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Abstract

Plasma β dependence of ion temperature gradient (ITG) driven turbulence is investigated using

gyrokinetic simulations, where β is the normalized pressure. In our β scan, self-consistent magne-

tohydrodynamic (MHD) equilibrium state is numerically calculated for each value of β. It is found

that the influence of the Shafranov shift cancels out the electromagnetic stabilizing effect on the

ITG mode, and the growth rate of the ITG mode is accordingly unchanged as β increases. As

a result, the turbulent energy transport does not decrease with β as suggested by the s-α model

[Ishizawa et al 2019 Phys. Rev. Lett. 123 025003]. A significant difference from the s-α model

is the increase of the energy transport with β. It is also found that the critical onset β value for

the kinetic ballooning mode (KBM) is significantly increased by the influence of the Shafranov

shift. The cancellation of the electromagnetic stabilization by the Shafranov shift is explained by

the decrease of magnetic drift frequency in the dispersion relation of electromagnetic ITG modes

obtained by using a fluid approximation.
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I. INTRODUCTION

Drift-wave turbulence is the main cause of heat and particle transport in tokamak plas-

mas [1, 2]. Understanding of the β dependence of turbulent transport is important for

predicting the generation of bootstrap current which is needed for steady operation of toka-

maks and the fusion reaction rate which is directly related to the plasma pressure, and thus

the β dependence of the confinement is extensively studied in experiments [3–7], where β

is the plasma pressure normalized by the magnetic energy. In finite β plasmas, turbulent

fluctuations are electromagnetic because β appears in gyrokinetic Ampere’s law, and thus

electromagnetic drift-waves such as the kinetic ballooning mode (KBM) can be unstable

[8–10]. The electromagnetic drift-wave turbulence is studied by gyrokinetic analysis [11],

and magnetic fluctuations are known to cause a stabilizing effect on the ion temperature

gradient (ITG) mode [12], suggesting a reduction of turbulent transport with increasing β

[13–17]. The electromagnetic stabilizing effect on the ITG mode is demonstrated in the

analysis of tokamaks including JET and ASDEX Upgrade [18–23] and stellarators [24, 25].

Recently, it is found that the turbulent transport due to the ITG mode does not decrease

with increasing β [26]. This is because the electromagnetic stabilizing effect on the linear

growth rate of the ITG mode is weakened by the influence of the Shafranov shift, and in ad-

dition, the zonal flow suppression by the magnetic perturbations is enhanced with increasing

β through the Maxwell stress, which is related to the reduction of the zonal flow amplitude

by the magnetic stochasticity [27–29]. The analysis for several tokamaks including JET and

ASDEX Upgrade shows that, when the magnetic shear is small s ≪ 1, the influence of the

Shafranov shift is weakened [26], and accordingly the electromagnetic stabilization of the

ITG mode is prominent with increasing β. This explains the electromagnetic stabilization of

turbulence observed in the core region of high-β JET hybrid discharge with small magnetic

shear [18, 19, 21–23, 30, 31], which exhibits the heat flux reduction with increasing β. The

minimal and widely used model including the change of background magnetic field due to

finite β is the s−α model [12, 32–35], and its effect on the β dependence of turbulent trans-

port is significant [26], however, it is better to use self-consistent MHD equilibrium states

calculated by some numerical code for predicting the β dependence of turbulent transport

precisely.

In this paper, we investigate the β dependence of drift-wave instabilities and associated
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turbulent transport using the GKV code [36–38]. In our analysis, the MHD equilibrium of

tokamak plasma is calculated by the VMEC code for each value of β [39]. The numerical

equilibrium states are consistent with the Cyclone base case parameter, and accurately

include not only the Shafranov shift but also other changes of magnetic field structure due

to a finite β value. It is found that the linear growth rate of the ITG mode is almost

unchanged as β increases when the background magnetic field change is included, while

the linear growth rate decreases with β when we fix the background magnetic field with

increasing β, implying that the electromagnetic stabilization is canceled out by the influence

of the change of background magnetic field including the Shafranov shift. As a result, the

magnetic field change enhances the turbulent transport, and the ion and electron energy

diffusion coefficients increase with increasing β. The mechanism of the cancellation is turned

out to be the decrease of magnetic drift frequency by the Shafranov shift by using the linear

dispersion relation of electromagnetic ITG modes derived by a fluid approximation.

The organization of the remainder of this paper is as follows. Section II describes our

numerical model and parameter setting. Section III presents results from linear analysis.

Section IV presents nonlinear simulation results. We conclude with a summary of our results

in Sec. V.

II. SIMULATION MODEL

We consider the Cyclone base case DIII-D plasma which has a circular cross-section [13],

and calculate the MHD equilibrium state of this plasma using the VMEC code [39]. We use

a pressure profile which is consistent with the CBC parameter at ρ = 0.5 and has a peak

of pressure gradient dp/dρ at ρ ≃ 0.5. The pressure profile and safety factor are shown in

Fig. 1. The pressure gradient length at ρ = 0.5 is

−R0

a

1

p

dp

dρ
(ρ = 0.5) =

R0

Ln

+
1

1 + Te/Ti

R0

LT i

+
Te/Ti

1 + Te/Ti

R0

LTe

= 9.1.

where R0 is the major radius of the center of the last closed flux surface and a is the minor

radius of the last closed flux surface. The values of the profiles at ρ = 0.5 ≡ ρ0 are set to

the CBC parameter: q0 = 1.4, ŝ = 0.78, Ti = Te, and ρ0a/R0 = 0.18.

The equilibrium magnetic field configuration obtained from the VMEC code exhibits the

Shafranov shift as shown in Fig. 2. The Shafranov shift monotonically increases with β as
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shown in Fig. 3. The influence of the magnetic field change (MFC) due to the increase of β

is shown in the profiles of magnetic field strength B along a magnetic field line in Fig. 4 (a),

the square of the perpendicular wavenumber k2

⊥ in Fig. 4 (b), and the ion magnetic drift

frequency ωdi in Fig. 4 (c) as well as the corresponding profiles from the s − α model. It

is remarked that the pressure gradient in the curvature drift velocity, which is discussed in

Ref. [40], is neglected in this work. It is expected that the pressure gradient in the curvature

drift velocity and the compression magnetic field perturbation B̃‖ do not influence the ITG

modes in low-β regime, while they can influence the critical onset β value of the KBM.

Reference [40] presented that the critical onset β of KBM is significantly changed when

one of the pressure gradient in the curvature drift velocity and B̃‖ is included, however,

when both of them are included, then their influence on the growth rate is small and leads

to a little higher critical onset β of KBM. Thus, we expect that neglecting both of them

in our analysis does not cause significant impact on our simulation results. The profile of

magnetic field strength is slightly changed by the MFC in Fig. 4 (a). On the other hand,

the perpendicular wavenumber k2

⊥ is reduced around z = 0 by the MFC. In addition, the

k2

⊥ by the MFC is smaller than that from the s − α model. These are because the large

aspect ratio is assumed in the s − α model. We have confirmed that a large-aspect-ratio

equilibrium calculated by the VMEC code exhibits similar k2

⊥ and ωdi profiles to those from

the s − α model, however, the magnetic field strength is significantly different from that in

Fig. 4 (a) as shown in Appendix, and thus we do not use the large-aspect-ratio equilibrium

in our analysis. The MFC also influences the magnetic drift frequency ωdi. The absolute

value of ωdi for the MFC at z ≃ 0 becomes small as β increases, and the finite β effect is

more prominent at z ≃ ±π/2 due to the local magnetic shear. In addition, the absolute

value of ωdi is smaller than that from the s − α model.

In our gyrokinetic analysis, we use the GKV code [36–38]. The major radius of the shifted

magnetic axis Rax is used to normalize global lengths such as density and temperature

gradient lengths, so that Rax/Ln = 2.23 and Rax/LT = 6.90 at β = 0, while Rax/Ln = 2.31

and Rax/LT = 7.15 at β = 2.4%, where LT ≡ LT i = LTe
. In our linear analysis, grid

points of 640, 128, and 16 in the z, v‖, and µ directions are distributed in −10π ≤ z ≤ 10π,

−4vTs ≤ v‖ ≤ 4vTs, and 0 ≤ µB0/Ts ≤ 8, respectively. The collision frequencies are set

to νi = νe = 0. In our nonlinear simulations, grid points of 128, 128, and 16 are assigned

to −π ≤ z ≤ π, −4vTs
≤ v‖ ≤ 4vTs

, and 0 ≤ µB0/Ts ≤ 4 in the z, v‖, and µ directions,
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respectively. The wavenumbers in the Fourier space are represented by kx = kx,minm and

ky = ky,minn, where 0 ≤ m ≤ 96, −24 ≤ n ≤ 24 and (kx,minρT i, ky,minρT i) = (0.06, 0.05).

The collision frequencies are set to νi = νe = 10−5 [vT i/R0].

III. LINEAR ANALYSIS

In this section, we present the β dependence of drift-wave instabilities in the CBC tokamak

plasma. In the magnetic field change (MFC) scan, the MHD equilibrium is calculated for

each value of β using the VMEC code, while in the magnetic field fixed (MFF) scan the

MHD equilibrium remains unchanged and is fixed to the one for a β value such as β = 0.

Figure 5 shows the linear growth rate γ and real frequency ω as a function of the poloidal

wavenumber ky at β = 0.4% and 2.4%. The ITG mode dominates at low wavenumber and

the trapped electron mode (TEM) at high wavenumber for both of the MFC and MFF.

For the MFF, the linear growth rate of the ITG mode at β = 2.4% is a half of that at

β = 0.4% because of the electromagnetic stabilizing effect due to the increase of magnetic

fluctuations with increasing β. For the MFC, by contrast, the growth rate at β = 2.4% is

similar to that at β = 0.4%, and the reduction of the growth rate is very small compared to

the MFF. Thus, the electromagnetic stabilization is almost canceled out by the MFC, i.e.

the Shafranov shift due to finite β. It is remarked that there is no significant change in the

TEM by the increase of β.

Figure 6 (a) shows the linear growth rate as a function of β for kyρT i = 0.2. The linear

growth rate of the ITG mode remains almost unchanged as β increases for the MFC scan (red

curve), while the growth rate decreases with β for the MFF scan using the equilibrium at β =

0 (blue curve), and thus the Shafranov shift cancels out the electromagnetic stabilization. In

addition, the Shafranov shift significantly increases the critical onset β value for the KBM.

The KBM is destabilized at β = 2.8% for the MFF scan, while the growth rate of the ITG

mode remains unchanged up to β = 4.8% for the MFC scan, and thus the critical onset

β value for the KBM is significantly raised by the MFC. It is remarked that the critical

β for the KBM in the MFF without Shafranov shift is similar to β = 2βi ≃ 2.6% from

the s − α model in Fig. 1 of Ref. [26] which exhibits no difference in the KBM threshold

between the MFC and MFF, where βi = β/(1 + Te/Ti). Hence, the KBM threshold is

significantly increased when we take into account the influence of the Shafranov shift by
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means of numerical MHD equilibrium states. It is remarked that in our analysis the pressure

gradient in the curvature drift velocity and the compressional magnetic field perturbation

B̃‖ are neglected. Our conclusion on the ITG modes is not influenced by them because the

ITG modes are unstable at low-β regime. On the other hand, the critical onset β value of

the KBM can be influenced by these effects because of high β. However, when we include

both the pressure gradient in the curvature drift velocity and B̃‖ simultaneously, then the

results are not so different from those obtained by neglecting both of them as presented in

Ref. [40]. The electromagnetic stabilization is also significant for the MFF at kyρT i = 0.4

and 0.6 as indicated by blue curves in Figs. 6 (b) and (c). On the other hand, the MFC

scans for kyρT i = 0.4 and 0.6 (red curves) show that the linear growth rate of the ITG

mode almost remains unchanged as β increases. Thus, the electromagnetic stabilization is

canceled out by the influence of the Shafranov shift.

So far, the MFF β scan is carried out by using the equilibrium at β = 0, i.e. without

the Shafranov shift. Here, the MFF scans are carried out by using the equilibrium states

at β = 1.2% and 2.4% in Fig. 6, but the equilibrium is fixed during the scan, i.e. the

amplitude of the Shafranov shift is fixed. When we use the equilibrium at β = 1.2% for the

MFF scan, the Shafranov shift is finite but unchanged with β, then the linear growth rate

decreases as β increases for kyρT i = 0.2, 0.4 and 0.6 as indicated by green curves, suggesting

the electromagnetic stabilization. The electromagnetic stabilization is observed even when

we use the equilibrium at β = 2.4% for the MFF scan as shown by black curves in Figs. 6

(a), (b) and (c). Comparing the MFF using the equilibrium at β = 0 and the MFF using

the equilibrium at β = 2.4% for kyρT i = 0.4 in Fig. 6 (b), their difference at β = 2.4% is

much larger than that at β = 0. This suggests that the increase of the growth rate for the

MFC from that for the MFF using the equilibrium at β = 0 is mainly caused by magnetic

fluctuations, because the amplitude of magnetic fluctuations is larger at β = 2.4% than that

at β = 0. It is noted that, in the analysis of JET [19] and ASDEX Upgrade [20], the MFF

β scan is carried out using the equilibrium states at a finite β.

Here, we discuss the destabilizing mechanism of the ITG mode by the MFC based on the

change in k2

⊥ and ωdi. It is commonly understood that a larger perpendicular wavenumber

k⊥ has a stabilizing effect on ballooning type instabilities, while the magnetic drift frequency

ωdi causes instabilities at the bad curvature region when ωdiω∗pi > 0. We have observed that

the perpendicular wavenumber k2

⊥ is reduced around z = 0 by the MFC, and the absolute
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value of the magnetic drift frequency ωdi becomes small at z ≃ 0 as β increases in Fig. 4.

These suggest that the impact of the Shafranov shift on k2

⊥ (ωdi) enhances (reduces) the

growth rate of instabilities. However, the influence of the MFC on the electromagnetic

stabilization of the ITG mode through k2

⊥ and ωdi is turned out to be otherwise as shown

in Fig. 7. Figure 7 shows that the growth rate of the ITG mode for the changed magnetic

field only in ωdi case (ωdiC) and for the changed magnetic field only in k2

⊥ case (k2

⊥C) in

comparison with the MFC and MFF for kyρT i = 0.2, 0.4, and 0.6. The growth rate for the

ωdiC is higher than that of the MFF and is close to the MFC. On the other hand, the growth

rate for the k2

⊥C is a little higher or lower than that of the MFF depending on β. Thus, the

enhancement of the growth rate by the magnetic field change in ωdi is the dominant cause

of the cancellation of the electromagnetic stabilization.

The destabilization of the ITG mode by the MFC through ωdi can be understood by

revisiting an analytical study on electromagnetic ITG modes [12]. The linear dispersion

relation for the electromagnetic ITG mode is obtained by assuming (1) the local limit ∇‖ →
ik‖, ωds(z) → ωds(z = 0), and ω∗s(z) → ω∗s(z = 0), (2) the fast electron streaming along the

field line ω ≈ ωde ≪ k‖vTe, and (3) the fluid approximation ωDi ≪ ω, k‖v‖ ≪ ω, k⊥ρT i ≪ 1,

where s denotes the particle species. Then, we obtain the following dispersion relation [12]

1 − ω∗e

ω
−

k2

‖c
2

s

ω2

(

1 − ω∗pi

ω

)

+
Te

Ti

(

k2

⊥ρ2

T i −
ωDi

ω

)(

1 − ω∗pi

ω

)

F = 0, (1)

where

F = 1 − Ti

Te

ω(ω − ω∗e) − k2

‖c
2

s(1 − ω∗pi/ω)

2k2
⊥ρ2

T ik
2

‖v
2
T i/βi − ωDi(ω − ω∗pe)

(2)

is the electromagnetic stabilizing factor, ωDi = −(2cTiky)/(eB0R0), ω∗s =

−(cTsky)/(qsB0Ln), ω∗ps = ω∗s(1 + ηs), c2

s = v2

T iTe/Ti, v2

T i = Ti/mi, ηs = d ln Ts/d ln n0,

qi = e, and qe = −e, βi = β/(1 + Te/Ti) is the ion normalized pressure. It is remarked that

βi = β/2 in our numerical simulations. The first three terms represent the propagation of

the drift wave and the drive of the slab ITG mode. The last term represents the drive of

the toroidal ITG mode at the outer-board of the torus, i.e. the ITG mode is unstable for

ωDiω∗pi > 0. It is remarked that the coefficient of this term Te/Ti implies that the ITG

mode is more unstable for a larger Te/Ti. Equation (1) reduces to the dispersion relation

for the pure slab ITG mode in the limit ωDi → 0, while the pure toroidal ITG mode in the

limit k2

‖c
2

s/ω
2 → 0. The factor F of the destabilizing force term represents the electromag-

netic stabilizing effect on the ITG mode, and the electromagnetic stabilization vanishes, i.e.
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F → 1, in the electrostatic limit βi → 0 (vA = vT i/
√

βi → ∞). For small βi and using

ωITG ≈ ωDi ≪ ω∗pi for the toroidal ITG mode, the stabilizing factor F is reduced to

F = 1 − βi

ωDiω∗i + k2

‖v
2

T iω∗pi/ωDi

2k2
⊥ρ2

T ik
2

‖v
2
T i

+ O(β2

i ). (3)

This implies that the electromagnetic stabilization is enhanced by reducing k2

⊥, while the

stabilizing effect is suppressed by reducing ωDi. It is remarked that k2

‖v
2

T iω∗pi is the driving

force of the slab ITG mode, and thus this term is small for the toroidal ITG mode. At finite

βi, the sign of F (Eq. (2)) is flipped from positive to negative at a critical βi, so that the

electromagnetic effect is changed from stabilizing to destabilizing. By using ωITG ≈ ωDi ≪
ω∗pi for the toroidal ITG mode, F = 0 in Eq. (2) gives the critical β [12]

βit =
2k2

⊥ρ2

T ik
2

‖v
2

T i

ωDi(ω∗i − ω∗pe) + k2

‖v
2
T iω∗pi/ωDi

. (4)

This formula implies that the electromagnetic stabilization is enhanced by reducing k2

⊥,

whereas the stabilizing effect is suppressed by reducing ωDi. Combining the results at

small βi by Eq. (3) and finite βi by Eq. (4), the β dependence of the growth rate can

be schematically drawn in Fig. 8. Thus, the influence of magnetic fluctuations on the

suppression of the ITG mode through k2

⊥ and ωd is opposite to the conventional consideration

about the influence of k2

⊥ and ωd on ballooning instabilities as shown from the s − α model

[26], though the influence of k2

⊥ is very small in Ref. [26].

The above discussion is helpful for understanding the influence of the Shafranov shift on

the ITG mode through k2

⊥ and ωdi shown in Fig. 7. Figure 8 suggests that the linear growth

rate is increased by smaller ωdi due to the magnetic field change (MFC), because the MFC

reduces the amplitude of ωdi as shown in Fig. 4 (c). On the other hand, the linear growth

rate is decreased by smaller k⊥ due to the MFC, because the MFC reduces k2

⊥ as shown

in Fig. 4 (b), although the decrease of γ is subtle in Fig. 7 as suggested in Ref. [26]. As a

result, the Shafranov shift enhances the ITG mode through ωdi as shown in Fig. 7. In our

simulations, the enhancing effect of reduced ωdi on the ITG mode overcomes the suppression

effect of reduced k2

⊥, and thus the influence of Shafranov shift on ωdi is the dominant cause

for the cancellation of electromagnetic stabilization of the ITG mode.

In addition, the electromagnetic stabilization is enhanced by reducing k2

‖ as shown by

Eqs. (3) and (4). This implies that the weak magnetic shear is very effective for realizing
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electromagnetic stabilization [26], because the mode structure extends along the magnetic

field line, i.e. k‖ is small when the magnetic shear is small.

IV. NONLINEAR SIMULATIONS

In this section, the turbulent transport is evaluated by nonlinear simulations. Figure 9

shows the β dependence of the energy transport coefficients χi and χe normalized by the

gyro-Bohm unit for the MFC and MFF, where χs = QsLTs, Qs = Qes,s + Qem,s,

Qes,s =
∑

k⊥

〈

Re

[(

δp‖sk⊥

2
+ δp⊥sk⊥

)(

−ikyφk⊥

B

)∗]〉

, (5)

Qem,s =
∑

k⊥

〈

Re

[(

δq‖sk⊥

2
+ δq⊥sk⊥

)(

ikyA‖k⊥

B

)∗]〉

, (6)

δp‖sk⊥
=
∫

msv
2

‖δfsk⊥
J0sd

3v, δp⊥sk⊥
=
∫

µBδfsk⊥
J0sd

3v, (7)

δq‖sk⊥
=
∫

msv
3

‖δfsk⊥
J0sd

3v − 3Tsδusk⊥
, (8)

δq⊥sk⊥
=
∫

µBv‖δfsk⊥
J0sd

3v − Tsδusk⊥
, (9)

and

δusk⊥
=
∫

v‖δfsk⊥
J0sd

3v. (10)

Comparison of the MFC scan (red curve) with the MFF using the equilibrium at β = 0

(blue curve) implies that the influence of the Shafranov shift enhances the turbulent energy

transport by the MFC, and the energy transport coefficients χi and χe for the MFC do not

decrease with increasing β. This implies that there is no electromagnetic stabilizing effect

on the turbulent transport, consistent with the results from the s − α model [26].

The significant difference from the s − α model is the increase of χi for both the MFC

and MFF in Fig. 9. In the s − α model, χi is almost constant for the MFC scan, while

χi decreases for the MFF [26]. A similar increase of χe is observed for the MFC and MFF

in Fig. 9, whereas χe remains almost unchanged for the MFF in the s − α model. It is

noted that the contribution of magnetic fluctuations to the energy transport is small. We

encounter the runaway/non-zonal transition, which is the growth of fluctuations without

saturation [41–43], at β > 1.2%, so that χi and χe are not evaluated at β > 1.2%. The

turbulent transport at higher β can be evaluated by global gyrokinetic simulations which

have an additional saturation mechanism such as the turbulence spreading [44].
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We have observed the increase of χi with β for the MFF, although the MFF exhibits

the decrease of linear growth rate of the ITG mode with β in Fig. 6. Here, we discuss this

increase of χi with β for the MFF in detail. The increase of χi is due to intermittent bursts

of turbulent fluctuations. Figure 10 (a) shows the time evolution of the ion energy diffusivity

χi. The diffusivity χi for β = 1.2% intermittently increases to much larger value than its

initial saturation level at t ≃ 30 and 95 [R0/vT i]. On the other hand, the fluctuations of χi

for β = 0.4% and 0.8% do not exhibit such intermittent bursts. Figure 10 (b) shows the

time evolution of χi evaluated from the s− α model for the MFF (without Shafranov shift)

[26]. The fluctuations of χi do not exhibit intermittent bursts even at β = 1.2%, and χi

decreases with increasing β. Thus, the intermittent bursts are the cause of the higher χi

at higher β for the MFF scan from the numerically calculated MHD equilibrium in Fig. 9.

These intermittent bursts at higher β consist of low-wavenumber fluctuations at kyρT i ≤ 0.2

as shown in Fig. 11. Figure 11 (a) shows the poloidal wavenumber spectrum of the ion

energy diffusivity for the MFF. The diffusivity χi peaks around kyρT i = 0.2 and increases

as β increases, resulting in the higher χi at higher β in Fig. 9. On the other hand, when

we average χi over 40 ≤ t ≤ 80 to exclude the intermittent bursts for β = 1.2%, χi is

significantly reduced at low wavenumber kyρT i ≤ 0.2 in Fig. 11 (b). This indicates that

the intermittent bursts are caused by low-wavenumber kyρT i ≤ 0.2 fluctuations, and these

larger-scale fluctuations significantly enhance χi at higher β. As a result, when we exclude

the intermittent bursts at βi = 1.2%, χi decreases with increasing β in Fig. 12 as expected

from the linear growth rate for the MFF scan. Thus, the higher χi at higher β in Fig. 9 is

due to the intermittent bursts with long-wavelength fluctuations at higher β. In addition,

it is found that zonal flows become significantly weak when the bursts appear as shown in

Fig. 13, and thus the temporal weakening of zonal flows can be the cause of the bursts. We

will investigate the details of these bursts in our future work.

V. SUMMARY

We have investigated the β dependence of turbulent transport in self-consistent numerical

MHD equilibrium states of a tokamak plasma at finite β by gyrokinetic simulations. The

MHD equilibrium state is calculated for each value of β using the VMEC code and is

consistent with the Cyclone base case DIII-D parameters. We have compared two β scans:
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a scan with background magnetic field structure change (MFC) as β increases and a scan

with remaining magnetic field structure fixed (MFF). The MFC includes the influence of

the background magnetic field change with β such as the Shafranov shift due to the Pfirsch-

Schluter current, while the MFF includes only the increase of the amplitude of magnetic

fluctuations due to the increase of β.

The linear growth rate of drift-wave instabilities and associated turbulent transport at

finite β value are calculated using the GKV code. For the MFF scan, the electromagnetic

stabilization due to magnetic fluctuations on the ITG mode is observed. The electromagnetic

stabilization is obtained for three MFF scans using the MHD equilibrium at β = 0, 1.2%

and 2.4% calculated by the VMEC code. For the MFC scan, by contrast, the stabilization

is canceled out by the influence of the Shafranov shift, and thus the growth rate of the ITG

mode remains unchanged as β increases, consistent with the calculation using the s − α

model [26], while the enhancement of the growth rate is larger than that from the s − α

model. This influence of the Shafranov shift can be understood by examining the dispersion

relation of electromagnetic ITG modes (Eq. (1)). The dispersion relation implies that the

reduction of k2

⊥ by the MFC enhances the electromagnetic stabilization, while the reduction

of ωd by the MFC reduces the stabilization. Then, the influence of the MFC on ωd is found to

be larger than that on k2

⊥ by our simulations, leading to the enhancement of the growth rate

of the ITG mode. The dispersion relation also implies that the electromagnetic stabilizing

effect on the ITG mode is enhanced by small k‖, which can be realized in weak magnetic

shear plasmas.

The significant difference of the MFC scan from the s−α model is that the critical onset

β value for the KBM is significantly increased from β = 2.6% to β > 4.8%. This is because

the validity of the s − α model is gradually diminished with increasing β compared to the

self-consistent MHD equilibrium calculated by the VMEC code.

The energy transport coefficients χi and χe are evaluated by nonlinear simulations. The

ion energy transport increases with β for both the MFC and MFF scans, while the increasing

rate is larger for the MFC. The electron energy transport also increases with β for both

the MFC and MFF scans, while the transport rapidly increases for the MFC. The larger

transport in the MFC scan than the MFF is consistent with the results from the s−α model

[26]. On the other hand, the higher χi at higher β in the MFF scan without Shafranov shift

is in contrast to the results from the s − α model. The MFF scan from the s − α model
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exhibits the lower χi at higher β. The increase of χi with β in the MFF scan from the

numerically calculated equilibrium is due to the intermittent bursts with long-wavelength

fluctuations at higher β, which are related to a temporal reduction of zonal flows.

APPENDIX A: COMPARISON BETWEEN s − α MODEL AND NUMERICAL

MHD EQUILIBRIUM WITH LARGE ASPECT RATIO

Here, we discuss the deviation of the s−α model from the corresponding numerical MHD

equilibrium. The deviation is due to the inconsistency of the s − α model as shown below.

Since a large aspect ratio approximation is used in deriving the s − α model, we can make

k2

⊥ and ωd be close to those of s − α model by setting a large aspect ratio as shown in

Fig. 14. Figure 14 shows the profiles of the strength of the magnetic field B, the square

of perpendicular wavenumber k2

⊥ and the ion magnetic drift frequency ωdi along a field line

coordinate z for the CBC from the s − α model with a/R0 = 0.36, for the CBC calculated

by the VMEC with a/R0 = 0.36, and for the CBC with a large aspect ratio a/R0 = 0.04 by

the VMEC. The β value is set to be zero in this analysis.

The perpendicular wavenumber k2

⊥ of the VMEC equilibrium with the large aspect ratio

a/R0 = 0.04 is very close to that of the s−α model with a/R0 = 0.36 as shown in Fig. 14 (b),

and is enhanced by decreasing the inverse aspect ratio from a/R0 = 0.36 to a/R0 = 0.04.

The magnetic drift frequency ωdi of the VMEC equilibrium with a/R0 = 0.04 is also very

close to that of the s-α model with a/R0 = 0.36 as shown in Fig. 14 (c). On the other hand,

the profile of the strength of magnetic field B of the VMEC equilibrium with a/R0 = 0.04 is

significantly different from that of the s-α model with a/R0 = 0.36 as shown in Fig. 14 (a),

and thus the mirror-ratio of the VMEC equilibrium with the large aspect ratio a/R0 = 0.04

is much smaller than that with a/R0 = 0.36. We will show that this small mirror-ratio has

strong impact on the stability of the ITG mode. Figure 15 shows the linear growth rate

of drift-wave instabilities calculated for these three equilibrium states. The ITG mode is

unstable at low wavenumber, while the TEM is unstable at high wavenumber. The VMEC

equilibrium with a/R0 = 0.36 is more unstable against the ITG mode than the s−α model.

On the other hand, the growth rate of the ITG mode for the VMEC equilibrium with the

large aspect ratio a/R0 = 0.04 is much lower than that from the s−α model, even though k2

⊥

and ωdi are very similar to those of the s− α model. This small growth rate for the VMEC

12



equilibrium with the large aspect ratio a/R0 = 0.04 is due to its small mirror-ratio, because

the fraction of trapped electrons has significant impact on the growth rate of ITG modes.

Thus, the differences between the s − α model and the numerical equilibrium calculated

by the VMEC code shown in Fig. 4 is mainly caused by the inconsistent large-aspect-ratio

approximation used in the s − α model.

Finally, in order to understand the aspect ratio dependence of the Shafranov shift effect,

we have carried out an additional β scan for a small-aspect-ratio plasma with ǫ = 0.38 at

ρ = 0.5, i.e. a/R0 = 0.76. Figure 16 shows the linear growth rate as a function of β, and

presents a similar enhancement of the growth rate by the influence of the Shafranov shift as

those with ǫ = 0.18 in Sec. 3, and thus our conclusions are valid even in small-aspect-ratio

toroidal plasmas.
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FIG. 2: Magnetic surfaces (red curve) and constant poloidal angle lines (blue curve) on a cross

section at (a) β = 0 and (b) 2.4%.
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FIG. 8: Schematic of the influence of k2
⊥, ωdi and k2

‖ on the β dependence of the growth rate of

the ITG mode, where βi = β/(1 + Te/Ti).
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