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1 Introduction 

As most of industrial systems become more complex and multiple-function oriented, such as air-

crafts, submarines, military systems, and nuclear systems, it is extremely important to prevent acci-

dents and reduce the causes of failure, which can be dangerous or disastrous [1]. As a result, monitoring 

and evaluating the performance of the system is essential to ensure the normal operation. Reliabil-

ity, or the probability of survival, is a critical performance metric of a component or a system, and 

is defined as the probability that a component or a system will perform its required function under 

given conditions for a stated time interval [2]. Other measures of performance include failure rate, 

percentile of system life, mean time to failure, mean time between failures, availability, mean time 

between repairs, and maintainability. 

In realistic, systems are large and complicated, yet they often have characteristic features and 

structures. In study of these practical systems, we often simplify system models as particular types 

of coherent systems based on these characteristic features and structures, where a coherent system is 

one in which every component is relevant for the system and the lifetime is non-decreasing function 

of components lifetimes. In reliability theory, literature has focused on different types of coherent 

systems. In 1980, Kontoleon [3] first studied such a system where a cluster of failed components causes 

system failure, and subsequently, Chiang and Niu [4] formally named it "consecutive-k-out-of-n:F 

system", where the system consists of n components and it fails if and only if at least k consecutive 

components fail. On contrast, Tong [5] first introduced the consecutive--k-out-of-n:G system, where 

the system consists of n components and it works if and only if at least k consecutive components 

work. Kuo et al. [6] well explained the relationship between the consecutive-k-out-of-n:F system and 

the consecutive-k-out-of-n:G system. The consecutive-k-out-of-n systems also include the series and 

the parallel systems as special cases, similarly k-out-of-n systems. 

For a linear consecutive--k-out-of-n:G system, n components are arranged in a line and it works if 

and only if at least k consecutive components work. Fig. 1 depicts the linear consecutive-k-out-of-n:G 

system. To make it easy to understand, we consider an example of a consecutive--2-out-of-4:G system. 

As shown in Fig. 2, the all system status are listed. Fig. 2 (a) gives the all working status of the 

consecutive-2-out-of-4:G system, and Fig. 2 (b) gives the all failed status of the consecutive-2-out-of-

4:G system. Define the random variable Xj be the state of the jth component during the total n 

components (j = 1, 2, • • •, n), then 

xj = { ° ifthe jth component failed 
1 if the jth component works 

(1) 
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Figure 1 : A linear consecutive-k-out-of-n:G system. 

Let ¢kln:a(X1, ・ ・ ・，ふ） denotethe structure function of the linear consecutive-k-out-of-n:G system. 

Then we have 

¢kln:a(X1, ・ ・ ・，ふ） ＝1 -¢kln:F(l -Xi,・・・, 1 -Xn), 

n-k+l J+k-1 

= 1- II {1- IIふ｝．
J=l i=J 

Consecutive-k-out-of-n:G systems have been applied to many complex systems. A railroad opera-

tion is an application of the consecutive--k-out-of-n:G system [7]. Consider the railroad system with 17 

lines numbered from line 1 to line 17. The using density of a line was considered as the probability that 

the line is not available. When a special train with over-limit loading of some vehicles, the neighbor 

lines of the line that receives the train must be empty; that is at least three consecutive empty lines is 

required. The problem of interest is the probability that the special train can enter the station without 

delay. Kuo and Zuo [8] also gave the example of a photographing of a nuclear accelerator. In analysis 

of the acceleration activities that occur in a nuclear accelerator, high-speed cameras are used to take 

pictures of the activities. Because of the high speed of the activities and the high cost involved in 

implementing such an experiment, the photographing system must be very reliable and accurate. A 

set of n cameras are installed around the accelerator. If and only if at least k consecutive cameras 

work properly can the photographing system work properly. The problems of interest include the 

evaluation of the reliability of the photographing system and the optimal arrangement of the cameras 

with different reliabilities. 

In this paper, we summarize the several proposed methods of system reliability evaluation of the 

consecutive-k-out-of-n:G system. We first give the result of the expression of system reliability with 

closed-form, which was proposed in [9]. We furthermore give the other method to calculate system 

reliability by using system signature. Also, the expected number of failed components at a particular 

time of system working can also be calculated in this method. On the other hand, in order to grasp the 

degradation process of the system, the path method to calculate system reliability is also discussed. 
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Figure 2 : Status of a consecutive-2-out-of-4:G system. 

2
 

System Reliability Evaluation with Closed-Form 

Kuo et al. [6] focused on the consecutive-k-out-of-n:G system where components are independent 

and have reliabilities a1, ・ ・ ・, an. Then the reliability of consecutive-k-out-of-n:G systems is given by 

Ra(k, n; a1, ・ ・ ・, an) =Ra(k, n -1; a1, ・ ・ ・, an)+ 
n 

[1-恥 (k,n -k -1; a1, ・ ・ ・, an)](l -an-k) IJ 匹

i=n-k+l 

(2) 

Furthermore, Gera [10] proposed another formulation of recursive equation with i.i.d. components and 

k 

如 (k,n;a)=心＋ （l-a）Lal-1恥 (k,n-l; a). 

l=l 
(3) 

Although those recursive algorithms are computationally efficient, they have the usual disadvantage 

associated with a recursive algorithm of being a black box grinding out only numbers. The dependence 

of the reliability on the system parameters is hidden in the equations. For the Bernoulli model, 

reliabilities can be computed by using a combinatorial approach which is more explicit in nature. 

Fortunately, the closed-form for computing the number of ways of having working consecutive-k-out-

of-n:F systems conditional on j failed components was obtained [11]. 

We propose the reliability of consecutive-k-out-of-n:G systems in closed expression with explicit 

sums by using the existing results [9]. The relationship between consecutive-k-out-of-n:F system and 

consecutive-k-out-of-n:G system was proposed by Kuo et al. [6]. Then, we can obtain the system 

reliability of a consecutive-k-out-of-n:G system by using the existing closed expression of the system 

reliability of a consecutive-k-out-of-n:F system and the relationship between these two systems. 

We first give the relationship between these two types of systems. 

Lemma 1 Assume that the components in consecutive-k-out-of-n systems are independent but do not 

necessarily have the same lifetime distributions. Denote R瓜k,n; a1, ・ ・ ・, an) is the reliability of a 
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consecutive-k-out-of-n:G system, and恥 (k,n;b1, ・•.，加） is the reliability of a consecutive-k-out-of— 

n:F system. Then if a;= I -b; (i = 1, ・ ・ ・, n), we have the result that 

如 (k,n;aぃ..・，％） ＝ 1 -応(k,n;bぃ・ ・ ・, bn)-

Then we focus on the closed formulation of the reliability for consecutive-k-out-of-n:G systems. 

Denote that N,叫j,k, n) is the number of combinations to arrange j (j = k, • • •, n) working compo-

nents such that at least k consecutive components are working, then by using the duality relationship 

between consecutive-k-out-of-n:F systems皿 dconsecutive-k-out-of-n:G systems in Lemma 1, we have 

the following result. 

Theorem 1 The reliability of a consecutive-k-out-of-n:G system with i.i.d. components is 

n 

如 (k,n;t)= L 況 (j,k, n)F(t)J F(tr-1, (4) 
J=k 

where 

n¥ l~J 
疇k,n) ＝し）—~"(-l);(n-{ + 1) （〗□:)(j = k,・・・,n) (5) 

3 System Reliability Evaluation by Using System Signature 

In this section, we summarize the results of the system reliability evaluation by using system 

signature, including the system reliability and the expected number of failed components [9]. Before 

giving the result, we first explain the definition of system signature and some notations are given as 

follows. 

• Tぃ・ ・ ・, Tn: the component lifetimes. 

• T = ¢(Tぃ•.．， T叫： the lifetime of a coherent system consisting of independent and identical 

components with lifetime T1, ・ ・ ・, Tn, 

• T[i]: the ith order statistic of n component lifetimes, that is, the time of the ith component 

failure. 

• s: system signature, s = (s1, ・ ・ ・, sn)-

Kochar et al. [12] has given the survival function of any coherent system with i.i.d. components 

and 

n 

Pr{T > t}＝Lsi・Pr｛加＞ t}, (6) 
i=l 

where s; is the probability that the system failed upon the occurrence of the ith component failure, 

i.e., s; = Pr{T = T1;J}-Such the vector s = (s1, ・ ・ ・, sn) is called the system signature [13]. System 

signature has been found to be widely used in the evaluation of the system reliability and comparison 

of the perform皿 ceamong different systems [12, 14-16]. Furthermore, Bol皿 d[1 7] studied the system 

signature for any coherent system and gave the calculation formula by considering the number of path 

sets of皿 ysystem with j working components, where 

Sn-j = aj+l -aか (7) 
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in which 

# path sets of size j for the system 
aj = ~ 

We then give the signature-based expression of the reliability for the consecutive-k-out-of-n:G 

system. Denote that F(t) is the lifetime distribution of each component and P(t) is the survival 

function of each component, we have 

n-k+l 

Pr{T > t}＝区 Si・ Pr｛和＞ t},
i=l 

＝れ喜1Si.こ(])F(t)JF(t)n-J. (8) 

To compute system signature of the consecutive-k-out-of-n:G system, note that Nn-i is the number 

of path sets with (n -i) working components of the consecutive-k-out-of-n:G system where 

l(n-i)/k」

叫＝ [)— ~••a (-l)qc: 1) (n ~ qk), (9) 

and using Eq. (7), we can derive the expression of the system signature of the consecutive-k-out-of-n:G 

system, where 

Nn-i+l N 
均＝ (n) ーデ・

i-1 し）
(10) 

Clearly, it is not difficult to proof that Eq. (4) and Eq. (8) are the same. 

In addition, the number of failed components at the time of system failure gives the information 

that how many spare components should be available to replace failed components. Furthermore, the 

number of failed/working components when the system is working at a particular time also gives useful 

information to understand the behavior of the system. If the number of failed components when system 

is working is near the maximum number of failures that causes system failure, then we could consider 

to take maintenance and estimate that how many spare components should be prepared. Knowing 

the signature of a system is equivalent to knowing the distribution of the number of failed components 

at the moment when system failure occurs. Denote thatふ isthe number of failed components in a 

failed system, and we give the following result which has been proposed in [18]. 

Proposition 1 The expected number of failed components at the moment when system failure occurs 

for a consecutive-k-out-of-n:G system is 

n-k+l 

E［ふl＝区 i.s., 
t=1 

＝立 (N(~〗［一信）， (11) 

where Nn-i is obtained in Eq. (9). 

On the other hand, we also summarize the expected number of failed components at a particular 

time t [18]. As shown in Fig. 3, two cases are existed, where case 1 is that system failure occurs before 

time t, and case 2 is that system is working at time t. 
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Case 1 

←system failure occurs before time t 

T
 

time 

Case 2 

t T time 

L→ system is working at time t 

Figure 3: C邸 eanalysis for the expected number of failed components. 

Case 1: System failure occurs before time t 

Let {X(T) = ilT:::; t} denotes the number of failed components under the condition that system 

failure occurs before time t, then for a consecutive-k-out-of-n:G system with signatures= (s1, ・ ・ ・, sn), 

the conditional distribution of the number of failed components at the time when the system fails before 

time tis 

Pr{X(T) = ilTさt}= 
S;.江二；（鸞(t)JF(t)n-J

Pr{T::; t}.  

As a result, the expected number of failed components under this condition is derived as 

E[X(T)IT::; t] = 
江=-lk+1isi江二（開(t)JF(t)n-J.

Pr{T::; t} 

(12) 

(13) 

Case 2: System is working at time t 

Denote that X(t) is the number of failed components until time t, then for a consecutive-k-out-

of-n:G system with signature s = (s1, • • •, sn), the conditional distribution of the number of failed 

components at a particular time t when system is working is 

Pr{X(t) = ilT > t} = 
(7)P(tr-iF(t)i n~l 

Pr{T > t} どsJ・
j=i+1 

Then, the expected number of failed components under this condition is 

江ご。り（四＝言Sj)（帽(t)n-iF(t)' 
E[X(t)IT > t] = 

Pr{T > t} ・

(14) 

(15) 

These results of the expected number of failed components have been well applied in age-based 

preventive maintenance policies [18]. 

4 System Reliability Evaluation by Using Path Method 

In section 2 and 3, we gave the system reliability expressions in two ways, which are the closed-form 

evaluation and the way by using system signature. These methods can perform reliability calculations 

efficiently, but cannot effectively predict the working state of the internal parts of the system. There— 

fore, limitations in the application of these calculation methods in maintenance problems exists. As 
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a result, we proposed a path method to calculate the reliability of the linear consecutive--k-out-of-n:G 

system. 

We consider a binary state: 1 for working state and O for failed state. At the beginning, all n 

identical components are working so that the system state vector is (1, 1, ・ ・ ・, 1). The component fails 

one by one and the component failure sequences are constructed. These sequences from the beginning 

state (all working component states) to the system failure state, which consists of no k consecutive 

working components, are called the system failure paths. We use the path method proposed by 

Endharta et al. [19] to estimate the system failure distribution. Obviously, there are at most n! paths 

to the system failure for a consecutive-k-out-of-n:G system. Suppose the number of steps (the number 

of failed components) until the system failure in path j (1 :S: j :S: n!) is denoted as NJ, the sum of 

failure rates of working components after ith failure (1 :S: i :S: NJ―1) in path j is denoted as CTJi, and 

the failure rate of a failed component which will be failed after ith failure in path j is denoted as f3]か

In order to obtain the system failure time distribution, a lemma is firstly introduced [20]. 

Lemma 2 Let Y1, Y2, ・ ・ ・, Y m be exponentially distributed random variables with failure mtes h1, ・ ・ ・, h加

and let Z = min r (Y1, Y:i, • • • , Y m). Then Z is also exponentially distributed with failure mte区hiand 

Pr{Z=Y;}=h,／区hi.

Lemma 2 gives the probability of selecting the component which will fail in step i (1 ~ i ~ Nj―1) 

among the working components. Define X; as the time between (i -1)th failure and ith failure in the 

system, Xji as the time between (i -l)th failure and ith failure in path j, and'lrj as the probability 

that the system failure follows path j, then Endharta et al. [19] gave the following results: 

巧＝ Pr{X1= Xj1ふ＝ X立,・・・，邸＝ XjNふ
N3 

= Pr{X1 = Xj1} ・ lIPr{X; = X川X1=Xj1,・・・,X;-1 =Xi(i-1)}, 
3=2 

where 

Pr{X1 = Xj1} ＝ 
約o

ajo’ 

and 

Pr{Xi = Xj;IX1 = xjl, X2 = Xj2, ・ ・ ・, xi-1 = xj(i-1)} = 
均(i-1)

句(i-1)

As a result, the probability that system states follows path j becomes 

N;-1 

巧＝ II五
i=O a” 

(16) 

(17) 

Denote s? as the step when only one set with i (k s; i s; 2k -1) working components exists in 

path j. Then it is easy to understand that until step s?, system will never fail. That is, system f叫lure

distribution probability in path j can be calculated from step s7. Then based on the results in [19], 

system failure probability in path j for the consecutive-k-out-of-n:G system can be calculated by 

N;-1 

Fj(t) = 1一 LAjie―叫， (18) 
i=O 
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where Aji = IT炉 1 —立二m=O,m-/-i a;m-aが
. As a result, denote that P is the number of total paths to system 

failure, then the system failure probability can be estimated as 

p N,-l 

F(t) = 1一区巧区 AJ,e―叫， (19) 
J=l i=O 

where 7rj is given in Eq. (17). 

I3y using the path method, we discuss the expected number of failed components again. Same as 

section 3, the expected number of failed components includes two cases. In Case 1, we define NPM as 

the number of failed components at preventive maintenance time, and N}'M as the number of failed 

components at preventive maintenance time in path j. Then we have 

p 

E[NPM]＝L7rjE[N竺], (20) 
J=l 

where 

N;-1 i-1 

E[N門]=t-i t 凡mのm (e―の叫pm- e-a;けpm),

i=s0P m=s 0p aji -ajm 
3 3 

in which 

i-l 

Bjm = IT 知

l=Sop,l#m ajl -ajm 
3 

Furthermore, in Case 2, define N8F as the number of failed components when system fails, then we 

can easily obtain that 

p 

E[NSF]＝区1riNiFi(tpm), 
J=l 

where恥(t)is proposed in Eq. (18). 

5 C onclusion 

(21) 

In this paper, we summarized several proposed methods to calculate reliability of the linear 

consecutive-k-out-of-n:G system. For the method of closed-form, it can efficiently obtain the relia— 

bility of the system. For the method by using system signature, it can not only obtain the reliability 

efficiently, but also can investigate the expected number of failed components whether system is work-

ing or failed. It gives more information of the system and can well improve the preventive maintenance 

for the system. Finally, we expain the path method for calculating system reliability. Although this 

method is not as efficient as the two methods before, but it focuses on the each component state in 

the system and give the possibility for condition maintenance policy or other efficient maintenance 

policies. 
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