Improvement of eigen vector approximation method in DC programming

新潟大学理学部 山田修司 Syuuji YAMADA Faculty of Science, Niigata University

Abstract

In this paper, we propose a global optimization algorithm based on a procedure for listing KKT points to solve a quadratic canonical dc programming problem (QDC) whose feasible set is expressed as the area excluded the interior of a convex set from another convex set. We can obtain an approximate solution of (QDC) by combining our algorithm with a parametric optimization method and branch-and-bound procedure.

1 Introduction

In this paper, we propose a procedure for listing KKT (Karush-Kuhn-Tucker) points of a quadratic canonical dc programming problem (QDC) whose feasible set is expressed as the area excluded the interior of a convex set from another convex set. It is known that many global optimization problems can be transformed into such a problem (see, e.g., [2]). Iterative solution methods for solving (QDC) have been proposed by many other researchers. Since it is difficult to solve (QDC), we transform (QDC) into a parametric quadratic programming problem. In order to solve such a quadratic programming problem for each parameter, we introduce an algorithm for listing KKT points. Moreover, we propose an global optimization algorithm for (QDC) by incorporating our KKT listing algorithm into a parametric optimization method and a branch-and-bound procedure.

Throughout this paper, we use the following notation: \mathbb{R} and \mathbb{R}^n denote the set of all real numbers and an *n*-dimensional Euclidean space. The origin of \mathbb{R}^n is denoted by $\mathbf{0}_n$. Given a vector $\mathbf{a} \in \mathbb{R}^n$, \mathbf{a}^\top denotes the transposed vector of \mathbf{a} . For given real numbers α and β ($\alpha < \beta$), we set $[\alpha, \beta] := \{x \in \mathbb{R} : \alpha \le x \le \beta\}$, $]\alpha, \beta[:= \{x \in \mathbb{R} : \alpha < x < \beta\}$, $]\alpha, \beta] := \{x \in \mathbb{R} : \alpha < x \le \beta\}$ and $[\alpha, \beta]:= \{x \in \mathbb{R} : \alpha \le x < \beta\}$. The sets of all nonnegative real numbers and all nonnegative vectors are denoted by \mathbb{R}_+ and \mathbb{R}^n_+ respectively, that is, $\mathbb{R}_+ := \{x \in \mathbb{R} : x \ge 0\}$ and $\mathbb{R}^n_+ := \{x = (x_1, \dots, x_n)^\top \in \mathbb{R}^n : x_i \ge 0 \ i = 1, \dots, n\}$. Given a vector $\mathbf{a} \in \mathbb{R}^n$, $\|\mathbf{a}\|$ denotes the Euclidean norm, that is, $\|\mathbf{a}\| = \sqrt{\mathbf{a}^\top \mathbf{a}}$. Given a vector $\mathbf{a} \in \mathbb{R}^n$ and a positive real number r > 0, $B^n_<(\mathbf{a}, r) := \{x \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{a}\| < r\}$ and $B^n_{\leq}(\mathbf{a}, r) := \{x \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{a}\| \le r\}$. Given a subset $X \subset \mathbb{R}^n$, dim X denotes the dimension of X. For a subset $X \subset \mathbb{R}^n$, int X, ri X cl X, bd X and co X denote the interior, the relative interior, the closure, the boundary and the convex hull of X, respectively. For a subset $X \subset \mathbb{R}^n$, diam X denotes the diameter of X, that is, diam $X := \max_{x',x''\in X} \|x' - x''\|$. $n \times n$ unit matrix is denoted by E_n . Given real numbers a_1, \ldots, a_n , diag $\{a_1, \ldots, a_n\}$ denotes the $n \times n$ diagonal matrix whose diagonal elements are a_1, \ldots, a_n . For a given differentiable function $f : \mathbb{R} \to \mathbb{R}$, $\frac{d}{dx} f(\bar{x})$ and $\frac{d^2}{dx^2} f(\bar{x})$ denote the differential and the second order differential of f at $\bar{x} \in \mathbb{R}$, respectively. Given a convex function $f : \mathbb{R}^n \to \mathbb{R}$, $\partial f(x)$ denotes the subdifferential of f at x, that is, $\partial f(x) := \{a \in \mathbb{R}^n : f(y) \ge f(x) + a^{\top}(y-x), y \in \mathbb{R}^n\}$. For a differentiable function $f : \mathbb{R}^n \to \mathbb{R}, \nabla f(x)$ denotes the gradient vector of f at $x \in \mathbb{R}^n$.

2 A quadratic canonical dc programming problem

Let us consider the following quadratic canonical dc programming problem:

$$(\text{QDC}) \begin{cases} \text{minimize} & \boldsymbol{w}^{\top} \boldsymbol{x} \\ \text{subject to} & g_i(\boldsymbol{x}) := \boldsymbol{x}^{\top} A_i \boldsymbol{x} - (\boldsymbol{b}^i)^{\top} \boldsymbol{x} - c_i \leq 0, \ i = 1, \dots, m, \\ & h(\boldsymbol{x}) := \boldsymbol{x}^{\top} \boldsymbol{x} - r^2 \geq 0, \ \boldsymbol{x} \in \mathbb{R}^n, \end{cases}$$

where $A_i \in \mathbb{R}^{n \times n}$ (i = 1, ..., m) are real positive definite symmetric matrices, $\boldsymbol{b}^1, ..., \boldsymbol{b}^m, \boldsymbol{w} \in \mathbb{R}^n$ $(\|\boldsymbol{w}\| = 1)$ and $c_1, ..., c_m, r$ are real values (r > 0). Let $G := \{\boldsymbol{x} \in \mathbb{R}^n : g_i(\boldsymbol{x}) \leq 0, i = 1, ..., m\}$ and $H := \{\boldsymbol{x} \in \mathbb{R}^n : h(\boldsymbol{x}) \leq 0\}$. From the definition of A_i $(i = 1, ..., m), g_i$ (i = 1, ..., m) are strictly convex functions. Hence, G and H are compact convex sets. Then, $G \setminus \text{int } H$ denotes the feasible set of (QDC). It is well known that quadratic dc programming problems can be transformed into the (QDC).

For (QDC), we suppose the following statements.

- (A1) The feasible set of (QDC) is nonempty, that is, $G \setminus \operatorname{int} H \neq \emptyset$.
- (A2) The reverse convex constraint of (QDC) is essential, that is, $\arg\min\{w^{\top}x : x \in G\} \subset \inf H$.
- (A3) $n \ge 2$.

From assumption (A2), (QDC) has globally optimal solutions. We notice that (QDC) is a convex programming problem if the reverse convex constraint of (QDC) is not essential. Moreover, by assumption (A2), we note that

$$-r \leq \alpha_0 := \min\{ \boldsymbol{w}^\top \boldsymbol{x} : \boldsymbol{x} \in G \} < \min(\text{QDC}) \leq r$$

because $\|\boldsymbol{w}\| = 1$, where min(QDC) denotes the optimal value of (QDC). From the following proposition, we note that all globally optimal solution of (QDC) are contained in the intersection of the boundaries of G and H under assumption (A3).

Proposition 2.1 (See Proposition 2.1 in [3]) Assume that $n \ge 2$ and assumption (A1) holds. Then, all locally optimal solutions of (QDC) are contained in $(bd G) \cap (bd H)$.

3 Optimality conditions

In this section, we introduce optimality conditions for (QDC).

Now, we consider the following parametric programming problem for each $\alpha \in [\alpha_0, r]$, because it is hard to solve (QDC) directly.

$$\begin{cases} \text{minimize} & g(\boldsymbol{x}) \\ \text{subject to} & h(\boldsymbol{x}) = 0, \ \boldsymbol{w}^{\top} \boldsymbol{x} = \alpha. \end{cases}$$
(1)

From the definition of α_0 and assumptions (A1) and (A2), we note that the feasible set of problem (1) is nonempty for each $\alpha \in [\alpha_0, r]$. Let $D \in \mathbb{R}^{n \times (n-1)}$ be a matrix satisfying the followings.

- $D = (d^1, \dots, d^{n-1}) \ (d^i \in \mathbb{R}^n, \ i = 1, \dots, n-1)$
- $\|d^i\| = 1$ for all i = 1, ..., n 1
- $\boldsymbol{w}^{\top} \boldsymbol{d}^i = 0$ for all $i = 1, \dots, n-1$

By replacing \boldsymbol{x} by $D\boldsymbol{y} + \alpha \boldsymbol{w}$ ($\boldsymbol{y} \in \mathbb{R}^{n-1}$), problem (1) can be transformed into the following problem.

$$(QP(\alpha)) \begin{cases} \text{minimize} & \overline{g}(\boldsymbol{y}; \alpha) \\ \text{subject to} & \overline{h}(\boldsymbol{y}; \alpha) = 0, \end{cases}$$

where

$$\overline{g}(\boldsymbol{y};\alpha) := \max\{\overline{g}_i(\boldsymbol{y};\alpha) : i = 1, \dots, m\},\\ \overline{g}_i(\boldsymbol{y};\alpha) := \boldsymbol{y}\overline{A}_i\boldsymbol{y} - (\overline{\boldsymbol{b}}(\alpha)^i)^\top \boldsymbol{y} - \overline{c}_i(\alpha), \ i = 1, \dots, m,\\ \overline{h}(\boldsymbol{y};\alpha) := \boldsymbol{y}^\top \boldsymbol{y} - r(\alpha)^2,\\ \overline{A}_i := D^\top A_i D, \ i = 1, \dots, m,\\ \overline{\boldsymbol{b}}(\alpha)^i := D^\top \boldsymbol{b}^i - 2\alpha D^\top A_i \boldsymbol{w}, \ i = 1, \dots, m,\\ \overline{c}_i(\alpha) := c_i - \alpha^2 \boldsymbol{w}^\top A_i \boldsymbol{w} + \alpha \left(\boldsymbol{b}^1\right)^\top \boldsymbol{w}, \ i = 1, \dots, m,\\ r(\alpha) := \sqrt{r^2 - \alpha^2}.$$

Then, we have the following theorem.

Theorem 3.1 Let $\bar{\alpha} \in [\alpha_0, r]$ satisfy the following conditions, and let $\bar{\boldsymbol{y}}$ be an optimal solution of $(QP(\alpha))$.

- (i) $\min(\operatorname{QP}(\overline{\alpha})) = 0$
- (ii) $\min(\operatorname{QP}(\alpha)) > 0$ for each $\alpha \in]-r, \overline{\alpha}[$

Then, $\bar{\alpha}$ and $D\bar{y} + \bar{\alpha}w$ are the optimal value and an optimal solution of (QDC), respectively.

Let $\alpha \in [\alpha_0, r[$. If $\bar{\boldsymbol{y}} \in \mathbb{R}^n$ satisfies the following conditions (KKT1) and (KKT2) with a Lagrangian multiplier $\mu \in \mathbb{R}$, then $\bar{\boldsymbol{y}}$ is called a KKT point of (QP(α)).

(KKT1) $\boldsymbol{\xi} - \mu \nabla h(\bar{\boldsymbol{x}}) = \boldsymbol{0}_n$ for some $\boldsymbol{\xi} \in \partial_y \bar{g}(\bar{\boldsymbol{y}}; \alpha)$, that is, $2\bar{A}(\boldsymbol{s})\bar{\boldsymbol{y}} - \bar{\boldsymbol{b}}(\boldsymbol{s}, \alpha) - 2\mu \bar{\boldsymbol{y}} = 0$ for some $\boldsymbol{s} \in S$,

(KKT2) $\bar{h}(\bar{\boldsymbol{y}};\alpha) = 0$

where
$$\boldsymbol{\xi} = 2\bar{A}(\boldsymbol{s})\bar{\boldsymbol{y}} - \bar{\boldsymbol{b}}(\boldsymbol{s},\alpha), \ \bar{A}(\boldsymbol{s}) := \sum_{i=1}^{m} s_i \bar{A}_i, \ \bar{\boldsymbol{b}}(\bar{\boldsymbol{s}},\alpha) := \sum_{i=1}^{m} s_i \bar{\boldsymbol{b}}^i(\alpha) \text{ and}$$
$$S := \left\{ \boldsymbol{s} \in \mathbb{R}^m : \sum_{i=1}^{m} s_i = 1, \ s_1, \dots, s_m \ge 0 \right\}.$$

Then, we have the following theorems.

Theorem 3.2 (See, e.g., Theorem 4.2.8 in [1]) Let $\alpha \in [\alpha_L, r]$. Each locally optimal solution of $(QP(\alpha))$ satisfies (KKT1) and (KKT2).

Since \bar{A}_i (i = 1, ..., m) are symmetric positive definite matrices, $\bar{A}(s)$ is an $n \times n$ symmetric positive definite matrix for each $s \in S$. Let $\lambda_i(s) \in \mathbb{R}$ (i = 1, ..., n - 1) and $p^i(s)$ (i = 1, ..., n - 1) satisfy the following conditions for each $s \in S$.

$$\begin{aligned} \bar{A}(\boldsymbol{s})\boldsymbol{p}^{i}(\boldsymbol{s}) &= \lambda_{i}(\boldsymbol{s})\boldsymbol{p}^{i}(\boldsymbol{s}), \ i = 1, \dots, n-1, \\ \|\boldsymbol{p}^{i}(\boldsymbol{s})\| &= 1, \ i = 1, \dots, n-1, \\ (\boldsymbol{p}^{i}(\boldsymbol{s}))^{\top} \boldsymbol{p}^{j}(\boldsymbol{s}) &= 0, \ i, j \in \{1, \dots, n-1\} \ (i \neq j), \\ 0 < \lambda_{1}(\boldsymbol{s}) \leq \lambda_{2}(\boldsymbol{s}) \leq \dots \leq \lambda_{n-1}(\boldsymbol{s}), \end{aligned}$$

We note that $\lambda_i(\mathbf{s})$ and $\mathbf{p}^i(\mathbf{s})$ are an eigen value and an eigen vector of $\overline{A}(\mathbf{s})$ respectively, for each $i \in \{1, \ldots, n-1\}$. Let $P(\mathbf{s}) := (\mathbf{p}^1(\mathbf{s}), \ldots, \mathbf{p}^{n-1}(\mathbf{s})) \in \mathbb{R}^{(n-1)\times(n-1)}$. Then, $P(\mathbf{s})$ is an orthogonal matrix and satisfies the following.

$$P(\mathbf{s})^{\top} \overline{A}(\mathbf{s}) P(\mathbf{s}) = \operatorname{diag} \left(\lambda_1(\mathbf{s}), \dots, \lambda_{n-1}(\mathbf{s}) \right) =: \Lambda(\mathbf{s})$$

By fixing $s \in S$ and replacing y by P(s)z ($s \in \mathbb{R}^{n-1}$), (KKT1) and (KKT2) can be rewritten as follows.

(KKT1)
$$2\Lambda(\boldsymbol{s})\boldsymbol{z} - \boldsymbol{b}(\boldsymbol{s},\alpha) - 2\mu\boldsymbol{z} = \boldsymbol{0}_{n-1},$$

(KKT2)
$$\boldsymbol{z}^{\top}\boldsymbol{z} - r(\alpha)^2 = 0$$

where $\hat{\boldsymbol{b}}(\boldsymbol{s},\alpha) = P(\boldsymbol{s})^{\top} \boldsymbol{\bar{b}}(\boldsymbol{s},\alpha).$

We note that $\bar{x} \in \mathbb{R}^n$ is a globally optimal solution of (QDC) if and only if there exists $\bar{z} \in \mathbb{R}^{n-1}$ satisfying

- $\bar{\boldsymbol{x}} = DP(\boldsymbol{s})\bar{\boldsymbol{z}} + \boldsymbol{w}^{\top}\bar{\boldsymbol{x}}\boldsymbol{w}$
- \bar{z} satisfies (KKT1) and (KKT2) for some $s \in S$, where $\alpha = w^{\top} \bar{x}$

To find an approximate solution of (QDC), we propose an algorithm for listing \bar{z} satisfying (KKT1) and (KKT2) for any $\alpha \in [\alpha_0, r]$ and $s \in S$.

4 Procedures for listing KKT points

For given $\alpha \in [\alpha_0, r]$ and $\boldsymbol{s} \in S$, we define $\boldsymbol{z}(\mu; \boldsymbol{s}, \alpha) : \mathbb{R} \to \mathbb{R}^{n-1}$ and $\psi(\mu; \boldsymbol{s}, \alpha) : \mathbb{R} \to \mathbb{R}$ as follows.

$$\begin{aligned} \boldsymbol{z}(\boldsymbol{\mu};\boldsymbol{s},\boldsymbol{\alpha}) &:= \frac{1}{2} (\Lambda(\boldsymbol{s}) - I_{n-1})^{-1} \hat{\boldsymbol{b}}(\boldsymbol{s},\boldsymbol{\alpha}), \\ \boldsymbol{\psi}(\boldsymbol{\mu};\boldsymbol{s},\boldsymbol{\alpha}) &:= \boldsymbol{z}(\boldsymbol{\mu};\boldsymbol{s},\boldsymbol{\alpha})^{\top} \boldsymbol{z}(\boldsymbol{\mu};\boldsymbol{s},\boldsymbol{\alpha}) - r(\boldsymbol{\alpha})^{2} \\ &= \frac{1}{4} \sum_{i=1}^{n-1} \frac{\hat{b}_{i}(\boldsymbol{s},\boldsymbol{\alpha})^{2}}{(\lambda_{i}(\boldsymbol{s}) - \boldsymbol{\mu})^{2}} - r(\boldsymbol{\alpha})^{2} \end{aligned}$$

For each $\mu \in \mathbb{R}$, $\boldsymbol{z}(\mu; \boldsymbol{s}, \alpha)$ satisfies (KKT1). Moreover, if $\psi(\mu; \boldsymbol{s}, \alpha) = 0$ holds, then $\boldsymbol{z}(\mu; \boldsymbol{s}, \alpha)$ satisfies (KKT2). On $\mathbb{R} \setminus \{\lambda_1(\boldsymbol{s}), \ldots, \lambda_{n-1}(\boldsymbol{s})\}$, we obtain the derivative $\frac{d}{d\mu}\psi(\mu; \boldsymbol{s}, \alpha)$ and the second derivative $\frac{d^2}{d\mu^2}\psi(\mu; \boldsymbol{s}, \alpha)$ as follows.

$$\frac{d}{d\mu}\psi(\mu;\boldsymbol{s},\alpha) = \frac{1}{2}\sum_{i=1}^{n-1} \frac{\hat{b}_i(\boldsymbol{s},\alpha)^2}{(\lambda_i(\boldsymbol{s}) - \mu)^3},$$

$$\frac{d^2}{d\mu^2}\psi(\mu;\boldsymbol{s},\alpha) = \frac{3}{2}\sum_{i=1}^{n-1} \frac{\hat{b}_i(\boldsymbol{s},\alpha)^2}{(\lambda_i(\boldsymbol{s}) - \mu)^4}$$
(2)

Let $T_i(\mathbf{s})$ $(i = 1, ..., n(\mathbf{s}))$ be line segments defined as follows.

$$T_1(\boldsymbol{s}) :=] - \infty, \hat{\lambda}_1(\boldsymbol{s})[,$$

$$T_i(\boldsymbol{s}) :=]\hat{\lambda}_{i-1}(\boldsymbol{s}), \hat{\lambda}_i(\boldsymbol{s})[, i = 2, \dots, n(s) - 1,$$

$$T_{n(s)}(\boldsymbol{s}) :=]\lambda_{n-1}(\boldsymbol{s}), +\infty[.$$

Here, $\hat{\lambda}_1(\boldsymbol{s}), \ldots, \hat{\lambda}_{n(s)-1}$ satisfy the followings.

- For each $i \in \{1, \ldots, n-1\}$, there exists $j \in \{1, \ldots, n(s) 1\}$ such that $\lambda_i(s) = \hat{\lambda}_j(s)$.
- $0 < \hat{\lambda}_1(\boldsymbol{s}) < \hat{\lambda}_2(\boldsymbol{s}) < \cdots < \hat{\lambda}_{n(s)-1}(\boldsymbol{s}).$

From the definition of $T_i(\mathbf{s})$ and $\hat{\lambda}_i(\mathbf{s})$, $T_i(\mathbf{s})$ is nonempty for each $i \in \{1, \ldots, n(\mathbf{s})\}$. Moreover, by (2), since $\frac{d^2}{d\mu^2}\psi(\mu; \mathbf{s}, \alpha) > 0$, $\psi(\mu; \mathbf{s}, \alpha)$ is a strictly convex function with respect to μ on each $T_i(\mathbf{s})$ $(i = 1, \ldots, n(\mathbf{s}))$. Therefore, we can list KKT points of $(\text{QP}(\alpha))$ by utilizing a standard algorithm for solving nonlinear equations (e.g., Newton method).

5 Procedure for updating a parameter for the parametric programming problem

By Assumption (A2), we have $\min(\text{QP}(\alpha_0)) > 0$.

For each $\alpha \in [\alpha_0, r[$, we define $L(\alpha)$ as follows.

$$L(\alpha) := \{ (\boldsymbol{z}^{\top}, \alpha)^{\top} : \|\boldsymbol{z}\|^2 = r^2 - \alpha^2 \}.$$

Then, the following theorem holds.

Theorem 5.1 For each $\alpha, \beta \in [\alpha_0, r[$ and $\boldsymbol{z}_{\alpha} \in L(\alpha)$, there exists $\boldsymbol{z}_{\beta} \in L(\beta)$ satisfying

$$\|(\boldsymbol{z}_{\boldsymbol{\beta}}^{\top},\boldsymbol{\beta})^{\top} - (\boldsymbol{z}_{\boldsymbol{\alpha}}^{\top},\boldsymbol{\alpha})^{\top}\|^{2} = 2r^{2} - 2\alpha\beta + 2\sqrt{r^{2} - \beta^{2}}\sqrt{r^{2} - \alpha^{2}} =: \phi(\boldsymbol{\beta},\boldsymbol{\alpha}).$$

For each $\alpha \in [\alpha_0, r[$ and $\eta \in [\alpha_0 - \alpha, r - \alpha[$, we have the followings.

$$\begin{split} \phi(\alpha+\eta,\alpha) &= 2r^2 - 2\alpha^2 - 2\alpha\eta - 2\sqrt{r^2 - (\alpha+\eta)^2}\sqrt{r^2 - \alpha^2},\\ \frac{\partial}{\partial\eta}\phi(\alpha+\eta,\alpha) &= -2\alpha + \frac{2(\alpha+\eta)\sqrt{r^2 - \alpha^2}}{\sqrt{r^2 - (\alpha+\eta)^2}},\\ \frac{\partial^2}{\partial\eta^2}\phi(\alpha+\eta,\alpha) &= \frac{2r^2\sqrt{r^2 - \alpha^2}}{(\sqrt{r^2 - (\alpha+\eta)^2})^3} > 0. \end{split}$$

Hence, $\phi(\alpha + \eta, \alpha)$ is a strictly convex function with respect to η on $[\alpha_0 - \alpha, r - \alpha]$. Moreover, since $\phi(\alpha, \alpha) = 0$ and $\frac{\partial}{\partial \eta} \phi(\alpha, \alpha) = 0$, we have $\phi(\alpha + \eta, \alpha) > 0$ for each $\eta \in [\alpha_0 - \alpha, r - \alpha]$ $(\eta \neq 0)$. From the following theorem, we obtain a Lipschitz constant of \overline{g} .

Theorem 5.2 For each $\alpha, \beta \in]-r, r[, (\boldsymbol{z}_{\alpha}^{\top}, \alpha)^{\top} \in L(\alpha) \text{ and } (\boldsymbol{z}_{\beta}^{\top}, \beta)^{\top} \in L(\beta), \text{ the following inequality hold.}$

$$|\bar{g}(P(\boldsymbol{s})\boldsymbol{z}_{\beta};\beta) - \bar{g}(P(\boldsymbol{s})\boldsymbol{z}_{\alpha};\alpha)| \leq (2r\lambda_{*}(\boldsymbol{s}) + \|\hat{\boldsymbol{b}}(\boldsymbol{s},\alpha)\|)\|(\boldsymbol{z}_{\alpha}^{\top},\alpha)^{\top} - (\boldsymbol{z}_{\beta}^{\top},\beta)^{\top}\|_{2}$$

where $\lambda_*(\mathbf{s})$ is the maximal eigen value of $A(\mathbf{s})$.

From the strict convexity of ϕ with respect to η , Theorems 5.1 and 5.2, we have the following theorem.

Theorem 5.3 Assume that $\alpha \in]-r, r[$ and $\overline{\eta} \in]0, r-\alpha[$ satisfy the following inequalities.

$$\overline{g}(P(\boldsymbol{s})\overline{\boldsymbol{z}}(\alpha);\alpha) > 0,$$

$$\phi(\alpha + \overline{\eta},\alpha) \le \frac{\overline{g}(P(\boldsymbol{s})\overline{\boldsymbol{z}}(\alpha);\alpha)}{2r\lambda_*(\boldsymbol{s}) + \|\hat{\boldsymbol{b}}(\boldsymbol{s},\alpha)\|},$$

where $P(\boldsymbol{s})\boldsymbol{\bar{z}}(\alpha) \in \arg\min\{g(P(\boldsymbol{s})\boldsymbol{z}: (\boldsymbol{z}, \alpha) \in L(\alpha)\}\)$. Then, for each $\eta \in]0, \boldsymbol{\bar{\eta}}], \boldsymbol{\bar{g}}(P(\boldsymbol{s})\boldsymbol{\bar{z}}(\alpha + \eta); \alpha + \eta) > 0$, where $P(\boldsymbol{s})\boldsymbol{\bar{z}}(\alpha + \eta) \in \arg\min\{g(P(\boldsymbol{s})\boldsymbol{z}: (\boldsymbol{z}, \alpha + \eta) \in L(\alpha + \eta)\}\)$.

By Theorem 5.3, for given $s \in S$, we propose the following algorithm LKKT for listing KKT points.

Algorithm LKKT

Step 0: Set a tolerance $\delta \ge 0$ k := 1. Calculate an optimal solution of $(QP(\alpha_0))$. Set k := 1 and go to Step 1.

Step 1: Find $\eta_k \in]0, r - \alpha_k[$ satisfying

$$\phi(\alpha_k + \eta_k, \alpha_k) = \frac{\overline{g}(P\boldsymbol{z}(\alpha_k + \eta_k); \boldsymbol{s}, \alpha_k)}{2r\lambda_*(\boldsymbol{s}) + \|\hat{\boldsymbol{b}}(\boldsymbol{s}, \alpha_k)\|}.$$

Go to Step 2.

Step 2: Calculate $\bar{z}(\alpha_k + \eta_k + \delta)$ by executing Newton method. Go to Step 3.

Step 3: If $\overline{g}(P\overline{z}(\alpha_k + \eta_k + \delta); s, \alpha_k) \leq 0$, then stop; $(D, w)((P\overline{z}(\alpha_k + \eta_k + \delta))^{\top}, \alpha_k + \eta_k + \delta)^{\top}$ is an approximate solution of (QRC). Otherwise, set $\alpha_{k+1} := \alpha_k + \eta_k + \delta$, $k \leftarrow k+1$, and return to Step 1.

6 Branch and Bound Procedure

In this section, we propose a branch and bound procedure to execute Algorithm LKKT throughout S.

6.1 Subdivision Process

In order to calculate Lagrangian multiplier vector $s \in S$, we utilize the bisection which is one of the classical subdivision processes.

Let $S_1 := S$ and $\tilde{S}_1 := \{S_1\}$. Moreover, for each k > 0, we set S_k and \tilde{S}_{k+1} as follows.

$$S_k \in \arg\max\{\operatorname{diam} S : S \in \mathcal{S}_k\}\tag{3}$$

$$\tilde{\mathcal{S}}_{k+1} := (\mathcal{S}_k \cup \{S', S''\}) \setminus \{S_k\}$$

$$\tag{4}$$

Here

$$\begin{aligned} S' &:= \operatorname{co} \left(V(S_k) \cup \{ \hat{\boldsymbol{v}} \} \right) \setminus \{ \boldsymbol{v}'' \}, \\ S'' &:= \operatorname{co} \left(V(S_k) \cup \{ \hat{\boldsymbol{v}} \} \right) \setminus \{ \boldsymbol{v}' \}, \\ \hat{\boldsymbol{v}} &:= \frac{\boldsymbol{v}' + \boldsymbol{v}''}{2}, \\ \boldsymbol{v}' \text{ and } \boldsymbol{v}'' \in V(S_k) \text{ satisfy } \| \boldsymbol{v}' - \boldsymbol{v}'' \| = \operatorname{diam} S_k, \\ V(S_k) \text{ is the vertex set of } S_k. \end{aligned}$$

Since S_1 is an (m-1)-simplex, all elements of \tilde{S}_k are (m-1)-simplices for each k > 0. Moreover, we have the following proposition and theorem.

Proposition 6.1 (See [2], Proposition IV.2) Assume that the sequences $\{S_k\}$ and $\{\tilde{S}_k\}$ are generated based on (3) and (4), respectively. Let an infinite subsequence $\{S_{k_q}\} \subset \{S_k\}$ satisfy $S_{k_{q+1}} \subset S_{k_q}$ for each q > 0. Then, the following statements hold.

(i) diam $S_{k_{q+m}} \leq \frac{\sqrt{3}}{2}$ diam S_{k_q} for each q > 0(ii) $\lim_{q \to +\infty} \text{diam } S_{k_q} = 0$

From Theorem 6.1, we notice that $\tilde{S}_{\hat{k}}$ is empty for some $\hat{k} > 0$ by (4) by the following.

$$\tilde{\mathcal{S}}_{k+1} = (\tilde{S}_k \setminus \{S_k\}) \cup \{S \in \{S', S''\} : \operatorname{diam} S > \tau\}.$$
(5)

Here, τ is a positive real number as a tolerance. Then, by utilizing the following stopping condition, the branch-and-bound procedure proposed in this section terminates within a finite number of iterations.

(SC) If $\tilde{S} = \emptyset$, then stop.

Theorem 6.1 Assume that the sequences $\{S_k\}$ and $\{\tilde{S}_k\}$ are generated based on (3) and (4), respectively. Then, $\lim_{k \to +\infty} \operatorname{diam} S_k = 0$.

6.2 Lower Bound

The following theorem holds.

Lemma 6.1 Let $\tilde{s}^1, \tilde{s}^2 \in S$, $i, j \in \{1, ..., n-1\}$ satisfy $\lambda_j(\tilde{s}^1) = \lambda_i(\tilde{s}^1)$. Then, the following inequality holds.

$$|\lambda_j(ilde{m{s}}^2) - \lambda_i(ilde{m{s}}^1)| \leq \lambda_{\max} \| ilde{m{s}}^2 - ilde{m{s}}^1\|$$

Here,

 $\lambda_{\max} := \max\{\lambda_n^q : q = 1, \dots, m\}, \\ \lambda_1^q, \dots, \lambda_{n-1}^q : \text{ all eigen values of } A_q \text{ satisfying } 0 < \lambda_1^q \le \lambda_2^q \le \dots \le \lambda_{n-1}^q.$

Then, there exists $\delta > 0$ such that $|\lambda_j(\mathbf{s}) - \lambda_i(\tilde{\mathbf{s}}_1)| < \varepsilon$ for each $j \in \{1, \ldots, n-1\}$ satisfying $\lambda_j(\tilde{\mathbf{s}}_1) = \lambda_i(\tilde{\mathbf{s}}_1)$, and $\mathbf{s} \in S \cap B_{\leq}^m(\tilde{\mathbf{s}}_1, \delta)$.

Theorem 6.2 Let $\mathbf{s}^1, \mathbf{s}^2 \in S$, $\{t_k\} \subset]0, 1[$ a sequence satisfying $t_k \to 0$ as $k \to +\infty$ and $\mathbf{s}(k) := (1 - t_k)\mathbf{s}^1 + t_k\mathbf{s}^2$ for each k. Then, $\lambda_i(\mathbf{s}(k)) \to \lambda_i(\mathbf{s}^1)$ and $A(\mathbf{s}(k))\mathbf{p}^i(\mathbf{s}^1) \to \lambda_i(\mathbf{s}^1)\mathbf{p}^i(\mathbf{s}^1)$ as $k \to +\infty$ for each $i \in \{1, \ldots, n-1\}$.

6.3 Algorithm

In this section, we propose a branch and bound procedure for calculating a globally optimal solution of (QDC).

From the following theorem, we notice that at least one feasible solution can be calculated over each maximal connected subset of $G \setminus \operatorname{int} H$ by executing algorithm LKKT throughout S.

Theorem 6.3 For each maximal connected subset of $G \setminus \text{int } H$, there exists a KKT point for (QDC).

In order to execute Algorithm LKKT throughout S, we propose a branch and bound procedure as follows.

Algorithm BBP

Step 0: Set tolerances $\tau, \rho \ge 0, S_1 = \{S\}, x^1 = \alpha_0 w, k = 1$, Go to Step 1.

Step 1: If $S_k = \emptyset$, then stop; x^k is an approximate solution of (QDC). Otherwise, go to Step 2.

Step 2. Choose $S_k \in S_k$ satisfying diam $S_k = \max_{S \in S_k}$ diam S. Set s_k as follows.

$$\boldsymbol{s}_k := rac{1}{m} \sum_{i=1,\dots,m} \boldsymbol{\kappa}^i,$$

where $\boldsymbol{\kappa}^1, \ldots, \boldsymbol{\kappa}^m$ are all vertices of S_k . Go to Step 3.

Step 3: Execute Algorithm LKKT with s^k selected at Step 2. Go to Step 4.

- Step 4: If \tilde{x} calculated by executing Algorithm LKKT satisfies $\tilde{x} \in G \setminus H$ and $w^{\top} \tilde{x} < w^{\top} x^k$, then $x^{k+1} := \tilde{x}$. Otherwise, $x^{k+1} := x^k$. Go to Step 5.
- Step 5: Choose $\kappa', \kappa'' \in {\kappa^1, ..., \kappa^m}$ satisfying $\|\kappa' \kappa''\| = \text{diam } S_k$. Update S_{k+1} as follows.

$$\mathcal{S}_{k+1} := \begin{cases} (\mathcal{S}_k \cup \{S', S''\}) \setminus \{S_k\}, & \text{if diam } S' \ge \rho \text{ and diam } S'' \ge \rho, \\ (\mathcal{S}_k \cup \{S'\}) \setminus \{S_k\}, & \text{if diam } S'' \ge \rho \text{ and diam } S'' \le \rho, \\ (\mathcal{S}_k \cup \{S''\}) \setminus \{S_k\}, & \text{if diam } S'' < \rho \text{ and diam } S'' \ge \rho, \\ \mathcal{S}_k \setminus \{S_k\}, & \text{if diam } S'' < \rho \text{ and diam } S'' < \rho, \end{cases}$$

where $S' := \operatorname{co}\left(\{\kappa^1, \dots, \kappa^m, \check{\kappa}\} \setminus \{\kappa''\}\right), S'' := \operatorname{co}\left(\{\kappa^1, \dots, \kappa^m, \check{\kappa}\} \setminus \{\kappa'\}\right), \text{ and } \check{\kappa} := \frac{\kappa' - \kappa''}{2}. \text{ Set } k \leftarrow k+1 \text{ and return to Step 1.} \end{cases}$

Since S_k is bisected at Step 5 of Algorithm BBP, by setting a tolerance ρ to a positive number, the routine between Step 1 and Step 5 is terminates within a finite number of iterations (see, e.g., Theorem IV.1 and Proposition IV.2 in [2]).

7 Conclusions

In this paper, we propose Algorithm LKKT for listing KKT points of $(QP(\alpha))$. Moreover by combining Algorithm LKKT with a parametric optimization method and a branch-andbound procedure, we present Algorithm BBP for (QDC).

References

- M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming: Theory and Algorithms, 3rd ed., John Wiley Sons Inc, United States, 2006.
- [2] R. Horst and H. Tuy, Global Optimization: Deterministic Approaches, Third, Revised and Enlarged Edition, Springer-Verlag, Berlin, 1996.
- [3] S.Yamada, T.Tanaka, T.Tanino, Outer approximation method incorporating a quadratic approximation for a dc programming problem, J. Optim. Theory Appl., Vol.144(1), pp.156–183 (2010)