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Classification theory of planar p-elasticae 

Tatsuya Miura* 

This paper is a summary and an announcement of some recent results 

about classification of planar p-elasticae, obtained in joint work with K. 

Yoshizawa [8, 9, 10]. The detailed versions will be submitted to somewhere. 

1 Introduction of p-elastica 

Euler's elastica is introduced by Daniel Bernoulli and studied by Leonhard 

Euler in the 18th century for modelling elastic rods. It is defined as a critical 

point of the bending energy 

B['Y]:= 1炉ds
among a class of fixed-length curves'Y, where k and s denote the curvature 

and the arclength parameter of'Y・ The admissible curves typically lie in the 

Euclidean plane R 2 and satisfy some boundary conditions. It is an old but 

very important fact, worked out by Louis Saalschiitz in the 19th, that all 

planar elasticae are completely classified on the level of smooth critical points 

and explicitly represented by Jacobian elliptic integrals and functions; see 

[3] for more details of the history. In addition, by now it is also well known 
that the natural energy space for elastica theory is of W認 Sobolevclass, 

since the curvature basically corresponds to the second derivative. In fact, 
a critical point in the w2,2 class is always smooth (in fact a叫 ytic)by a 

standard bootstrap argument. 

For p E (1,(X)）， the notion of p-elastica is defined as an び—counterpart

of Euler's elastica, namely a critical point of the p-bending energy 

B贔：＝J|K『ds
in the class of fixed-length W2,P-curves. By the Lagrange multiplier method, 

it is equivalent to define as a critical point of the energy of the form 

恥 bl:=B贔＋入Lb]= !, lklPds十入!,ds. 
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More precisely, an immersed curve I E W2,P(O, 1; Rりiscalled p-elastica if 
there is入ER such that for any T/ E C,戸(0,l;Rり，

d 
盃恥['Y+ ETJ] lc:=0 = 0. 

Such a curve weakly solves the Euler-Lagrange equation of the form 

Plklp-2洸k+ p(p-2)lklP-4k（叫）2+ lklPk —入k= 0. 

If p = 2, this equation reduces to the classical one for Euler's elastica, i.e., 

2洸k+k3-入k= 0, 

which can be explicitly solved by Jacobian elliptic functions. 

The p-bending energy and related critical points are also widely studied 

by many authors. Apart from their own analytical and geometrical interest, 

those research objects appear in several contexts both from theoretical and 

applied aspects; see [8] and references therein for where they come from and 

what is known about them. 

Among many other previous studies, here we mention a remarkable result 

of Watanabe [19], which provides an explicit family of planar p-elasticae. 

An important fact found in [19] is that some special cases of p-elliptic 

integrals introduced by Takeuchi [17] directly appear in the representation of 

p-elasticae. This fact suggests that there is a possibility to extend the known 

explicit formulae of Saalschiitz type to p-elasticae by introducing appropriate 

notions of p-elliptic functions. However this has not been achieved, the 

reason of which seems to be that although some p-elliptic functions are 

already defined in several ways [16, 17], they are well suited for analyzing 

equations involving the p-Laplacian (lu'IP-2u')'but do not directly fit into 

the equation for the curvature of p-elasticae whose leading order term is 

expressed as (lulP-2u)". 

Another important fact is that if p > 2, the degeneracy of the equation 
(in the sense that the prefactor lklP-2 in front of冴kcan vanish) yields a 
new family of non-periodic critical points, called flat-core. More precisely, 

a flat-core p-elastica may have some interval-type zero sets of the curvature 

with arbitrary length, which particularly means that the curve may not be 

analytic. This fact indicates that there is a substantial analytical challenge 

to extend the cl邸 sificationof Euler's elasticae, in which such non-periodic 

solutions do not exist. 

2 Classification of planar p-elasticae 

Overcoming the aforementioned difficulties, in our first paper [8], we sue-

ceeded in classifying all planar p-elasticae with a general p E (1, oo) in form 
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of a complete extension of the Saalschiitz-type formulae. In particular, we 

introduced new types of p-elliptic functions; if p = 2, they agree with the 
standard Jacobian elliptic functions so that we can directly recover the clas-

sical case. In addition, our formulae tell us that the flat-core p-elasticae 

obtained by Watanabe can be understood as a nontrivial generalization of 

the so-called borderline elastica. 

In what follows, we state our classification results in terms of p-elliptic 
integrals and functions, whose definitions are briefly given in Appendix A 

below; see [8] for more details. 

2.1 Classification and Saalschiitz-type formulae 

For clarity we consider the two cases of p :S 2 and p > 2 separately. The 
first case pさ2can be stated in a very parallel way to the classical case. 

Theorem 2.1 (Classification of planar p-elasticae: p :S 2). Let p E (1, 2] 
and'Y be a p-elastica in R 2. Then up to similarity {i.e., translation, rotation, 

reflection, and dilation) and reparameterization, the curve'Y is represented 

by 1(s)＝叫s+ so) with some so E R, where芦： R →R2 is one of the 
following five arclength parameterizations: 

• (C邸 eI - Linear ~elastica)'YR(s) = (s, 0), where kR,三 0.

• (C邸 eII - Wavelike p-elastica) For some q E (0, 1), 

加 (s,q) ＝(2E1,p(am1,p(s, q)，q) -s 
叫？1| cnp(s, q)|p-2 cnp(s, q)). 

(2.1) 

In this case, 0w(s) = 2arcsin(qsnp(s,q)) and似(s)= 2qcnp(s, q). 

• (C邸 eIII - Borderline p-elastica) 

叫）＝（＿p2?tla;s:：`い） (2.2) 

In this case, 0b(s) = 2am1,p(s, 1) = 2am2,p(s, 1) and島(s)= 2 sechp s. 

• (C邸 eIV - Orbitlike p-elastica) For some q E (0, 1), 

1 2E2,凸 (am2,p(s,q), q) +（砂ー2)s
叫 q)＝『( ＿凸叩(s,q)p-1 )． (2.3) 

In this case, 0。(s)= 2am2,p(s,q) and k。(s)= 2dnp(s, q). 

• (C邸 eV - Circular p-elastica)況(s)= (coss,sins), where kc三 1.

Here仇 denotesthe tangential angle a訂＊ ＝ （cos 0*, sin仇）， andk* the (coun-
terclockwise) signed curvature k* = 8s釘
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Now we turn to the case of p > 2. For describing flat-core p-elasticae in 
a concise way, it is convenient to introduce the following'concatenation'of 

curves: For ij : [a]も］ →R2 with Lj := bj―aj 2: 0, we define 11 〶 12 : 
[O,L1 + L叶→距 by

(71 〶 12) （ s) ：= {1l(s ＋釘）， SE[0,L叶，
四(s+ a2 -L1) + 11(bリー12(a2), s E [Li, L1＋ら],

and inductively define 1這・・・⑤'YN:= (11⑤..印'YN-1)①'YN・ We also write 

虚：＝ 11 ①• ・ •⑤ 'YN ・
j=l 

Theorem 2.2 (Classification of planar p-elasticae: p > 2). Let p E (2, oo) 
and I be a p-elastica in R 2. Then up to similarity and reparameterization, 

the curve I is represented by 1(s)＝叫s+ so) with some so E R, where 
either'*: R→R2 is one of the four arclength parameterizations in Cases 
I, II, IV, and V of Theorem 2.1, or'* =,J : [O, L]→R 2 is the following 
arclength parameterization: 

• (Case III'-Flat-core p-elastica) For some integer N 2:: 1, signs 
び1,...,aN E { +, -}, and nonnegative numbers L1,..., LN 2:: 0, 

N 

'YJ =〶（炉 e 炉）， (2.4) 
j=l 

where奇： ［一応(1),Kp(l)］→ R2 and炉： ［O,L』→ R2are defined 
by 

菊(s)=（干〗a(：〗`)い），炉（s) = (~s) (2.5) 

The curves奇(s)have 0t(s)＝土2am1,p(s, 1)＝士2am2,p(s, 1) and 
Kば(s)＝士2sechpsfor s E [-Kp(l),Kp(l)]. 

The above statement does not contain any information about the mul-

tiplier入． Thisis just for simplicity, and in fact the precise relation between 

入andour classification is obtained in [8]. In particular, if入＝ 0,then the 

corresponding p-elastica (called free p-elastica) is either linear or wavelike 

with the special modulus q = 1/¥12. In the latter case, the profile curve is 
represented as the graph of an antiperiodic function whose slope is vertical 

at each zero. In particular, there is no closed planar free p-elastica. 
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2.2 Optimal regularity 

Based on the previous classification we also clarified optimal regularity of 

planar p-elasticae [8]. In general, any planar p-elastica with p E (1, oo) is 
of class W3,1 c C2 and hence has continuous curvature. In addition, the 
(arclength parameterized) curvature has optimal regularity which is roughly 

2-p 

speaking "same" as the function x f----+ Ix|戸 x(= sign(x)lx戸） around
x = 0. In particular, if凸 isan odd integer, or equivalently if 

pE {2,~1~,;,... }, 
then every p-elastica is smooth (analytic). If otherwise, then p-elasticae 

may not be smooth but always belong to some optimal Sobolev class, which 

depends on p and gets worse as p increases. 

The above classification and regularity results play fundamental and im-

portant roles in our successive works. 

3 Classification of closed planar p-elasticae 

Using our classification we could also classify all'f)-elasticae of closed planar 

curves for the first time [8]. In the classical case p = 2 it is well known 
that any closed planar elastica is either a circle or a figure-eight elastica. 

This fact is extended to all p E (1, oo) by suitably introducing the notion of 
"figure-eight p-elastica". More precisely, the figure-eight'f)-elastica is defined 

as a wavelike［)-elastica with a unique modulus q* = q*(p) E (0, 1) such that 

2E1,p(q*) -Kぃ(q*)= 0, 

or in other words, such that the curve,w(-, q*) defines a closed curve. 

Theorem 3.1 (Classification of closed planar'f)-elastica). Let p E (1, oo) and 

1 be a closed planar p-elastica. Then I is either a circle or a figure-eight 

p-elastica, possibly multiply covered. 

In particular, any flat-core p-elastica is ruled out in the class of closed 
planar p-elasticae. 

4 Classification of pinned planar p-elasticae 

In the next paper [9] we addressed a boundary value problem. We classified 
all the possible critical points among fixed-length planar curves subject to 

the so-called pinned boundary condition, which means that the endpoints 

are prescribed only up to zeroth order. In this setting we deduce from 
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the standard first variation argument that in addition to the fixed bound-

ary condition we also have the natural boundary condition (or zero N avier 

boundary condition), i.e., the curvature vanishes at the endpoints. Thanks 

to this fact with some additional computations, we can completely extend 

the known classification [20, 7] for p = 2 to a general p E (1, oo) (within the 

framework of planar curves). 

Given Po, Pi E R 2 and Lo > I Po -Pi I, we let A pin denote the set of all 
immersed curves'Y E W2,P(O, 1；応） suchthat,y(O) = Po,,y(l) = A, and 
Lb] =L。.Acurve is called a pinned planar'[J-elastica if it is a critical point 
of恥 inthe class Apin・ The classification of pinned planar'f}-elasticae are 
briefly summerized as follows (see [9] for more details): 

(i) IflPo-P叶＝ 0,then any pinned planar p-elastica is an ~-fold figure-
eight p-elastica with some integer N 2: 1, whose endpoints are both 
placed at the crossing point. 

(ii) If IPo -P叶＞ 0,and if either p :S 2 or IPo-Pil 
Lo 
<―,then any pinned 
p-1 

planar p-elastica is given by either a convex arc, a locally convex loop, 

or their suitable periodic extensions (with rescaling). 

(iii) IflPo-P叶＞ 0,and if p > 2 and IPo-Pil ＞ Lo :::_ p-1' — then any pinned planar 
p-elastica is given by either a convex arc, its periodic extensions, or a 

flat-core p-elasticae in a suitable class. 

In summary, the case of p :S 2 or small I Po -A I turns out to be a very 
parallel generalization of the classical case p = 2; on the other hand, if p > 2 
then flat-core p-elasticae emerge and yield various new phenomena. For ex-

ample, the number of critical points changes from countable to uncountable 

(up to invariances). 

5 Uniqueness of minimal pinned planar p-elasticae 

and Li-Yau type inequality 

In [9] we also obtained unique existence of global minimizers under the 

pinned boundary condition. In case (i) in the previous section, any global 

minimizer of Bp in Apin is (up to isometry and reparameterization) uniquely 

given by a half-fold figure-eight p-elastica. In both cases (ii) and (iii), such 

a unique global minimizer is given by a convex arc. 

As an application, we can obtain a new Li-Yau type ineq叫 ity. We 

first recall that, in [7], the author obtained an optimal form of a Li-Yau 

type inequality, which bounds the bending energy from below in terms of 

multiplicity for closed curves in Euclidean space of any codimension. The 

proof relies on the known classification of classical elasticae. In [9], based on 

our new result on the global minimality of a half-fold figure-eight p-elastica, 
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we could apply the strategy in [7] to extend the Li-Yau type inequality to 

all p E (1, oo) in codimension one. To state this result, we introduce the 

normalized p-bending energy氏by

恥bl:= Lb]p-l Bp["f]. 

This energy is invariant with respect to rescaling. 

Theorem 5.1 (Li-Yau type inequality). Letp E (1,oo). If"(E W2,P(S1;Rり
is an immersed closed curve with a point of multiplicity m 2: 2, then 

B印]2': mP. 

This inequality is optimal in the'more than half'case in the sense that 

there is a closed curve attaining equality for any p E (1, oo) and any even 

integer m 2 2. On the other hand, for odd integers m 2 3, the optimality 
sensitively depends on the value of p. If p = 2, it is shown in [7] that for 
any odd integer m 2 3 the inequality is not optimal in codimension one 
due to an algebraic reason (but optimal in codimension more than one). 

Our extension to a general exponent p E (1, oo) reveals that infinitely many 

exponents p recover the optimality for all but finite (small) multiplicities. 

More interestingly, there is a unique exponent in which our inequality is 

fully optimal. 

Theorem 5.2 (Unique exponent for full optimality). There exists a unique 

exponent p E (1, oo) with the following property: For any integer m 2 2 there 
is an immersed closed curve, E W2,P(S1知） witha point of multiplicity 
m such that 

B印］＝m互

The above exponent is given by a unique solution to a transcendental 

equation, and numerically computed to be 

p = 1.5728... 

The uniqueness property relies on the following new monotonicity result. 

Theorem 5.3 (Monotonicity of the crossing angle). The crossing angle of 

figure-eight p-elasticae is strictly monotone with respect top E (1, oo) and 

varies from O to 1r. 

Furthermore, in [9] we also applied our Li-Yau inequality to prove ex-

istence of minimal p-elastic networks, thus extending the recent result for 

p = 2 by Dall'Acqua-Novaga-Pluda [2]. Our proof mainly follows the strate-
gies of [2, 7] but also needs some monotonicity involving p-elliptic integrals. 
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6 Stability of planar p-elasticae 

Finally we discuss stability issues, in particular announcing the contents of 

our forthcoming third paper [10]. 

Stability analysis is complicated even for classical elasticae in general. 

Usually, in order to know stability (resp. minimality) one needs to com-

pute the second variation (resp. the value) of the bending energy but such 

computations are far from easy except for some special cases. In addition, 

the second variation approach relies on a certain fine functional analytic 

structure and hence it is not clear if it can be extended to more general 

functionals including the p-bending energy. 

In our forthcoming paper [10] we develop a general theory on rigidity of 

stable as well as minimal critical points for a very general class of functionals 

depending on the curvature of planar curves. Combined with our previous 

classification results, this theory is quite well applicable to planar p-elasticae. 

A particular consequence of our theory is a far-reaching extension of 

Sachkov's optimal rigidity principles for clamped planar elasticae (cf. [12, 
11, 14, 13, 15]). Sachkov's principles are very roughly summarized as follows: 

• If a clamped planar elastica is minimal, then it does not exceed one 
period. 

• If a clamped planar elastica is stable, then it does not contain three 
inflection points (in its interior). 

We extend those facts to a wide class of critical points in a completely 

different way. Our proof is based on a very simple'cut-and-paste'trick. In 

fact, this trick has been introduced in the author's unpublished notes [6] in 

order to answer a question by Glen Wheeler, who asked the author whether 

there is a more geometric way (a la Avvakmov-Karpenkov-Sossinsky [1]) to 
understand Sachkov's theory. In [10] this method is opened for the first time 

and, more importantly, extended to general functionals, to other boundary 

conditions, and even to non-periodic curves such as flat-core p-elasticae, with 

various new techniques. 

In this paper we do not write down the precise statements of the general 

results obtained in [10] but instead we state two typical important conse-

quences for p-elasticae. 

The first one is classification of stable closed planar p-elasticae, which 

turns out to be a natural extension of the classical case p = 2. 

Theorem 6.1 (Uniqueness of stable closed planar p-elasticae). Let p E 

(1, oo). For each C1-regular homotopy class of closed planar curves there is 
a unique stable closed planar p-elastica (up to invariances). 

In fact, this result is an almost direct consequence of our general princi-

ples for (possibly non-closed) clamped stable solutions. 
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The second one is about pinned p-elasticae. Here the situation depends 

on whether p exceeds 2, but at least for p:::; 2 we can obtain a very simple 

uniqueness theorem. 

Theorem 6.2 (Uniqueness of stable pinned planar p-elasticae). Let p E 

(1, 2]. In the class Apin there is a unique stable critical point of Bp (up to 
invariances), which is nothing but a global minimizer. 

To the authors'knowledge, our result seems to be the first to explicitly 

and rigorously claim such a uniqueness property even in the classical case 

p = 2. Note however that such a property would be quite expected in view 
of, and also at least formally follow by, classical studies based on linear 

stability analysis [4, 5]. Anyhow, the case of p # 2 is completely new, and 
our (simpler) argument would also be new even for p = 2. 
We finally remark that the above rigidity also extends top > 2 in the 
absence of flat-core p-elasticae (where the distance of the endpoints is suffi-

ciently small). Even for flat-core p-elasticae, our method yields some partial 

instability results, but at this moment we do not reach the complete clas-

sification of stability of pinned planar p-elasticae with p > 2. In fact, we 
expect that flat-core p-elasticae may have different stability properties from 

the classical case. We plan to address this issue in a future work. 

A p-Elliptic integrals and functions 

In this appendix we only write down all the necessary definitions. The interested reader 
can find their basic properties more precisely in [8] (and also [9]). 

Definition A.1 (p-Elliptic integrals of the first kind). Let p E (1, oo). We define the 
incomplete p-elliptic integrals of the first kind F1,p(x, q) and F2,p(x, q) of modulus q E 
[O, 1), where x ER, by 

F1,p(x, q) ：= ／x | cos0|1-g 
。V1-q2sin2 0 d0, 

F2,p(x, q) := 1 1 d0, 
O V1-q峠in20 

and the corresponding complete p-elliptic integrals K1,p(q) and K2,p(q) by 

K1,p(q) := F1,p(1r/2,q), K2,p(q) := F2,p(1r/2,q). 

For q = 1, we define 

F1,p(x, 1) = F2,p(x, 1) :=／尤 d02, 
o lcos01,; 

where x E（一ふ召） if1 < p :=;; 2 and x E R if p > 2. In addition, 

00 if 1 < p :s: 2, 
K1,p(1) ＝ K2,p(1) ＝ Kp(1) ：＝ ｛J§ d0 2く oo if p > 2. 

0 (cos 0) p 
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Definition A.2 (p-Elliptic integrals of the second kind). Let p E (1, oo). We define 
the incomplete p-elliptic integrals of the second kind E1,p(x, q) and E2,p(x, q) of modulus 
q E [O, 1], where x ER, by 

恥，p（x,q)：＝I喜 |cos011-id0, 

恥 (x,q):=/ ”~d0, 

and the corresponding complete p-elliptic integrals E1,p(q) and E2,p(q) by 

E1,p(q) := E1,p(1r/2,q), E2,p(q) := E2,p(1r/2,q). 

Remark A.3. The above p-elliptic integrals can be regarded as special cases of Takeuchi's 
generalization [17, 18], and have already been used by Watanabe [19]. The p-elliptic 
functions below are newly introduced in [8]. 

Definition A.4 (p-Elliptic functions). Let p E (1, oo) and q E [O, 1]. We define am1,p(x, q) 
by the inverse function of F1,p(x, q), so that 

X = 1am1,p(x,q) ~ー魚 d0 

。 V1-q2 sin2 0 
for x ER. 

We define snp(x, q), p-elliptic sine function with modulus q, by 

snp(x,q) := sinam1,p(x,q), x ER, 

and define cnp(x, q), p-elliptic cosine function with modulus q, by 

2 

cnp(x, q) := I cos am1,p(x, q)I -,,-, cosam1,p(x, q), x ER. 

In addition, we also define am2,p(x, q) by the inverse function of F2,p(x, q), 

x = / 
am2,p(x,q) 1 

d0 
O V1-q2 sin2 0 

for x ER, 

and define dnp(x, q), p-delta amplitude function with modulus q, by 

dnp(x, q) := {/1 -q2 sin2 (am2,p(x, q)), x ER. 

Definition A.5 (p-Hyperbolic secant function). Let p E (1, oo). We define 

sech戸：＝｛~~p(x, 1) = dnp(x, 1), 
0, 

When 1 < p::; 2, we regard (-Kp(l), Kp(l)) as R. 

x E (-Kp(l), Kp(l)), 

x ER¥ (-Kp(l),Kp(l)). 

Definition A.6 (p-Hyperbolic tangent function). Let p E (1, oo). We define 

tanhp x := 1x (sech以）Pdt, xER. 
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