m汀十n1胚(m汀十n炉
m1T丑 1>--m汀十n2>--0

2
 

k
 

ヽ
ー
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n
 

＋
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区
[
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＋
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こ〔[
m
n
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＋
 0

0
 

＿＿＞ 

▽
『
[悶

（

＼

 
＝
 

＝く(k心）＋ L 1J!(k1;mT)（（朽）＋ LiJ!(k1,k2;mT)+ L 1J!(k1;m汀）1J!(k2;m汀）．
m>O m>O m1>m2>0 

These four terms correspond to the following positions of lattice points we are summing over: 

From this we obtain (2.4), i.e. 

(Gk1,k2 (T)＝く(kぃ朽） ＋g*(k1)((k2) +『（Kぃ朽），

where g*(k1) = ~加＞0w叫m汀） ＝g(k1) and 

g*(k心）＝ど虹，k2(m汀）＋ど虹(m汀）WK2(m汀）
m1>0 m1>m2>0 

＝区虹，k2(m汀） ＋g(k1,k砂．
加＞O

Considering the special case (k1, k砂＝ （3, 2) one sees by partial fraction decomposition 

動，2(T)＝こ 1 

n1>n2 
(T +紐(T十四）2

＝と(12 3 
n1>n2 

（m -叫(T+m)3十（m-崎(T+ m)2十（m- 疇(T十叩））

王（旧—四）；け＋崎―伍ー四：4（T 十四））＝ 3く(3)動 (T)+ ((2)1li3(T), 

and therefore §*(3, 2) = 3((3)§(2) + ((2)§(3) + §(3, 2). In total, we get 

G(3, 2; T) = ((3, 2) + 3((3)§(2) + 2((2)§(3)十§(3,2).

3. ALGEBRAIC SETUP 

First, we will recall some basic facts on quasi-shuffie products ([H], [HI]). Let L be a 
countable set, called alphabet, whose elements we will refer to as letters. A monic monomial 
in the non-commutative polynomial ring Q〈L〉willbe called a word, and we denote the 
empty word by 1. Suppose we have a commutative and associative product◇ on the vector 
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space <QlL. Then the quasi-shuffie product＊◇ on <Ql〈L〉isdefined as the <Ql-bilinear product, 
which satisfies 1＊◇ W=W＊◇ 1 = w for any word w E <Ql〈L〉and

aw＊◇ bv = a(w＊◇ bv) + b(aw＊◇ v) + (a◇ b)(w＊◇ v) 

for any letters a, b E L and words w, v E <Ql〈L〉.Thisgives a commutative <Ql-algebra 
(Q〈L〉,%）,whichis called quasi-shuffie algebra. 
For describing the algebraic structure for multiple zeta values, we consider two different 
alphabets. The first is Lxy = { x, y} together with the product a◇ b = 0 for a, b E Lxy• We 
write Sj = <Ql〈Lxy〉=Q〈x,y〉andthe corresponding quasi-shuffie product w =＊◇ is called 
the shuffie product. For example, we have 

xy W xxy = xyxxy + 3x四/XY+ 6xxxyy. (3.1) 

We define the following subspaces of Sj 

S)0 = (Q + xSjy C Sj1 = (Q + Sjy C Sj. 

Notice that both spacesが and舒 areclosed under山 andwe denote the corresponding 
(Q-algebras by琥 and現．
The second alphabet is Lz ={咋 |k2". 1} together with the product zk,◇ % ＝Zk叶 k2for 
k1, k2 2': l. The corresponding quasi-shuffle product * =＊◇ is called the stuffie product. For 
example, we have 

砂＊硲＝砂Z3+ Z3砂十 Z5.

k-l 

/—^—_ By identifying Zk ++ x--~y, we can identify (Q)〈Lz〉with針 andwe will not distinguish 
between them in the following, i.e., we will view Zk as elements in Sj. The space Sj1 equipped 
with the stuffi.e product gives a commutative (Q)-algebra Sj; with subalgebra到． Moreover,
for an index k = (k1,..., kr) E Zらwedefine the word Zk = zk,... Zkr・ Notice that, as 

a (Q)-vector space, Sj1 is spanned by zk for arbitrary indices k and n° is spanned by zk for 
admissible indices k. By above identification, we can write (3.1) as 

砂山硲＝ Z2硲＋ 3z3砂十 6叩 1. (3.2) 

We also consider the following subspace o⑱° 

が＝ Q＋〈k1,...,kr I r ~ 1, kじ•.．， kr ~ 2〉Q,

which is spanned by Zk such that the multiple Eisenstein series G(k) is defined. Notice that 
both n° andが areclosed under * but only n° is closed under W as we can see by (3.2). 
We obtain the following inclusion of (Q)-algebras 

吋 c吋 c虻，

呪 C現 C瓜．

In this note, we will consider various different objects defined for indices (e.g. multiple Hur-
witz zeta functions, multiple zeta values, multiple Eisenstein series, multitangent functions, 
etc.). In most cases, we want to consider these objects as maps from one of the subspaces 
of Sj into some (Q)-algebra. By abuse of notation, we will not distinguish between the maps 
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and the objects. For example, for any N ：：：： L珈団加紅叫 Hurwi訟 加 ⑬ funは加⑳加

viewed as a (()!-linear map defined on the generators by2 

紐(-;x):.lj1 --+O(C¥Z), 

W = Zk,... Zkr←ふ(w;x) :=〈N(k1,...,kr; x) 

and (N(l; x) = 1. In general, for all maps with domain S)1 in this note, we will always 
assume that the empty word 1 gets mapped to 1. 

Lemma 3.1.翫 N：：：： 1 the map紐(-;x)：針→ O(C¥Z)is an algebra homomorphism. 

Proof. The proof of this is the same as for (truncated) multiple zeta values and is a special 
case of [B3, Lemma 2.18]． ロ

Since the limit ofふ(w;O)as N→oo just exists in the case w E S)0, we define 

(:.ljo→ Z, (3.3) 

W =Zk←→ ((w) = ((k). 

For• E{＊，山｝ themap (3.3) gives (()!-algebra homomorphism (: SJ~ --+ Z. This is a 
consequence of the definition as iterated sums (or Lemma 3.1) and the representation as 
iterated integrals (see [BO, Section 2]). For w, v Eが weobtain the relations 

く(w* v) =〈（w)((v)= ((w山 v)'

which are called finite double shuffie relations. 

3.1. Regularization. In this section, we will recall some results from [IKZ]. For• E {w, *} 
any element w E況 canbe written as a polynomial in z1 = y with coefficients in況 i.e.there 

exist some m ：：：：゚ andcj(w) E SJ。suchthat w =冗'J'=1Cj (w) • zt Since this representation 
is unique, we obtain algebra isomorphisms 

reg.:吠→吠[T],
m 

w ←→区叫w)Tj= reg0(w). 
J=l 

In particular, any algebra homomorphism f : Sj~ • A into some (Q-algebra A can be lifted 
to an algebra homomorphism 

「：泣→ A[T], (3.4) 
m 

WーLf(cj(w))T八
J=l 

i.e. we set f" = f oreg. after extending f to.f:i~[T] coefficient-wise. In the case of the multiple 
zeta values map (3.3), this gives the shuffle regularized multiple zeta values茫 andthe stujfie 

2By O(U) we denote the ring of holornorphic functions on U c IC. Most of the functions we consider are 
holornorphic on U = C¥Z, but later we will restrict to the case U =]ll[． 
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regularized multiple zeta valuesぐ． Bythe work, [IKZ], these two regularizations differ, but 
their difference can be described explicitly: Define the恥 linearmap p :罠［T]→罠[T]by 

p(eTu) := exp (Tu+~ ~((n)un). (3.5) 
n=2 

Then we haveぐlJ= po(* ([IKZ, Theorem 1]). The relations among multiple zeta values ob-
tained from this comparison together with the finite double shuffie relations are the extended 
double shuffie relations, which conjecturally give all relations among multiple zeta values. 

3.2. Hopf algebra structures. By the work of Hoffman ([H],[HI]), any quasi-shuffie alge— 
bra can be equipped with the structure of a Hopf algebra [H, Section 3], where the coproduct 
is given for w E (I]〈L〉bydeconcatenation coproduct 

△(w) = L uRv. 
UV=W  

The antipode in this Hopf algebra can be described explicitly ([H, Theorem 3.2]). For 
example, if◇ is the trivial product, then the corresponding antipode for aい•..， arELis
given by 

S(a1 ・ ・ ・ ar) = (-lYar... a1. (3.6) 

For any Hopf algebra A with coproduct△and an (Q)-algebra B with multiplication m and 
f, g E Hom(A, B) the convolution product is defined by 

f * g =mo (J R g) o△ • 

As a simple fact from the theory of Hopf algebras, we get the following lemma, which will 
play an important role in the construction in the next section. 

Lemma 3.2. If f,g E Hom(A, B) then f * g E Hom(A, B). 

The antipode S : A→A is the inverse of Id with respect to *, i.e. 

(S*Id)（W) ＝ {1,W = °. 
0, else 

As a direct consequence of (3.6) one obtains that for any non-empty word w = a1... am in 
A=  (Q)〈L〉wehave 

立（一l)"a氾i-1...a1山 ai+l佑＋2...am= 0. (3.7) 
i=O 

This can be used to prove the following relations among the shuffle regularized multiple zeta 
values. 

p roposition 3.3. For k1,..., kr ~ 1 and k = k1 + ・ ・ ・ + kr we have 

h+ +lJ-1]苔：＋lr=K-1 (-1)e3 lgr ば――~)く山 （h, ．．．， lJ-1)叶 (lT, lr-1,．．．， lJ+1) ＝ 0, 

where ej = l1 + ・ ・ ・ + lj-l + kj・



81

STUFFLE REGULARIZED MULTIPLE EISENSTEIN SERIES REVISITED 

Proof. By induction and the definition of the shuffie product, one can show that for any 

n~l 

ぐ(x和 ly...Xkr-ly炉） ＝ （ー 1)n こ n は―-~)＜山 (l1,...,Zr).
l1+•••+lr=K1+…+kr+n i=l 

The statement then followsぃ!using the following relation, which is a consequence of (3. 7) 
for am... a1 = x柘 ly...xkr-l: 

m 

区（一1)で(a1...a,）巳(a訊 m-1...a;+1) = 0. 
i=O 

口

4. STUFFLE REGULARIZED MULTIPLE EISENSTEIN SERIES 

Using the algebraic setup described in the previous section, we will now give a new in-
terpretation of the regularization of the multitangent functions in [Bo, Section 7] and the 
stuffie regularization of multiple Eisenstein series presented in [Bl, Section 6]. The following 
construction is motivated by the original calculation of the Fourier expansion explained in 
Section 2. To calculate the Fourier expansion for the double Eisenstein series G(k1, k砂one
considers for k1, k2 ;::: 2 the four terms 

叫 1,k2; T) = ((k1, k2)＋ど ¥ff(k1;mT)く(k叫＋区 ¥ff(k1,k2; mT) +区 ¥ff(k1;m汀）¥ff(k2;m汀）．
m>O m>O m1>m2>0 

Combining some of these terms into 

ず(k1)＝こ鱈；mr),
m>O 

『(k心） ＝L W(k1, k2; mr)＋ L W(k1;m汀）W（松；m汀）
(4.1) 

m>O m1>m2>0 

we obtain G(k1, k2; T) =〈（Kぃ灼） ＋g*(kリ（（秘） ＋g*(k1, kサ

4.1. Construction of stuffie regularized multiple Eisenstein series. We now w叫 to
generalize this idea to the truncated versions. For this, we define for M ~ 1 

砂＝｛mE Z I 1ml < M}. 

and for T E IHI define on ZT + Z the order >--as before by 

叫T+ n1 >--m汀＋加：⇔ （加＞叫） or（加＝四 and凡＞叫・

We illustrate this order in the following diagram: 
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m 

5
 

...................●.............● • • • ● • •• 

• ···• · • ··· • • ● • • • • ·· • ·· • ··· • ··· • ··· • • •• 

• ···• · • ··· • • • ... • ·· • •· • ··· • ·· • ... • 

n、

All the points 入 €勾＋ Z6 satisfying 入~ 0. 

... 
Definition 4.1. For integers kい...,kr ~ 1, and M, N ~ 1 we define the truncated multiple 
Eisenstein series by 

砂，N(k1,...,kr; T)＝区 1 

炉
入正••>ふ>--0 "1 

・・・入kr
r 

入，EZMT十ZN

For k1,..., kr ~ 2, we obtain the multiple Eisenstein series from Section 2 by3 

G(k1,...,k五T)＝ lim lim伽，N(k1,• • •, kr; T). 
M→ooN→OO 

Fixing M, N ~ l we can view the truncated multiple Eisenstein series as (Q)-linear maps 
砂，N(-;T):.lJ1→O(JHI).One can check directly that these are algebra homomorphism 
with respect to the stuffie product *・ We will show this in the following by rewriting them 
as the convolution product of two other algebra homomorphism. For this we first define the 
following. 

Definition 4.2. For k1,..., kr ~ l,N ~ l and x E C¥Z define the truncated multitangent 
function by 

'¥N(kい...,kr; x)：＝区 1 

N>n,>…>nr>-N 
(x + n1)k1 ・ ・ ・ (x + nr)kr ・ 

n因 Z

For k1,kr 2". 2 the multitangent function from Section 2 are given by ¥J!(k1,...,kr;x) = 

limN→oo ¥J!N(k1,..., kr; x). 

Definition 4.3. For M, N 2". 1 define the map fJM,N(-; T) : f,1→O(JHI) by 

M-1 
如，N(-;T)=* ¥J!N(-;mT), 

m=l 

where we write＊にfj= fb* fb-1 * ・ • • * fa・ 

3Notice that we also allow k1 = 2 here. In this case, the sum is not absolutely convergent but conditionally 
convergent and all results mentioned in Section 2 still hold. 
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Notice that this generalizes (4.1) for the truncated version, since for w E 5)1 we have 

如，N(w;T)＝〉 ▽[
l
 

飢v(w1;m汀）．．．並v(wj;mjT).
J21 M>加＞・・・＞四＞O

w,... w1=w 
w,,...,w伍0

As a truncated version of (2.4) we get the following. 

．． 
Proposition 4.4. For any M, N ;::,: 1 we have 

GM,N＝如，N＊〈N・

Proof. The argument for this is the same as for the usual multiple Eisenstein series as 
described in [BO], [B3] or [BT]. For a given word w = Zk, ・ ・ ・ Zkr the terms in GM,N(w) are 
grouped into 2r groups, which all can be expressed as products of 9M,N(w2) and (N(w1) with 

W=叫 W2・ロ

Define for k1,..., kr ;::,: 1, x E lHI and N;::,: 1 
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Again we can view these as (Q)-linear maps C,ふ： Sjl→O(IC¥Z)defined on z柘...Zkr by 
the above formulas. 

p roposition 4.5. The maps C心：り； →O(IC¥Z) are algebra homomorphisms. 

Proof. For the map C this is obvious, since C(kじx)C(k2;x) = C(k1 + k2; x) and the higher 
depth products are trivial. For ("iv observe thatぷ(k1,...,kr;x)= (-l)ki+・・・+krふ(kr,...,k1; -x). 
The statement now follows from the well-known fact that the (Q)-linear maps de且nedon the 

generators by Zk1 " " " Zkr→Zkr ・ ・ ・ Zk1 and Zk1 ・ ・ ・ Zkr → (-1)柘十••+kr Zk1 ・• •Zkr are algebra 
homormorphism on叫 togetherwith Lemma 3.1. ロ

p roposition 4.6. For N 2: 1 we have 

屯N(-;x)＝ぷ(-;x)*C(-;x) *G(-;x). 

Proof. This follows immediately from the definition. 

(4.2) 

ロ

The limit N→oo of (4.2) evaluated at a word which is not inが does,in general, not exist. 
To overcome this problem, we use that the multiple Hurwitz zeta function can be regularized 
(c.f. [Bo], [KXY]) to algebra homomorphismぐ（一；x):叫→ O(JHI),such that 

(i) For k1：：：：： 2 we have (*(k1,..・,kバx)= limN→oo (N(k1,● ..,kバx)'

(ii)ぐ(l;x)= ~n>。（土—¾).



84

HENRIK BACHMANN 

This follows again from the regularization (3.4), since for w E SJ0 and x E lHI the limit 
limN→00 (N(w; x) exists. This gives an algebra homomorphism〈(-;x)：吋→ O(JHI)which, 
by (3.4), can be lifted to an algebra homomorphism from S:i; to O(lHI)[T]. By sending T 

to 冗n>。（土—¼) we then obtain the algebra homomorphismぐ(-;x)：酎→ O(lHI).For 

k1,..., kr ~ 1, we then define〈N(k1,---,kr;x)= (-1)朽十•+krふ(kr,...,k1; -x), which also 
gives (with the same argument as in the proof of Proposition 4.5) an algebra homomorphism 
ぐ（一；x):針→ O(JHI).Using these two we give the following definition of stuffle regularized 
multitangent functions. 

Definition 4. 7. (i) We define the algebra homomorphism炉：”；→ O(lHI)by 

炉(-;T)＝ぐ(-;T)*C(-;T)＊〈―,＊(-;T). 

(ii) For M ~ 1 define the algebra homomorphism姑： 5；→ O(lHI) 

M-1 
如—;T)= * ¥J!*(-;mT) 

m=l 

M-1 
= :~: ((*(-; mT) *C(-; mT)＊い(-;mT)).

The fact that both maps ¥JI* and flk(-; T) are algebra homormorphism again follow directly 
by Lemma 3.2, 3.1 and Proposition 4.5. The stuffle regularized multitangent functions 
w*(k1,..., kr; x) in Definition 4.7 coincide with the "symmetrel extension of multitangent 
functions" constructed in [Bo]. In [Bo], this is done by using the language of moulds and 
mould product instead of using the convolution product in the Hopf algebra足

p roposition 4.8. For all w E SJ0 the limit g*(w; T) := limM→00妬 (w;T) exists. In particu-
Zar, this gives a (Q)-algebra homomorphismず(-;T)：Sjo→O(lHI). 

Proof. First notice that w*(-; T) is, by construction, 1-periodic in T and therefore also 
possesses an expansion in q. The results follow from the fact that one can check that 
¥J!*(l,..., 1; T) is the only regularized multitangent function with a non-vanishing constant 
term in its q-expansion. From this, one can then show that for each n ~ 1, there exists some 
M (n), such that the coefficient of qn in知 (w;T)with w Eがisthe same for all M > M(n). 
The details for this will be worked out in [T]．ロ

Again we can use the regularization 3.4 to define an algebra homomorphismが：別→ O(JHI)
which satisfies the following 

(i)か(w;T)= limM→00如 (w;T) for w E SJ0. 
(ii)が（z丘T)=(-2面）区m,n::>1qmn_ 

Notice that『(z丘T)coincide with the g(l; T) in (2.2) and that for kい...,kr ~ 2 we have 

『(k1,-..,kr;T)= g(kl,・・.,kバT).

Definition 4.9. Define the stuffie regularized multiple Eisenstein series as the algebra ho-
momorphism (G* : Sj↓ →O(lHI) 

G*=『＊ぐ．

Theorem 4.10. We have (G如＝ G.
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Proof. The construction of CG* followed exactly the calculation of the Fourier expansion of 
CG. The statement follows by checking that for indices with entries 2". 2 theがareexactly 
the same as the g in Section 2. ロ

4.2. Comparison to shuffle regularized multiple Eisenstein series. In [G], Goncharov 
introduces the Hopf algebra of formal iterated integrals. The coproduct in this Hopf algebra 
has an explicit combinatorial description. In [BT] it was shown that, after dividing out a 
certain ideal, one obtains a Hopf algebra which, as an algebra, is isomorphic to.f:i~- Therefore 
we can equip.fj~ with the Goncharov coproduct, which we denote by△c-By the explicit 
formulas forふ weobtain, for example 

ふ (z辺） ＝ Z終2@1 + 3z2@硲＋ 2z3@⇔+ 1 ⑭ Z終2・

Compare this to the Fourier expansion of CG(3, 2): 

G(3, 2; T) =く（3,2) + 3§(2)((3) + 2§(3)((2) + §(3, 2). 

In [BT] it was shown that the coproduct can always be used to describe the Fourier expansion 
of multiple Eisenstein series. More precisely, setting f *cg= mo (f@ g) oふ itwas shown 
the following: 

Theorem 4.11 ([BT]). We have CG= (g *c (）阻

p roposition 4.12. [BT] There exists an algebra homomorphism妍： ni →O(lHI) with 

9j:ii2 = g. 

Definition 4.13. Define the shuffie regularized multiple Eisenstein series as the algebra 
homomorphism CG山：呪→ O(lHI)

G山＝炉＊ぐLi.

By the previously mentioned results we have 

G如＝ G＝ Giが，

which has the following result as a consequence. 

Corollary 4.14. The shuffie regularized multiple Eisenstein series satisfy the restricted 
double shuffie relations, i.e. for w, v Eが

G叫WWV-W*V)=O.

As it was already observed numerically at the end of [BT], there seem to be more relations 
satisfied by theか thanjust the restricted double shuffie relations. By comparing (G* and 
炉 explicitlyin depth three, one can obtain the following result, which will be one of the 
main results of [T]. 

p roposition 4.15 ([Tl). For k1, k3 2". 2, k2 2". 1 the shuffie regularized multiple Eisenstein 
series satisfy the finite double shuffie relations 

G叫Zk1Zk2 山知— Zk1玉＊和） ＝0. 



86

HENRIK BACHMANN 

But in higher depths, it seems that not all finite double shuffle relations are satisfied by 

the (GW, and there is no explicit conjecture yet which relations are satisfied. For this, it 

might be necessary to understand the differences betweenか and(G * in more detail. In 

particular, it might be interesting to check if an analogue of the map pin (3.5) exists for the 
regularizations of multiple Eisenstein series. 

REFERENCES 

[BO] H. Bachmann: Multiple Zeta-Werte und die Verbindung zu Modulformen durch Multiple Eisensteinrei-
hen, Master thesis, U niversitat Hamburg (2012) (available at http://www. henrikbachmann. com). 

[Bl] H. Bachmann: The algebra of bi-brackets and regularized multiple Eisenstein series, J. Number Theory, 
200 (2019), 260-294. 

[B2] H. Bachmann: Multiple Eisenstein series and q-analogues of multiple zeta values, Periods in Quantum 
Field Theory and Arithmetic, Springer Proceedings in Mathematics & Statistics 314 (2020), 173-235. 

[B3] H. Bachmann: Lectures on Multiple Zeta Values and Modular Forms, Nagoya University (2020). (avail-
able at http:/ /w匹．henrikbachmann.com). 

[BB] H. Bachmann, A. Burmester: Combinatorial multiple Eisenstein series, preprint, arXiv:2203.17074 
[math.NT]. 

[BK] H. Bachmann, U. Kiihn: The algebra of generating functions for multiple divisor sums and applications 
to multiple zeta values, Ramanujan J. 40 (2016), 605-648. 

[BT] H. Bachmann, K. Tasaka: The double shuffl,e relations for multiple Eisenstein series, Nagoya Math. 
Journal 230 (2017), 1-33. 

[Bo] 0. Bouillot: The algebra of multi tangent functions, J. Algebra 410 (2014), 148-238. 
[GKZ] H. Gangl, M. Kaneko, D. Zagier: Double zeta values and modular forms, in" Automorphic forms and 

zeta functions" World Sci. Pub!., Hackensack, NJ (2006), 71-106. 
[G] A. B. Goncharov: Galois symmetries of fundamental groupoids and noncommutative geometry, Duke 

Math. J., 128(2) (2005), 209-284. 
[H] M. E. Hoffman: Quasi-shuffl,e products, J. Algebraic Combin. 11 (2000), 49-68. 
[HI] M. E. Hoffman, K. Ihara: Quasi-shuffl,e products revisited, J. Algebra 481 (2017), 293-326. 
[IKZ] K. Ihara, M. Kaneko, D. Zagier: Derivation and double shuffl,e relations for multiple zeta values, 

Compositio Math. 142 (2006), 307-338. 

[KXY] M. Kaneko C. Xu and S. Yamamoto: A generalized regularization theorem and Kawashima's relation 
for multiple zeta values, J. Algebra 580, (2021), 247-263. 

[T] C. Toran: Regularized multiple Eisenstein series, Master thesis, Universitat Hamburg, in preparation. 

GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY, NAGOYA, JAPAN. 
Email address: henrik. bachmanncmath. nagoya-u. ac. j p 


