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1 Introduction 

Lifetime analysis is quite beneficial to understand the failure mechanism of engineering 
systems by means of the theoretical statistics and can be applied to design their mainte-

nance planning [2, 3]. In general, there are two types of systems in the lifetime analysis; 
repairable systems and non-repairable systems. Especially, the repairable system relia-

bility modeling plays a central role in reliability engineering practices [1], because non-
repairable systems are maintained by the so-called perfect repair, which is equivalent to 
replace the failed units/components by new ones. That is to say, the perfect repair offers 
a new unit which is as good as new when the operating unit fails. On the other hand, 
the minimal repair only restores the failed unit to its functioning condition just prior to 

the failure, where the minimal repair means the age (in the sense of effectiveness) of the 
unit will not be changed after a repair activity. Since the seminal contribution by Barlow 
and Hunter [2], a great number of researchers have discussed the minimal repair and its 
mathematical features. Nakagawa and Kowada [5] used the failure rate to define mini-
mal repair, and gave an insight to deal with the minimal repair process mathematically. 
Aven [6] considered the optimal replacement policies under a minimal repair assumption. 
Brown and Proschan [7] introduced the imperfect repair by combining the minimal repair 
with the perfect repair. Block et al. [8] extended the notation of imperfect repair by 
introducing the time dependency. Kijima [9] introduced the notion of general repair and 
succeeded to represent a wider class of repair activities. Although the general repair is a 
well-defined stochastic model to describe the repair activities, its analytical treatment is 
rather troublesome. In other words, due to the analytical difficulty of the general repair 
model, it has not been frequently used in the industry. Instead, since the minimal repair 
approximately represents repair effects under a plausible assumption, i.e., it only restores 
the failed unit to the latest functioning condition just prior to the failure, the research for 
the minimal repair has been still conducted in some literatures [10-12]. 

In this paper we concern the statistical inference problem of the minimal repair process, 
which denotes the cumulative number of failures/minimal repairs. It is well known that 
the minimal repair process is given by a non-stationary Poisson process. Hence, the 
statistical inference problem of the minimal repair process is equivalent to one for the 
Poisson process. For the representative parametric models, the power law model by 
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Duane [13] and Cox and Lewis model [15] have been often used in the lifetime analysis. 

Lee and Lee [16] and Crow [17] gave the fundamental results for the power law model; 
point estimation based on the maximum likelihood method and the confidence intervals, 

respectively. Muralidharan et al. [18, 19] derived the predictive distribution of the power 
law model and the conditional interval estimate for the ratio of intensity parameters, 

respectively. Saito et al. [20, 21] applied parametric and non-parametric bootstrapping 

techniques to estimate the optimal preventive replacement times with minimal repair, 

respectively. 

In this paper, we consider the lifetime analysis of repairable systems via the Daubechies 

wavelets [22]. Kuhl and Bhairgond [23] proposed a Daubechies wavelet estimator for the 
intensity function of a non-stationary Poisson process. Their estimator is based on an ap-

proximation with a naive estimate of the intensity function, and provides a nice estimation 

performance as a non-parametric estimator, though they did not clarify the derivation pro-

cedure. We apply the wavelet-based approach to the inference problem of the minimal 

repair process. Especially, we propose an exact approach with a naive estimator and 
a non-parametric maximum likelihood estimation in estimating non-stationary Poisson 

processes [24]. Finally, throughout a simulation experiment, we compare our Daubechies 
wavelet approaches with the classical maximum likelihood estimation for two representa-

tive parametric models. 

2 Repairable Systems 

Minimal repair and replacement are frequently used as practical maintenance activities 

for real engineering systems, where the minimal repair is a maintenance activity to repair 
the failed component, so that its function is recovered without changing its age, while a 

replacement restores the entire component into the new condition, so that it behaves as a 
new component. Suppose at the moment that there are two components, where the first 

(second) component has the absolutely continuous lifetime distribution F(t) (G(t)) with 

F(O) = 0 and F((X)） ＝1 (G(O) = 0 and G((X)） ＝1). When the first component fails and 
the failed component is replaced by the second component, the distribution function of 

the time to failure of the second of two components is given by the Stieltjes convolution: 

t 

F * G(t) = 1'F(t -u)dG(u), 

゜
(1) 

where the replacement component is assumed to be new on installation. On the other 

hand, when one replaces the failed component by one with equal age, the survivor function 
of the first and second components is given by the relevation transform (see Krakowski 

[25]): 

F o G(t)＝ア（t)+ 1t 百~dF(u),。G(u)
(2) 

where in general "if（・） ＝ゆ(・). Barlow and Hunter [2] and Barlow and Proschan [3] 
summarized the notion of overhaul with minimal repair for any intervening failures, where 

the failure rate of component remains undisturbed by any repair of failures. 

If the replacement is made with identical components, say F(t) = G(t) in Eq.(1), and 
the time to replace an failed component by a new one is negligible, then the cumulative 
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number of failures/replacements by time tis given by the renewal counting process N(t) = 
max{n:江＝1T;こt},where F(t) = P{T; :S t} (i = 1, 2,...). On the other hand, if 
the minimal repair is made at each failure and the time to repair an failed component is 

negligible, then the cumulative number of failures/repairs by time t is, from F(t) = G(t) 
in Eq.(2), given by the non-stationary Poisson process (see Baxter [26]): 

where 

P(N(t) = n) = 
A(t; Ot 

n! 
e 
-A(t;0) ， 

t 

A(t; 0) = E[N(t)] = -log『(t;0) = 1入(u;0)du

゜

(3) 

(4) 

is the mean value function with the parameter vector 0, say, F(t) = F(t; 0), and入(t;0) = 
dA(t; 0)/dt is called the intensity function. 

The commonly used technique to estimate the parameter 0 in A(t; 0) and入(t;0) is the 
maximum likelihood estimation. Suppose that n failure/repair times t = (t1, t2,..., tn) 
with right truncation at T（こゎ） areobserved for each component. Then, the log likeli-
hood function is given by 

n 

LLF(0;t)＝区狐；0)-A(T;0). (5) 
i=l 

Byrn訟 imizingLLF(0; t) with respect to 0, we get them訟 imumlikelihood estimate 0. 
In the lifetime analysis, it is common to assume the power law model [13] and Cox 

and Lewis model [15]. In the power-law model, the intensity function is given by入(t;0) = 
abtb-1, 0 E (a, b). It is known as a flexible model with increasing intensity (b>l) and 

decreasing intensity (O<b<l) functions. When b = 1, it is reduced to a homogeneous 
Poisson process with constant intensity. In Cox and Lewis model, the intensity function 
is given by入(t;0) = -exp(a + bt), 0 E (a, b). Because the maximum likelihood method 
provides an unbiased estimate in many cases, if we have an enough number of data and can 
know the real intensity form, it is possible to infer the failure process with minimal repair 
accurately. Of course, since knowing the real intensity function in advance is difficult, the 
parametric method above has some limitations. 

3 Wavelet-based Approach 

3.1 Daubechies Wavelets 

Daubechies [22] proposed a set of continuous and conpactly supported wavelets, which 
are very popular in wavelet analysis field. The Daubechies wavelets are not defined in 
closed form, where the Daubechies scaling function and wavelet function are defined in 
the following forms: 

n 

¢(t)＝Lhゆ(2t-i), (6) 
i=O 

n 

心(t)= L （一l)ihn-i心(2t-i). (7) 
i=O 
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In Eqs.(6) and (7), the filter coefficients hi are given in [22], and n is the support width and 

determines the smoothness of the functions ¢(t) and心(t).The starting values｛の（t),t = 
1, 2,..., n -l} can be obtained by solving the recursive formula: 

{〗t;〗。口0 /：¢(2t -i), t ~ l, 2,..., n -l. 

The other values ofゆ(t)with t E [O, n] and t # 1, 2,..., n -1 are calculated in Eq. (6). 

3.2 Wavelet Estimator 

Since the Daubechies scaling function cf>(t) can take negative values, one needs a positive 
basis function for approximating a positive入(t).Walter and Shen [27] developed a positive 

basis function for estimating probability density functions. 
Letの(t)be the Daubechies scaling function having the compact support. The positive 

basis function by Walter and Shen [27] is given by 

Pr(t)＝L rlljll¢(t -j) (8) 
jEZ 

with parameter r satisfying aさr<l,where Z is a set of all integers. The parameter r 
controls the minimum value of Pr(t), so that the minimum value of Pr(t) is greater than 
or equal to O when r = a (>0). Figure 1 illustrates the positive basis functions with 
r = 0.1 and r = 0.5 whenの(t)with n = 7. In this case, we can see that the minimum 
value of Pr(t) is less than O when r = 0.1. 

-• -• -2 0 2“  ．． 
(a) n = 7 and r = 0.1. (b) n = 7 and r = 0.5. 

Figure 1: Positive basis functions. 

By using the positive basis function Pr(t), a positive reproducing kernel, kr(t, s) E Vo, 
is given by 

kr(t,s) =(~) 2 atoo Pr(t -a)Pr(s -a). (9) 

Let k(t, s) denote a reproducing kernel satisfying 

J00 k(t, s)入(s)ds=入（t)'
-oo 

(10) 
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where入(t)is an arbitrary continuous function. For入(t)Eら（政）， anapproximation of 

the function入。(t)E Vo is constructed as 
00 

入。(t)~ 1: kr(t, s)入(s)ds. (11) 
-oo 

In general, the approximation of an arbitrary function入(t)E Vm is given by 

心(t)= 1: kr,m(t, S)入(s)ds, (12) 
-oo 

where kr,m(t, s) in Eq.(12) is the positive reproducing kernel in Vm and is given by 

kr,m(t,s) = 2mkr(2叫， 2心）．（13)

Kuhl and Bhairgond [23] proposed a wavelet estimator based on Eq. (12) as follows: 

atk { t Pr(2mti -a)} 入r,m(t)= 2m(]二）2atk { tPr(2冗ー a)}Pr(2叫ー a), (14) 

whereち(i= 1, 2,..., n) are the failure/repair times, the parameter a is determined in the 
range in which the positive basis function covers the entire failure/repair times, and the 
resolution level mis determined based on the detail of the approximation. Unfortunately, 
Kuhl and Bhairgond [23] did not clarify the derivation procedure of their wavelet estimator 
in Eq. (14). Here, we derive the same result to complete the discussion and improve Kuhl 
and Bhairgond's estimator [23]. 

Let入naive(t)denote the well-known naive estimator of non-stationary Poisson intensity 
function: 

n 

入naive(t)＝こt-1L(t)， 
i=l i -ti-1 

(15) 

where 

Ji(t) = { ~: ;;~二ご (16) 

Substituting the naive estimator入(t)in Eq. (15). into Eq.(12), we can obtain the naive 
wavelet estimator (NWE): 

00 

入NWE(t)= 1い(t,s)入naive(s)ds
-oo 

＝文Jt，い（t,s)~ds
i=l Jt,-1 もー ti-1

= 2m(］：：応Jt，文 Pr(2叫 ー a)
i=1 ti-l a=-OO 

1 
x Pr(2内ー a)~ds

ti -ti-1 

=2m (~r a立｛言tt―1tt1 [／1 

x Pr(2内— a)ds }Pr(2叫— a). (17) 
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Hence it is seen that the exact form of NWE contains the integrals. If each integral is 

approximated by the elementary rectangular approximation method, it is given by 

入RNWE(t)= 2m (~r atoo｛言tt_ 1 tt-1 [／ 
xPr(2叫 i- a)ds} Pr(2叫ー a)

=2m (~r又｛言 tt ―~ (t; -t;-1) 
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We called the above estimator the rectangular approximation naive wavelet estimator 
(RNWE), which is equivalent to Kuhl and Bhairgond's estimator [23]. Strictly speaking, 
RNWE is an appro泣imationof NWE from the computational point of view. In order to 

compute the NWE,入NWE(t),more accurately, we need to apply any numerical integration 
algorithm for Eq.(12). 

As we have already shown in the above, both NWE and RNWE are based on the naive 
estimator in Eq.(15) of the non-stationary Poisson process. However, it is also well known 
that the naive estimator is the most intuitive estimator but causes the overfitting prob-
lem. In other words, the native estimator lacks the generalization ability as a statistical 
estimator. In this paper, as the alternative baseline estimators of the non-stationary Pois-
son process, we employ the non-parametric maximum likelihood estimator (NPMLE) and 
kernel estimator. Boswell [24] proposed the following NPMLE of the intensity function 
by maximizing the upper bound of the empirical log likelihood function: 
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where 

v-u 

叫）＝ V 二 [J(u,V)],

J(u,v)= L {(n-i+l)(t;-ti-1)}. 
i=u+l 

Then we define the non-parametric maximum likelihood wavelet estimator (NPMLWE) 
by 

入NPMLWE(t)= 1: kr,m(t, S)心npmle(S)ds. 
-co 

(20) 
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Dohi [14] proposed the kernel estimation for intensity function of NHPP in software 

reliability model. The kernel estimation of intensity function is given by 

入kernel(x)= ¾言K(T), (21) 

where the function K(・) is the kernel function and h (<0) is the bandwidth. Barghout, 
Littlewood, and Abdel-Ghaly [4] and Wang, Wang, and Liang [28] assumed the Gaussian 
kernel function. In this article we use the following four kernel functions: 

where 

k心） ＝ （1―|xl)I1-1,11(x), 

3 
応 (x)= ;(1-X叩I1-1,1i(x),

4 
15 

柏(x)=~(l-x叩I1-1,1J(x),
16 
1 丑

恥 (X)= ~ e―: 
亭 '
70 

k心）＝一(1-Ix|州I1-1,1i(x),
81 

1 for x E [-1, 1] 
I1-1,1J(x) ={。。therwise

Then we define the kernel wavelet estimator (KWE) by 

入KWE(t)= 1:い(t,s)入kernel(S)ds.
-00 

4 A Si imulation Experiment 

4.1 Experimental Set Up 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

In this section, we carry out the Monte Calro simulation and estimate the intensity func-
tion characterizing the minimal repair process with the common parametric methods and 

the non-parametric wavelet methods. Our concern here is to compare the Daubechies 
wavelet approaches with the maximum likelihood methods for two representative min-
imal repair processes in terms of the goodness-of-fit. For the parametric models, we 

assume the power law model [13] and Cox and Lewis model [15] and apply the maximum 
likelihood method to estimate the model parameters. For non-parametric methods, we 
apply three Daubechies wavelets; NWE, RNWE, NPMLWE and KWE to estimate the 
intensity function of non-stationary Poisson process. In the Monte Carlo simulation, it is 
assumed that the intensity function of a real non-stationary Poisson process is given by 
the power law model with入reaz(t;0) = abtb-l for the time interval (0, Tl, where a= 0.20, 
b = 0.55 and T = 88, 000. We apply the standard linear congruential generator [29] to 
generate the pseudo random numbers as failure/repair times t = (t1, t2,..., tn), Finally 
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we generate 30 failure/repair time data sets and estimate the number of minimal repairs 

when 30 independent and identical components are running in parallel. 
As a goodness-of-fit performance measure, we apply the mean absolute error (MAE): 

MAE= 
江＝1|入real(t;;0)一入(t;)I 

n, 
(29) 

for each component, whereむisthe i-th sample point, n is the number of samples for each 
component,入（t)is an estimate of the intensity function. Based on the assumption that 
30 independent and identical components run in parallel, we observe 30 failure/minimal 

repair time sequence with the same truncation point T. Formally, let T = (t1, t2,..., t30) 
be the failure/minimal repair time sequence. For parametric approach with the power 
law model and Cox-Lewis model, the maximum likelihood estimation is carried out by 

30 maximizing LLF(0; T) = LI~1 LLF(0; ti)-For the wavelet approach with NWE, RNWE i=l 

and NPMLWE, we estimate each intensity function for ti (i = 1, 2,..., 30) and take the 
average them to obtain the final estimates. 

100 
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Figure 2: Estimation of the cumulative number of failuress/minimal repairs. 

In the Daubechies wavelets, the parameter j in the positive basis function Pr(t) can 

take all values in Z. Xiao and Dohi [30] gave a useful range for j as j E [-7, 7] in 
their experiment on software fault data analysis. Since the function Pr(t) decays to 

zero quickly, we adjusted as j E [-7, 8] in our case. The range of the parameter s in 
入r,m(t)is determined so as to satisfy that the positive basis function covers the entire 
failure/minimal repair times. Xiao and Dohi [30] also took the range of s as 

s E [-(Integer part of 2”牙n+ 7), Integer part of 2”牙n+ 7], (30) 

where tn is then-th failure/repair time. 

4.2 Discussion 

In the simulation experiment, we compare three wavelet shrinkage estimators; NWE, 
RNWE and NPMLWE in terms of goodness-of-fit, where we turn up the parameters as r = 
0.3, 0.5, 0. 7, m = 5, 6, 7, 8, 9, 10 and the support width of wavelet is given by 7. Table 
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Table 1: Sensitivity of model parameters m and r in the wavelet shrinkage methods. 

m¥r 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 

NWE NPMLWE RNWE KWE with Gaussian 

2 12.09 17.83 30.86 8.94 15.11 29.02 10.02 14.96 26.3 10.91 16.46 29.88 
3 8.22 13 26 5.49 10.43 24.18 6.77 10.3 20.9 8.24 12.44 25.49 
4 5.84 9.78 22.84 3.36 7.48 21.15 4.7 7.29 17.44 6.87 10.19 22.95 
5 4.23 7.66 20.83 1.89 5.53 19.18 3.39 5.38 15.2 6.27 9.11 21.63 
6 3.12 6.29 19.43 0.92 4.31 17.95 2.53 4.17 13.8 6.04 8.67 21.06 
7 2.25 5.28 18.56 0.54 3.44 17.12 1.91 3.36 12.91 5.96 8.52 20.86 
8 1.62 4.59 17.92 0.65 2.84 16.55 1.5 2.78 12.28 5.93 8.47 20.8 ， 1.28 4.18 17.52 0.8 2.43 16.14 1.73 2.49 11.86 5.93 8.46 20.79 
10 0.96 3.93 17.3 0.94 2.23 15.94 2.48 2.59 11.67 5.93 8.46 20.81 

KWE with Quadratic KWE with tricube KWE with Triangle KWE with Ttiweight 

2 11.21 16.63 29.95 11.02 16.51 29.89 11.06 16.57 29.93 11.08 16.56 29.92 
3 8.7 12.74 25.65 8.45 12.54 25.53 8.45 12.6 25.59 8.5 12.61 25.58 
4 7.48 10.66 23.23 7.19 10.41 23.06 7.11 10.4 23.09 7.21 10.45 23.11 
5 6.99 9.72 22.05 6.67 9.43 21.84 6.53 9.34 21.8 6.67 9.45 21.86 
6 6.82 9.38 21.59 6.5 9.08 21.35 6.31 8.93 21.26 6.48 9.06 21.35 
7 6.77 9.28 21.44 6.46 8.97 21.2 6.24 8.78 21.07 6.43 8.95 21.19 
8 6.76 9.25 21.41 6.44 8.95 21.17 6.21 8.73 21.01 6.41 8.92 21.15 ， 6.76 9.25 21.42 6.44 8.95 21.18 6.2 8.72 21 6.41 8.92 21.15 
10 6.76 9.26 21.44 6.44 8.96 21.2 6.2 8.72 21.02 6.41 8.92 21.18 

1 presents the MAE of the three wavelet estimators with different turning parameters. 

It can be seen that MAE decreases, as m increases and r decreases, respectively, in 

almost all wavelet estimators, except NPMLWE and RNWE. Especially, when r = 0.3 
and m = 10, KWEs and NWE could show the best goodness-of-fit performance. When 

r = 0.3 and m = 7, NPMLE shows the best goodness-of-fit performance. When r = 0.3 

and m = 8, RNWE shows the best goodness-of-fit performance. Figure 2 shows the 

behavior of the cumulative number of failures/minimal repairs on the operation time, 

where the real mean value function for two parametric models are estimated based on 

the maximum likelihood method, and all wavelet shrinkage estimates with best goodness-

of-fit performance are plotted. It is observed that almost all estimates, except Cox and 

Lewis model and KWEs, are close to the real mean value function. The result of Cox 

and Lewis model shows that missing the model selection causes the worse estimation of 

the cumulative number of failures/repairs. Table 2 compares all the MAE results. It is 

seen that KWEs provided the worst result in terms of the minimization of MAE. If we 
can know the real failure/repair model completely, the resulting MAE in the power law 

model was 1.21. On the other hand, it is worth noting that NPMLWE gave smaller MAEs 

than the maximum likelihood method with the real model. Hence, for the purpose on 

goodness-of-fit by minimizing MAE, it can be concluded that NPMLWE outperformed 

the others. However, this does not always imply that our wavelet methods are superior 

to the parametric approach. Because NPMLWE might result the over fitting estimates. 

In our simulation experiment, the failure/repair time data employed in the analysis are 

large enough, so that the MAE for the power law model might be small enough. Hence, 

the superiority of the wavelet approach should be further investigated by checking the 
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asymptotic behavior of estimates and the predictive performance for unknown future 

trend. 

Table 2: Comparison of MAEs in simulation experiment. 

Model Name MAE Model Name MAE 

Power Law 0.93 Best KWE with Gaussian 5.93 

Cow-Lewis 3.31 Best KWE with quadratic 6.76 

Best NWE 0.96 Best KWE with tricube 6.44 
Best NPMLWE 0.54 Best KWE with triangle 6.2 

Best RNWE 1.5 Best KWE with triweight 6.41 

5 Conslusion 

In this paper, we have developed novel non-parametric estimation methods based on the 
Daubechies wavelets for failure/repair time data arising in the lifetime analysis. More 
specifically, we have revisited Kuhl and Bhairgond estimator [23], and given the exact 
solution based on the naive estimator of the intensity function for a non-stationary Pois-
son process and alternative method based on the non-parametric maximum likelihood 

method by Boswell [24]. Throughout a simulation experiment, we have compared our 
Daubechies wavelet approaches with the classical maximum likelihood estimation for two 
parametric models. It has been shown that two wavelet-based estimation methods; Kuhl 
and Bhairgond estimator [23] and the non-parametric maximum likelihood wavelet esti-
mator, gave the smaller mean absolute errors than the parametric models. In the future, 
we will propose another non-parametric wavelet-based method with the kernel function. 
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