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Abstract 

In this paper,we propose a global optimization algorithm based on a procedure for 
listing KKT points to solve a quadratic canonical de programming problem (QDC) 
whose feasible set is expressed as the area excluded the interior of a convex set from 
another convex set. We can obtain an approximate solution of (QDC) by combining our 
algorithm with a parametric optimization method and branch-and-bound procedure. 

1 Introduction 

In this paper, we propose a procedure for listing KKT (Karush-Kuhn-Tucker) points of a 

quadratic canonical de programming problem (QDC) whose feasible set is expressed as the 

area excluded the interior of a convex set from another convex set. It is known that many 

global optimization problems can be transformed into such a problem (see, e.g., [2]). Iterative 
solution methods for solving (QDC) have been proposed by many other researchers. Since it 

is difficult to solve (QDC), we transform (QDC) into a parametric quadratic programming 

problem. In order to solve such a quadratic programming problem for each parameter, we 

introduce an algorithm for listing KKT points. Moreover, we propose an global optimiza— 

tion algorithm for (QDC) by incorporating our KKT listing algorithm into a parametric 

optimization method and a branch-and-bound procedure. 
Throughout this paper, we use the following notation:恥 and町 denotethe set of all 

real numbers and an n-dimensional Euclidean space. The origin of町 isdenoted by On. 
Given a vector a E町， aT denotes the transposed vector of a. For given real numbers a 

and /3 (a < /3), we set [a, /3] := {x E賊： a:::; X さ/3},]a, /J[:= { X E賊： a< X < /3}, 
]a, /3] := {x E罠： a<x::; /3} and [a,/3[:= {x E瞑： a:::;x < /3}. The sets of all nonnegative 
real numbers and all nonnegative vectors are denoted by沢十 and記 respectively,that is, 

股+:= ｛x €民： x :::, O} and記：＝ ｛X = (x1,...,xn)T E 町： Xi :::, Q i = 1,..., n}. 

Given a vector a E配 llalldenotes the Euclidean norm, that is, llall＝凶戸a.Given a 
vector a E即 anda positive real number r > 0, B~ (a, r) :=｛の€町： llx -all < r} 

and B~(a, r) :=｛の€町： 1|の一 all:::; r }. Given a subset X C 誓 dimX denotes the 
dimen豆onof X. For a subset X C閏 intX, ri X cl X, bd X and co X denote the interior, 

the relative interior, the closure, the boundary and the convex hull of X, respectively. For a 

subset X C町， diamXdenotes the diameter of X, that is, diamX :=.rn~.. llx'-x"II-The 
x',x"EX 

II 
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n x n unit matrix is denoted by En. Given real numbers a1,..., an, diag { a1,..., an} denotes 
then x n diagonal matrix whose diagonal elements are a1,..., an. For a given differentiable 

d d2 
function f :恥→恥―f（元） and -f（元） denotethe differential and the second order 

dx dx2 
differential of f at元E叫 respectively.Given a convex function f :町→股， of（x)denotes 
the subdifferential off at x, that is, of(x) := {a E恨:n:f(y) 2: f(x)+aT(y-x), YE民叶・
For a differentiable function f :町→恥▽f（の） denotesthe gradient vector of f atのE記

2 A quadratic canonical de programming problem 

Let us consider the following quadratic canonical de programming problem: 

(QDC)｛ニjie了。 ，り(;::＝ぶA2尤ー (b'）丁尤ー~"~ 0, i ~ !,..., m, 
h(x)：＝ X TX  - r2 ~ 0, X E町，

where Ai E股nxn(i = 1,..., m) are real positive definite symmetric matrices, b1,..., bm, w E 

町 (llwll= 1) and c1,..., cm, rare real values (r > 0). Let G :=｛XE町： gi(x)さ0,i = 

1,...,m} and H :=｛XE町： h(x):S 0}. From the definition of A; (i = 1,..., m), gi 
(i = 1,..., m) are strictly convex functions. Hence, G and Hare compact convex sets. Then, 
G¥int H denotes the feasible set of (QDC). It is well known that quadratic dc programming 
problems can be transformed into the (QDC). 

For (QDC), we suppose the following statements. 

(Al) The feasible set of (QDC) is nonempty, that is, G¥int Hヂ0.

(A2) The reverse convex constraint of (QDC) is essential, that is, arg min { w丁X:XE  G} C 

intH. 

(A3) n ~ 2. 

From assumption (A2), (QDC) has globally optimal solutions. We notice that (QDC) is 
a convex programming problem if the reverse convex constraint of (QDC) is not essential. 
Moreover, by assumption (A2), we note that 

-rさa。:＝ min{wTx：x E G} < min(QDC) :Sr 

because llwll = 1, where min(QDC) denotes the optimal value of (QDC). From the follow-
ing proposition, we note that all globally optimal solution of (QDC) are contained in the 
intersection of the boundaries of G and H under assumption (A3). 

p roposition 2.1 (See Proposition 2.1 in [3]) Assume that n ~ 2 and assumption (Al) holds. 

Then, all locally optimal solutions of (QDC) are contained in (bd G) n (bd H). 

3 Optimality conditions 

In this section, we introduce optimality conditions for (QDC). 
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Now, we consider the following parametric programming problem for each a E [a。,r],
because it is hard to solve (QDC) directly. 

{ minimize g(X) 
subject to h（尤） ＝0, WTエ＝ a.

(1) 

From the definition of a。andassumptions (Al) and (A2), we note that the feasible set of 
problem (1) is nonempty for each a E [a。,r].Let DE良nx(n-I)be a matrix satisfying the 

followings. 

• D = (d1,..., dn-I) (d'E町， i= 1,..., n -1) 

● ||d! II = 1 for all i = 1,..., n -1 

• w T d'= 0 for all i = 1,..., n -1 

By replacing x by Dy+ aw (y E ]Rn-I), problem (1) can be transformed into the following 
problem. 

where 

(QP(a)） { minimize g(y;a) 
subject to h(y; a) = 0, 

g(y; a) := max砿(y;a):i=l,...,m},

凸(y:a) := 1f_A;y -(b(a)if y-c;(a), i=l,...,m, 
~(y; a) :_:= y Ty -r(a)叫
A;:=DTA;D, i=l,...,m, 

恥）t:＝かbi-2aDT A;w, i = 1,...,m, 

叫）：＝ C;-a2両 A;w+ a (b1) T w, i = 1,..., m, 

r(a)：＝凶す□厄．

Then, we have the following theorem. 

Theorem 3.1 Let a E [a。,r]satisfy the following conditions, and let fl be an optimal solu-
tion of (QP(a)). 

(i) min(QP(a)) = 0 

(ii) min(QP(a)) > 0 for each a E] -r, a[ 

Then, a and Dy+ aw are the optimal value and an optimal solution of (QDC), respectively. 

Let a E [a。,r[.Iffj E恥”satisfiesthe following conditions (KKTl) and (KKT2) with a 
Lagrangian multiplier μ E恥 thenfl is called a KKT point of (QP (a)). 

(KKTl) e-μ▽h（元） ＝On for some e E 8⑲(fl; a), that is, 
頌 (s)y-b(s, a) -2μy = 0 for some s ES, 

(KKT2) h(y; a) = 0 
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m m 

where e = 2A(s)y -b(s, a), A(s)：=L  s;A;, b(s, a) := L ⑱ (a) and 
i=l i=l 

S := { s E股m 喜＝ 1,S1,..., Sm 2". Q} 
Then, we have the following theorems. 

Theorem 3.2 (See, e.g., Theorem 4.2.8 in [1]) Let a E [a£, r]. Each locally optimal solution 
of (QP(a)) satisfies (KKTl) and (KKT2). 

Since A; (i = 1,...,m) are symmetric positive definite matrices, A(s) is an n x n sym-
metric positive definite matrix for each s E S. Let入;(s)E股 (i= 1,..., n -1) and pi(s) 
(i = 1,..., n -1) satisfy the following conditions for each s E S. 

A(s)pi(s)＝入;(s)pi(s),i = 1,..., n -1, 

IIP'(s) II = 1, i = 1,..., n -1, 

(pi(s)）丁 ~(s)=O, i,jE{l,...,n-l}(iヂj),

〇＜ふ(s):::;ふ(s):::;・・・こ入n-1(S), 

We note that入(s)and pi(s) are an eigenvalue and an eigenvector of A(s) respectively, for 
each i E { 1,..., n -1}. Let P (s) : = (p1 (s),..., p正 1(S)）€股(n-l)x(n-l)_ Then, P(s) is an 

orthogonal matrix and satisfies the following. 

P(s)T A(s)P(s) = diag（ふ（s),...,入正1(s))=: A(s) 

By fixings ES and replacing y by P(s)z (s E罠正1),(KKTl) and (KKT2) can be rewritten 

as follows. 

(KKTl) 2A(s)z -b(s, a) -2μz = 0正 1,

(KKT2) z T z -r(a戸＝ 0 

where b(s, a)= P(s)屯(s,a). 
We note that 元€町 is a globally optimal solution of (QDC) if and only if there exists 

え€股n-l satisfying 

●元＝ DP(s)え＋ wTxw

●え satisfies(KKTl) and (KKT2) for some s ES, where a= w油

To find an approximate solution of (QDC), we propose an algorithm for listing z satisfying 
(KKTl) and (KKT2) for any a E [a0, r] ands ES. 
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4 Procedures for listing KKT points 

For given a E [a。,r]and s E S, we define z(μ; s, a) :股→野n-landい(μ;s, a)：股→股 as
follows. 

1 
z(μ; s, a) := ~(A(s) -In-1)肪 (s,a), 

心(μ;s, a) := z(μ; s, a) T z(μ; s, a) -r(a)2 
n-1 

4こ
1 bi(s,a)2 

= -
i=l 

仇(s)― μ)2
-r(a)2 

For eachμ E IR, z(μ; s, a) satisfies (KKTI). Moreover, if心(μ;s, a)= 0 holds, then z(μ; s, a) 
d 
心（satisfies (KKT2). On恥＼｛入1(S),...，入n-i(s)},we obtain the derivative —µ; s, a) and the 

dμ 
d2 

second derivative-—心(µ; s, a) as follows. 
dμ2 

d 1 n-1 bi(s, a)2 
面心(μ;s,a)= ~ ~ 

i=l 
（入(s)-μ)3'

d2 3 n-1 bt(s, a)2 

dμ2心(μ;s, a)＝うご (MS)-μ)4 

Let T; (s) (i = 1,..., n(s)) be line segments defined as follows. 

T1(s) :=t-oo入(s)[,

T;(s)：＝]入i-1(s)，入(s)[,i=2,...,n(s)-1, 

Tn(s)(s)：＝］入n-1(s),+oo[. 

Here,入1(s),...,入n(s)-1satisfy the followings. 

(2) 

• For each i E {1,..., n -1}, there exists j E {1,..., n(s) -1} such that入;(s)=入](s).

• 0 <入1(s)＜ふ(s)<...＜入n(s)-1(s).

From the definition of T; (s) and入(s),T;(s) is nonempty for each i E {1,...,n(s)}. More-
d2 

over, by (2), since―ゆ(μ;s,a)> 0,心（μ;s, a) is a strictly convex function with respect to 
dμ2 

μ on each T;(s) (i = 1,..., n(s)). Therefore, we can list KKT points of (QP(a)) by utilizing 
a standard algorithm for solving nonlinear equations (e.g., Newton method). 

5 Procedure for updating a parameter for the para-

metric programming problem 

By Assumption (A2), we have min(QP(a0)) > 0. 
For each a E [a。,r[,we define L(a) as follows. 

L(a) := {(z T, a)T: llzll2 = r2 -a2}. 

Then, the following theorem holds. 
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Theorem 5.1 For each a, /3 E [a0, r[ and Za E L(a), there exists ZfJ EL(/3）satisfying 

ll(zJ,/3)T -(z!,a)T附＝ 2r2 — 2af3 + 2~~ =: ¢(/3，a). 

For each a E [a。,r[and T/ E [a。— a, r -a[, we have the followings. 

如＋TJ,a)= 2r2 -2a2 -2arJ-2沢— (a +n)2好 亡a2,
8 
¢( 

2(a + TJ)而こ
a + T/, a) = -2a + 

枷 炉— (a+n)2'
82,,., 2r勺T2_ a2 

叩
¢(a+rJ,a)= 

(Vr2 -（a+n)叩
> 0. 

Hence, ¢(a+TJ, a) is a strictly convex function with respect to T/ on [a。―a,r -a[. Moreover, 
8 

sinceの(a,a) = 0 and ~¢(a, a) = 0, we have ¢(a+ T/, a) > 0 for each T/ E [a0 -a, r -a[ 
両

(TJ =J 0). From the following theorem, we obtain a Lipschitz constant of g. 

Theorem 5.2 For each a, (3 E] -r, r[, (z~, a)丁 EL(a) and (zJ, f3)T EL(/3）， the following 
inequality hold. 

l!i(P(s)zfJ;(3） -g(P(s)za; a)Iさ:（2r入＊（s)+ llb(s, a)ll)ll(z!, a)T -(zJ, /3)TII, 

where入＊（s)is the maximal eigen value of A(s). 

From the strict convexity of¢ with respect to T/, Theorems 5.1 and 5.2, we have the following 

theorem. 

Theorem 5.3 Assume that a E] -r, r[ andりE]O,r -a[ satisfy the following inequalities. 

g(P(s)ぇ(a);a) > 0, 

如＋り，a)さ
g(P(s)z(a); a) 

2八 (s)+llb(s,a)II'

where P(s)る(a)E argmin{g(P(s)z: (z, a) E L(a)}. Then, for each TJ E]O，り］， g(P(s)z(a+

TJ); a+ TJ) > 0, where P(s)る(a+TJ) E argmin{g(P(s)z: (z, a+ TJ) E L(a + TJ)}. 

By Theorem 5.3, for givens E S, we propose the following algorithm LKKT for listing KKT 
points. 

Algorithm LKKT 

Step 0: Set a tolerance 8 2: 0 k := 1. Calculate an optimal solution of (QP(a0)). Set k := 1 
and go to Step 1. 

Step 1: Find限 E]O,r一位[satisfying 

g(Pz（ぼ＋叫；s，叫
¢（匁＋鷹匁） ＝ 

2八 (s)+ llb(s,知）II

Go to Step 2. 

Step 2: Calculateえ(ak+ T/k + 8) by executing Newton method. Go to Step 3. 

Step 3: If g(Pz（匁＋T/k+8);S，位） :S0, then stop; (D, w)((Pる（ぽ＋限＋8))T,位＋限＋6）丁
is an approximate solution of (QRC). Otherwise, set ak+l:＝匁十 T/k+ 8, k←k + 1, 
and return to Step 1. 
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6 Branch and Bound Procedure 

In this section, we propose a branch and bound procedure to execute Algorithm LKKT 

throughout S. 

6.1 Subdivision Process 

In order to calculate Lagrangian multiplier vector s E S, we utilize the bisection which is 

one of the classical si:bdivision processes. 

Let S1 := S and 51 :=｛ふ｝． Moreover,for each k > 0, we set Sk and Sk+l as follows. 

Here 

sk E argmax{diamS: s Eふ｝

Sk+l := (Sk u {S', S"})¥{Sk} 

S':= co (V(S砂U{ i,}) ¥ { v"}, 
S11 := co (V(Sk) U { v})¥ { v'}, 

v'+v" 
V := 

2'  
v'and v" E V(Sりsatisfyllv'-v"II = diam S如

V(Sりisthe vertex set of Sk. 

(3) 

(4) 

Since S1 is an (m -1)-simplex, all elements of Sk are (m -1)-simplices for each k > 0. 
Moreover, we have the following proposition and theorem. 

Proposition 6.1 (See [2], Proposition IV.2) Assume that the sequences｛ふ｝ and{Sk} are 

generated based on (3) and (4), respectively. Let an infinite subsequence {Skq} C｛品｝ satisfy

s知＋lcs位 foreach q > 0. Then, the following statements hold. 

汎
(i) diam S似＋m ご ―diamS kq for each q > 0 

2 

(ii) lim diam ska = 0 
q→+00 

Theorem 6.1 Assume that the sequences｛ふ｝ and{ Sk} are generated based on (3) and 

(4), respectively. Then, _ lim diam品＝ 0.
K→+00 

From Theorem 6.1, we notice that均isempty for some k > 0 by (4) by the following. 

SK+1 ＝ ⑱＼｛ふ｝） U{SE {S', S"}: diamS > T}. (5) 

Here, T is a positive real number as a tolerance. Then, by utilizing the following stopping 
condition, the branch-and-bound procedure proposed in this section terminates within a 

finite number of iterations. 

(SC) If S = 0, then stop. 



182

6.2 Lower Bound 

The following theorem holds. 

Lemma 6.1 Letぶ，s2ES, i,j E {1,...,n-1} satisfyふ（的＝入（酎）． Then,the following 
inequality holds. 

Iふ（的ー入tば）I::::入max炉ー釣I

Here, 

入max:=ill訟｛況： q=l,...,m},

闘，．．．，碍＿1: all eigen values of Aq satisfying O < Ai ~入；三・・・三碍＿1 ・

Then, there exists o > 0 such that|ふ(s)一入(s1)1< E for each j E {1,..., n -1} satisfying 

ふ⑱）＝入t⑱)， andsE Sn B誓(s心）．

Theorem 6.2 Let s1, s2 E S, {tk} c]O, 1[ a sequence satisfying tk→0 as k→ +oo 
and s(k) := (1 -t砂s1+ tks2 for each k. Then,入（s(k)）→入;(sりandA(s(k))p心） → 
入;(s渾 (sりask→十oofor each i E {1,..., n -1}. 

6.3 Algorithm 

In this section, we propose a branch and bound procedure for calculating a globally optimal 

solution of (QDC). 

From the following theorem, we notice that at least one feasible solution can be calculated 

over each m訟 imalconnected subset of G¥int H by executing algorithm LKKT throughout 
S. 

Theorem 6.3 For each maximal connected subset of G¥int H, there exists a KKT point for 

(QDC). 

In order to execute Algorithm LKKT throughout S, we propose a branch and bound 
procedure as follows. 

Algorithm BBP 

Step 0: Set tolerances T, p ~ 0, S1 = { S}，が＝ a0w,k = 1, Go to Step 1. 

Step 1: Ifふ＝ 0,then stop;砂 isan approximate solution of (QDC). Otherwise, go to 

Step 2. 

Step 2. Choose sk E sk satisfying diam品＝ m邸 diamS. Set sk as follows. 
SESk 

1 
紅：＝—こ¢,

m 
i=l,...,m 

whereぶ，．．．，,.,,mare all vertices of Sk. Go to Step 3. 

Step 3: Execute Algorithm LKKT with sk selected at Step 2. Go to Step 4. 
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Step 4: If元calculatedby executing Algorithm LKKT satisfies元 EG¥int H and w喝＜
w丁叶， then叶＋1:＝元． Otherwise,叶＋1:=砂 Goto Step 5. 

Step 5: Choose ""＇ぷ'E{¢.．．，炉｝ satisfying11,,,,'-,,,,"II = diam Sk. Update Sk+i as 
follows. 

心＝｛悶：昌汀闘叫：［闊：口：：： ：ロニ：： ［＇ 
(Sk u {S"｝）＼｛品｝， ifdiam S'< p and diam S" 2 p, 
ふ＼｛ふ｝， ifdiam S'< p and diam S" < p, 

where S':= co({t,,1,...,,,,,m,k}¥{t,,"}), S" := co(｛t,,1,...,t,,m,k}¥{t,,'}), and,~ := 
9 -K  

2 
. Set k←k + 1 and return to Step 1. 

Since Sk is bisected at Step 5 of Algorithm BBP, by setting a tolerance p to a positive 
number, the routine between Step 1 and Step 5 is terminates within a finite number of 
iterations (see, e.g., Theorem IV.1 and Proposition IV.2 in [2]). 

7 Conclusions 

In this paper, we propose Algorithm LKKT for listing KKT points of (QP(a)). Moreover 
by combining Algorithm LKKT with a parametric optimization method and a branch-and-
bound procedure, we present Algorithm BBP for (QDC). 
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