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On the roles of variants of Axiom of Choice 
in variations of Tychonoff Theorem 

渕野昌

Sakae Fuchino* 

Abstract 

In this purely expository note, we examine the roles of Axiom of Choice 

and its weak variants in topology with emphasis on their connections with 

Tychonoff Theorem and its variations. 

1 Introduction and preliminaries. 

In this expository note, we examine the roles of Axiom of Choice (AC) and its 

weak variants in topology - in connection with Tychonoff Theorem and its vari-

ations, in particular. Most of the materials presented here can be also found e.g. 

in [5]. Exceptions are the second proof of Theorem 3.1 and its applications: these 

should be also well-known results though I could not find appropriate references 

(the extended version of the paper mentioned in the footnote may contain some 

more reference for these results.) ~ evertheless, we tried hard to streamline the 

description. The formulation of this note is rather textbook-like. This is because 
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we want to present the details so that the readers can see clearly which instance of 

Axiom of Choice is used/not used in which part of the proofs. 

In reverse mathematics, it is proved that five weak systems of second-order 

arithmetic (the Big Five) are proved to be equivalent to one of many well-known 

mathematical theorems over the base theory RCA。.Forexample, the system WKL。
is proved to be equivalent to Heine-Borel theorem over the base theory RCA。.This
result may be interpreted as one showing the significance of the system WKL。butit 
can also be interpreted as a result showing the significance of Heine-Borel theorem 

in terms of the hierarchy of some kind of complexity of mathematical theorems. 

Similar situations are also observed over base theories much stronger than 

RCA。.Thefollowing is such an example. 
Recall that a linear orderingこona non-empty set X is a well-ordering if each 

non-empty subset of X has the least element with respect to旦． Thisis equivalent 

to say that we can perform (mathematical, transfinite) induction (and recursive 

construction) along with i;;;;;. A set X is said to be well-orderable if there is a 

well-ordering on X. 

For a set X and a cardinal 11,, we denote 

[X]代：＝ ｛s E P(X) : Is I＝r.,}. 

[X]＜尺 [X]:C:::,.,,are defined similarly. 

A set X is equinumerous with another set Y if there is a bijection from X to 

Y. 

Theorem 1.1 The following are equivalent over Z F: 

(A) Axiom of Choice. (A') Every set is is well-orderable. 

(B) (Tarski [11]) For all infinite set X, X2 is equinumerous with X. 

(C) For all infinite set X, [ X] 2 i is equinumerous with X. 

(D) (Tychonoff Theorem, Kelley [9]) For any index set I and any sequence 

〈ふ： iEI〉ofcompact topological spaces, the product space ITiEIふ is

also compact. 

(A) ⇔ (A') is classical: it is first proved by Zermelo in [14]. Nevertheless we 

shall give below an alternative proof of this equivalence as a part of Theorem 1.4. 

(A) ⇔ (B) is proved in Jech [ 6] as Theorem 11. 7 (and Theorem 2.4). (A) 

⇔ (C) can be obtained by modifying this proof. 

We shall give a detailed proof of (A) ⇔ (D) as Theorem 4.1 below. 
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Theorem 4.2 which gives prominence to Prime Ideal Theorem defined below is 

another example of such theorems formulated in terms of the Tychonoff Theorem 

for Hausdorff spaces. 

Some other theorems showing the relation between other weak versions of Axiom 

of Choice and variants of Tychonoff Theorem are considered in Section 4. 

For discussions about reverse mathematical phenomenon over the full set-theory 

ZFC as the base theory, see e.g. [2]. 

In the rest of the section we review some notations, and definitions of variants 

of AC. 

For a sequence〈Xi: i EI〉ofsets, we define the product of the sequence as 

rrたIふ：＝ ｛f: f: I→ UたIふ， f(i)E Xi for all i EI}. 
Axiom of Choice is the assertion: 

(AC): For any (non-empty) index set I and any sequence〈Xi: i EI〉ofnon-

empty sets, TIたIXi is non-empty. 

If X/s are topological spaces with Xi = (Xi, Oi), TiiEJふ alsodenotes the 

product space of X/s with the usual product topology with basic open sets of the 

form 

[s] = {J E IliEぷ： f「I。ETiiEl。s(i)}
for I。E[I戸0and s :.l。→ uiElooi with s(i) E oi for all i E.l。•
We assume that a sequence〈ai:iEI〉isintroduced as a function f on I such 

that J(i) = ai for all i EI. Thus each element f E TiiEI凡 willbe also represented 

asf=〈ai:iEI〉whereai Eふ forall i EI. 

If Xi = X for all i E I, TiiEI Xi is also denoted by 1 X. Thus 

Ix= {f : f: I→X}. 

For an ordinal 8 we write 

6> X := LJ 
a<6 吠＝｛f:f: a→X for some a<  8}. 

The Prime Ideal Theorem (PIT) is the statement that of any Boolean algebra 

B, there is a prime ideal on B. The Ultrafilter Theorem (UFT) is the statement 

that for any non-empty set X, and any filter F over X, there is an ultrafilter F* 

over X which extends F (we review the definition and basic properties of filter and 

ultrafilter over a set, as well as ideals and prime ideals on a Boolean algebra in the 

next section). AC implies PIT: in many textbooks this is proved as an application 
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of Zorn's Lemma. It is known that PIT is strictly weaker than AC over ZF (see e.g. 

Jech [6], Theorem 7.1). PIT and UFT are equivalent over ZFC. In Section 4 we 

shall see a proof of this fact as a part of Theorem 4.2. One direction is easy to see. 

In the rest of the paper "(-AC)" indicates that the given statement can be 

proved in ZF without the Axiom of Choice. Note that this does not mean that the 

negation of the Axiom of Choice is assumed. 

Lemma 1.2 (-AC) PIT implies UFT. 

Proof. Assume that PIT holds. Suppose that F is a filter over a non-empty set 

X. Let B = P(X)/F. (Since AC is not available here we consider P(X)厄 tobe 

the set of all equivalence classes of elements of P(X) modulo F with the partial 

ordering S::::; T for S, TE  P(X)/F defined by A<;;;; B modulo F for all A E S 

and B E T). Let I be a prime ideal on B (which exists by PIT) and let F be its 

dual filter. Then 

F* := {Y E P(X) : the equivalence class of Y modulo F is in F} 

is an ultrafilter over X extending万 口(Lemma1.2) 

A topological space X = (X, 0) is compact if for any open covering U of X 

there is a finite sub-covering U。ofU. It is easy to check that the standard proof 
of Heine-Borel Theorem does not need Axiom of Choice l). 

Theorem 1.3 (Heine-Borel Theorem, -AC) Any {bounded) closed set in IR (as the 

subspace of IR with the standard topology) is compact. 

Proof. The proof given in [13] (with a slight modification) works without Axiom 

of Choice. 口（Theorem1.3) 

One of the consequences of PIT（⇔ U FT) is AC for恥 itesets which is defined 

as: 

(AC(fin)): For any sequence〈ふ： iEI〉ofnon-empty finite sets, TiiEIふヂ0.

One way to see that AC(fin) follows from PIT is to show first the equivalence 

of PIT with (model-theoretic) compactness theorem and apply it. Actually it is 

easy to see that the compactness theorem proves that every partial ordering on 

l) Heine-Borel Theorem in connection with Reverse Mathematics is that theorem expressible 
in the context of weak second-order arithmetic which is different from the same theorem in 
the framework of ZF. Though in our case, the proof considered in Reverse Mathematics can be 
translated to the general situation to see that we do not need the Axiom of Choice for the proof, 
there is no guarantee in general that, for a theorem formulated in the framework of Reverse 
Mathematics, the corresponding more general theorem in the framework of ZF do not need AC. 
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an arbitrary set can be extended to a total (i.e. linear) ordering, and it is also 

immediate to see that AC(fin) follows from this statement. 

AC(fin) can be further weakened by restricting the sequences with well-ordered 

index set. For a cardinal K,, we define 

(AC氏(fin)): For any sequence〈ふ： aEr,,〉ofnon-empty finite sets, 

ITaE1<x氏ヂ0.

We also consider further the three types of principles DC"', AC"'and AC竺： DC氏
for an infinite cardinal "" is the Dependent Choice of length t,,: 

(DC砂： For any set S and any binary relation Rこ心Sx S, if for any f E °'S for 

any a < ""there is s E S such that f Rs, then there is f E "'S such that 

f fa R J(a) for all a< ""・ 

Theorem 1.4 The following are equivalent: (A) AC. 

(A') Any set is well-orderable. 

(A") 咋 DC"'.

Proof. "(A)⇒(A') ": Assume that AC holds and let X be an arbitrary non-
empty set. We fix f E ITuEP(X)¥{0} U (which exists because of AC). Using f as a 

book keeping, we can try transfinitely to enumerate elements of X as a。 ,a1, …•

Then there must be some 8 E On such that〈a°':a< 8〉isan enumeration of X. 

The ordering aこbdefined for a, b E X as being a = a°'and b = bf3 for a <(3 ＜ 6 

is a well ordering on X. 

“(A'）⇒(A") ": If S and R are as in the definition of DC"', and R* is a well-
ordering on S, then we can construct a sequence f =〈Sa: a< K,〉byinduction on 

a < "", at the ath step of the construction we just choose R*-minimal s E S such 

that fa Rs where fa= <s~ : ~<a>is the sequence of elements of S chosen so far. 

“(A’'）⇒ (A') ": DC"'implies that every non-empty set X is either well-
orderable in order typeく""or there is a 1-1 sequence of elements of X of length氏．

Hence ¥:/t,, DC"'implies the well-orderability of an arbitrary set. 

“(A'）⇒(A) ": This is easy, for any sequence〈ふ： iEJ〉ofnon-empty sets, 
if R is a well-ordering of uiEJ xi, then we can construct f E rriEJふ bychoosing 

f(i) for i E J to be the R-minimal elements of Xi. 口（Theorem1.4) 

(AC砂 Forany sequence〈ふ： a<""〉oflength "" of non-empty sets, 

ITa<1< Xa =/=(/J． 
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For a sequence〈ふ ： a<刈ofnon-empty sets if we define S := Uaくバふ and
R ~ K>s by JR  s：⇔ if aく氏 isthe length of f then s E Xi, the K,-sequence as 
in the definition of DC氏isan element of Ila＜氏ふ． Thus, for any K,, DCK, implies 
AC氏． Itis known that for any K,, AC氏doesnot imply DCw. In particular,咋 ACK,is 

not equivalent to AC. 

ACK, can be further weakened to obtain: 

(AC竺0)For any sequence〈X。:a< K,〉oflength K, of non-empty well-orderable 
sets, Tia<1,, Xaヂ0.

To finish this introduction I would like to add the following remark concerning 

the relevance of the study of variations of the Axiom of Choice involved in math-

ematical theorems in "everyday" (pure) mathematics. Even if you are working in 

ZFC (simply assuming the full Axiom of Choice for granted), you may want to 

work in the set-theoretic universe in which many large large cardinals (this is not a 

typo) exist and/or Martin's Axiom, or even Proper Forcing Axiom or double plused 

version of Martin's Maximum holds. In such a universe of mathematics (i.e. set 

theory), there are full of inner models which do not satisfy the Axiom of Choice but 

diverse fragments of it: L(IR) is a prominent example of such inner models - under 

the existence of a sufficiently large cardinal L(IR) satisfies the Axiom of Determinacy 

and hence does not satisfy any known weakenings of AC except dependent choice 

(i.e. DC,ぃinthe notation introduced below). Mathematics in these inner models 

can/should be integrated to whole picture of the everyday mathematics to obtain a 

richer and more fertile mathematical landscape. Besides the Reverse Mathematical 

significance mentioned at the beginning of the section, the study of variants of AC 

and their topological characterizations is thought to be the first step toward this 

type of "inner model theory" or set-theoretic geology as Joel Hamkins put it. 

A conversation with Atsushi Yamashita via twitter motivated the author to 

write this article. The author would like to thank Dr. Yamashita for pushing him 

toward this occasion. 

2 Convergence of filters and ultrafilters in a topo-

logical space 

Let X = (X, 0) be a topological space where the topology of X is given here by 

the set O of all open sets in X. For p EX, Op := {O E O : p E O} denotes the 

open neighborhood of p. 

Fis a filter over X if it is a non-empty subset of P(X) satisfying 
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(2.1) If A E F and A<;;;; B <;;;; X, then BE F, and 

(2.2) For any A, B E F, An B E万

In the following we consider only non-trivial filters, that is, we always assume 

additionally that 

(2.3) 0 (j F. 

For any non-empty X, and SこP(X),S has the finite intersection property 

(the fip, for short) if S,。n・ ・ ・ Sn-1 -/c 0 for any n E wand S。,…,Sn-1ES. 

Lemma 2.1 (-AC) For non-empty X and S <:;; P(X), S has the fip⇔ there is 

a filter F over X with SこF.Furthermore, we can uniquely specify the minimal 

F among such filters F. 

Proof.“-¢=": is clear by the property (2.2) (and (2.3))of the filter F with S <:;; F. 

“⇒”:Assume that S <:;; P(X) has the fip. Then 

F := {A E P(X) : A ;;;2 S。n・ ・ ・ n Sn for some n E w and S,。,…,SnES} 

is a filter over X with S ~ F. It is clear that this F is the unique minimal filter 

containing S. 口(Lemma2.1) 

We can generalize the notion of filter and ultrafilter in the context of Boolean 

algebras. For a Boolean algebra B =〈B,/¥, V,,, ~, JI.〉,F~ B is said to be a filter 
on B if for any a, a', b E B, 

(2.4) a E F and a'.SB b implies b E F where'.SB denotes the partial ordering 

on B associated with the Boolean algebraic structure of B; 

(2.5) a, a'E F implies a八a'EF; 

(2.6)([) ¢ F. 

F ~ B is an ultrafilter on B if F is a filter on B and it is maximal (with 

respect toこ） amongfilters on B. A generalization of Lemma 2.1 proves that a 

filter F ~ B is an ultrafilter, if and only if, for any a E B exactly one of a E F 

or--,a E F holds. Note that we are talking about a filter "on" B. The notion of 

a filter over X corresponds here to the filter on the (power set algebra) Boolean 

algebra P(X). 

IこBis an ideal if--,I:= {--,a : a E I} is a filter. Note that--,(--,I) = I. I is a 

prime ideal if--,I is an ultrafilter. 

If X is a topological space there is an interesting interplay between filters over 

the set X and the topology of X. 
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Example 2.2 (1) For a topological space X and p EX, 

名：＝ ｛A E P(X) : 0 <::;; A for some OE Op} is a filter over X with Op<::;;石

(2) Let入：＝ ｛A E P(IR) : (a, oo)こAfor some a E IR}. F00 is a filter over IR, 

and, for any filter F over IR extending F00, there is no p E IR such that OpこF.ロ

For a topological space X = (X, 0), a filter F over X and p E X, we say F 

converges top (notation: F→p) if OP<::;; F. 
The following is easy to see: 

Theorem 2.3 (-AC) A topological space X = (X, 0) is Hausdorff if and only if, 

for any jilter F over X, F converges to at most a single point in X. ロ

p E X is a cluster point of a filter FこP(X),if p E n-Y where F := {F : 
F E F}. Note that p E X is a cluster point of F if and only if, for any F E F, 

OnFヂ0for all O E OP. 

Lemma 2.4 (-AC) Suppose that X is a topological space and F is a jilter over 

X. (1) The set of all cluster points of F is a closed subset of X. 

(2) F→p implies that p is a cluster point of F. 
(3) If p E X is a cluster point of a jilter F over X then there is a filter F'over 

X extending F such that F'→p. Furthermore, such F'can be uniquely specified 
as the minimal jilter with these properties. 

(4) For an ultrajilter F over a topological space X, and p E X, F converges to 

p if and only if p is a cluster point of F. 

Proof. (1): This is clear since the set of all cluster points is n F. 
(2): If F →p then Op ~ F. In particular O n F i= 0 for all O E Op and 
F EF. 

(3): If pis a cluster point of F, then FU Op has the fip. Thus, by Lemma 2.1, 

there is a filter F'over X which contains FU  Op. Clearly F'→p. Uniqueness 
of minimal such F'is clear from the construction of the filter (see the proof of 

Lemma 2.1). 

(4): If F converges top E X then pis a cluster point of F by (2). Suppose 

that p EX  a cluster point of F. Then FU  OP has the fip. By Lemma 2.1, there 

is a filter F'over X containing this set as a subset. In particular, FこF'.Since 

Fis an ultrafilter, it follows that F = F'. Hence Op ~ F i.e. F converges top. 
口(Lemma2.4) 

Compactness of topological spaces can be characterized in terms of filters over 

them. A filter F over a non-empty set X is called an ultrajilter if it is maximal 
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with respect to ~ among ultrafilters over X. A filter F over X is an ultrafilter if 

and only if, for any A E P(X), one of A and X ¥ A is always an element of F. 

Theorem 2.5 The following hold for any topological space X: (1) (-AC) (a) 

Xis compact⇔ (b) For any family B of non-empty closed subset of X with the 

fip, n B # 0 ⇔ (c) Any filter F over X has a cluster point. 

(2) (UFT) X is compact⇔ Any ultrafilter F over X converges to some point{s) 

in X. 

Proof. (1): "(a)⇒(b)": Suppose that B is a family of non-empty closed subsets 
of X with the fip but (2.7): nP  = 0. Let Y = {X ¥ B : BE B}. 

Claim 2.5.1 U is an open covering of X without any finite subcover. 

ト Elementsof U are open by definition U is a covering of X by (2.7). 
Suppose that X ¥ A。,…，X¥ An-1 are elements of U where A。,…,An-1EB. 

Then 
ヂ0,by the fip of B 

(X¥A。)U… U (X ¥ An-1) = X ¥ (A。n…nAい）c/X. 

~ (Claim 2.5.1) 

‘'（b)⇒(c)": Clear by the definition of cluster point. 

“(c)⇒(a)": Suppose that X is not compact and let U be an open covering 
of X without finite subcovering. Then f3 := { X ¥ 0 : 0 E U} has the fip. By 

Lemma 2.1, there is a filter F over X with f3 ~ F. 

Claim 2.5.2 F does not have any cluster point. 

ト Forany p EX, there is O EU with p E 0. F := X ¥ 0 E F by the choice of 
F. But O E Op and O n F = 0. This implies that p is not a cluster point of F. 

~ (Claim 2.5.2) 

(2),“⇒”:Suppose that X is a compact topological space and F is an ultrafilter 
over X. By (1), F has a cluster point p. By Lemma 2.4, (2), F converges top. 

“-¢=": Suppose that Xis not compact. Let U, Band F be as in the proof of (1), 

‘'（c)⇒(a)". By UFT, there is an ultrafilter F* over X with F ~ F*. The proof 
of Claim 2.5.2 is applicable to F* and shows that there is no cluster point of F*. 

By Lemma 2.4, (4), it follows that F* does not converge to any point.口（Theorem2.5) 
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3 Proofs of Tychonoff Theorem 

In this section, we examine two proofs of Tychonoff's Theorem. These proofs will be 

modified to obtain variations of Tychonoff Theorem (Corollary 3.2 ~ Corollary 3.5) 
under various weakenings of AC. 

Theorem 3.1 (Tychonoff [12], AC) For any index set I and compact spaces Xi for 

i EI, y := rriEJ xi is compact.2) 

The first proof. Assume that F is an ultrafilter over Y. By Theorem 2.5, (2) 

(and here we use U FT), it is enough to show that F converges to a point in Y. 

For each i EI, let 

(3.1) 互：＝ ｛U <:;:: Xi : {f E Y : f(i) EU} E F}. 

Then, for each i E J,互 isan ultrafilter over Xi. By Theorem 2.5, (2), there is 

ai E X such that互→ ai.(We need AC here in general to choose the sequence 

〈ai:iEJ〉.）
We are done with the following Claim: 

Claim 3.1.1 F →〈ai:iEJ〉.

ト Supposethat O E 0〈a;:iEI〉whereO denotes the set of all open sets in Y. We 
have to show that O E F. For this, we may assume that O is a basic open set of 

the product space Y of the form 

Q = {f E IliEIふ： f(io)E Oi。forall i。EIo} 
for some I。E[I]◎ 0 and Oio E (Oi。)缶。 fori。€ I。•

By the choice of aio, we have Oio E Fi。forall i。€ I。.Thus

a。:＝｛f€ I1たIふ： f(io)E仇｝ € r 

by the definition (3.1) of互． Itfollows that O = noEI oi。Er. ~ (Claim 3.1.1) 

口(Theorem3.1) 

The second proof. Suppose that F is a filter over Y = ITiEI Xi. By Theo-
rem 2.5, (1) it is enough to show that F has a cluster point. 

2) Tychonoff formulated this theorem (indirectly)3l for Hausdorff spaces but his proof is appli-
cable for spaces which are not necessarily Hausdorff. 

3) I wrote "indirectly", since Tychonoff in [12] refers to Alexandroff and Urysohn [1] for the 
setting of topology. [1] cites Hausdorff's text book [4] for definition of topology in which Haus-
dorffness is simply one of the axioms of topological spaces. 
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Since we are assuming AC, we may assume that the index set I is a cardinal K,. 

Thus Y = Ila<／ぷ LetOy be the set of open sets of the product space Y and 

ふ＝（ふ，0a)．Foraく K,,let加： Y →Xa; f→f(o:) be the projection. 
By induction, we define sequences of filters巧こ P（ふ） foro: < K,, and凡こ

P(Y) for o: :=::; K, such that: 

(3.2) 瓦＝F;

(3.3) 究＝ thefilter overふ generatedby｛応”F : FE瓦｝ u （Oa)a"' 
where aa is a cluster point of the filter { 7ra II F : F E瓦｝ overXa (cf. 

Lemma 2.4, (3) and its proof); 

(3.4) Fa+l = the filter generated by瓦 u{1r―1"U : U E乃｝； and,

(3.5) for a limit 1さK,,瓦＝ Ua<］瓦．

瓦 isthen a filter over Y extending F. 

Claim 3.1.2瓦→〈aa: 0: < K,〉.

ト Supposethat O is a basic open set of Y around〈aa: 0: < K,〉.Let

0=［｛〈a,O心： aE Io}] (= {f E Y : f(a) E Oa for all o: E Io}) 

for I。E[t,,]<~。 and 0。E(a心 fora E I。・
By (3.3) and (3.4)，応―1"Oa E瓦． Hence,0 = n年 I。加―1"Oa E瓦

~ (Claim 3.1.2) 

By Lemma 2.4, (2),〈a0: aく代〉 isa cluster point of瓦． Hence,it is also a 

cluster point of F. 口(Theorem3.1) 

All of the following are corollaries to the ideas of one of the two proofs of 

Theorem 3.1. 

Corollary 3.2 (UFT) For any index set I and compact Hausdorff spaces Xi for 

i EI, y := TIたIふ iscompact. 

Proof. By the first proof of Theorem 3.1. Note that, by Theorem 2.3, the limit 

ai of互 isunique because of the Hausdorffness of Xi, and hence we can pick up 

the sequence〈ai:iEI〉withoutthe help of AC. 0 (Comlla,y 3.2) 

Corollary 3.3 (DC砂Forsequence〈ふ： a< t,,〉ofcompact spaces, the product 

Haくんふ iscompact. 
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Proof. By a modification of the second proof of Theorem 3.1. Suppose that 

〈ふ： a<代〉 isa sequence of compact spaces and Fis a filter over ITa<,-,, Xa. By 

DC氏 wecan choose the sequences〈aa: aく代〉，〈巧： a ＜ k〉,〈瓦： a三代〉 as

in the second proof of Theorem 3.1. Then we can show that F →〈a°':a E K,〉

holds just邸 inthe proof. 0 (Cornlla,y 3.3) 

Corollary 3.4 (AC直in))For any sequence〈ふ： a E K〉offinite spaces, IT崎ふ

is compact. 

Proof. A modification of the second proof of Theorem 3.1 will do. Suppose that 

〈ふ： a E a〉isa sequence of恥 itespaces. By AC出in),we can find a sequence 

〈Ra: a: E K,〉suchthat each凡 isa well-ordering of Xa. The construction with 

(3.2) ~ (3.5) goes through by choosing Ra-minimal aa for each a. 口(Cornlla,y3.4) 

In some cases we can completely avoid AC: 

Corollary 3.5 (-AC) (1) For any compact topological spaces X, Y, the product 

space X x Y is compact. 

(2) For any cardinal t,, and a sequence〈ふ： a< t,,〉suchthat each Xi is 

either a closed subset of an successor ordinal with the order topology or bounded 

closed subset of IR with the order topology, then the product I1aEIふ iscompact. 

In particular, "'2,ん[O,1] are compact for any cardinal t,,. 

Proof. Both (1) and (2) can be shown by the second proof of Theorem 3.1. For 

(2), note that Xa, aく t,,as in the statement are compact by Heine-Borel Theorem 

(Theorem 1.3) and Lemma 3.6 below. Ifふ isa closed subset of a successor ordinal, 

we can take aa as the minimal element of Xa among the cluster points with respect 

to the canonical well-ordering. If Xa is a bounded closed subset of IR, the set of 

cluster points is a closed subset of the space (see Lemma 2.4, (1)) and hence we 

can take the minimal element among them with respect to the ordering of IR. 

口(Cornlla,y3.5) 

Lemma 3.6 (-AC) An ordinal a with its order topology is compact if and only if 

it is a successor ordinal. ロ

4 Characterizations of variants of AC in terms of 

Tychonoff Theorem 

Theorem 4.1 (Kelley [9], see Theorem 1.1 in Section 1) 

The following are equivalent over ZF: (A) AC. 
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(D) For any index set I and any sequence〈Xi: i EI〉ofcompact topological 

spaces, the product space TiiEJふ isalso compact. 

Proof. "(A)⇒(D) " : has been proved as Theorem 3.1. 
“(D)⇒(A) ": Assume that (D) holds. Suppose that〈ふ： iE I〉isa 
sequence of non-empty sets. We have to show that TiiEJ Xi -/-0. 

Let oo be a set such that oo (/_ LJiEI Xi. Let Y; = Xi U { oo} and Oi = 

{0, Xi, { oo }, Y;} for i E I. Then Y; = (Y;, Oi) is a compact topological space 

(it is compact since Oi is finite). Thus by the assumption of (D), Y := TiiEぷ is
compact. 

For i EI, let Ai := {J E Y : J(i) EXふTheneach Ai is a closed set in Y. 

Claim 4.1.1 A:= {Ai : i EI} has the jip. 

ト Supposethat Aio,…，A見 1E A. Let g E Y be defined by 

g(i) ＝ {“forsome a, E Xi, ifi ＝幻 forsomef < k; 
oo otherwise 

for i EI. Note that g can be chosen without AC. We have g E nc<k Aw 

~ (Claim 4.1.1) 

By Theorem 2.5, (1), it follows that there is h E n A= ITiEI X,．口 (Theorem4.1) 

Theorem 4.2 (Los and Ryll-Nardzewski [10]) 

The following are equivalent over ZF: (E) PIT. 

(F) UFT. 

(G) For any index set I and any sequence〈ふ： iE J〉ofcompact Hausdorff 

topological spaces, the product space TiiEIふ isalso compact. 

Proof. "(E)⇒(F) ": Lemma 1.2. 
"(F)⇒(G) ": Corollary 3.2. 
“(G)⇒(E) ": Assume (G) and suppose that B is a Boolean algebra. Let 

S := {B。:B。isa finite subalgebra of B}. 
For B。ES,let 
XB。:=｛f: f: B。→ 2',f is a Boolean homomorphism} U {{0}} 

be the discrete topological space. Then each XB。iscompact Hausdorff. By the 
assumption (G), it follows that Y := TIBoES XB。iscompact. 
For any distinct B。,BbES with B。:s;Bもlet
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CBo,Bb := { r.p E Y : r.p(B。)~ r.p(Bb)}. 

The following is clear since the topology on each X8。forB。ES is discrete and 
XB。xXBb for B。,EbE S is finite. 

Claim 4.2.1 For any distinct B。,EbES with B。::;Eb, CBo,Bb is closed subset 
ofY. □ 

Let B := { CBo,Bb : B。,EbEs, B。こ B;}．

Claim 4.2.2 B has the fip. 

ト Supposethat B。,O,…，B。,k-l,Bb,o,…,Bb,k-l ES and B。,o::; Bb,o,…, B。,k-1::;
Bb,k-l. Let Ba E s be such that Eb,£ ::; Ba for all £ < k. Since Ba is finite we can 

find a Boolean homomorphism f : Ba→2'(without appealing to AC for help). Let 
'P E Y be defined by 

疇 o)：= { f f B。,ifB。=B。,,or B。=B匂!orsome£< k; 
{0} otherwise 

for B。ES.Then'PE CBo,o,Bb,o n…n CBo,k-l,Bb,k-l ~ (Claim 4.2.2) 

Since Y is compact n Bis non-empty. Let'PE nB. Then <I>= LJ{cp(B。)： B。E
S} is a Boolean homomorphism with <I> : B→2', and <I>―1 "{Q:J} is a prime ideal on 
B. 0 (Theorem 4.2) 

Theorem 4.3 For any infinite cardinal"', we have the implication 

(H)⇒(I)⇒(J)⇒(K)⇒(L), where 

(H) DC応

(I) For any sequence〈ふ： a E k〉ofcompact topological spaces, the product 

rr叫ふ iscompact. 
(J) AC応

(K) For any sequence〈ふ： a E K〉ofcompact topological spaces where each 

set Xa {o: Eりiswell-orderable, the product ITaEぷ iscompact. 

(L) ACyj0 
K ・

Proof. "(H)⇒(I) ": By Corollary 3.3. 

"(I)⇒(J) ": The proof of Theorem 4.1, "(D)⇒(A)" for I="'will do. 

"(J)⇒(K) ": Suppose that〈Xa: aく代〉 isas in the statement of (K). 
By AC,,,, we can choose a sequence〈Ra: o: < "'〉 suchthat each Ra (o:く"')is a 

well ordering of Xa. For a filter F over ITaくパ°''wecan construct〈aa: 0: < K,〉,



98

<~: aく外〈凡： a:S叫邸 inthe second proof of Theorem 3.1 using this 
〈Ra:a＜叫． Thesame argument as in the proof shows that F →〈aa: a E叫．

“(K)⇒(L) ": Again the proof of Theorem 4.1, "(D)⇒(A) " for I = /'i, 
works for〈Xa: a EK,〉whereeachふ iswell-orderable. 口(Theorem4.3) 

It is clear that AC竺0implies AC氏(fin).The latter can be characterized by a 
weakening of Tychonoff Theorem. 

Theorem 4.4 For an infinite cardinal氏， Thefallowing are equivalent: 

(M) AC,,,(fin). 

(~) For any sequence〈ふ： aE沿offinite spaces, ITaEふ iscompact. 

Proof. "(M)⇒(N) ": By Corollary 3.3. 

“(N)⇒(M) ": The proof of Theorem 4.1, "(D)⇒(A)" for I= K, will do. 
Note that, if Xi is finite, then Y; in the proof of Theorem 4.1, "(D)⇒(A)" is 
also finite. 口(Theorem4.4) 
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