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RECENT PROGRESSES ON GENUS ONE EXTENSIONS OF MIXED 
TATE MOTIVES OVER Z 

KENJI SAKUGAWA 

ABSTRACT. In this survey article, we give an overview of recent progress of construction 
of genus one extension of the category of mixed Tate motives over Z by Brown [6] and 
Hain-Matsumoto [18]. 

1. Introduction 

The construction of (sub)categories of mixed motives satisfying the following condi-
tions is one of important open problems in Arithmetic geometry: (i) This is a Q-linear 
Tannakian category and a universal cohomology theory of varieties over Q. (ii) The ex-
tension classes of simple objects can be computed by algebraic cycles. (iii) Its Tannakian 
fundamental group can compute explicitly. 

The category of mixed Tate motives over a number field is one of the few subcategories of 
mixed motives that satisfy all of the above conditions. As an application of the existence of 
such a category, Goncharov and Terasoma proved independently that Zagier's conjectural 
dimension of the space of multiple zeta values gives an upper bound ([8], [29]). It is 
natural, therefore, to ask about possible extensions of this category. 

Problem 1.1. Let MTM(Z) be the category of mixed Tate motives over Z. Find a nice 
extension of MTM(Z). 

The aim of this article is to give an overview of a recent attempts to construct of a nice 
category of mixed motives containing MTM(Z) by Francis Brown ([6]), Richard Hain and 
Makoto Matsumoto ([18]). 

Notation. For a field k, VecZn denotes the category of finite dimensional k-vector spaces. 
For an abstract group r (resp. a pro-algebraic group Q over k), Repk(r) (resp. Repk⑰) 
denotes the category of representation of 1r (resp. algebraic representations of Q) on finite 
dimensional k-vector spaces. 

2. Relative pro-unipotent completion 

Our basic tool to construct subcategories of mixed motives is the relative pro-unipotent 
completion of a topological fundamental group. We recall this notion briefly. 

Let k be a field of characteristic zero and let S be a reductive algebraic group over k. 
Let 1r be狙 1abstract group and let 

Po: 7r→S(k) 

be a group homomorphism whose image is Zariski dense. A relative unipotent lift of p0 is 
a tuple (G, pr, pc) where: 

• G is an algebraic group over k. 
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• pr: G→S is a surjective homomorphism whose kernel is unipotent. 
• PG: T →G(k) is a group homomorphism such that the composition pro p0 is 
equal top。andthat the image of p0 is Zariski dense. 

DEFINITION 2.1. The relative pro-unipotent completion of 1r with respect to p0 is a 
pro-algebraic group over k defined to be 

皿 G.
PG: T→G(k) 

Here, Pa runs over relative unipotent lifts of p0. This pro-algebraic group is denoted by 
1r(p0) in this article. When S = Spec(k) and p0 is the trivial representation, the relative 
pro-unipotent completion with respect to p0 is called the pro-unipotent completion of 1r 
and this group is denoted by Jrun /k or Jrun simply. 

EXAMPLE 2.2. Let 1r be a finitely generated group. Then, the ring 0(1run /k) of regular 
functions on 7run/k has the following explicit description ([12, Proposition 3.222]): 

0(1run /k)竺四Homz(Z[1r]/Jn+l, k). 
n>O 

Here, Z[1r] is the group ring of 1r and J denotes its augmentation ideal. The existence 
of the natural isomorphism above follows from Proposition 2.4 below. This isomorphism 
is not only an isomorphism of k-vector spaces but also of commutative Hopf k-algebras. 
Here, the multiplication (resp. coproduct) of the right-hand side is the induced map by 
the diagonal map 1r→1r x 1r (resp. the multiplication 1r x 1r→1r). In particular, if 
1r is a free group of rank r, then 0（戸） isnaturally isomorphic to a non-commutative 
polynomial ring in r-variables with the shuffle product and the concatenation coproduct. 

By definition, we have the canonical representation 

Puniv: 7r→1r(po)(k), 

which has a universal property for relative (pro-)unipotent lifts of p0. Then, we have the 
induced natural functor between k-linear Tannakian categories 

(2.1) Repk(1r(p0)）→ Repkけ）

by puniv, which is fully-faithful by the Zariski density of the image of Puniv・ An object V of 
Repkけ） issaid to be relatively unipotent with respect to p。ifits Jordan-Holder component 
extends to an algebraic representation of S via p0・

EXAMPLE 2.3. When p0 is the trivial character, a relatively unipotent representation 
of 1r is nothing but a unipotent representation of 1r in the usual sense. 

PROPOSITION 2.4. The essential image of (2.1) coincides with the full-subcategory of 
Repkけ） consistingof relatively unipotent representations with respect to p0. In other 
words, 1r(p0) is canonically isomorphic to the Tannakianfundamental group of the category 
of relatively unipotent representations over k of 1r with respect to p0. 

Proof. It is sufficient to show the essential surjectivity of the functor (2.1). Let (V, p) be 
a relatively unipotent representation of 1r on a finite dimensional k-vector space V. Let G 
be the Zariski closure of p(1r) in Afil.(V)~ GLN,k・ As usual, we equip G with the reduced 
scheme structure. Then, it is easily checked that G forms a closed subgroup of Afil.(V). 

Moreover, there is a unique isomorphism G /Gun ➔ S compatible with representations of 
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1r, where cun is the unipotent radical of G. Therefore, by the definition of 1r(p0), there is 
a natural homomorphism pr: 1r(p0)→ G and po pr coincides with Puniv・ This implies the 
essential surjectivity of (2.1)．ロ

By definition, there exists a short exact sequence of pro-algebraic groups 

1 → 7r(Po)un →1r(po)→ S→1, 

where 1r(p0?n is the pro-unipotent radical of 1r(p0). For a pro-algebraic group g over k 
and a finite dimensional algebraic representation V, Hi(Q, V) is defined by 

げ (9,V)= Ext如疇）（k,V), 

where k is the trivial representation of 9, and Hi(Q) is defined to be H噂 k).To compute 
topological generators and relations of the Lie algebra of 1r(p0?n, the following proposition 
is useful: 

PROPOSITION 2.5 ([17, Lemma 5.1]). Let G = S 1>< U be a pro-algebraic group over k 
with reductive S and pro-unipotent U. Then, for any i, we have a natural isomorphism 

W(U) 竺〶 Ext如恥(G)(kぷ）叡 V入v
入EA

of S-modules. Here, A is the set of isomorphism classes of irreducible representations of 
S and Vi. is a corresponding irreducible representation to入．

EXAMPLE 2.6. Let 1r be a free group of rank r and let 1run denote the pro-unipotent 
completion of 1r over k. Since 1run is pro--unipotent, this group can be reconstructed by 
its Lie algebra. Hence, to determine the isomorphism class of 1run, it suffices to compute 
the topological generators and primitive relations of Lie(1run). Recall that Lie(1run) is 
topologically generated by a topological basis of H1 (Lie(1run)) and the set of primitive 
relations is given by H2(Lie(1run)) (cf. [18, Section 18]). According to Proposition 2.5 and 
[18, Proposition 10.1], we have 

H如(Lie（戸））竺 H'（戸）竺 {;omGrp(7r,K) ： ： ：: 
0 i = 2. 

Here, H,如(Lie(1run))is the continuous cohomology group of the topological Lie algebra 
Lie(1run) ([17, Subsection 5.1]). Since Homcrp(1r,k) is a k-vector space of rank r, we 
conclude that Lie(1run) is isomorphic to the topological Lie algebra 

~Liekい，．．．，叫）／『Liek（互•.．，叫）．

Here, Liek(xい...，叩） isthe free Lie algebra over k of rank r and戸 Liek(x1,...，Xr)is the 
central descending series defined by 

f1Lie土1,...，叫） ＝Liek(X1,..., Xr), 

ri+1Liek(x1,..., Xr) = [Liek(x1,...,年），riLi叫X1,...，巧）］．
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3. Mixed Tate motives over Z 

In this section, we recall basic facts about the category MTM (Z) of mixed Tate motives 
over Z. Then, we recall Brown's fundamental theorem which is the basis for the idea of 
extending MTM (Z) to genus one world. 

It is not the aim to state precise construction of this category. However, for the reader's 
convenience, we give a rough recipe of the construction of MTM (Z) with references. 

(Stepl) Construct the category DM Mgrn (Q) of Voevodsky's derived category of mixed mo-
tives over Q (cf. [30], [24], [2]). 

(Step2) Define the full triangulated subcategory DMTM(Q) of DMMgm(Q) to be the small-
est triangulated subcategory stable under extensions and containing Q(n). 

(Step3) Show that there exists a natural truncated structure on DMTM(Q) by using Borel's 
computation ([4, Proposition 12.2]) of higher K-group of Q (see [22]). 

(Step4) Define MTM(Q) to be the heart in the sense of Beilinson-Bernstein-Deligne ([3, 
Definition 1.3.1]) of DMTM(Q) with respect to the natural truncated structure. 

(Step5) Define MTM(Z) to be the full-subcategory of MTM(Q) consisting of objects which 
are "unramified everywhere" (see [8, 1.7]). 

Note that, by construction, MTM(Z) and MTM(Q) are Q-linear abelian categories with a 
natural @-structure. Moreover, it is known that they are Tannakian. For a smooth variety 
X over Q with a stratification XっX1つ・・・っ X。=0such that Xi ¥ Xi+1 = U A1', an 
object h吋X)(T)of MTM(Q) is defined for any n,T E Z. We call such an X a variety of 
mixed Tate type in this article. 

3.1. Properties MTM(Z). We recall basic properties of MTM(Z) and MTM(Q). Let 
腐 bethe category of the Hodge components of system of realizations over Q ([7, 1.4], 

[8, 2.13]). An object of 叫~ consists of tuple H = (HB, HdR, compdR,B) where: 

•恥 is an object of Vec閤withan increasing filtration W.．加 andan Q-linear 

endomorphism F 00 such that F! = id. 
• HdR is an object of Vec閤withan increasing filtration W.HdR and a decreasing 
filtration p• HdR・ 

• compdR,B is an isomorphism of underlying C-vector spaces 

compdR,B: HB匹 C与 HdR匹 C,

which preserves the filtrations W. on the both-hand sides. 

They satisfies the following conditions: 

• A bi-filtered module (HB, W.HB, compdl贔(F・HdR匹 C))is a Q-mixed Hodge 
structure. 

• Under the comparison isomorphism, we have cdR = cBFoo, where c. is the complex 
conjugation with respect to the R-structure H,匹 R.

EXAMPLE 3.1. Let X be a smooth variety over Q. Then, 

恥：＝ Hn(X(C),Q(i)), H暉：＝ H贔(X/Q)(i)

forms a part of an object of R~ ([28, Theorem 4.2], [19, Proposition 3.1.16]). The symbol 
印 (X)(i)denotes the corresponding object of腐

Let叫：悶→ Vec閤bethe functor defined by叫(H)= H.. Similar to the usual mixed 
Hodge structure, R~ is a Q-linear Tannakian category and凸 isa fiber functor. 
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Let C be a smooth algebraic curve over Q. The, the symbol R,召denotesthe category 
of the Hodge components of system of realizations over C. For the precise definition, see 
[7, 1.21]. Roughly speaking, an object of R,召consistsof a tuple F = (Fi圧 FdR,compdR,B) 
where: 

•凡 is a Q-local system over C(C) with an increasing filtration W.．互 whichis 
functorial in the algebraic closure C of R. 
•五IR= （互m，▽） is a fl.at connection over C regular at infinity with two filtrations 

F• FdR and W.FdR・

• compdR,B is an isomorphism 

凡匹C➔ (FdR,C)▽＝0 

orms an admissible variation of C-local systems such that（五w.,comp；；凡BF・)f 

of mixed Hodge structures ([28, Definition 14.49]) and that functorial in C. 

The basic properties of MTM(Z) is as follows: 

THEOREM 3.2. There exists a functor 

腐 MTM(Q)→腐，
which is called the Hodge realization functor satisfying the following conditions: 

(1) This functor is faithful exact 0-functor([8, 2.9, 2.11]). Letw,: MTM(Q)→Vec閤
denote the composition of RH with w. by abuse of notation1. 

(2) For a variety X over Q of mixed Tate type, we have a natural isomorphism 

伽 (hn(X)(i)）竺町(X)(i).

(3) (Structure of Tannakian□We have a natural isomorphism of pro-algebraic 
groups 

町 (MTM(Z),w叫＝ Gm区 U心％
over Q, where U甜芹Mis the pro-unipotent radical of 1r1(MTM(Z), WdR)-Let Lie(U~~M)z 
be the subspace of Lie(u;粛恥） on which Gm acts via the lth power of the standard 
character. Then, we have a natural isomorphism 

GrLie(u;晶） ：＝〶 Lie(U心％） l 竺 Lie（び3,a□7，び9,...)
lEZ 

([8, 2.4]). Here, the right-hand side is the free graded Lie algebra over Q generated 
by homogeneous elements a2k+l with deg(a2k+1) = 2k + 1. 

(4) The Hodge realization functor RH is fully-f叫thfuland its essential image is closed 
under subobjects([8, Proposition 2.14]). 

3.2. Brown's structure theorem. For a pair (g, n) of non-negative integers, let J/tg,n 
be the moduli stack of n-marked genus g curves over Z ([9], [21]). 

EXAMPLE 3.3. The stack.40,4 is a smooth scheme over Z. Explicitly, we have a natural 
identification 

盈，4= P1 ¥ {O, 1,oo}. 

More generally, when g = 0, n ~ 3,瓜，nis isomorphic to (P1 ¥ {O, 1, 00} r-3 ¥ uiく］△iJ'
where△ij is the locus defined by年＝ Xj.

10f course, they are fiber functors of MTM(Q) and MTM(Z). 
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Let II晶：＝町（必，4(C)孤）un_ As人＝ P1¥ {O, 1, oo }, its topological fundamen-

tal group 1r1(.,f/o,4(C国） isa free group of rank two so that 0(11晶） ＝ Q〈x,y〉.Let
CdR（船，4)denote the category of unipotent flat connections over.,f/0,4/Q, which is a Q-
linear neutral Tannakian category (cf. [7, rn.26]). Let II盟bethe Tannakian fundamental 

group of CdR(.,f/0,4) with the base point団(cf.[7, 15.28-15.36], [10, Subsection 1.1]). It is 
known that there is a natural isomorphism 

Hom如 (II盟），Q)宰 Q《ea,e1)〉,

where Q《eo,eり〉 isthe ring of non-commutative formal power series with variables e0, e1・

We sometimes identify ei with the one form邑on盈，4/Q.Then, we have a map 

(3.1） パ必，4（C)，的→ C《eo,e1:〉； 1 → b wor苫neo,e1（い） b， 

where叫 isthe corresponding sequence of ~, i = dt. 
t-i' 0, 1 to band J叫 isthe regularized 

iterated integrals (cf. [7, 15.53], [23, Section 8]). 

THEOREM 3.4. (1)([7, 12.16, 15.50-15.53]) The map (3.1) induces an isomorphism 

compdR,B: 0(11晶）匹 C➔ 0(11翡）匹 C

of commutative Hopf algebras. 

(2) The triple 0(11晶）：＝ （0(11島），0(11盟），compdR,B)forms a part of a Hopf algebra 

object of Ind（悶）2.

(3) ([8, Theoreme 4.4]) There exists a Hopf algebra object 0(11問芹） of Ind(MTM(Z)) 
with a natural isomorphism 

似(0(11間切） ~0(11贔）

of Hopf algebra objects of Ind（悶）．

REMARK 3.5. For a k-linear neutral Tannakian category T, the category Aff.SchT of 
affine schemes in'Tin the sense of Deligne ([7, §5]) is defined as follows: Let AlgT denote 
the category of algebra objects of Ind(,). Then, Aff.SchT is defined to be the opposite 

category of Algr-By definition, any fiber functor w:'T→Vec炉inducesan equivalence 
of categories 

Aff.SchT与 {Affineschemes /k equipped with algebraic actions of 1r1('T,w)}. 

Let II閉翌 denotethe object of Aff.SchMTM(Z) corresponding to 0(11汀）． Thisaffine scheme 

in MTM (Z) is called the motivic fundamental group of払，4(with the base point的．
DEFINITION 3.6. Let V be an object of Ind（悶）． Thefull subcategory of ng generated 

by V is the full subcategory of碍 whoseobjects is isomorphic to a sub-quotient of 

金 ::::ov0n or its dual. 

Famous theorem of Brown states that the motivic fundamental group of.,f/0,4 generates 
MTM(Z), namely: 

2Ind(A) means the ind-category of A. 
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THEOREM 3. 7 ([5]). Let MTM (Z)'denote the Tannakian full-subcategory of R~ gen er-
ated by O(II忍）． Then,R1t induces an equivalence 

MTM(Z)与 MTM(Z)'.

Sketch of the proof. Let左 bethe space of motivic MZVs ([5, Subsection 2.2]). Then, 
we have a non-canonical injection 

左→ 0(U粛％）匹 Q[x]

of graded algebras (this gives an upper bound of the space of MZVs proved by Goncharov 
and Terasoma). Brown proved the linearly independence of {(m(k1,...,kd) I ki = 2,3} 
over Q. Then, by the dimension counting, we conclude that the injection above is an 
isomorphism. This implies that the action of叫 MTM(Z),waR) on II翡＝ WdR(II謬） is
faithful. Then, conclusion of the theorem follows by a formal argument. ロ

By Brown's theorem, we are led to the second definition of MTM(Z): 

DEFINITION 3.8 (Quick "definition" of MTM(Z)). The category of MTM(Z) is defined 
to be the full-subcategory of 殴~ generated by O(II晶）．

REMARK 3.9. Of course, this quick "definition" is not so useful. For example, it is 
very difficult to determine the structure of its Tannakian fundamental group without 
the original definition of MTM(Z) and Brown's theorem (this is needed to use Borel's 
computation). However, this "definition" has the advantage that similar definitions can 
be easily made. This is discussed in the next section. 

4. Mixed modular motives over Z 

Let's begin our exploration of the extension of MTM(Z) into the world of genus one. 
An idea to construct a natural extension of MTM (Z) is 

replace.4o，4 by払，1,

where属 1,1= the moduli of elliptic curves. Let.41,1 be the smooth compactification of 
払，1and let 

Spec(Z[q])→払，1

be the classifying morphism defined by the Tate generalized elliptic curve ([20, (8.4)]). 
Then, this morphism defines a point oo of 払，~ and a non-zero tangent vector v =羞 at

oo. By abuse of notation, we use the same v for the base points defined by v ([7, §15]). 

4.1 .1. Definition. Recall that the pro-unipotent group II『,4is defined to be the pro-

unipotent completion of 1r1 (.4o,4(C)訊）． Thegroup II!1 is constructed by a similar 
way. Note that we have 

叫払，1(C),v)~ SL2(Z) 

(cf. [14, Subsection 3.5]). Let std: SL2(Z)--tSL2(Q) be the standard representation. 
We regard this as a representation of町（払，1(C),v) by the natural isomorphism above. 
The pro-algebraic group II店isdefined to be the relative pro-unipotent completion of 

町（払，1(C), v) with respect to the standard representation. By definition, we have 

叫＝皿 G,
(G,p) 
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where p:町（払，1(C),v)→G(Q)runs over relative unipotent lifts of the standard repre-
sentation of町（払，1(C),v).

REMARK 4.1. It seems that to take the relative pro-unipotent completion with respect 
to std is very natural. What happens if we take a pro-unipotent completion? It is well-
known that SL2(Z) is generated by two elements 

S:=[『 ~1]'T:= [~ n 
(cf. [27, Subsection 1.5]) and it is easily checked the relations 

炉＝（ST)3= -E2 

hold. Hence, SL2(z)ab is an abelian group of order 12 so that SL2(Z) has no non-trivial 
unipotent representation on a finite dimensional Q-vector space. Hence, SL2(Z?n is the 
trivial group and there is nothing to interest. This triviality is also deduced by the fact 
that there is no non-zero modular form of full-level of weight two. 

we give a geometric interpretation of Before to define a de Rham analogue of II翡，・
II『,1.Recall that RepQ(1r1（払，1(C),v)) is equivalent to the category of Q-local systems 
over the orbifold ?ヽ'1,1(C)(cf. [14, Subsection 3.3]). On the other hand, by Proposition 
2.4, RepQ (IIf 1) is equivalent to the category of relatively uni potent representations with 
respect to std. Since any irreducible algebraic representation of S12,Q is isomorphic to 
Symn(std) for some n (cf. [16, Section 10]), RepQ(IIむ） isnaturally equivalent to the full 

subcategory of Q-local systems over払，1(C)whose Jordan-Holder component is isomor-
phic to Sy町 (V叫forsome n, where VB is the Q-local system over払，1(C) corresponding 
to the standard representation. A model of VB can be taken as follows. Let 1r:汐→払，1
be the universal elliptic curve over払，1and let R11r,(Q) be the first higher direct image of 
the constant sheaf Q onな(C),which is a family of the first co homology groups of elliptic 
curves with coefficients in Q. Then, the fiber of R11r,(Q) at v is canonically isomorphic 
to the standard representation of SL2(Z) ([16, Section 9]). Therefore, VB can be taken as 

咋＝ R出 (Q).

Let us define a de Rham analogue. Define the coherent sheaf ~皿 on 払，1 by 

極：＝ R出Qg□1'

where況；.Jti,iis the sheaf of ith differential forms on忍relativeto払，l・ Note that vdR is 

a family of the first algebraic de Rham cohomology groups of elliptic curves. This coherent 
sheaf is equipped with the Gauss-Manin connection3 which is flat. Let CdR（払，1)be the 
category of flat connections with regular singularities at infinity whose Jordan-Holder 
component is isomorphic to the flat connection Symi(VdR)- Then, we can easily check 
that this category is a Q-linear Tannakian category and v defines a fiber functor of this 
Tannakian category. Then, II普isdefined by 

団＝1r1(CdR（払，1),v). 

Similar to the瓜，4-case,the Riemann-Hilbert correspondence induces a natural compar-
ison isomorphism 

compdR,B: O(IIむ）匹 C与 O(II晋）匹 C

3This flat connection is canonically isomorphic to the dual of 11, defined in [16, Section 9]. 



120

RECENT PROGRESSES ON GENUS ONE EXTENSIONS OF MIXED TATE MOTIVES OVER Z 

of Hopf C-algebras. 

THEOREM 4.2 ([16], [6, Subsection 13.2]). The triple (O(II『,1),0晋，compdR,B)jo'rms a 

pa廿 ofa Hopf algebra object O(II店）。iflnd(Rm. 

Let II店denotethe corresponding group object of Aff.Sch冗g.Then, we can define a 

genus one a叫 ogueof MTM(Z) by mimicking the quick "definition" of MTM(Z): 

DEFINITION 4.3 (cf. [6]). The category MMM(Z) is defined to be the Tannakian full-
subcategory of ng generated by O(II礼）．

REMARK 4.4. (1) This category is the same as 1iM1,1 in [6]. 

(2) It seems that II召1can be constructed geometrically and that this is a realization 
of a certain ind-mixed motive at least in the sense of Nori (cf. [19]). This problem 
is still open. 

We see two typical examples of objects in MMM(Z). 

EXAMPLE 4.5. Let V = (VB,v, vdR,v, compdR,B) be the fiber of the variation of MHS 

図，VdR,compdR,B) at v. Then, by [26, Theorem 6.16], this admits a limit mixed Hodge 

structure which is isomorphic to Q① Q(-1) (cf. [23, Example 7.8]). Let rrt炉 bethe 

closed subgroup of II店whoseunderlying group is the pro-uni potent radical of IIf 1. We 
will compute the structure of this pro-unipotent radical in Proposition 4.8 below. Then, 
we have a natural isomorphism 

圧 (II庁） ＝ ④H1(SL2(Z), Symk-2(V)）匹 Symk-2(V)v

貶 2

in殴f,where the Hodge structure on H1(SL2(Z), Symk-2(V)) is defined by the Eichler-

Shimura isomorphism ([27, Chapter 8], [31, Section 12, Section 14]). Thus, for a Hecke 

eigen modular form f of full-level, the associated MHS Hi is an object of MMM(Z) R Q. 
EXAMPLE 4.6 ([18, Example 6.8]). For an elliptic curve E with the origin 0, Ex denotes 

E ¥ {O}. Let 1r押(E汀bethe pro-unipotent fundamental group of Ex. Then, the family 
of Lie algebras 

{Lie（ず（麿）） IXE払，1} 

forms a pro-local system over.41,1. Its fiber at v is an object of MMM. 

Since Lie(1r押（尉，w))contains Lie(II晶） asa sub pro-mixed Hodge structures (cf. [15 
Section 18]，［18, Section 28]）， the category MMM(Z) is certainly an extension of MTM(Z)'． 

Namely: 

PROPOSITION 4. 7 ([6, Theorem 14.5]). The category MM M (Z) contains MTM (Z) as a 
Tannakian full subcategory. 

4.2. Group structure of II『,1.Let us return to the determination of the group structure 

of IIf 1. By definition, we have 

(4.1) 1 → II『T• II~,1 • 812,Q • 1, 

where II庁 isthe pro-unipotent radical of IIf,1. According to Proposition 2.5, we have 
an isomorphism 

げ（II庁） ＝ €詞(II『,i, Symk-2(V)）匹 Symk-2(Vt
k>2 
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of S12,q-modules. According to [18, Proposition 10.1], the natural homomorphism 

Hi(II『,i,Symk-2(V)）→げ(SL2(Z),Symk-2(V)) 

induced by Puniv is isomorphism if i：：：：： 1 and in胆は杓eif i = 2. Since S犀 Z)C。ntainsa 
free group of finite rank as a finite index subgroup, the cohomology groups above vanish 
when i ~ 2. Thus, we have the following proposition: 

PROPOSITION 4.8. The pro-Lie algebra Lie(II庁） istopologically generated by a basis 

of 

(4.2) 

freely. 

〶H1(SL2(Z), Symk-2(V)t匹 Symk-2(V)

k~2 

We have an isomorphism of C-vector spaces 

叫 (SL2(Z)）① SK(SL2(Z））ら圧(SL2(Z),Symk-2(V)）匹 C,

where Mk(SL2(Z)), Sk(SL2(Z)) denote the space offull-level modular forms and cuspforms 

of weight k, respectively. Therefore, Lie(II『,'1~n)/Q is topologically generated freely by 
elements 

町XiYi,e1X'Y1, e9X叩，

where f (resp. g) is a full-level normalized Hecke eigen cuspform (resp. Eisenstein series) 
of weight k and i + j = k -2. 

4.3. Zeta and modular generators of Lie(U~悩）． Let 1r1(MMM(Z),waR) be the Tan-
nakian fundamental group of MM M (Z) and let U~恥 beits pro-unipotent radical. Accord-
ing to Proposition 2.5, to determine the generators of this pro-unipotent group, we need to 
compute Ext恥MM(z)(Q,H) for all simple object H. This is generally very hard task, how-
ever, Brown proved that this extension group is non-zero when H = Q (2n + 1), Hf (d) with 
n 2: 1, d 2: wt(!). As a consequence, he had found a part of generators of Lie(u;温恥）．
Moreover, he proved that there is no non-trivial relation between those generators: 

THEOREM 4.9 ([6, Theorem 21.2]). Let B denote the set of normalized Hecke eigen 
cuspforms of full-levels. Then, there exists a system of elements 

{u2n+1, uf(d)，外(d)E Lie(U閑心M)I n E Z2:1, f E B, d 2: wt(!)}, 

which generates a free Lie subalgebra of Lie(U温悩）．

See [ 6, Subsection 17.1] for a conjecture about topological generators and relations of 
Lie(U甜岱M)based on an analogue of the Beilinson conjecture. 

4.4. An analogous category MM M（払，1).By the Tannakian duality, the fiber functor 
waR of MMM(Z) induces an equivalence waR: MMM(Z)竺 Repq伯(MMM(Z),waR)).On 

the other hand, we have a canonical action II晋ハ1r1(MMM(Z),waR)by the definition of 

MMM(Z). It is natural to consider the representation of II晋， notonly 1r1(MMM(Z),waR)-

DEFINITION 4.10. The category MMM(.41,1) is defined to be the category of algebraic 
representations of 1r1 (MMM(Z), waR) 1>< II晋onfinite dimensional Q-vector spaces: 

MMM(、ぃ） ：＝ RepQに(MMM(Z),waR)区 H罰）．
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This category is conjecturally equivalent to a full subcategory of motivic sheaves over 
払，1. Here, we mean the category of motivic sheaves is the essential image of the re-
alization functor from the category of motivic local systems over払，1in the sense of 
Arapura ([1]) in the category of system of realizations ([7, 1.21]). A motivic sheaf Fis in 

MMM（払，1),then Gr~ F竺④iSymi(V)i81Mi (Mi E MMM(Z)). 
We have a sequence of Tannakian categories: 

MTM(Z) c MMM(Z) c MMM(.,,f/1,1) 

Problem 4.11. They are natural extensions of MTM(Z), but still huge (e.g. generators 
of 1r1 is still unknown). Is there an "easier" intermediate category? 

One of a solution is to take a " mixed Tate quotient". This will be done in the next 
section. 

5. Mixed elliptic motives 

Mixed elliptic motives was defined by Hain and Matsumoto in [18]. In this section, 
we give a brief review of their results. First, we give a group theoretic definition of the 
category of mixed elliptic motives over.41,1. Then, we see Hain-Matsumoto's original 
definition. One of main results of [18] is partial determination of the structure of the 
Tannakian fundamental group of this category. We state their results and give a sketch 
of the proof. 

REMARK 5.1. In [18, Definition 6.1], Hain and },iatsumoto defined three categories of 
universal mixed elliptic motives over.,,//1,1,.,,//1,了,andover.,,//1,2. We only consider the 

category of the universal mixed elliptic motives over.,,//1,1 for simplicity. 

5.1. Group theoretical definition. Let IIf,「denotethe maximal mixed Tate quo-

tient of II晋． Thatis, II貯isa quotient pro-algebraic group of II晋satisfyingthe following 
properties: 

• The kernel of the canonical projection pr: II晋→ II叶isstable under the action 

of1r1(R尉，WdR)so that the group町 (Rも玉） actson IIf,『naturally.

• The action of 1r1(Rも疇） onII貯factorsthrough the natural surjective homo-

morphism 叫冗~,WdR) → 7r1(MTM(Z), WdR)-
• For any morphism f : II門→ Gsatisfying the properties above, there exists a 

unique homomorphism g : II秤→ Gsatisfying f =go pr. 

DEFINITION 5.2 ([18]). The category MEM = MEM1,1 of universal mixed elliptic 
motives is defined by 

MEM = RepQ伍(MTM(Z),waR)区 H叶）．
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The following diagram is a relation of Tannakian fundamental groups that appear in this 
article: 

町 (MMM(Z),wdR)

/ ＼ 
町 (MTM(Z),w<lR) 1r1(MMM（欣い），WdR)

＼ ／ 
町 (MEM,wdR)

Here, 1r1(MEM,wdR) denotes the Tannakian fundamental group of MEM with the base 
point defined by the forgetful functor. By Tannakian duality, we have the following fully-
faithful functors of Tannakian categories: 

MMM(Z) 

~-,~ 

MTM(Z) 

＼ 
MMM(.4lい）~,-, 

MEM 

Note that II貯isisomorphic to the de Rham realization of an affine group scheme II舟忙s,mot

in MTM(Z). Let II~日s,B denote the Betti realization of II~~s,mot. Then, it is easily checked 

that the category MEM is equivalent to the category RepQ(1r1(MTM(Z),wB)区 II「巳）．

5.2. Original (geometric) definition. We see an original (geometric) definition of 
H+t MEM due to Hain-Matsumoto here. Let Rr:,,,;~ be the category of the Hodge and £-
払 ，1

adic components of system of realizations over払，1in the sense of [7, 1.21] (cf. [8, 2.15]), 
where £ runs over all prime numbers. A universal mixed elliptic motive in the original 
sense ([18, Definition 6.1]) is a tuple (F, H, J) where: 

(1) F be an object of R~;,! such that 

Gr巴F竺①，Symn-2i(V)(i)戸

(2) H is an object of MTM(Z) equipped with an increasing filtration W.H, which 
does not have to match the original filtration on Has an object of MTM(Z). 

(3) f:五与 R(H)is an isomorphism of objects of炉＋£Spec(Z) preserving W.. Here, the 

Hodge component of瓦 isequipped with the limit mixed Hodge structure. 

Hence, each universal mixed elliptic motive in the original sense is an object of R H+t 
払，1

which is a successive extension of Sym呵V)(r).

PROPOSITION 5.3. The category of universal mixed elliptic motives in the original sense 
is naturally equivalent to MEM. 

LEMMA 5.4. Let R生，1(V) be the full-subcategory of R生，1 consisting of objects whose 

Jordan-Holder component is isomorphic to Symn(V) R H for some non-negative integer 
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n and HE  Obj（腐）． Letv: R公(V)→腐 bethe functor defined by taking the fiber at 
v. Then, we have a natural isomorphism 

叫7?~1,1 (V), WctR O V)宰叫喝玉）区 II晋．

Proof. Note that the category RepQ(1r1(7?~,waR) ~ II晋） isequivalent to the category of 

V of objects in喝 equippedwith the coaction of O(IIむ）． Therefore,to prove the lemma, 
it suffices to show that the functor 

(5.1) 呵 ov:R生，l(V)→Repq（町（喝，咋）区 II『,1)

induced by WB o v is an equivalence of Tannakian categories. Let us construct a quasi-
inverse of the functor above. 

Let HRep(IIf,1) denote the category of Hodge representation of II印overQ in the sense 

of [13, Section 4], namely, this is the category of representations of町(MHSq,咋）区 II『,1.
Then, according to [13, Theorem 5.1, Subsection 5.5], the functor WB o v induces an 
equivalence of Tannakian categories 

(5.2) MHS（払，1,V) ➔ HRep(IIむ），

where MHS（払，1,V) is the category of admissible variations of MHSs over.,,f/1」whose
Jordan-Holder component is isomorphic to Symn(V)@ H with H E  MHSQ. 
Then, a quasi-inverse of (5.1) is constructed as follows. Let枷 bea given representation 

of 1r1（碍，WB)紅 If,1and let HdR be the corresponding representation of町 (Rf{,WdR)区II晋
Define a pair F =（石，FdR)to be the Q-local system over払，1,anand flat connection 

over払，1by representations加 ofIIf,1 and HdR of II晋respectively.Then,（FB,FdR,c) 
forms an admissible variation of MHSs by the result of Hain above. Moreover, the low-
est weight subbundle of FdR,c is a direct factor of the vector bundle associated with 

H0(II晋'un,HdR)匹 Cand this factorization is automatically defined over Q. Hence, by 
the inductive argument on the length of the weight filtrations, we conclude that W.FdR,c 
descends to the filtration on FdR・ Then, the datum defined above forms an object of 
砂 1,1(V). The construction is obviously functorial in HB and we can easily check that 

this defines a quasi-inverse of (5.1)． ロ

Sketch of the proof of Proposition 5.3. Let (F, H, f) be a universal mixed elliptic motive 
over、ぃ inthe original sense. Then, by Lemma 5.4, RdR(H) defines a mixed elliptic 
motive in our sense. Hence, this correspondence defines functor from the original category 
of MEMs to the category of our MEMs. The quasi-inverse is constructed as follows. Let 
H be our mixed elliptic motive. Then, by fixing equivalences in the proof of Lemma 5.4, 
we have an object F1-l of R公(V)corresponding to H. Then, for a prime number£, the 

smooth Qt-sheaf乃 isdefined to be the corresponding one to the representation 

吋（払，i/Q,v) ~ Gal(Q/Q) ~ S后(Z)→1r1(MTM(Z),w叫(Qt)区rrf巳(Q¢)．

The comparison between巧 and凡 isthe induced isomorphism by 1r1（払，1(C),vf ➔ 
咋（払，1⑬ v).We take fas the canonical isomorphism between Fv and R(H). Accord-
ing to [18, Remark 6.2], W.H is recovered by the action of 1r1（払，1(C),v) on枷 (H)via 

叫払，1(C),v) → rrf1•B(Q). This defines filtrations W. on巧． Weleave to the leader to 
show that this is a quasi-inverse of the natural functor defined by v. ロ
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From now, we identify those two categories. Then, for each object H of MEM in our 
sense, two weight filtrations W.H and M.H are equipped. The first filtration is the fiber 
of global filtration W.F and the second is the weigh filtration as an object of RK 
5.3. Structure of町 (MEM,疇）． LetU晶 bethe pro-unipotent radical of町（MEM，疇）．
Then, by definition, we have a short exact sequence 

(5.3) 1→ U贔→町(MEM,w叫→ GL2,Q→1 

ofpro-algebraic groups overQ. Therefore, tocomputetopologicalgenerators ofLie(U晶知），
it is sufficient to compute extension groups Ext~EM(Q, Symi(V)(r)) for each non-negative 
integer i and an integer r (Proposition 2.5). 

THEOREM 5.5 ([18, Theorem 15.1]). We have 

Q各， i= 0, r：：：：： 3, odd, 

Ext如 (Q,Sym'(V)（噌＝｛g, t ：：：：： 1, even, r = t + 1, 

゜
otherwise. 

In particular, Lie(Uj畠） hasa topological generators 

Z2r+1, ei隅＋2 (r：：：：： 1, k：：：：： 1, 0さiさ2k)●

Next, let us consider the relations of U紅恥． According to [18, Proposition B.1], there 
exists a natural splitting of W.H and M.H functorial in H E Obj(MEM). This splitting 
gives a splitting of (5.3) and each W-graded piece of His stable under the action of GL2,q. 
Then, Lie(U晶） isequipped with pro bi-graded Lie algebra structure ([18, Subsection 
19.2]). Let GrLie(U晶） bethe associated bi-graded Lie algebra over Q. Since Lie(Vj位知）
is recovered by GrLie(U~恥）， to determine the structure of Lie(Vj位恥）， it suffices to de— 
termine the structure of GrLie(Vj社恥）． Let f be the free Lie algebra generated by symbols 
Z2r+l, eae2k+2 (r ~ 1, k ~ 1, 0 ::; iさ2k).There exi ere exists a natural action of GL2,Q on f 
by identifying this Lie algebra with the free Lie algebra 

Lie （翌~zExt如 (Q,Symk-2(V)(r)t匹 Symk-2(V)(r)).

Here, we take e2k+2 is an invariant vector under the action of T E SL2(Z). Then, by 
Theorem 5.5, we have a GL2,q-equivariant surjective homomorphism 

(5.4) f → GrLie(U~~M) 、MEM, z%+1→Z2r+1, e訴e2k+2→e。e2k+2・
Note that t is contained in [f, fl by Theorem 5.5. We mean a relation of GrLie(Vj位知）
an element of the kernel t of (5.4). Let f9 be the Lie subalgebra of f generated by 

{ eie2k+2}貶 1,0翠 2kso that the image of f9 under (5.4) is GrLic(II~i••un). A geometric 
relation means an element of t9 := t n f9. In this article, a highest weight vector of a 
GL2,q-module Vis an element of { v E V I Tv = v} and vhwt denotes the space of highest 
weight vectors. Since any irreducible algebraic representation of GL2,Q is generated by 
its highest weight vectors, t (resp. t9) is determined by廿wt(resp. ~wt). 

Let fif be the central descending series defined by fi+1f = [f, fif], f =『fand let us 
consider the natural mapping 

(5.5) r勺→ Gr打：＝門／r叶．
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A relation x E r of GrLie(U甜恥） is called quadratic if the image of x under (5.5) does 
not zero, namely, the leading term of x is quadratic. To determine the image of r under 
(5.5), it is sufficient to determine the image of古wtin (Gr~f)hwt under (5.5). The set 
(Gr加）hwtof highest weights vectors are described as follows: 

LEMMA 5.6 ([25, Proposition 4.1], [18, Proposition 24.2]). For non-negative integers 

a, b, d satisj如， d：：：：： 2, 2min{a,b}：：：：： d -2, define an element w畠EGr~f9 by 

d 
. d -2 

w a,b＝区（―l)i(d ~ 2) (2a -i)!(2b -j)![eie2a+2, e~e2b+2]. 
i+j=d-2, i,j::>O 

Then, the set 

{w~,bla,b,dEZ, d~2, 2min{a,b}~d-2} 

is a basis of (Gr~f,)曰

Before to state their result, we recall period polynomials defined by modular forms 
briefly. For an even positive integer k greater than two, let怜 bethe space of homogeneous 
polynomials in x, y of degree k -2 over Q. Then, the group GL2(Q) acts on Vi by 

f(x,y)l,=f(ax+by,cx+dy), 1= [~ ~] EGL2(Q). 

The subspace Wk of怜 isdefined by 

wk = {f E Vi I fli+s = fli+TS+(TS)2 = O} 

-1 0 
([6, Subsection 7.3]). It is easily checked that E = [ ~l ~] preserves the subspace Wk. Let 

0 1 

wf denote the土1-eigenspaces of E and『 denotesthe projection of f E Wk to wf by 
a natural projection. We call elements of w,:匹 C(resp. W,;匹 C)an even (resp. odd) 
period polynomials. Note that the space Wk is closely related to the cohomology group 
of SL2(Z). Letか (SL2(Z),Vk) be th cusp ) be the set of inhomogeneous one cocycles of SL2(Z) ([6, 

(7.3)]) coefficients in Vk satisfying c(T) = 0. Then, we have 

ZJusp(SL2(Z), Vi)与 Wk; C→c(S) 

([6, (7.4)]). Elements of the image of coboundary one cocycles under the isomorphism 
above are called coboundary period polynomials. The period polynomial乃 EWk匹 C
associated with a cuspform f of weight k is defined by the above correspondence. Ex-
plicitly, this is constructed as follows: For a modular form f of weight k, put w1 = 

(21rご）k-1J(T)(x-Ty)k-2dT, which defines an element of H,贔（払，1,Symk-2(VaR)). 

When f is a cuspform, the period polynomial r f is defined by 

町＝J Aoo 
町，

゜where『denotesthe integration along the geodesic path from a to b on nUP1(Q). 
One of the main results of Hain-Matsumoto's paper is as follows: 

THEOREM 5.7 ([18, Theorem 25.1]). The image of点wtunder (5.5) is given by 

｛苔ふw贔E(Gr的）hwtl¥/d,呈°いX2a-d+2y2b-d+2= r?n((-l)d)，ヨfE S2k-2d+6(SL2(Z))} 
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By specializing d = 2, we have the following very simple assertion: 

COROLLARY 5.8. Let ~ be an element of t~wt. Then, a congruence 

く三区叫e2a+2,e2b+2J (mod [[f, fl, fl) 
a+b=k, a,b20 

holds if and only if区a+b=k,a,b20CaX2aげ＝ rtfor a full-level cuspform f of weight 2k + 2. 

We have seen that cuspforms produces geometric quadratic relations. How about 
coboundary period polynomials? The answer is that they produce relations between 

Z2k+1s and eie2k+2s: 

THEOREM 5.9 ([18, Theoerm 25.1]). For all m ~ 2, k ~ 1, there exists an element 
l(m, k) Et: satisfying the following congruence relation: 

l(m,k)三 [z2m-1,e2k+2J 

(2m -2)! (2k + 2¥ B 

―(2m+ 2k)！(2)  ;：口と（ー1)

;(2k+i)! 

i! 
. [e知m,ele2m+2k] (mod r叶）．

i+j=2m-2 

Here, Bn is the nth Bernoulli number. 

The summarizing table of the results above is as follows: 

TABLE 1. Table of quadratic relations 

Z2r+l 
t e。e2k+2

砂＋1 I Non ヽヽ " coboundary period polynomial 

ebe2k+2 I "coboundary period polynomial" cuspforms 

Under the natural surjection Lie(U畠） → Lie(U叫）， z2r+lmaps to the free generator 
知＋1.Hence, there is no relation between z2r+1s. 

Sketch of the proof of Theorem 5. 7. According to Pollack's computation ([25, Theorem 
3]), there is no non-trivial quadratic geometric relation coming from cuspforms. The 
converse inclusion relation follows from: 

• Explicit computations of period computations arising from two Eisenstein series 
([6, Theorem 9.2]). 

• Relate Brown's computation to cup products of { ete2k+2いbyusing the Beilinson-
Deligne cohomology theory for affine group schemes in MHSQ ([13, Section 8, 
Section 10]). 

See [18, Proof of Theorem 25.1] for more details. 

Is there a relation that is not a quadratic relation? The conjecture is: 

CONJECTURE 5.10 (cf. [18, Corollary 25.4]). Every non-trivial primitive relation of 
GrLie(U~恥） is a quadratic relation. 

口

This is true if an analogue of the Beilinson conjecture ([18, Conjecture 17.1 (i)]). 
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6. Problems 

In this section, we collect problems, which is not solved satisfactory to the best of the 
author's knowledge. 

6.1. Elliptic analogue of Brown's theorem. The representation 1r1(MTM(Z)）→ 
Aut(II。,4)is the induced representation by the splitting of 

1 → 1I。,4→1r1(MTM（必，4）)→叫MTM（必，3）））→ 1 

(note that船，3= Spec(Z)). Genus one analogue of the sequence is 

1 →T（勾， W）→叫MEM（払，2）)→叫MEM（払，1）)）→ 1,

and the induced representation is the monodromy representation (MEM（払，1)= 
MEM). Therefore, a naive analogous question is as follows: 

Problem 6.1 ([18, Question 26.2]). Is the monodromy representation 

p:町（MEM)→Aut（年（勾，w))

injective? 

6.2. Analogue of the Beilinson conjecture. The Hodge realization functor defines 
the regulator 

reg沿： ExtiEM(Q,Symk-2(V)(r))→ Hら（名，i/R,Symk-2(V)此））．

CONJECTURE 6.2 (HM20, Conjecture 17.1 (i)). The regulators reg負18)R are isomor-
phisms for all k, r. 

If the conjecture is true, then we can compute the second cohomology group of U~恥
Since the set of relations can be determined by the second cohomology group of U dR 

MEM, 
we can know the explicit structure of 1r1(MEM) if the conjecture above is positive. 

Note that, to show Brown's theorem, we need to know the explicit structure of 1r1(MTM). 
Thus, to attack the elliptic analogue of Brown's theorem according to his method, the 
first difficulty seems to be to determine the explicit structure of町 (MEM).Then, it is 
natural to ask the following question: 

Problem 6.3. Can we prove the elliptic analogue of the Brown's theorem assuming the 
conjecture above? 

6.3. Higher level case. Let MEM1(N) denote the universal mixed elliptic motives over 
the modular curve Y1(N). 

Problem 6.4. Compute quadratic relations of generators of Lie(UMEM,(N))-

One of difficult points is to compute cup products of Eisenstein symbols explicitly (The 
paper [11] is a work of this type). 

Problem 6.5. What is the meaning of W.Lie(UMEM,(N)) n Lie(UMTM(Z[l/N]))? (This is 
closely related to the depth when N = 1. See [18, Part 4].) 

Problem 6.6. Consider similar problems for the modular curve Y(N)/Z[μN, 1/N]. 
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6.4. Problems on II仇 Onestep extensions of objects of MMM(Z)55 appearing in O(II店）
was studied by Brown in [6] partially. 

Problem 6. 7. Study the two step extensions in O(II店）．

Problem 6.8. Replace the base point嘉bya CM elliptic curve. What will happen? 

After the replacement of the base point, then it seems that O(II店） hasa geometric 

description (cf. [8, Proposition 3.4]). 

Problem 6.9. Find an explicit description of O(II店） byrelative cohomology groups of 

open Kuga-Sato varieties. 
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