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研究成果概要 

 The Wely semimetal tungsten ditelluride (WTe2) has attracted immense interest due to its 

fascinating physical properties and important applications as an example of topological quantum 

materials [1]. The novel phenomena of giant magneto-resistance are observed in Wely 

semimetal WTe2 [2]. The electronic band structures of thin layered WTe2 are determined by its 

layer number and stacking configuration including crystalline symmetry [3,4], which further 

influence the linear and nonlinear optical responses. In this study, we have simulated the linear 

and nonlinear optical responses of a few layer WTe2 based on a real-time first principles 

approach including quasiparticle corrections. The electronic and optical properties in various 

structures of WTe2 with different phases and stacking configurations were simulated by 

Quantum Espresso [5] and Yambo code [6]. The linear optical responses were calculated by 

Bethe-Salpeter equation (BSE)-GW methods and the nonlinear optical responses of second 

harmonic generation (SHG) were simulated by independent particle approximation (IPA) with 

quasi-particle corrections.  

The monolayer 1T’- WTe2 with P21/m space group shows inactivity of SHG signals, while the 

monolayer Td- WTe2 with Pm space group shows strong activity of SHG signals. The strong 

anisotropic second-order nonlinear susceptibility is observed due to low-symmetry crystal 

structures in monolayer Td- WTe2. Moreover, the monolayer 2H- WTe2 with P6
_

m2 space group 

shows activity of SHG signals, as similar to the other semiconducting MX2 (M=Mo, W, X=S, 

Se). The results show that WTe2 has unique phase-dependent optical properties including 

nonlinear optical responses, which are different from other two-dimensional transition metal 

dichalcogenides. 
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