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Abstract

We show that a parametric linear system of equations plays a fundamental part
in establishing a mutual relation between minimization problem (primal) and max-
imization problem (dual). The system is of 2n-equation on 2n-variable, called zero-
minimum condition. It yields a couple of second-order finite (n-) linear difference
equation on n-variable, which constitute the respective optimal conditions. The
respective equations have a mimimum solution for primal and a maximum one for
dual. Both the optimal solutions are expressed in terms of Gibonacci sequence,
which is a parametric generalization of the Fibonacci one. Either solution is char-
acterized by the backward Gibonacci sequence and its complementary — Hibonacci
sequence —.

1 Introduction

Recenly a new duality for quadratic optimization has been extensively developed by
Iwamoto, Kimura, Fujita and Kira [12-25]. They have given several kinds of duality
through some methods. These supply related dualities and associated dual problems for
the classical optimization problems by Bellman and others [1-7,26], [9,11,28,29]. The du-
ality and its approach are characterized by — Fibonacci [8,10,27,30] and complementarity
—, respectively.

This paper enhances the Fibonacci duality through a parametric linear system of
equations. The Fibonacci duality is expanded to Gibonacci one. The complementarity
is replaced by a pair of linear equations — an equality condition —. This is called a
zero-minimum condition for a 2n-variable parametric minimization problem.

Section 2 gives a 2n-variable parametric minimization problem, where a parameter A
ranges over (0, 0o). The objective function turns out to be nonnegative. It attains zero
iff a linear system of 2n-equations on 2n-variables has a solution. Section 3 presents a
pair of A\-parametric minimization problem and A-parametric maximization problem for
A > 0. Section 4 discusses a new duality — Gibonacci duality — . This covers Fibonacci
duality. The principal idear is based upon the complementarity.



2 Complementary approach

This section specifies a 2n-variable minimization problem. Throughout the section, let
¢ € R and X > 0 be given constants.

An original problem is a 2n-variable (x, 1) with a parameter A and a fixed initial value
xg=c

n—1
minimize — 2Azop; + Z [(mho1 — 2)” + 2 + Npp + (e — pesr)?
k=1
Q + 20N = Dy (i — prrsr)]

+ (21— @a)® 2 + (N 4 Dpgy + 200 = D
subject to (i) z € R", xo=¢, (i) pe R"

Let us define the objective function by h : R"xR" — R!

n—1

h(z.p) = —2Xep + Z [(wr1 = x)? + 2+ N p A+ (e — pg)?
= + 200 = Dag (s — pair)]
+ (Tpor — 2n)? + 22+ (N4 D 4+ 200 — Dty
We have an evaluation as follows.

Lemma 1 Let (x, p) be feasible. Then it holds that

h(z, ) = 0. (1)
The sign of equality holds iff

c—x1 = My, Ty = iy — flo
(ZIII) L1 — T = /\uk7 T = Mk — MEg+1 2 < k <n-— 1
Tp—1 — Tpn = )\Mm Tn = Hn

holds.

This is a linear system of 2n-equation on 2n-variable (z, ). We call (Zm) a zero-minimum
condition.

Proof.  First we present an identity, which plays a fundamental role in analyzing the

pair. Let x = {x;}", u = {ur}} be any two sequences of real number with 2y = ¢. Then
an identity

n—1

(©) e = > (@1 =z + wr(ie = 1)) + (Tno1 = To)pin + Tpin
k=1



holds true. This identity is called complementary. The complementary identity implies
that

—

n—

—2Xzop1 + Y [(zeo1 — 2)® + 2 + Npi 4 (ke — pe1)” + 200 = DAz (i — prisr) |
1

£
Il

a + (@1 — 20)” + 2%+ (A + D)2 + 200 — 1) Azt

-1

[(@h-1 — @k — Mpar)® + (2 — i + pirsr)’]
k=1

3

F (Zpo1 = T = Man)* + (2 — )
This is an identity on R"xR", which is called quadratic. Hence we have an inequality
h(x,u) > 0.
The sign of equality holds iff (Zm) holds. Thus the inequality (2) with zero-minimum

condition is shown. O

The objective function is also expressed as follows.

Lemma 2 Let (z, p) be feasible. Then it holds that

n—1
h(z,p) = —2cu + Z Tpo1 — xk)? 4 23+ Np A+ (e — prg)” 4+ 200 = N (21 — o)
k=1
+ (@nor = 2)® + 2+ (N + Dy +2(1 = X) (@1 — 20 -

Lemma 3 Let
=24 :=14+X (AN#£0).

Then the zero-minimum condition (Zm) yields a pair of linear systems of n-equation on
n-variable:

Casen=1
(BQ) ¢=¢&n ¢ =¢m.
Casen =2

C= 7T — T3 c=E&u —

= {ry M1 = YHe2.

Casen >3



C = YT — X2 c =& — i
(EQ) Tpo1 = YTk — Tppr ko1 = YRk — Mr1 2<k<n-—1

Tp-1 = gxn Hn—1 = YHn-

Conversely the pair (EQ) yields (Zm) under the condition that either system has a

unique solution. This condition is assured by the nonsingularity of the relevant n X n
martices A,, B, i.e., !

Al #0, 1Ba] £ 0.

The pair (EQ) is divided into two linear systems:

C = Iy
(EQ,) Th—1 = VT, — Tyl I1<k<n-1

Tp-1 = gxn

and
c = §u — i
(EQ,)  pr1 =y — e 2<k<n-—1
Hpn—1 = TYHn

Now we have the ojective function

n—1
h(z,p) = —2Xzom + Z [(ﬂfk—l —x)” + @+ N A (e — per)” + 200 = D (e — Mk+1)]
k=1
+ (Tt — 20)? + 22+ (W2 D2 + 200 = Dappn, (10 = ).
A triple zero property holds as follows.

Lemma 4 Let a feasible (v, 1) satisfy (Zm,). Then it holds that

h(z, )

3

= —cle—a)+ ) [(wn-1 —2x)* + Aaj]
(tZ) .

= Ao+ ) (Mg A+ Ak — )] + V2 + Mg

1

—

>~
Il

= 0.

Tt holds that |A,| = |By,|.



3 Case A >0
Consider the Case A > 0. We define

vi=24+A(>2), £=1+N(>1).

Now let us solve a pair of linear systems of (finite) difference equations

Cc = X
(BQ,)  @h1 = yur—apn 1<k<n-—1

Tp—1 = gxn

and
c = — i
(EQ,) 1= vk — k1 2<k<n-—1
Hn—1 = THn-

We consider a second-order linear difference equation
Tpt2 — VCny1 + Ty = 07 Lo = 01 T =1

Lemma 5 The equation (2) has a unique solution

ﬁn_an

b —«

Tn =

where o (<) B are the two positive solution

TV -4 5= T+ VP-4

“- 2 ’ 2
to the characteristic equation
t?—qt+1 = 0.
We note that
a+8 =7 af=1
0<a<l<f<oo.

Definition 1 Let us define the sequence {G,} by

ﬁnian

Gn = "5



We call {G,} a two-step Gibonacci sequence. The reason is that G,, = Fy, for v = 3,
where {F},} is the Fibonacci sequence. Thus {G}.} satisfies a second-order linear difference

equation
Grp1 = VG — Gi1, Gi=1, Gy =0.
This has a unique solution (6).

Lemma 6 The system (EQ,) has a unique solution

é-ank - anlfk
X = C——F= 0<k<n
' EGn - Gn—l o o
, while the system (EQ,) has a unique solution
Gn+lfk
- an - Gn—l - -
That is
(‘Tlu T, ooy Thy «vvy Tp—1, xn)
C
- ?(anlv Hn727 sy Hn*kv I H17 H0)7
(,“’17 f2y ey Py oey fln—1, ,“‘n)
C
- H— (G'm anh “"Gn+17k’ sy GQa Gl)
n
where

Hn = fGn - Gn—l-

The sequence {H,} is called Hibonacci. Then it holds that

)\Gn = Hn - anh Hn - Gn+1 - Gna HO - G'1~

The Hibonacci sequence { Hy} satisfies the second-order linear difference equation

Hyyr = vHy — Hey, Hi=§, Ho=1.
This has a unique solution

5(6k _ alc) _ (6k—1 _ ak—l) .

H =
k 3—a

(7)



Theorem 1 The zero-minimum condition (Zm) has a unique solution (x, u);

x = (z1, Ta, ...y Thy -ovy Tp_1, Tp)
C

- ?(Hn—h Hn—?a ‘H?Hn—ka ) H17 H0)7
Ho= (Ml? K2y oeey ks ooy Hn—1, /‘Ln)
C

- F(G'm anh “'aGnnLlfka sy GQa Gl)
n

where

G, = /3 — anan_anl

B—a’

Hence Q attainas the zero minimum at (x, w).

We have defined the objective function h : R"xR" — R' by

n—1

Wz, p) = =2hepn + Y [(@ro1 — 20)” + 2f + A2+ (e — )
k=1
+ 2(A = Dy (ur — prs1)]

+ (Tp-1 — xn)Q + xi + (>‘2 + 1)”31 +2(A = D)@ pi

Then (QI) is summarized as follows.

Corollary 1 [t holds that

=
£

=
Y

0 VY(z, p) € R"R"
(i) h(z,p) = 0= (z,n) satisfies (EQ).

The objective function h(x,u) attains the zero-minimum. From Lemma 4 (Triple

Zero), we have a triple zero property for the solution.

Corollary 2 Let (x, u) be the solution given in (12), (13). Then it holds that

h(z, p)

= —clc—a1)+ ) [(wh-1 — z)? + Aaj]
(t7) o

n—

=

—epn+ ) [N+ A — )] + (N + X))
1

x~
Il

= 0.



Here we define two functions f, g : R* — R' by

n

fl@) =" [(we1 —z)” + Aag]

k=1
n—1
g(p) = 2xem — Y [N+ Muk — pen)?] = (A + M.
k=1

Note that f(z) is convex and g(y) is concave. We consider a pair of minimization problem
and maximization problem

P minimize f(x) subject to z € R"

D  Maximize g¢(u) subject to p€ R"™

4 Gibonacci Duality

Let any A > 0 be given. Then we consider a pair of minimization (primal) problem and
maximization (dual) problem.

4.1 Primal and dual

The pair is
minimize Z [(zp1 — 21)* + Mg
p k=1
subject to (i) z € R", xg=c¢
n—1
Maximize 2Acpy — Z [N p 4 Mt — )] = (A2 4+ Ayl
k=1
D
subject to (i) p € R™

Then both P and D are dual to each other. An equality condition is
c—x1 = My Ty = P — M2
(EC) Tt — Tp = Ml T = [l — fler kK =2,3,...,n—1

Tp1 — Ty = )\Mn LTp = Hn-

The primal P attains a minimum m = (1 B )02 at © = (w1, %9,...,%,), while the
dual D does a maximum M = A\—"c* at j = (1, fia, - - - , fin)
H, Grai—p
1 = c—=E = 2R (14)

HT’L Hn



that is

c
.Z'I(.’I)1,.’13'27 ...,.Z‘k,..‘,fl,'n) = H—(Hn717 Hn,g, ...,Hn,k., ey
n
c
/"L:(:U‘h H2, "'a,uk‘w"?,un) = H—(Gna anh "'7Gn+17k7
where
()
Go= = W —¢G. -G
b —a
T4 T+Vr -4
a=1"VI = g1V~
2 2
y=24AN =1+
Thus

)\Gn = Hn - Hn—h HO = Gl
Ar2 VRTIL A424 VR
5 .

2 )

Hy)
(15)

, G1)
(16)
(17)

Hence the the optimum point (x, p) satisfies (EC) and the optimum values are same

m = M.

4.1.1 Solution method

We note that the objective function

n

f@) =Y [(@or — ) + Maf] (30=c)
of

is convex. The first-order partial derivative fi(x) := 3
Tk

(x) is

%fl(w) = —(c—a1) + Az + (21— 22)
—(my—ymtc) (y=2+))

1
5fk(x) = — (-1 — 2) + AT + (T — Thy1)

= —(Tpp1 — Y28 + T41) 2<k<n-—1
1

—falz) = —(zn1 —20) + Azp
—(=€an taan) (E£:=1+A).

Furthermore an identity

J@) = de—m)+ 5 Y k(@)

(18)



10

holds true.
A minimum point z satisfies the first-order condition fx(z) =0 1 <k <n, which is

C = Xy
(EQm) Tp—1 = YTk — Tyl 1<k<n-1
Tp-1 = fl’n

As was shown in Lemma 6, this has a unique solution

c
T = (.’1,'1, T, ...,.Ik,...,.%'n) = ?(anh Hn,Q, ~--7Hn7k'> PN Ho)
n

Then the identity claims that

f(@) = clc—mz) = (1- i )
Second we solve D. The objective function
n—1
g(p) = 2xem — Y [Nk 4+ Mk — prsn)’] = (V2 + M)

k=1

, : — dg :

is concave. The first-order partial derivative g (i) := d—(u) is

HEk

1
2y (1) = ¢ = Xy — (p1 — p2)

po— & +c (E:=1+X)

1

agk(#) = (-1 — p) — Mok — (pte — pe1)
= [t1 — Y+ et 2<k<n—-1 (y:=24+2X)
1
_gn(u) = (Mnfl - ,un) - (>‘ + 1)/1%
2\
= —VHn + fn-1.
Furthermore an identity
1 n
9(w) = Mew+ D ngn(p) (19)
k=1
holds true.
A maximum point p satisfies the first-order condition gx(p) =0 1 <k <n, which is
c = & — i
(EQ.) 1= vk —pn 2<k<n-—1

,U/nfl ’Y/l/n



11

As was shown in Lemma 6, this has a unique solution
c

o (Gn> anh ~"7Gn+17ka RS Gl)

n= (;u’l'/ M2, '~‘7/Lka“'a,un) -

Then the identity claims that

g(1) = Acpn = AH

n

.

Thus D ha s the desired maximum solution.

4.1.2 Derivation P <= D

Let x be feasible for P. Then for any p we have

n

Z [(xk,l —x)? + )\Ti}

k=1

= (c—x1)* = 2\ (c — 21) + Az? 4+ 2 s (e — 21)

+ Z [(@ro1 — 21)” = 22 (T — k) + A2} + 20 (Tt — )|
n=2
2hepy + (¢ — a2y — App)? — N2 + )\{3:% —2(p — ug)xl}

n—1

+ Z [(wro1 — 2 — Aa)® — Mg 4 Azj, — 2A(ik — fires) 2]

n=2

+ [(xn,l — )% = 2N Ty — ) + A2P — 2)\unrn]

= 2Xcp + (¢ — a1 — An)® — Npf + )\{1’1 — (1 — M2)}2 =AM — M2)2}

1
+ 3 (ke — o — M) = N+ Meow — (e — prian) = A — 1))
2

+ (fl'",1 — Tp — )\/'Ln)Z - )\Q,Mi + A(.’IJ" - /j/n)2 - )‘/’Li

n—1

2hcpn — 3 [N+ Mo — )] — (N + Al

k=1

The equality holds iff (EC) holds.
Conversely, D = P is shown as follows. Let p be feasible for P. Then for any = we
have

v

n—1 n

2\ — Z P\%i + M — Nk+1)2] (NN < Z [(mk,l — )’ + /\12]

k=1 k=1

The equality holds iff (EC) holds. |
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