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Abstract

The 3D-index is an invariant of a 3-manifold with cusps, which would be related to the volume
conjecture, and it would be useful to study properties of this invariant. In this paper, we calculate the
3D-index of the nth cyclic covers of hyperbolic knot complements, and show that the dth coefficient
of this 3D-index is equal to a polynomial in n of degree ≤ 2d for any sufficiently large n. In particular,
we calculate these polynomials concretely for lower degrees for the 41, 52, 61 knots.

1 Introduction

The 3D-index of a 3-manifold M with cusps is introduced in [2] from the viewpoint of
mathematical physics, which can be regarded as the partition function of SL(2,C) Chern–
Simons theory as mentioned in [2]. They predict that the 3D-index is a topological
invariant of M . Let T be an ideal triangulation of M . The 3D-index is defined as a
power series in q with integer coefficients by using an infinite sum over integer labels of
the edges of T . In general, this sum does not necessarily converge. In order that this sum
converges, we need the assumption that T has a strict angle structure. We assume that
M is hyperbolic, and T is an ideal triangulation giving the hyperbolic structure of M ; in
this case, T has a strict angle structure, and the above mentioned sum converges. For
details, see [3, 4, 5]. Further, from the mathematical viewpoint, another step is to show the
topological invariance of the 3D-index. As an extension of the 3D-index, the meromorphic
3D-index of M is introduced in [6], which is a topological invariant of M . They show
that, if T has a strict angle structure, the meromorphic 3D-index can be expanded into
a power series which coincides with the 3D-index. Hence, if M is a hyperbolic 3-manifold
with cusps, then the 3D-index of M is a topological invariant.

We expect that the 3D-index would be related to the volume conjecture. We recall
that the volume conjecture for knots is proposed in [11, 13], and the volume conjecture for
3-manifolds is proposed in [1]. The volume conjecture states that the hyperbolic volume
appears in the asymptotic expansion of quantum invariants of knots and 3-manifolds. The
volume conjecture is proved for some knots e.g. in [16, 17, 19], and for some 3-manifolds
in [18]. Further, “the volume conjecture for the meromorphic 3D-index” is proposed and
numerically observed for some knots in [8]. From the viewpoint of mathematical physics,
the volume conjecture is formally obtained by formally applying infinite dimensional sad-
dle point method to the path integral of the partition function of SL(2,C) Chern–Simons
theory, as mentioned in [18]. Further, it is conjectured in [12] that the hyperbolic volume
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appears in the asymptotic expansion of the meromorphic 3D-index. As we mention above,
the 3D-index can be regarded as the partition function of SL(2,C) Chern–Simons theory.
Hence, we expect that the 3D-index might be an approach to prove the volume conjecture.
The volume conjecture is an important conjecture which relates quantum topology and
hyperbolic geometry. Hence, we expect that it would be useful to study properties of the
3D-index, which might be related to quantum topology and hyperbolic geometry.

In this paper, we calculate the 3D-index of finite cyclic covers of some hyperbolic knot
complements, and observe the behavior of the 3D-index of finite cyclic covers. Let K be
a hyperbolic knot. We assume that S3−K has an ideal triangulation which gives the
hyperbolic structure of S3−K. Let Mn(K) be the n-fold cyclic cover of S3−K. We put
coefficients of its 3D-index as

I
(
Mn(K)

)
= 1 + c

(n)
1 (K) q + c

(n)
2 (K) q2 + · · · ∈ Z[[q]].

In Theorem 3.1, we show that, for each d > 0, c
(n)
d (K) is equal to a polynomial in n

of degree ≤ 2d for any sufficiently large n. Since the hyperbolic volume of the n-fold
cover of a hyperbolic manifold is equal to n times the hyperbolic volume of the hyperbolic
manifold, this behavior of the 3D-index is an extension of the behavior of the hyperbolic
volume. We calculate concrete examples of such polynomials in Theorems 3.2, 3.3, 3.4;
for the 41 knot, we have that

c
(n)
1 (41) = 0 for n ≥ 2, c

(n)
2 (41) = 0 for n ≥ 3, c

(n)
3 (41) = 0 for n ≥ 4,

and, for the 52 knot, we have that

c
(n)
1 (52) = n(n− 2) for n ≥ 2, c

(n)
2 (52) =

1

4
n
(
n3 − 6n2 + n+ 36

)
for n ≥ 4,

and, for the 61 knot, we have that

c
(n)
1 (61) = n(n− 2) for n ≥ 2, c

(n)
2 (61) =

1

4
n
(
n3 − 6n2 + n+ 32

)
for n ≥ 3.

We obtain these theorems in the following way. For example, for the 41 knot, I
(
Mn(41)

)
is presented by

I
(
Mn(41)

)
=

∑
a0=0,

a1,··· ,a2n−1∈Z

Ĵ41(a0+a3, 2a1, 2a2) Ĵ41(a1+a4, 2a2, 2a3)

× Ĵ41(a2+a5, 2a3, 2a4) Ĵ41(a3+a6, 2a4, 2a5)

× · · ·
× Ĵ41(a2n−2+a2n+1, 2a2n−1, 2a2n) Ĵ41(a2n−1+a2n+2, 2a2n, 2a2n+1), (1)

where we regard the subscript of ai as modulo 2n, as we show in Section B.1. Here,
deg Ĵ41(ℓ1, ℓ2, ℓ3) ≥ 0 for ℓ1, ℓ2, ℓ3 ∈ Z, and the equality holds if and only if ℓ1 = ℓ2 = ℓ3.
Further, there exists an constant δ > 0 such that,

if deg Ĵ41(ℓ1, ℓ2, ℓ3) > 0, then deg Ĵ41(ℓ1, ℓ2, ℓ3) ≥ δ. (2)
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Hence, for any fixed d > 0, the degree ≤ d part of I
(
Mn(41)

)
depends on contributions

from sequences (a0, a1, · · · , an−1) for a sufficiently large n, only when a sequence is ob-
tained as the union of constant sequences and particular sequences. We note that, by
(2), there are finitely many such particular sequences of degree ≤ d. By classifying such
particular sequences of degree ≤ d, we can calculate the degree ≤ d part of I

(
Mn(41)

)
as

a polynomial in n for a sufficiently large n. In this approach, we obtain the degree ≤ d
part of I

(
Mn(K)

)
as combinations of finitely many particular sequences, which can be

classified for any given d. For details, see Section 5.

Another approach to calculate I
(
Mn(K)

)
is calculation by using eigenvalues of a trans-

fer matrix. For example, for the 41 knot, I
(
Mn(41)

)
is presented by (1), where the range

of the sum is given by
a0 = 0, a1, · · · , a2n−1 ∈ Z.

By putting
a′k = ak − ak−1,

the range of the sum is rewritten as

a′0, a
′
1, · · · , a′2n−1 ∈ Z, a′0 + a′1 + · · ·+ a′2n−1 = 0.

Further, we put

M(a′1,a
′
2)

(a′3,a
′
4)

= Ĵ41(a0+a3, 2a1, 2a2) Ĵ41(a1+a4, 2a2, 2a3)u
a′2+a′3 ,

where u is a variable whose power counts a′2 + a′3 + · · · , and we put the transfer matrix
by

M =
(
M(a′1,a

′
2)

(a′3,a
′
4)

)
.

Then, I
(
Mn(41)

)
can be presented by

I
(
Mn(41)

)
=
(
the coefficient of u0 in traceMn

)
=
(
the coefficient of u0 in λn

1 + λn
2 + · · ·

)
,

where λ1, λ2, · · · are eigenvalues of M. Hence, by calculating λ1, λ2, · · · concretely, we
obtain concrete values of lower degree part of I

(
Mn(K)

)
. In this approach, the char-

acteristic polynomial (22) of M−1 is itself an invariant of K, and it can be regarded
as a universal invariant among I

(
Mn(K)

)
for all n; see Remark 4.4. For details of this

approach, see Section 4.

We comment on related works. We note that the “stability property” of the colored
Jones polynomial Jn(K) ∈ Z[q±1] is discussed in [7], which means that there exists a
relatively simple function of n and q such that it is equal to Jn(K) for any sufficiently

large n. From this viewpoint, Theorem 3.1 means that, for each d, c
(n)
d has a “polynomial

stability” for any sufficiently large n. We also note that the loop invariants and some
kinds of quantum invariants of cyclic covers of hyperbolic knot complements are studied
in [9, 10], where such invariants are expressed in terms of the twisted Neumann-Zagier
matrix, which is a Z[t±1]-lift of the Neumann-Zagier matrix of an ideal triangulation of
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the hyperbolic knot complement. The Neumann-Zagier matrix given in Section 5.5 is
essentially equivalent to the twisted Neumann-Zagier matrix. Hence, the method of that
section is partially similar to the method in [9, 10].

The paper is organized, as follows. In Section 2, we review the definition of the 3D-
index. In Section 3, we give Theorems 3.2, 3.3, 3.4, which show concrete values of lower
degree part of I

(
Mn(K)

)
for the 41, 52, 61 knots. As a generalization of them, we give

Theorem 3.1, which shows that the dth coefficient of I
(
Mn(K)

)
is a polynomial in n of

degree ≤ 2d for a sufficiently large n. In Section 4, we calculate lower degree part of
I
(
Mn(K)

)
by using eigenvalues of transfer matrices for the 41, 52, 61 knots. In Section

5, we give proofs of Theorems 3.2, 3.3, 3.4 by using particular sequences of parameters.
Further, we give a proof of Theorem 3.1 as a generalization of them. In Appendix A, we
classify particular sequences of parameters for lower degrees, which are used in Section 5.
In Appendix B, we give concrete presentations of I

(
Mn(K)

)
for the 41, 52, 61 knots.

The author would like to thank Andrew Kricker and Stavros Garoufalidis for many
helpful comments. The author is partially supported by JSPS KAKENHI Grant Numbers
JP21H04428, JP16H02145 and JP19K21830.

2 Preliminaries

In this section, we review the definition of the 3D-index of a hyperbolic 3-manifold M
with a cusp. We also review a modification of the defining formula of the 3D-index such
that the lowest degree of the summand is non-negative which is obtained by using the
hyperbolic structure of M . For details, see [3, 4, 5].

We put

Ĩ(m, e) =
∞∑

n=max{0,−e}

(−1)n
q

1
2
n(n+1)−(n+ 1

2
e)m

(q)n (q)n+e

for m, e ∈ Z, where

(q)n =

{
1 if n = 0,

(1− q)(1− q2) · · · (1− qn) if n > 0.

We put

I(ℓ1, ℓ2, ℓ3) = (−q1/2)−ℓ1 Ĩ(ℓ1−ℓ2, ℓ3−ℓ1)

= (−q1/2)−ℓ2 Ĩ(ℓ2−ℓ3, ℓ1−ℓ2)

= (−q1/2)−ℓ3 Ĩ(ℓ3−ℓ1, ℓ2−ℓ3),

noting that I(ℓ1, ℓ2, ℓ3) is invariant under all permutations of ℓ1, ℓ2, ℓ3, and satisfies that

I(ℓ1, ℓ2, ℓ3) =
(
− q1/2

)−c
I(ℓ1 + c, ℓ2 + c, ℓ3 + c). (3)

Let M be a hyperbolic 3-manifold with a cusp. We assume that M has an ideal
triangulation T which gives the hyperbolic structure of M , and T has m′ tetrahedra
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and m edges. We assign an integer label aj to the jth edge Ej. Let ∆i be the ith ideal
tetrahedron of T , whose edges are labeled as follows,

∆i

af(i)

ah′(i)

ag′(i)

ag(i)

ah(i)

af ′(i)

(4)

where f , f ′, g, g′, h, h′ are maps {1, · · · ,m′} → {1, · · · ,m} such that Ef(i) and Ef ′(i),
Eg(i) and Eg′(i), Eh(i) and Eh′(i) are opposite edges of ∆i, and the edge Ej is labeled by an
integer aj. The 3D-index of M is defined by

I(M) =
∑

a1,··· ,am ∈Z
aj=0

qa1+···+am
∏
i

I
(
af(i)+af ′(i), ag(i)+ag′(i), ah(i)+ah′(i)

)
∈ Z[[q]], (5)

where we fix any j. We can show that the right-hand side of (5) does not depend on
the choice of j, as follows. By counting the Euler number of the boundary torus of a
neighborhood of the cusp of M using m and m′, we can show that m = m′. Hence, by
(3), the summand of (5) is invariant under replacing (a1, · · · , am) with (a1+c, · · · , am+c).
Therefore, the right-hand side of (5) does not depend on the choice of j.

In general, the sum (5) does not necessarily converge. In order that the sum of (5)
converges, we need the assumption that T has a strict angle structure. Actually, in
this paper, we assume that M is hyperbolic, and T is an ideal triangulation giving the
hyperbolic structure of M ; in this case, T has a strict angle structure, and the sum of (5)
converges. For details, see [3, 4, 5] and Section 5.4.

We define the degree of I(ℓ1, ℓ2, ℓ3) to be the lowest degree of I(ℓ1, ℓ2, ℓ3). Then, we
have that

deg I(ℓ1, ℓ2, ℓ3) =


1
2
(ℓ2 − ℓ1)(ℓ3 − ℓ1)− 1

2
ℓ1 if ℓ1 ≤ ℓ2 and ℓ1 ≤ ℓ3,

1
2
(ℓ1 − ℓ2)(ℓ3 − ℓ2)− 1

2
ℓ2 if ℓ2 ≤ ℓ1 and ℓ2 ≤ ℓ3,

1
2
(ℓ1 − ℓ3)(ℓ2 − ℓ3)− 1

2
ℓ3 if ℓ3 ≤ ℓ1 and ℓ3 ≤ ℓ2.

(6)

We note that the degree of I(ℓ1, ℓ2, ℓ3) is positive in many cases, but it can be negative
in some cases.

We rewrite the sum (5) in such a way that the degree of the summand is non-negative.
In order to this, we briefly review an ideal tetrahedron in the hyperbolic space H3. We
assign labels to the four vertices of an ideal tetrahedron such that the labels are in C ∪
{∞} = ∂H3. The shape of an ideal tetrahedron is determined by these labels, and, by
the action of PSL2C = Isom(H3), these labels are normalized in the form {∞, 0, 1, x} for
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some x ∈ C− {0, 1}.
∞

0

1

x

α

γ

β

β

γ

α

H3

C

∞

0 1

x

0 1

x

x

1− 1
x

1
1−x

Then, the angles of faces are given by

Arg x, Arg
1

1− x
, Arg

(
1− 1

x

)
,

noting that the opposite edge has the same angle. We put

α =
1

2π
Arg x, β =

1

2π
Arg

1

1− x
, γ =

1

2π
Arg

(
1− 1

x

)
.

We note that

α + β + γ =
1

2
, (7)

since Arg x+Arg 1
1−x

+Arg
(
1− 1

x

)
= Arg (−1) = π. We denote these angles for tetrahedra

∆i by αi, βi, γi, as follows.

∆i

∞

0

1

xi

af(i)

ah′(i)

ag′(i)

ag(i)

ah(i)

af ′(i)

∞

0

1

xi

αi

γi

βi

βi

γi

αi

By (7), we have that

αi + βi + γi =
1

2
. (8)

Since the sum of angles around the edge Ej is equal to 2π, we have that∑
f(i)=j

αi +
∑

f ′(i)=j

αi +
∑
g(i)=j

βi +
∑

g′(i)=j

βi +
∑
h(i)=j

γi +
∑

h′(i)=j

γi = 1
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for each j. Hence,∑
i

αi(af(i) + af ′(i)) + βi(ag(i) + ag′(i)) + γi(ah(i) + ah′(i))

=
∑
j

( ∑
f(i)=j

αi +
∑

f ′(i)=j

αi +
∑
g(i)=j

βi +
∑

g′(i)=j

βi +
∑
h(i)=j

γi +
∑

h′(i)=j

γi

)
aj =

∑
j

aj. (9)

We put
Ji(ℓ1, ℓ2, ℓ3) = qαiℓ1+βiℓ2+γiℓ3I(ℓ1, ℓ2, ℓ3), (10)

noting that
Ji(ℓ1, ℓ2, ℓ3) = Ji(ℓ1 + 2c, ℓ2 + 2c, ℓ3 + 2c)

by (3) and (8). Then, by (9), we have that

I(M) =
∑

a1,··· ,am ∈Z
aj=0

∏
i

Ji
(
af(i)+af ′(i), ag(i)+ag′(i), ah(i)+ah′(i)

)
. (11)

By (6) and (8), we have that

deg Ji(ℓ1, ℓ2, ℓ3)

=


1
2
(ℓ2−ℓ1)(ℓ3−ℓ1) + βi(ℓ2−ℓ1) + γi(ℓ3−ℓ1) if ℓ1 ≤ ℓ2 and ℓ1 ≤ ℓ3 ,

1
2
(ℓ1−ℓ2)(ℓ3−ℓ2) + αi(ℓ1−ℓ2) + γi(ℓ3−ℓ2) if ℓ2 ≤ ℓ1 and ℓ2 ≤ ℓ3 ,

1
2
(ℓ1−ℓ3)(ℓ2−ℓ3) + αi(ℓ1−ℓ3) + βi(ℓ2−ℓ3) if ℓ3 ≤ ℓ1 and ℓ3 ≤ ℓ2 .

(12)

In particular,
deg Ji(ℓ1, ℓ2, ℓ3) ≥ 0

for any ℓ1, ℓ2, ℓ3 ∈ Z. Further, the equality holds if and only if ℓ1 = ℓ2 = ℓ3 .

Lemma 2.1. There exists a constant δ > 0 such that, if

deg Ji
(
ℓ1, ℓ2, ℓ3) > 0,

then
deg Ji

(
ℓ1, ℓ2, ℓ3) ≥ δ.

Proof. Let δ be the minimum of αi, βi, γi for all i. By (12), we have that

deg Ji(ℓ1, ℓ2, ℓ3) ≥


βi(ℓ2−ℓ1) + γi(ℓ3−ℓ1) if ℓ1 ≤ ℓ2 and ℓ1 ≤ ℓ3 ,

αi(ℓ1−ℓ2) + γi(ℓ3−ℓ2) if ℓ2 ≤ ℓ1 and ℓ2 ≤ ℓ3 ,

αi(ℓ1−ℓ3) + βi(ℓ2−ℓ3) if ℓ3 ≤ ℓ1 and ℓ3 ≤ ℓ2 .

Hence, unless ℓ1 = ℓ2 = ℓ3, we have that

deg Ji
(
ℓ1, ℓ2, ℓ3) ≥ δ,

as required.
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3 Main results

In this section, we give Theorems 3.2, 3.3, 3.4, which show concrete values of lower
degree part of I

(
Mn(K)

)
for the 41, 52, 61 knots. For a general hyperbolic knot, we give

Theorem 3.1, which states that, for any fixed d, the dth coefficient of I
(
Mn(K)

)
is equal

to a polynomial in n of degree ≤ 2d for any sufficiently large n.

Let K be a hyperbolic knot. We assume that there exists an ideal triangulation of
S3 −K which gives the hyperbolic structure of S3 −K, and we fix such a triangulation.
Let Mn(K) denote the n-fold cyclic cover of S3 −K, which has an ideal triangulation as
a lift of the ideal triangulation of S3−K. We regard Mn(K) as a 3-manifold with a cusp.
We put coefficients of I

(
Mn(K)

)
as

I
(
Mn(K)

)
= 1 + c

(n)
1 (K) q + c

(n)
2 (K) q2 + · · · ∈ Z[[q]].

As for behavior of values of lower degree part of I
(
Mn(K)

)
for any sufficiently large

n, we have the following theorem.

Theorem 3.1. For any positive integer d, there exist a positive integer n0 and a polyno-

mial pKd (n) in n of degree ≤ 2d such that c
(n)
d (K) = pKd (n) for any n ≥ n0.

We give a proof of the theorem in Section 5.5.

We put
ĨK(n, q) = 1 + pK1 (n) q + pK2 (n) q

2 · · · ∈ Z[n][[q]].

As for concrete values of lower degree part of I
(
Mn(41)

)
for any sufficiently large n,

we have the following theorem.

Theorem 3.2. We have that

p411 (n) = 0, p412 (n) = 0, p413 (n) = 0.

Hence,
Ĩ41(n, q) = 1 +O(q4).

We give a proof of the theorem in Section 5.1. As for concrete values of degree ≤ 7 part
of I

(
Mn(41)

)
for n ≤ 8, it is obtained by computer calculation that

I
(
M1(41)

)
= 1− 2q − 3q2 + 2q3 + 8q4 + 18q5 + 18q6 + 14q7 +O(q8),

I
(
M2(41)

)
= 1 + 2q2 + 8q3 − 3q4 − 32q5 − 66q6 − 56q7 +O(q8),

I
(
M3(41)

)
= 1 − 2q3 − 18q4 − 6q5 + 138q6 + 306q7 +O(q8),

I
(
M4(41)

)
= 1 + 2q4 + 32q5 + 48q6 − 424q7 +O(q8),

I
(
M5(41)

)
= 1 − 2q5 − 50q6 − 160q7 +O(q8),

I
(
M6(41)

)
= 1 + 2q6 + 72q7 +O(q8),

I
(
M7(41)

)
= 1 − 2q7 +O(q8),

I
(
M8(41)

)
= 1 +O(q8).
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We can observe that there is a particular property that coefficients of lower left part are
0. We explain a reason of this property in Theorem 4.5 later. By Theorem 3.2, we can
verify that

c
(n)
1 (41) = p411 (n) for any n ≥ 2, (13)

c
(n)
2 (41) = p412 (n) for any n ≥ 3, (14)

c
(n)
3 (41) = p413 (n) for any n ≥ 4, (15)

which we prove for n ≥ 6 in Section 5.1.

As for concrete values of lower degree part of I
(
Mn(52)

)
for any sufficiently large n,

we have the following theorem.

Theorem 3.3. We have that

p521 (n) = n(n− 2), p522 (n) =
1

4
n (n3 − 6n2 + n+ 36).

Hence,

Ĩ52(n, q) = 1 + n(n− 2) q +
1

4
n (n3 − 6n2 + n+ 36) q2 +O(q3).

We give a proof of the theorem in Section 5.2. As for concrete values of degree ≤ 3 part
of I

(
Mn(52)

)
for n ≤ 8, it is obtained by computer calculation that

I
(
M1(52)

)
= 1 − 4q − q2 + 16q3 + 26q4 +O(q5),

I
(
M2(52)

)
= 1 + 14q2 + 6q3 − 107q4 +O(q5),

I
(
M3(52)

)
= 1 + 3q + 15q2 − 82q3 − 24q4 +O(q5),

I
(
M4(52)

)
= 1 + 8q + 8q2 − 72q3 +O(q4),

I
(
M5(52)

)
= 1 + 15q + 20q2 + 45q3 +O(q4),

I
(
M6(52)

)
= 1 + 24q + 63q2 + 216q3 +O(q3),

I
(
M7(52)

)
= 1 + 35q + 161q2 + 546q3 +O(q3),

I
(
M8(52)

)
= 1 + 48q + 344q2 + 1248q3 +O(q3).

Hence, we can observe for n ≤ 8 that

c
(n)
1 (52) = p521 (n) for any n ≥ 2, (16)

c
(n)
2 (52) = p522 (n) for any n ≥ 4, (17)

which we prove for n > 8 in Section 5.2.

As for concrete values of lower degree part of I
(
Mn(61)

)
for any sufficiently large n,

we have the following theorem.

Theorem 3.4. We have that

p611 (n) = n(n− 2), p612 (n) =
1

4
n (n3 − 6n2 + n+ 32).
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Hence,

Ĩ61(n, q) = 1 + n(n− 2) q +
1

4
n (n3 − 6n2 + n+ 32) q2 +O(q3).

We give a proof of the theorem in Section 5.3. As for concrete values of degree ≤ 2 part
of I

(
Mn(61)

)
for n ≤ 8, it is obtained by computer calculation that

I
(
M1(61)

)
= 1 − 4q + q2 + 18q3 +O(q4),

I
(
M2(61)

)
= 1 + 14q2 +O(q3),

I
(
M3(61)

)
= 1 + 3q + 6q2 +O(q3),

I
(
M4(61)

)
= 1 + 8q + 4q2 +O(q3),

I
(
M5(61)

)
= 1 + 15q + 15q2 +O(q3),

I
(
M6(61)

)
= 1 + 24q + 57q2 +O(q3),

I
(
M7(61)

)
= 1 + 35q + 154q2 +O(q3),

I
(
M8(61)

)
= 1 + 48q + 336q2 +O(q3).

Hence, we can observe for n ≤ 8 that

c
(n)
1 (61) = p611 (n) for any n ≥ 2, (18)

c
(n)
2 (61) = p612 (n) for any n ≥ 3, (19)

which we prove for n ≥ 5 in Section 5.3.

4 Calculation of I
(
Mn(K)

)
from eigenvalues of transfer matrices

The defining formula of I
(
Mn(K)

)
can be rewritten by using the product of n copies of

some matrix, which we call a transfer matrix. In this section, we calculate I
(
Mn(K)

)
from eigenvalues of a transfer matrix.

We recall the finite dimensional case. Let M be an m×m matrix. We put

τn = traceMn.

We like to know the behavior of τn. We put

σ1 = τ1 ,

σk =
1

k

(
τk − σ1τk−1 + σ2τk−2 − · · ·+ (−1)k−1σk−1τ1

)
for k = 2, · · · ,m.

(20)

Then, the characteristic polynomial of M is given by

Tm − σ1T
m−1 + σ2T

m−2 − σ3T
m−3 + · · ·+ (−1)mσm = 0.

The eigenvalues λ1, · · · , λm are obtained as the solutions of this equation. Then, we have
that

τn = λn
1 + λn

2 + · · ·+ λn
m.

10



The behavior of τn can be described by this equation.

Let K be a hyperbolic knot in S3. We assume that there exists an ideal triangulation
of S3−K which gives the hyperbolic structure of S3−K, and we fix such a triangulation.
We consider a fundamental domain C of the infinite cyclic cover of S3 − K, which is a
union of ideal tetrahedra. The boundary of the fundamental domain C consists of F1 and
F2; they are unions of ideal triangles, and they are naturally identified in S3−K. F1 and
F2 might have common edges. The n-fold cyclic cover of S3 − K is obtained by gluing

n copies C(k) of C along n copies F
(k)
1 , F

(k)
2 of F1, F2 by naturally identifying F

(k)
1 and

F
(k−1)
2 .

We consider a “transfer matrix”M which is an invariant of C. In fact, we can calculate
an invariant of

∪
i≤k C

(i) from an invariant of
∪

i<k C
(i) by using an invariant of C(k), which

can often been presented by a matrix M, which we call a transfer matrix. In this case,
I
(
Mn(K)

)
is obtained from Mn; for concrete formulas, see (23), (25), (27). As we can

see in these formulas, we can define a matrix M whose entries are defined to be some
factors in the defining formula of I

(
Mn(K)

)
such that

I
(
Mn(K)

)
=
(
the coefficient of u0 in traceMn

)
. (21)

For simplicity, we consider the following assumption.

Assumption 4.1. We assume that the eigenvalues λ1, λ2, λ3, · · · ofM are in (C[u±1])[[q1/2]],
and that the lowest degree of λk with respect to q goes to ∞ as k → ∞.

We obtain lower degree part of λk, as follows.

τk = traceMk +O(qm+ 1
2 )

By (20), we obtain σk from τk. We consider the following equation,

1− σ1T̂ + σ2T̂
2 − σ3T̂

3 + · · ·+ (−1)mσmT̂
m = O(qm+ 1

2 ), (22)

and we assume that solutions of T are invertible elements in q−m ·
(
C[u±1]

)
[[q1/2]]. Then,

the eigenvalues of M are obtained from its solutions, as follows,

T̂−1 = λ1, λ2, λ3, · · · ∈
(
C[u±1]

)
[[q1/2]].

Recalling that

traceMn = τn = λn
1 + λn

2 + λn
3 + · · · ∈

(
C[u±1]

)
[[q1/2]],

the invariant I
(
Mn(K)

)
can be presented in the following form,

I
(
Mn(K)

)
=
(
the coefficient of u0 in (λn

1 + λn
2 + λn

3 + · · · )
)

∈ Z[[q]].

In fact, the cases of the 41 knot and the 61 knot satisfy Assumption 4.1 in lower degrees
as we see in Sections 4.1 and 4.3, but the case of the 52 knot does not satisfy Assumption
4.1 as we see in Section 4.2.

More generally, we need the following assumption instead of Assumption 4.1, which
the case of the 52 knot satisfies in lower degrees.

11



Assumption 4.2. We assume that the eigenvalues λ1, λ2, λ3, · · · of M are in
(C[u±1])[[q1/2K1 , q1/2K2 , · · · ]], and that the lowest degree of λk with respect to q goes to
∞ as k → ∞.

In general, the eigenvalues of M might belongs to (C[u±1])[[q1/2K1 , q1/2K2 , · · · ]], where
C[u±1] denotes the algebraic closure of C[u±1].

Remark 4.3. As for other coefficients of (21), we have that

I
(
Mn(K)

)( k
2
(longitude)

)
=
(
the coefficient of uk in traceMn

)
,

where the general 3D-index I(M)(γ) is defined for γ ∈ H1(∂M), regarding M as a 3-
manifold with a torus boundary; see [5, 4].

Remark 4.4. The right-hand side of (22) is the characteristic polynomial of M−1, and it
is itself an invariant ofK, and it can be regarded as a universal invariant among I

(
Mn(K)

)
for all n.

4.1 Calculation of I
(
Mn(41)

)
from eigenvalues of a transfer matrix

In this section, we calculate I
(
Mn(41)

)
from eigenvalues of a transfer matrix.

By (82), I
(
Mn(41)

)
is presented by

I
(
Mn(41)

)
=
∑

Ĵ41(a0+a3, 2a1, 2a2) Ĵ41(a1+a4, 2a2, 2a3)

× Ĵ41(a2+a5, 2a3, 2a4) Ĵ41(a3+a6, 2a4, 2a5)

× · · ·
× Ĵ41(a2n−2+a2n+1, 2a2n−1, 2a2n) Ĵ41(a2n−1+a2n+2, 2a2n, 2a2n+1),

where we regard the subscript of ai as modulo 2n, and the range of the sum is given by

a0 = 0, a1, · · · , a2n−1 ∈ Z.

By putting
a′k = ak − ak−1,

the range of the sum is rewritten as

a′0, a
′
1, · · · , a′2n−1 ∈ Z, a′0 + a′1 + · · ·+ a′2n−1 = 0.

Further, we put

M(a′1,a
′
2)

(a′3,a
′
4)

= Ĵ41(a0+a3, 2a1, 2a2) Ĵ41(a1+a4, 2a2, 2a3)u
a′2+a′3 ,

where u is a variable whose power counts a′2 + a′3 + · · · . Since Ĵ41(ℓ1+2, ℓ2+2, ℓ3+2) =

Ĵ41(ℓ1, ℓ2, ℓ3), we note that the right-hand side depends only on a′1, a
′
2, a

′
3, a

′
4. Furthermore,

we put

M =
(
M(a′1,a

′
2)

(a′3,a
′
4)

)
.

12



The product of copies of M is given by

M2 =

(∑
a′3,a

′
4

M(a′1,a
′
2)

(a′3,a
′
4)
M(a′3,a

′
4)

(a′5,a
′
6)

)
,

where the parameters are related, as follows.

a0

a′1

a1
a′2

a2
a′3

a3

a′4

a4

a′5
a5

a′6

a6

Hence, I
(
Mn(41)

)
can be presented by

I
(
Mn(41)

)
=
(
the coefficient of u0 in traceMn

)
. (23)

We calculate the first few eigenvalues of M. We put

τk = traceMk.

Then, by computer calculation, we obtain that

τ1 = 1− 2q + 2q3/2(u+ u−1)− 3q2 + q3(2 + u2 + u−2)− 4q7/2(u+ u−1)

+ 2q4(4 + u2 + u−2) +O(q9/2),

τ2 = 1 + 2q2 − 4q5/2(u+ u−1) + 2q3(4 + u2 + u−2)− 4q7/2(u+ u−1)

− q4
(
3 + 4(u2 + u−2)

)
+ 4q9/2

(
u3 + u−3 + 4(u+ u−1

)
)

− 16q5(2 + u2 + u−2) +O(q11/2),

τ3 = 1− 2q3 + 6q7/2(u+ u−1)− 6q4(3 + u2 + u−2)

+ 2q9/2
(
u3 + u−3 + 9(u+ u−1)

)
+ 3q5(−2 + u2 + u−2)

− 6q11/2
(
3(u3 + u−3) + 8(u+ u−1)

)
+ 3q6

(
46 + 28(u2 + u−2) + 3(u4 + u−4)

)
+O(q13/2),

τ4 = 1 + 2q4 − 8q9/2(u+ u−1) + 4q5
(
8 + 3(u2 + u−2)

)
− 8q11/2

(
u3 + u−3 + 6(u+ u−1)

)
+ 2q6

(
24 + u4 + u−4 + 8(u2 + u−2)

)
+ 8q13/2

(
5(u3 + u−3) + 11(u+ u−1)

)
− 4q7

(
106 + 69(u2 + u−2) + 12(u4 + u−4)

)
+O(q15/2).

By observing the behavior of τ ′k, we can expect the first eigenvalue is given by

λ1 = 1 +O(q15/2).
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In order to calculate the next eigenvalues concretely, we put

τ ′n = (τn − 1)/(−q)n.

By (20), we obtain σ′
k from τ ′k, as follows,

σ′
1 = τ ′1

= 2− 2q1/2(u+ u−1) + 3q − q2(2− u2 − u−2) + 4q5/2(u+ u−1)

− 2q3(4 + u2 + u−2) +O(q7/2),

σ′
2 = − 1

2
(τ ′2 − σ′

1τ
′
1)

= 1− 2q1/2(u+ u−1) + q(6 + u2 + u−2)− 4q3/2(u+ u−1) + 2q2

+ 6q5/2(u+ u−1)− q3
(
22 + 7(u+ u−1)

)
+O(q7/2),

σ′
3 =

1

3
(τ ′3 − σ′

1τ
′
2 + σ′

2τ
′
1)

= q − 2q3/2(u+ u−1) + q2(4 + u2 + u−2)− q3
(
11 + 4(u+ u−1)

)
+O(q7/2),

σ′
4 = − 1

4
(τ ′4 − σ′

1τ
′
3 + σ′

2τ
′
2 − σ′

3τ
′
1)

= q2 − 2q5/2(u+ u−1) + q3(4 + u2 + u−2) +O(q7/2).

Further, we consider the following equation

1− σ′
1 T̂ + σ′

2 T̂
2 − σ′

3 T̂
3 + σ′

4 T̂
4 = O(q7/2).

From solutions T̂ of this equation, we obtain T̂−1 = λ′
2, λ

′
3, as follows,

λ′
2 = 1 − q1/2(u+ u−1) − q

(
− 1 +

√
−1 (u+ u−1)

)
+ q3/2

√
−1
(
1 +

1

2
(u2 + u−2)

)
− q2

( 1
2
(u2 + u−2) +

9
√
−1

8
(u+ u−1)−

√
−1

8
(u3 + u−3)

)
− q5/2

(
− 2(u+ u−1)− 7

√
−1

8
+

√
−1

2
(u2 + u−2)−

√
−1

16
(u4 + u−4)

)
− q3

√
−1
(51
64

(u+ u−1) +
31

128
(u3 + u−3)− 5

128
(u5 + u−5)

)
+O(q7/2),

λ′
3 = λ′

2.

Further, in order to calculate the next eigenvalues concretely, we put

τ ′′n = (τ ′n − λ′
2
n − λ′

3
n
)/qn.

They are concretely presented by

τ ′′1 = 1− 2q +O(q3/2),

τ ′′2 = −1− 4q +O(q3/2),

τ ′′3 = −2− 30q +O(q3/2).
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By (20), we obtain σ′′
k from τ ′′k , as follows,

σ′′
1 = τ ′′1 = 1− 2q +O(q3/2),

σ′′
2 = −1

2
(τ ′′2 − σ′′

1τ
′′
1 ) = 1− 2q +O(q3/2),

σ′′
3 =

1

3
(τ ′′3 − σ′′

1τ
′′
2 + σ′′

2τ
′′
1 ) = −10q +O(q3/2).

In a similar way as above, we obtain the next eigenvalues, as follows.

λ′′
4 = e−π

√
−1/3 +O(q1/2),

λ′′
5 = eπ

√
−1/3 +O(q1/2).

Therefore, putting

λ2 = −qλ′
2, λ3 = −qλ′

3, λ4 = −q2λ′′
4, λ5 = −q2λ′′

5,

we obtain lower degree parts of the first five eigenvalues, as follows,

λ1 = 1 +O(q15/2), (24)

λ2 = − q + q3/2(u+ u−1) + q2
(
− 1 +

√
−1 (u+ u−1)

)
− q5/2

√
−1
(
1 +

1

2
(u2 + u−2)

)
+ q3

( 1
2
(u2 + u−2) +

9
√
−1

8
(u+ u−1)−

√
−1

8
(u3 + u−3)

)
+ q7/2

(
− 2(u+ u−1)− 7

√
−1

8
+

√
−1

2
(u2 + u−2)−

√
−1

16
(u4 + u−4)

)
+ q4

√
−1
(51
64

(u+ u−1) +
31

128
(u3 + u−3)− 5

128
(u5 + u−5)

)
+O(q9/2),

λ3 = λ2,

λ4 = q2e2π
√
−1/3 +O(q5/2),

λ5 = λ4.

Hence, we obtain the following theorem.

Theorem 4.5. We can present I
(
Mn(41)

)
in terms of the above eigenvalues λ1, λ2, · · · , λ5

by

I
(
Mn(41)

)
=
(
the coefficient of u0 in (λn

1 + λn
2 + λn

3 + λn
4 + λn

5 )
)

+O(qmin{2n+1, 8}).
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We show concrete forms of Mn(41) obtained from the theorem for n ≤ 8, as follows,

I
(
M1(41)

)
= 1− 2q − 3q2 +O(q3),

I
(
M2(41)

)
= 1 + 2q2 + 8q3 − 3q4 +O(q5),

I
(
M3(41)

)
= 1 − 2q3 − 18q4 − 6q5 + 138q6 +O(q7),

I
(
M4(41)

)
= 1 + 2q4 + 32q5 + 48q6 − 424q7 +O(q8),

I
(
M5(41)

)
= 1 − 2q5 − 50q6 − 160q7 +O(q8),

I
(
M6(41)

)
= 1 + 2q6 + 72q7 +O(q8),

I
(
M7(41)

)
= 1 − 2q7 +O(q8),

I
(
M8(41)

)
= 1 +O(q8).

We can verify these values by comparing to these values which we show after Theorem
3.2. In particular, by Theorem 4.5, we can observe that coefficients of lower left part are
0.

Remark 4.6. From Theorem 3.2 and (24), we obtain that

Ĩ41(n, q) = λn
1 +O(q4).

In fact, we expect that λ1 = 1 and Ĩ41(n, q) = λ1, but, in order to show this in this way,
we have technical difficulty that we must calculate λ1 in (24) not only for lower degrees,
but also for all degrees, and we need Assumption 4.1 to ignore contributions from other
λn.

4.2 Calculation of I
(
Mn(52)

)
from eigenvalues of a transfer matrix

In this section, we calculate I
(
Mn(52)

)
from eigenvalues of a transfer matrix.

By (84), I
(
Mn(52)

)
is presented by

I
(
Mn(52)

)
=∑

Ĵ52(a0+c0, c0+b0, a1+b1) Ĵ52(a2+c0, c0+b1, a1+b0) Ĵ52(b0+b1, a1+c0, a0+a2)

× Ĵ52(a1+c1, c1+b1, a2+b2) Ĵ52(a3+c1, c1+b2, a2+b1) Ĵ52(b1+b2, a2+c1, a1+a3)

× · · ·
× Ĵ52(an−1+cn−1, cn−1+bn−1, an+bn) Ĵ52(an+1+cn−1, cn−1+bn, an+bn−1)

× Ĵ52(bn−1+bn, an+cn−1, an−1+an+1),

where we regard the subscripts of ai, bi, ci as modulo n, and the range of the sum is given
by

a0 = 0, a1, · · · , an−1, b0, · · · , bn−1, c0, · · · , cn−1 ∈ Z.
By putting

a′k = ak − ak−1, b′k = bk − ak, c′k = ck − bk,

the range of the sum is rewritten as

a′0, · · · , a′n−1, b
′
0, · · · , b′n−1, c

′
0, · · · , c′n−1 ∈ Z, a′0 + a′1 + · · ·+ a′n−1 = 0.
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Further, we put

M(b′0,a
′
1)

(b′1,a
′
2)

=
∑
c′0 ∈Z

Ĵ52(a0+c0, c0+b0, a1+b1) Ĵ52(a2+c0, c0+b1, a1+b0) Ĵ52(b0+b1, a1+c0, a0+a2)u
a′1 ,

where u is a variable whose power counts a′1 + a′2 + · · · . Since Ĵ52(ℓ1+2, ℓ2+2, ℓ3+2) =

Ĵ52(ℓ1, ℓ2, ℓ3), we note that the right-hand side depends only on b′0, a
′
1, b

′
1, a

′
2. Furthermore,

we put

M =
(
M(b′0,a

′
1)

(b′1,a
′
2)

)
.

The product of copies of M is given by

M2 =

(∑
b′1,a

′
2

M(b′0,a
′
1)

(b′1,a
′
2)
M(b′1,a

′
2)

(b′2,a
′
3)

)
,

where the parameters are related, as follows.

a0

b′0

b0

c′0

c0

a′1 a1

b′1

b1

c′1

c1

a′2 a2

b′2

b2

c′2

c2

a′3 a3

b′3

b3

c′3

c3

Hence, I
(
Mn(52)

)
can be presented by

I
(
Mn(52)

)
=
(
the coefficient of u0 in traceMn

)
. (25)

We calculate the first few eigenvalues of M. We put

τk = traceMk.

Then, by computer calculation, we obtain that

τ1 = 1 + q1/2(u+ u−1) + q(−4 + u2 + u−2) + q3/2(u3 + u−3)

+ q2(−1 + u4 + u−4) + q5/2
(
u5 + u−5 − 5(u+ u−1)

)
+ q3(16 + u6 + u−6) +O(q7/2),

τ2 = 1 + 2q1/2(u+ u−1 + 3q(u2 + u−2) + 4q3/2(−u− u−1 + u3 + u−3)

+ q2
(
14− 4(u2 + u−2) + 5(u4 + u−4)

)
+ 2q5/2

(
− 3(u+ u−1)− 2(u3 + u−3) + 3(u5 + u−5)

)
+ q3

(
6− 12(u2 + u−2)− 4(u4 + u−4) + 7(u6 + u−6)

)
+O(q7/2),
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τ3 = 1 + 3q1/2(u+ u−1) + 3q
(
1 + 2(u2 + u−2)

)
+ q3/2

(
− 3(u+ u−1) + 10(u3 + u−3)

)
+ 3q2

(
5− 3(u2 + u−2) + 5(u4 + u−4)

)
+ 3q5/2

(
9(u+ u−1)− 5(u3 + u−3) + 7(u5 + u−5)

)
+ q3

(
− 82 + 9(u2 + u−2)− 21(u4 + u−4) + 28(u6 + u−6)

)
+O(q7/2),

τ4 = 1 + 4q1/2(u+ u−1) + 2q(4 + 5(u2 + u−2)) + 4q3/2
(
u+ u−1 + 5(u3 + u−3)

)
+ q2

(
8− 8(u2 + u−2) + 35(u4 + u−4)

)
+ 4q5/2

(
11(u+ u−1)− 7(u3 + u−3) + 14(u5 + u−5)

)
+ 4q3

(
− 18 + 16(u2 + u−2)− 14(u4 + u−4) + 21(u6 + u−6)

)
+O(q7/2).

By (20), we obtain σk from τk, as follows,

σ1 = τ1

= 1 + q1/2(u+ u−1) + q(−4 + u2 + u−2) + q3/2(u3 + u−3)

+ q2(−1 + u4 + u−4) + q5/2
(
u5 + u−5 − 5(u+ u−1)

)
+ q3(16 + u6 + u−6) +O(q7/2),

σ2 = − 1

2
(τ2 − σ1τ1)

= − 3q − q3/2(u+ u−1) + q2(1− u2 − u−2) + q5/2
(
− u3 − u−3 − 2(u+ u−1)

)
+ q3(8 + u2 + u−2 − u4 − u−4) +O(q7/2),

σ3 =
1

3
(τ3 − σ1τ2 + σ2τ1)

= 5q2 + 4q5/2(u+ u−1) + q3
(
− 5 + 4(u2 + u−2)

)
+O(q7/2),

σ4 = − 1

4
(τ4 − σ1τ3 + σ2τ2 − σ3τ1)

= 2q2 + 2q5/2(u+ u−1) + 2q3(−1 + u2 + u−2) +O(q7/2).

We consider the following equation,

1− σ1 T̂ + σ2 T̂
2 − σ3 T̂

3 + σ4 T̂
4 = O(q7/2).

From solutions T̂ of this equation, we obtain T̂−1 = λ1, as follows,

λ1 = 1 + q1/2(u+ u−1) + q(−1 + u2 + u−2) + q3/2
(
− 2(u+ u−1) + u3 + u−3

)
+ q2(8 + u4 + u−4) + q5/2

(
− 5(u+ u−1) + u5 + u−5

)
+ q3

(
− 19− 12(u2 + u−2) + u6 + u−6

)
+O(q7/2).

Further, in order to calculate the next eigenvalues concretely, we put

τ ′n = τn − λn
1 .

They are concretely presented by

τ ′1 = − 3q + 2q3/2(u+ u−1)− 9q2 + q3
(
35 + 12(u2 + u−2)

)
+O(q7/2),
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τ ′2 = 3q2 − 14q5/2(u+ u−1) + q3
(
70 + 4(u2 + u−2)

)
+O(q7/2),

τ ′3 = 6q2 +O(q7/2)

τ ′4 = − 24q3 +O(q7/2)

τ ′k = O(q7/2) for k = 5, 6, 7, 8.

By (20), we obtain σ′
k from τ ′k, as follows,

σ′
1 = − 3q + 2q3/2(u+ u−1)− 9q2 + q3

(
35 + 12(u2 + u−2)

)
+O(q7/2),

σ′
2 = 3q2 + q5/2(u+ u−1)− 4q3 +O(q7/2),

σ′
3 = 2q2 +O(q7/2),

σ′
k = O(q7/2) for k = 4, 5, · · · , 8.

We put
σ′′
k = σ′

k/(q
2/3)k.

They are concretely presented by

σ′′
1 = − 3q1/3 + 2q5/6(u+ u−1) +O(q7/6),

σ′′
2 = 3q2/3 +O(q7/6),

σ′′
3 = 2 +O(q7/6).

We consider the following equation,

1− σ′′
1 T̂ + σ′′

2 T̂
2 − σ′′

3 T̂
3 = O(q7/6).

From solutions T̂ of this equation, we obtain T̂−1 = λ′′
2, λ

′′
3, λ

′′
4, as follows,

λ′′
2 = 21/3 − q1/3 +

2

3
q5/6(u+ u−1) +

1

21/3
q +O(q7/6),

λ′′
3 = 21/3e2π

√
−1/3 − q1/3 +

2

3
q5/6(u+ u−1) +

e−2π
√
−1/3

21/3
q +O(q7/6),

λ′′
4 = 21/3e−2π

√
−1/3 − q1/3 +

2

3
q5/6(u+ u−1) +

e2π
√
−1/3

21/3
q +O(q7/6).

Therefore, putting

λ2 = q2/3λ′′
2, λ3 = q2/3λ′′

3, λ4 = q2/3λ′′
4,

we obtain lower degree parts of the first four eigenvalues, as follows,

λ1 = 1 + q1/2(u+ u−1) + q(−1 + u2 + u−2) + q3/2
(
− 2(u+ u−1) + u3 + u−3

)
+ q2(8 + u4 + u−4) + q5/2

(
− 5(u+ u−1) + u5 + u−5

)
+ q3

(
− 19− 12(u2 + u−2) + u6 + u−6

)
+O(q7/2), (26)

λ2 = 21/3q3/2 − 1 +
2

3
q3/2(u+ u−1) +

1

21/3
q5/2 +O(q11/6),
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λ3 = 21/3e2π
√
−1/3q3/2 − 1 +

2

3
q3/2(u+ u−1) +

e−2π
√
−1/3

21/3
q5/3 +O(q11/6),

λ4 = 21/3e−2π
√
−1/3q3/2 − 1 +

2

3
q3/2(u+ u−1) +

e2π
√
−1/3

21/3
q5/3 +O(q11/6).

Hence, we obtain the following theorem.

Theorem 4.7. We can present I
(
Mn(52)

)
in terms of the above eigenvalues λ1, λ2, λ3, λ4

by

I
(
Mn(52)

)
=
(
the coefficient of u0 in λn

1 + λn
2 + λn

3 + λn
4

)
+


O(q2) if n = 1,

O(q3) if n = 2, 3, 4,

O(q4) if n ≥ 5.

We show concrete forms of Mn(52) obtained from the theorem for n ≤ 8, as follows,

I
(
M1(52)

)
= 1 − 4q +O(q2),

I
(
M2(52)

)
= 1 + 14q2 +O(q3),

I
(
M3(52)

)
= 1 + 3q + 15q2 +O(q3),

I
(
M4(52)

)
= 1 + 8q + 8q2 +O(q3),

I
(
M5(52)

)
= 1 + 15q + 20q2 + 45q3 +O(q4),

I
(
M6(52)

)
= 1 + 24q + 63q2 + 216q3 +O(q4),

I
(
M7(52)

)
= 1 + 35q + 161q2 + 546q3 +O(q4),

I
(
M8(52)

)
= 1 + 48q + 344q2 + 1248q3 +O(q4).

We can verify these values by comparing to these values which we show after Theorem
3.3.

Remark 4.8. From Theorem 3.3 and (26), we obtain that

Ĩ52(n, q) =
(
the coefficient of u0 in λn

1

)
+O(q3).

In fact, we expect that

Ĩ52(n, q) =
(
the coefficient of u0 in λn

1

)
,

but, in order to show this in this way, we have technical difficulty that we must calculate
λ1 in (26) not only for lower degrees, but also for all degrees, and we need Assumption
4.2 to ignore contributions from other λn.

4.3 Calculation of I
(
Mn(61)

)
from eigenvalues of a transfer matrix

In this section, we calculate I
(
Mn(61)

)
from eigenvalues of a transfer matrix.
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By (86), I
(
Mn(61)

)
is presented by

I
(
Mn(61)

)
=
∑

Ĵ61,3(a0+d0, a1+b0, d0+c0) Ĵ61,1(d0+b0, a1+c0, a0+b1)

× Ĵ61,2(a1+d0, d0+b1, b0+c0) Ĵ61,1(2a1, b0+c1, 2b1)

× Ĵ61,3(a1+d1, a2+b1, d1+c1) Ĵ61,1(d1+b1, a2+c1, a1+b2)

× Ĵ61,2(a2+d1, d1+b2, b1+c1) Ĵ61,1(2a2, b1+c2, 2b2)

× · · ·
× Ĵ61,3(an−1+dn−1, an+bn−1, dn−1+cn−1) Ĵ61,1(dn−1+bn−1, an+cn−1, an−1+bn)

× Ĵ61,2(an+dn−1, dn−1+bn, bn−1+cn−1) Ĵ61,1(2an, bn−1+cn, 2bn),

where we regard the subscripts of ai, bi, ci, di as modulo n, and the range of the sum is
given by

a0 = 0, a1, · · · , an−1, b0, · · · , bn−1, c0, · · · , cn−1, d0, · · · , dn−1 ∈ Z.

By putting

a′k = ak − ak−1, b′k = bk − ak, c′k = ck − bk, d′k = dk − ck,

the range of the sum is rewritten as

a′0, · · · , a′n−1, b
′
0, · · · , b′n−1, c

′
0, · · · , c′n−1, d

′
0, · · · , d′n−1 ∈ Z, a′0 + a′1 + · · ·+ a′n−1 = 0.

Further, we put

M(b′0,c
′
0)

(b′1,c
′
1)

=
∑

d′0,a
′
1 ∈Z

Ĵ61,3(a0+d0, a1+b0, d0+c0) Ĵ61,1(d0+b0, a1+c0, a0+b1)

× Ĵ61,2(a1+d0, d0+b1, b0+c0) Ĵ61,1(2a1, b0+c1, 2b1)u
a′1 ,

where u is a variable whose power counts a′1 + a′2 + · · · . Since Ĵ61,i(ℓ1+2, ℓ2+2, ℓ3+2) =

Ĵ61,i(ℓ1, ℓ2, ℓ3), we note that the right-hand side depends only on b′1, c
′
1, b

′
2, c

′
2. Furthermore,

we put

M =
(
M(b′0,c

′
0)

(b′1,c
′
1)

)
.

The product of copies of M is given by

M2 =

(∑
b′1,c

′
1

M(b′0,c
′
0)

(b′1,c
′
1)
M(b′1,c

′
1)

(b′2,c
′
2)

)
,
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where the parameters are related, as follows.

a0

b′0

b0

c′0

c0

d′0

d0

a′1 a1

b′1

b1

c′1

c1

d′1

d1

a′2 a2

b′2

b2

c′2

c2

d′2

d2

Hence, I
(
Mn(61)

)
can be presented by

I
(
Mn(61)

)
=
(
the coefficient of u0 in traceMn

)
. (27)

We calculate the first few eigenvalues of M. We put

τk = traceMk.

Then, by computer calculation, we obtain that

τ1 = 1 + q1/2(u+ u−1) + q(−4 + u2 + u−2) + q3/2(u3 + u−3)

+ q2(1 + u4 + u−4) +O(q5/2),

τ2 = 1 + 2q1/2(u+ u−1) + 3q(u2 + u−2) + 4q3/2(−u− u−1 + u3 + u−3)

+ q2(14 + 3u4 − 4u2 − 4u−2 + 5u−4) +O(q7/2),

τ3 = 1 + 3q1/2(u+ u−1) + 3q
(
1 + 2(u2 + u−2)

)
+ q3/2

(
− 3(u+ u−1) + 10(u3 + u−3)

)
+ 3q2(2− 3(u2 + u−2) + 4u4 + 5u−4) +O(q5/2),

τ4 = 1 + 4q1/2(u+ u−1) + 2q
(
4 + 5(u2 + u−2)

)
+ 4q3/2

(
u+ u−1 + 5(u3 + u−3)

)
+ q2(4 + 31u4 − 8u2 − 8u−2 + 35u−4) +O(q5/2),

By (20), we obtain σk from τk, as follows,

σ1 = τ1

= 1 + q1/2(u+ u−1) + q(−4 + u2 + u−2) + q3/2(u3 + u−3) + q2(1 + u4 + u−4)

+O(q5/2),

σ2 = − 1

2
(τ2 − σ1τ1)

= − 3q − q3/2(u+ u−1) + q2(3 + u4 − u2 − u−2) +O(q5/2),
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σ3 =
1

3
(τ3 − σ1τ2 + σ2τ1)

= 2q2 +O(q5/2),

σ4 = − 1

4
(τ4 − σ1τ3 + σ2τ2 − σ3τ1)

= O(q5/2).

We consider the following equation,

1− σ1 T̂ + σ2 T̂
2 − σ3 T̂

3 = O(q5/2).

From solutions T̂ of this equation, we obtain T̂−1 = λ1, as follows,

λ1 = 1 + q1/2(u+ u−1) + q(−1 + u2 + u−2) + q3/2(−2(u+ u−1) + u3 + u−3)

+ q2(7 + u−4) +O(q5/2).

Further, in order to calculate the next eigenvalues concretely, we put

τ ′n = (τn − λn
1 )/(−q)n.

By (20), we obtain σ′
k from τ ′k, as follows,

σ′
1 = 3− 2q1/2(u+ u−1) + q(6− u4) +O(q3/2),

σ′
2 = 2 +O(q1/2).

We consider the following equation,

1− σ′
1 T̂ + σ′

2 T̂
2 = O(q1/2).

From solutions T̂ of this equation, we obtain T̂−1 = λ′
2, λ

′
3, as follows,

λ′
2 = 2 +O(q1/2), λ′

3 = 1 +O(q1/2)

Therefore, putting
λ2 = −qλ′

2, λ3 = −qλ′
3,

we obtain lower degree parts of the first three eigenvalues, as follows,

λ1 = 1 + q1/2(u+ u−1) + q(−1 + u2 + u−2) + q3/2(−2(u+ u−1) + u3 + u−3)

+ q2(7 + u−4) +O(q5/2), (28)

λ2 = − 2q +O(q3/2),

λ3 = − q +O(q3/2).

Hence, we obtain the following theorem.

Theorem 4.9. We can present I
(
Mn(61)

)
in terms of the above eigenvalues λ1, λ2, λ3 by

I
(
Mn(61)

)
=
(
the coefficient of u0 in (λn

1 + λn
2 + λn

3 )
)

+

{
O(q2) if n = 1,

O(q3) if n ≥ 2.
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We show concrete forms of Mn(61) obtained from the theorem for n ≤ 8, as follows,

I
(
M1(61)

)
= 1 − 4q +O(q2),

I
(
M2(61)

)
= 1 + 14q2 +O(q3),

I
(
M3(61)

)
= 1 + 3q + 6q2 +O(q3),

I
(
M4(61)

)
= 1 + 8q + 4q2 +O(q3),

I
(
M5(61)

)
= 1 + 15q + 15q2 +O(q3),

I
(
M6(61)

)
= 1 + 24q + 57q2 +O(q3),

I
(
M7(61)

)
= 1 + 35q + 154q2 +O(q3),

I
(
M8(61)

)
= 1 + 48q + 336q2 +O(q3).

We can verify these values by comparing to these values which we show after Theorem
3.4.

Remark 4.10. From Theorem 3.4 and (28), we obtain that

Ĩ61(n, q) =
(
the coefficient of u0 in λn

1

)
+O(q3).

In fact, we expect that

Ĩ61(n, q) =
(
the coefficient of u0 in λn

1

)
,

but, in order to show this in this way, we have technical difficulty that we must calculate
λ1 in (28) not only for lower degrees, but also for all degrees, and we need Assumption
4.1 to ignore contributions from other λn.

5 Calculation of I
(
Mn(K)

)
from contributions from subsequences

of parameters

In this section, we show Theorems 3.2, 3.3, 3.4 in Sections 5.1, 5.2, 5.3, respectively. We
also show Theorem 3.1 in Section 5.5.

5.1 Proof of Theorem 3.2 for the 41 knot

In this section, we give a proof of Theorem 3.2. In fact, we prove (13), (14) and (15) for
n ≥ 6, noting that (13), (14) and (15) are verified for n < 6 by concrete computational
results shown after Theorem 3.2, i.e., we calculate the degree ≤ 3 part of I

(
Mn(41)

)
for

n ≥ 6.

As we mention in Section 2, we put

Ĵ41(ℓ1, ℓ2, ℓ3) = qαℓ1+βℓ2+γℓ3I(ℓ1, ℓ2, ℓ3)

where α = β = γ = 1
6
, and this value is obtained in Section B.1.
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Proof of Theorem 3.2. As mentioned above, it is sufficient to calculate the degree ≤ 3
part of I

(
Mn(41)

)
for n ≥ 6. By (82), I

(
Mn(41)

)
is presented by

I
(
Mn(41)

)
=

∑
a0=0

a1,··· ,a2n−1 ∈Z

Ĵ41(a0+a3, 2a1, 2a2) Ĵ41(a1+a4, 2a2, 2a3)

× Ĵ41(a2+a5, 2a3, 2a4) Ĵ41(a3+a6, 2a4, 2a5)

× · · ·
× Ĵ41(a2n−2+a2n+1, 2a2n−1, 2a2n) Ĵ41(a2n−1+a2n+2, 2a2n, 2a2n+1),

where we regard the subscript of ai as modulo 2n, i.e., a2n = a0, a2n+1 = a1, a2n+2 = a2.

We consider a sequence of the form

U = (a, a, a, a3, a4, · · · , aℓ−1, a′, a′, a′). (29)

We define the length of U to be ℓ, and define the height of U to be a′ − a. We define
J41(U) by

J41(U) = Ĵ41(a+a3, 2a, 2a) Ĵ41(a+a4, 2a, 2a3)

× Ĵ41(a+a5, 2a3, 2a4) Ĵ41(a3+a6, 2a4, 2a5)

× · · ·
× Ĵ41(a2ℓ−1+a′, 2a′, 2a′),

and we define the degree of U to be the lowest degree of J41(U), which is a non-negative
half integer. We note that, for any fixed d, there are a finite number of such sequences U
of degree d; we show a classification of such sequences of degree 1, 2, 3 in Section A.1.

For another sequence of the form (29)

U ′ = (a′, a′, a′, a′3, a
′
4, · · · , a′ℓ′−1, a′′, a′′, a′′).

we define the union of U and U ′ by

U · U ′ = (a, a, a, a3, a4, · · · , aℓ−1, a′, a′, a′ a′3, a
′
4, · · · , a′ℓ′−1, a′′, a′′, a′′).

We note that the degree of U ·U ′ is equal to the sum of degrees of U and U ′. Further, we
consider a constant sequence

U ℓ
const = (a, a, a, · · · , a︸ ︷︷ ︸

ℓ

, a, a, a),

noting that J41(U
ℓ
const) = I(0, 0, 0)ℓ, and its degree is 0.

We calculate the degree ≤ 3 part of I
(
Mn(41)

)
. For a sufficiently large n, there are

contributions to I
(
Mn(41)

)
only from a union of finite number of sequences of the form

(29) and constant sequences,

U ℓ0
const · U1 · U ℓ1

const · U2 · · · · · Um · U ℓm
const.
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It is sufficient to consider the following cases,

(1, 0) =
∑
i

(
degree of Ui, height of Ui

)
,

(2, 0) =
∑
i

(
degree of Ui, height of Ui

)
,

(3, 0) =
∑
i

(
degree of Ui, height of Ui

)
.

It follows from the classification in Section A.1 that the range of (d, h) = (degree, height)
satisfies that ∣∣h ∣∣ ≤ 2d,

∣∣h ∣∣ ≤ 6− 2d. (30)

Hence, as concrete sums of (d, h) = (degree, height), it is sufficient to consider the
following cases,

(0, 0),

(1, 0),

(2, 0),

(2, 0) = (1, 0) + (1, 0),

(3, 0),

(3, 0) = (2, 0) + (1, 0),

(3, 0) = (1, 0) + (1, 0) + (1, 0).

We consider a sequence
U = (a0, a1, · · · , a2n−1),

which we regard as a cyclic sequence, i.e., a2n = a0, a2n+1 = a1, a2n+2 = a2. In this proof,
we write f ≡ g if f = g +O(q4).

Case (0,0) In this case, we have the following sequence,

U = (a0, · · · , a2n−1) = U2n
const ,

and hence,

J41(U) = I(0, 0, 0)2n ≡ (1− q − 2q2 − 2q3)2n

≡ 1− 2n q +
(
2n (−q2) +

1

2
· 2n(2n− 1) (−q)2

)
+
(
2n(−2q3) + 2n(2n− 1) (−q)(−2q2) +

1

6
· 2n(2n− 1)(2n− 2) (−q)3

)
≡ 1− 2n q +

1

2
· 2n(2n− 5) q2 − 1

3
· 2n (2n2 − 15n+ 13) q3. (31)

Case (1,0) In this case, we have the following sequence,

U = U ℓ0
const · U

1,0,4
1 · U ℓ1

const ,
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and hence,∑
ℓ0

J41(U) = 2nJ41(U
1,0,4
1 ) I(0, 0, 0)2n−4 ≡ 2n (q − 2q3)(1− q − 2q2)2n−4

≡ 2n q(1− 2q2)
(
1− (2n− 4)q +

(
(2n− 4)(−2q2) +

1

2
(2n− 4)(2n− 5) (−q)2

))
≡ 2n q(1− 2q2)

(
1− (2n− 4) q + (2n2 − 13n+ 18) q2

)
≡ 2n q − 2n (2n− 4) q2 + 2n (2n2 − 13n+ 16) q3. (32)

The sum of (31) and (32) is given by

1 +
1

2
· 2n(2n− 3) q2 +

1

3
· 2n(4n2 − 24n+ 35) q3, (33)

whose degree ≤ 1 part gives the degree ≤ 1 part of the required formula.

Case (2,0) In this case, we have the following sequences,

U(1) = U ℓ0
const · U

2,0,4
1 · U ℓ1

const ,

U(2) = U ℓ0
const · U

2,0,7
1 · U ℓ1

const ,

and hence, ∑
ℓ0

J41(U(1)) = 2nJ41(U
2,0,4
1 ) I(0, 0, 0)2n−4 ≡ 2n q2 (1− q)2n−4

≡ 2n q2
(
1− (2n− 4)q

)
≡ 2n q2 − 2n(2n− 4) q3,∑

ℓ0

J41(U(2)) = 2nJ41(U
2,0,7
1 ) I(0, 0, 0)2n−7 ≡ 2n q2 (1− q)2n−7

≡ 2n q2
(
1− (2n− 7)q

)
≡ 2n q2 − 2n(2n− 7) q3.

Their sum is given by
4n q2 − 2n (4n− 11) q3. (34)

Case (2,0) = (1,0) + (1,0) In this case, we have the following sequence,

U = U ℓ0
const · U

1,0,4
1 · U ℓ1

const · U
1,0,4
1 · U ℓ2

const , (35)

and hence, ∑
ℓ0,ℓ1

J41(U) =
2n(2n− 7)

2
· J41(U

1,0,4
1 )2 I(0, 0, 0)2n−8

≡ 1

2
· 2n(2n− 7) (q − 2q3)2(1− q)2n−8

≡ 1

2
· 2n(2n− 7) q2(1− 4q2)

(
1− (2n− 8)q

)
≡ 1

2
· 2n(2n− 7) q2 − 1

2
· 2n(2n− 7)(2n− 8) q3. (36)
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The sum of (33), (34) and (36) is given by

1 +
1

3
· 2n(4n2 − 24n+ 35) q3, (37)

whose degree ≤ 2 part gives the degree ≤ 2 part of the required formula.

Case (3,0) In this case, we have the following sequences,

U(1) = U ℓ0
const · U

3,0,4
1 · U ℓ1

const ,

U(2),i = U ℓ0
const · U

3,0,7
i · U ℓ1

const for i = 1, 2,

U(3) = U ℓ0
const · U

3,0,10
1 · U ℓ1

const ,

and hence, ∑
ℓ0

J41(U(1)) = 2nJ41(U
3,0,4
1 ) ≡ 2n q3,∑

ℓ0

∑
1≤i≤2

J41(U(2),i) =
∑
1≤i≤2

2nJ41(U
3,0,7
i ) ≡ 2n · 2q3,∑

ℓ0

J41(U(3)) = 2nJ41(U
3,0,10
1 ) ≡ 2n q3.

Their sum is given by
2n · 4q3. (38)

Case (3,0) = (2,0) + (1,0) In this case, we have the following sequences,

U(1) = U ℓ0
const · U

2,0,4
1 · U ℓ1

const · U
1,0,4
1 · U ℓ2

const ,

U(2) = U ℓ0
const · U

2,0,7
1 · U ℓ1

const · U
1,0,4
1 · U ℓ2

const ,

and hence, ∑
ℓ0,ℓ1

J41(U(1)) = 2n(2n− 7) J41(U
2,0,4
1 ) J41(U

1,0,4
1 )

≡ 2n(2n− 7) q · q2 ≡ 2n(2n− 7) q3,∑
ℓ0,ℓ1

J41(U(2)) = 2n(2n− 10) J41(U
2,0,7
1 ) J41(U

1,0,4
1 )

≡ 2n(2n− 10) q · q2 ≡ 2n(2n− 10) q3.

Their sum is given by
2n(4n− 17) q3. (39)

Case (3,0) = (1,0) + (1,0) + (1,0) In this case, we have the following sequence,

U = U ℓ0
const · U

1,0,4
1 · U ℓ1

const · U
1,0,4
1 · U ℓ2

const · U
1,0,4
1 · U ℓ3

const ,
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and hence,∑
ℓ0,ℓ1,ℓ3

J41(U) =
2n(2n− 10)(2n− 11)

6
J41(U

1,0,4
1 )3 ≡ 1

6
· 2n(2n− 10)(2n− 11) q3.

(40)

The sum of (37), (38), (39) and (40) is given by

1.

This is the degree ≤ 3 part of I
(
Mn(41)

)
for a sufficiently large n. Therefore, we obtain

the theorem.

5.2 Proof of Theorem 3.3 for the 52 knot

In this section, we give a proof of Theorem 3.3. In fact, we prove (16) and (17) for n ≥ 8,
noting that (16) and (17) are verified for n ≤ 8 by concrete computational results shown
after Theorem 3.3, i.e., we calculate the degree ≤ 2 part of I

(
Mn(41)

)
for n ≥ 8.

As we mention in Section 2, we put

Ĵ52(ℓ1, ℓ2, ℓ3) = qαℓ1+βℓ2+γℓ3I(ℓ1, ℓ2, ℓ3)

where α = 0.164, β = 0.224, γ = 0.112, and these values are obtained in Section B.2.

Proof of Theorem 3.3. As mentioned above, it is sufficient to calculate the degree ≤ 2
part of I

(
Mn(52)

)
for n ≥ 8. By (84), I

(
Mn(52)

)
is presented by

I
(
Mn(52)

)
=∑

a0=0
a1,··· ,an−1∈Z
b0,··· ,bn−1∈Z
c0,··· ,cn−1∈Z

Ĵ52(a0+c0, c0+b0, a1+b1) Ĵ52(a2+c0, c0+b1, a1+b0) Ĵ52(b0+b1, a1+c0, a0+a2)

× Ĵ52(a1+c1, c1+b1, a2+b2) Ĵ52(a3+c1, c1+b2, a2+b1) Ĵ52(b1+b2, a2+c1, a1+a3)

× · · ·
× Ĵ52(an−1+cn−1, cn−1+bn−1, an+bn) Ĵ52(an+1+cn−1, cn−1+bn, an+bn−1)

× Ĵ52(bn−1+bn, an+cn−1, an−1+an+1),

where we regard the subscripts of ai, bi, ci as modulo n.

We consider a sequence of the form

V = (a, a, c0, a, b1, c1, a2, b2, c2, · · · , aℓ−1, bℓ−1, cℓ−1, a′, a′, ∗, a′). (41)
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We define the length of V to be ℓ, and define the height of V to be a′ − a. We define
J52(V ) by

J52(V ) = Ĵ52(a+c0, c0+a, a+b1) Ĵ52(a2+c0, c0+b1, a+a) Ĵ52(a+b1, a+c0, a+a2)

× Ĵ52(a+c1, c1+b1, a2+b2) Ĵ52(a3+c1, c1+b2, a2+b1) Ĵ52(b1+b2, a2+c1, a+a3)

× · · ·
× Ĵ52(aℓ−1+cℓ−1, cℓ−1+bℓ−1, a

′+a′) Ĵ52(a
′+cℓ−1, cℓ−1+a′, a′+bℓ−1)

× Ĵ52(bℓ−1+a′, a′+cℓ−1, aℓ−1+a′),

and we define the degree of V to be the lowest degree of J52(V ), which is a non-negative
half integer. We note that, for any fixed d, there are a finite number of such sequences V
of degree d; we show a classification of such sequences of degree 1, 2 in Section A.2.

For another sequence of the form (41)

V ′ = (a′, a′, c′0, a′, b′1, c
′
1, a′2, b

′
2, c

′
2, · · · , a′ℓ′−1, b

′
ℓ′−1, c

′
ℓ′−1, a′′, a′′, ∗, a′′),

we define the union of V and V ′ by

V · V ′ = (a, a, c0, a, b1, c1, a2, b2, c2, · · · , aℓ−1, bℓ−1, cℓ−1,

a′, a′, c′0, a′, b′1, c
′
1, a′2, b

′
2, c

′
2, · · · , a′ℓ′−1, b

′
ℓ′−1, c

′
ℓ′−1, a′′, a′′, ∗, a′′).

We note that the degree of V · V ′ is equal to the sum of degrees of V and V ′. Further,
we consider a constant sequence

V ℓ
const = (a, a, a, a, a, a, · · · , a, a, a︸ ︷︷ ︸

3ℓ

, a, a, ∗, a),

noting that J52(V
ℓ
const) = I(0, 0, 0)3ℓ, and its degree is 0.

We calculate the degree ≤ 2 part of I
(
Mn(52)

)
. For a sufficiently large n, there are

contributions to I
(
Mn(52)

)
only from a union of finite number of sequences of the form

(41) and constant sequences,

V ℓ0
const · V1 · V ℓ1

const · V2 · · · · · Vm · V ℓm
const.

It is sufficient to consider the following cases,

(1, 0) =
∑
i

(
degree of Vi, height of Vi

)
,

(2, 0) =
∑
i

(
degree of Vi, height of Vi

)
.

It follows from the classification in Section A.2 that the range of (d, h) = (degree, height)
satisfies that ∣∣h ∣∣ ≤ 2d,

∣∣h ∣∣ ≤ 4− 2d. (42)

Hence, concrete values of (d, h) = (degree, height) are

(d, h) = (
1

2
,±1), (1, 0), (1,±2), (

3

2
,±1).
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Therefore, as concrete sums of (d, h) = (degree, height), it is sufficient to consider the
following cases,

(0, 0),

(1, 0),

(1, 0) = (
1

2
, 1) + (

1

2
,−1),

(2, 0),

(2, 0) = (1, 0) + (1, 0),

(2, 0) = (1, 2) + (1,−2),

(2, 0) = (
3

2
, 1) + (

1

2
,−1),

(2, 0) = (
3

2
,−1) + (

1

2
, 1),

(2, 0) = (1, 0) + (
1

2
, 1) + (

1

2
,−1),

(2, 0) = (1, 2) + (
1

2
,−1) + (

1

2
,−1),

(2, 0) = (1,−2) + (
1

2
, 1) + (

1

2
, 1),

(2, 0) = (
1

2
, 1) + (

1

2
, 1) + (

1

2
,−1) + (

1

2
,−1).

We consider a sequence

V = (a0, b0, c0, · · · , an−1, bn−1, cn−1),

where we regard the subscripts of ai, bi, ci as modulo n. In this proof, we write f ≡ g if
f = g +O(q3).

Case (0,0) In this case, we have the following sequence,

V = V n
const ,

and hence,

J52(V ) = I(0, 0, 0)3n ≡ (1− q − 2q2)3n ≡ 1− 3n q +
1

2
· 3n(3n− 5) q2. (43)

Case (1,0) In this case, we have the following sequences,

V(1) = V ℓ0
const · V

1,0,1
1 · V ℓ1

const ,

V(2) = V ℓ0
const · V

1,0,2
1 · V ℓ1

const ,

V(3),i = V ℓ0
const · V

1,0,3
i · V ℓ1

const for i = 1, 2, 3, 4,
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and hence, ∑
ℓ0

J52(V(1)) = nJ52(V
1,0,1
1 ) I(0, 0, 0)3(n−1)

≡ n (−q − q2)(1− q)3n−3 ≡ −n q + n (3n− 4) q2,∑
ℓ0

J52(V(2)) = nJ52(V
1,0,2
1 ) I(0, 0, 0)3(n−2)

≡ n q(1− q)3n−6 ≡ n q − n (3n− 6) q2.∑
ℓ0

J52(V(3),1) = nJ52(V
1,0,3
1 ) I(0, 0, 0)3(n−3)

≡ n (q − 3q2)(1− q)3n−9 ≡ n q − n (3n− 6) q2,∑
ℓ0

J52(V(3),2) = nJ52(V
1,0,3
2 ) I(0, 0, 0)3(n−3)

≡ n (q − 2q2)(1− q)3n−9 ≡ n q − n (3n− 7) q2,∑
ℓ0

J52(V(3),3) = nJ52(V
1,0,3
3 ) I(0, 0, 0)3(n−3)

≡ n (q − 4q2)(1− q)3n−9 ≡ n q − n (3n− 5) q2,∑
ℓ0

J52(V(3),4) = nJ52(V
1,0,3
4 ) I(0, 0, 0)3(n−3)

≡ n (q − 4q2)(1− q)3n−9 ≡ n q − n (3n− 5) q2.

Their sum is given by
4n q − n (12n− 25) q2. (44)

Case (1,0) = (1
2
,1) + (1

2
,−1) In this case, we have the following sequence,

V = V ℓ0
const · V

1/2,1,2
1 · V ℓ1

const · V
1/2,−1,2
1 · V ℓ2

const ,

and hence, ∑
ℓ0,ℓ1

J52(V ) = n(n− 3) J52(V
1/2,1,2
1 ) J52(V

1/2,−1,2
1 ) I(0, 0, 0)3(n−4)

≡ n(n− 3) (q1/2 − 3q3/2) (q1/2 − 3q3/2) (1− q)3n−12

≡ n(n− 3) q(1− 6q)
(
1− (3n− 12)q

)
≡ n(n− 3)q − n(n− 3)(3n− 6)q2. (45)

The sum of (43), (44) and (45)

1 + n(n− 2) q − 1

2
n(6n2 − 15n+ 1) q2 +O(q3), (46)
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whose degree ≤ 1 part gives the degree ≤ 1 part of the required formula. The above 3

cases determine the coefficient of q. Hence, c
(n)
1 (52) = n(n− 2) for any n ≥ 4. Therefore,

p521 (n) = n(n− 2).

In the remaining cases, we calculate the coefficient of q2.

Case (2,0) In this case, we have the following sequences,

V(1) = V ℓ0
const · V

2,0,1
1 · V ℓ1

const ,

V(2) = V ℓ0
const · V

2,0,2
1 · V ℓ1

const ,

V(3),i = V ℓ0
const · V

2,0,3
i · V ℓ1

const ,

V(4),i = V ℓ0
const · V

2,0,4
i · V ℓ1

const ,

V(5),i = V ℓ0
const · V

2,0,5
i · V ℓ1

const ,

and hence,∑
ℓ0

J52(V(1)) = nJ52(V
2,0,1
1 ) ≡ n q2,∑

ℓ0

J52(V(2)) = nJ52(V
2,0,2
1 ) ≡ n q2,∑

1≤i≤11

∑
ℓ0

J52(V(3),i) =
∑

1≤i≤11

nJ52(V
2,0,3
i ) ≡ n (6q2 − 5q2) ≡ n q2,∑

1≤i≤17

∑
ℓ0

J52(V(4),i) =
∑

1≤i≤17

nJ52(V
2,0,4
i ) ≡ 17n q2,∑

1≤i≤22

∑
ℓ0

J52(V(5),i) =
∑

1≤i≤22

nJ52(V
2,0,5
i ) ≡ 22n q2.

Their sum is given by
42n q2. (47)

Case (2,0) = (1,0) + (1,0) In this case, we have the following sequences,

V(1) = V ℓ0
const · V

1,0,1
1 · V ℓ1

const · V
1,0,1
1 · V ℓ2

const ,

V(2) = V ℓ0
const · V

1,0,1
1 · V ℓ1

const · V
1,0,2
1 · V ℓ2

const ,

V(3),i = V ℓ0
const · V

1,0,1
1 · V ℓ1

const · V
1,0,3
i · V ℓ2

const ,

V(4) = V ℓ0
const · V

1,0,2
1 · V ℓ1

const · V
1,0,2
1 · V ℓ2

const ,

V(5),i = V ℓ0
const · V

1,0,2
1 · V ℓ1

const · V
1,0,3
i · V ℓ2

const ,

V(6),i = V ℓ0
const · V

1,0,3
i · V ℓ1

const · V
1,0,3
i · V ℓ2

const ,

V(7),i,j = V ℓ0
const · V

1,0,3
i · V ℓ1

const · V
1,0,3
j · V ℓ2

const ,
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and hence, ∑
ℓ0,ℓ1

J52(V(1)) =
n(n− 1)

2
· J52(V

1,0,1
1 )2

≡ 1

2
n(n− 1) (−q)2 ≡ 1

2
n(n− 1) q2,∑

ℓ0,ℓ1

J52(V(2)) = n(n− 2) J52(V
1,0,1
1 ) J52(V

1,0,2
1 )

≡ n(n− 2) (−q) · q ≡ −n(n− 2) q2,∑
1≤i≤4

∑
ℓ0,ℓ1

J52(V(3),i) =
∑
1≤i≤4

n(n− 3) J52(V
1,0,1
1 ) J52(V

1,0,3
i )

≡ 4n(n− 3) (−q) · q ≡ −4n(n− 3) q2,∑
ℓ0,ℓ1

J52(V(4)) =
n(n− 3)

2
J52(V

1,0,2
1 )2 ≡ 1

2
n(n− 3) q2,∑

1≤i≤4

∑
ℓ0,ℓ1

J52(V(5),i) =
∑
1≤i≤4

n(n− 4) J52(V
1,0,2
1 ) J52(V

1,0,3
i )

≡ 4n(n− 4) q · q ≡ 4n(n− 4) q2,∑
1≤i≤4

∑
ℓ0,ℓ1

J52(V(6),i) =
∑
1≤i≤4

n(n− 5)

2
J52(V

1,0,3
i )2 ≡ 2n(n− 5) q2,∑

1≤i<j≤4

∑
ℓ0,ℓ1

J52(V(7),i,j) =
∑

1≤i<j≤4

n(n− 5) J52(V
1,0,3
i ) J52(V

1,0,3
j ) ≡ 6n(n− 5) q2.

Their sum is given by
n (8n− 44) q2. (48)

Case (2,0) = (1,2) + (1,−2) In this case, we have the following sequences,

V(1) = V ℓ0
const · V

1,2,2
1 · V ℓ1

const · V
1,−2,2
1 · V ℓ2

const ,

V(2) = V ℓ0
const · V

1,2,2
1 · V ℓ1

const · V
1,−2,3
1 · V ℓ2

const ,

V(3) = V ℓ0
const · V

1,2,3
1 · V ℓ1

const · V
1,−2,2
1 · V ℓ2

const ,

V(4) = V ℓ0
const · V

1,2,3
1 · V ℓ1

const · V
1,−2,3
1 · V ℓ2

const ,
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and hence, ∑
ℓ0,ℓ1

J52(V(1)) = n(n− 3) J52(V
1,2,2
1 ) J52(V

1,−2,2
1 ) ≡ n(n− 3) q2,∑

ℓ0,ℓ1

J52(V(2)) = n(n− 4) J52(V
1,2,2
1 ) J52(V

1,−2,3
1 ) ≡ n(n− 4) q2,∑

ℓ0,ℓ1

J52(V(3)) = n(n− 4) J52(V
1,2,3
1 ) J52(V

1,−2,2
1 ) ≡ n(n− 4) q2,∑

ℓ0,ℓ1

J52(V(4)) = n(n− 5) J52(V
1,2,3
1 ) J52(V

1,−2,3
1 ) ≡ n(n− 5) q2.

Their sum is given by
4n(n− 4) q2. (49)

Case (2,0) = (3
2
,1) + (1

2
,−1) In this case, we have the following sequences,

V(1),i = V ℓ0
const · V

3/2,1,2
i · V ℓ1

const · V
1/2,−1,2
1 · V ℓ2

const ,

V(2),i = V ℓ0
const · V

3/2,1,3
i · V ℓ1

const · V
1/2,−1,2
1 · V ℓ2

const ,

V(3),i = V ℓ0
const · V

3/2,1,4
i · V ℓ1

const · V
1/2,−1,2
1 · V ℓ2

const ,

and hence, ∑
1≤i≤2

∑
ℓ0,ℓ1

J52(V(1),i) =
∑
1≤i≤2

n(n− 3) J52(V
3/2,1,2
i ) J52(V

1/2,−1,2
1 )

≡ 2n(n− 3) (−q3/2) · q1/2 ≡ −2n(n− 3) q2,∑
1≤i≤5

∑
ℓ0,ℓ1

J52(V(2),i) =
∑
1≤i≤5

n(n− 4) J52(V
3/2,1,3
i ) J52(V

1/2,−1,2
1 )

≡ 5n(n− 4) q3/2 · q1/2 ≡ 5n(n− 4) q2,∑
1≤i≤7

∑
ℓ0,ℓ1

J52(V(3),i) =
∑
1≤i≤7

n(n− 5) J52(V
3/2,1,4
i ) J52(V

1/2,−1,2
1 )

≡ 7n(n− 5) q3/2 · q1/2 ≡ 7n(n− 5) q2.

Their sum is given by
n(10n− 49) q2. (50)

Case (2,0) = (3
2
,−1) + (1

2
,1) In this case, we have the following sequences,

V(1),i = V ℓ0
const · V

3/2,−1,2
i · V ℓ1

const · V
1/2,1,2
1 · V ℓ2

const ,

V(2),i = V ℓ0
const · V

3/2,−1,3
i · V ℓ1

const · V
1/2,1,2
1 · V ℓ2

const ,

V(3),i = V ℓ0
const · V

3/2,−1,4
i · V ℓ1

const · V
1/2,1,2
1 · V ℓ2

const ,
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and hence, ∑
1≤i≤2

∑
ℓ0,ℓ1

J52(V(1),i) =
∑
1≤i≤2

n(n− 3) J52(V
3/2,−1,2
i ) J52(V

1/2,1,2
1 )

≡ 2n(n− 3) (−q3/2) · q1/2 ≡ −2n(n− 3) q2,∑
1≤i≤5

∑
ℓ0,ℓ1

J52(V(2),i) =
∑
1≤i≤5

n(n− 4) J52(V
3/2,−1,3
i ) J52(V

1/2,1,2
1 )

≡ 5n(n− 4) q3/2 · q1/2 ≡ 5n(n− 4) q2,∑
1≤i≤7

∑
ℓ0,ℓ1

J52(V(3),i) =
∑
1≤i≤7

n(n− 5) J52(V
3/2,−1,4
i ) J52(V

1/2,1,2
1 )

≡ 7n(n− 5) q3/2 · q1/2 ≡ 7n(n− 5) q2.

Their sum is given by
n(10n− 49) q2. (51)

Case (2,0) = (1,0) + (1
2
,1) + (1

2
,−1) In this case, we have the following sequences,

V(1) = V ℓ0
const · V

1,0,1
1 · V ℓ1

const · V
1/2,1,2
1 · V ℓ2

const · V
1/2,−1,2
1 · V ℓ3

const ,

V(2) = V ℓ0
const · V

1,0,2
1 · V ℓ1

const · V
1/2,1,2
1 · V ℓ2

const · V
1/2,−1,2
1 · V ℓ3

const ,

V(3),i = V ℓ0
const · V

1,0,3
i · V ℓ1

const · V
1/2,1,2
1 · V ℓ2

const · V
1/2,−1,2
1 · V ℓ3

const ,

and hence,∑
ℓ0,ℓ1,ℓ2

J52(V(1)) = n(n− 3)(n− 4) J52(V
1,0,1
1 ) J52(V

1/2,1,2
1 ) J52(V

1/2,−1,2
1 )

≡ n(n− 3)(n− 4) (−q) · q1/2 · q1/2 ≡ −n(n− 3)(n− 4) q2,∑
ℓ0,ℓ1,ℓ2

J52(V(2)) = n(n− 4)(n− 5) J52(V
1,0,2
1 ) J52(V

1/2,1,2
1 ) J52(V

1/2,−1,2
1 )

≡ n(n− 4)(n− 5) q · q1/2 · q1/2 ≡ n(n− 4)(n− 5) q2,∑
1≤i≤4

∑
ℓ0,ℓ1,ℓ2

J52(V(3),i) =
∑
1≤i≤4

n(n− 5)(n− 6) J52(V
1,0,3
i ) J52(V

1/2,1,2
1 ) J52(V

1/2,−1,2
1 )

≡ 4n(n− 5)(n− 6) q · q1/2 · q1/2 ≡ 4n(n− 5)(n− 6) q2.

Their sum is given by
n(4n2 − 46n+ 128). (52)

Case (2,0) = (1,2) + (1
2
,−1) + (1

2
,−1) In this case, we have the following sequences,

V(1) = V ℓ0
const · V

1,2,2
1 · V ℓ1

const · V
1/2,−1,2
1 · V ℓ2

const · V
1/2,−1,2
1 · V ℓ3

const ,

V(2) = V ℓ0
const · V

1,2,3
1 · V ℓ1

const · V
1/2,−1,2
1 · V ℓ2

const · V
1/2,−1,2
1 · V ℓ3

const ,
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and hence,∑
ℓ0,ℓ1,ℓ2

J52(V(1)) =
1

2
n(n− 4)(n− 5) J52(V

1,2,2
1 ) J52(V

1/2,−1,2
1 )2

≡ 1

2
n(n− 4)(n− 5) q · (q1/2)2 ≡ 1

2
n(n− 4)(n− 5) q2,∑

ℓ0,ℓ1,ℓ2

J52(V(2)) =
1

2
n(n− 5)(n− 6) J52(V

1,2,3
1 ) J52(V

1/2,−1,2
1 )2

≡ 1

2
n(n− 5)(n− 6) q · (q1/2)2 ≡ 1

2
n(n− 5)(n− 6) q2.

Their sum is given by
n(n− 5)2. (53)

Case (2,0) = (1,−2) + (1
2
,1) + (1

2
,1) In this case, we have the following sequences,

V(1) = V ℓ0
const · V

1,−2,2
1 · V ℓ1

const · V
1/2,1,2
1 · V ℓ2

const · V
1/2,1,2
1 · V ℓ3

const ,

V(2) = V ℓ0
const · V

1,−2,3
1 · V ℓ1

const · V
1/2,1,2
1 · V ℓ2

const · V
1/2,1,2
1 · V ℓ3

const ,

and hence,∑
ℓ0,ℓ1,ℓ2

J52(V(1)) =
1

2
n(n− 4)(n− 5) J52(V

1,−2,2
1 ) J52(V

1/2,1,2
1 )2

≡ 1

2
n(n− 4)(n− 5) q · (q1/2)2 ≡ 1

2
n(n− 4)(n− 5) q2,∑

ℓ0,ℓ1,ℓ2

J52(V(2)) =
1

2
n(n− 5)(n− 6) J52(V

1,−2,3
1 ) J52(V

1/2,1,2
1 )2

≡ 1

2
n(n− 5)(n− 6) q · (q1/2)2 ≡ 1

2
n(n− 5)(n− 6) q2.

Their sum is given by
n(n− 5)2. (54)

Case (2,0) = (1
2
,1) + (1

2
,1) + (1

2
,−1) + (1

2
,−1) In this case, we have the following se-

quence,

V = V ℓ0
const ·V

1/2,1,2
1 ·V ℓ1

const ·V
1/2,1,2
1 ·V ℓ2

const ·V
1/2,1,2
1 ·V ℓ3

const ·V
1/2,−1,2
1 ·V ℓ3

const ·V
1/2,−1,2
1 ·V ℓ4

const ,

and hence,∑
ℓ0,ℓ1,ℓ2,ℓ3

J52(V ) =
1

4
n(n− 5)(n− 6)(n− 7) J52(V

1/2,1,2
1 )2 J52(V

1/2,−1,2
1 )2

≡ 1

4
n(n− 5)(n− 6)(n− 7) (q1/2)2 · (q1/2)2

≡ 1

4
n(n− 5)(n− 6)(n− 7) q2. (55)
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The sum of (46), (47), (48), · · · , (55) is given by

1 + n(n− 2) q +
1

4
n (n3 − 6n2 + n+ 36) q2.

This is the degree ≤ 2 part of I
(
Mn(52)

)
for a sufficiently large n. Therefore, we obtain

the theorem.

5.3 Proof of Theorem 3.4 for the 61 knot

In this section, we give a proof of Theorem 3.4. In fact, we prove (18) and (19) for n ≥ 6,
noting that (18) and (19) are verified for n < 6 by concrete computational results shown
after Theorem 3.3, i.e., we calculate the degree ≤ 2 part of I

(
Mn(61)

)
for n ≥ 6.

As we mention in Section 2, we put

Ĵ61,1(ℓ1, ℓ2, ℓ3) = qα1ℓ1+β1ℓ2+γ1ℓ3I(ℓ1, ℓ2, ℓ3),

Ĵ61,2(ℓ1, ℓ2, ℓ3) = qα2ℓ1+β2ℓ2+γ2ℓ3I(ℓ1, ℓ2, ℓ3),

Ĵ61,3(ℓ1, ℓ2, ℓ3) = qα3ℓ1+β3ℓ2+γ3ℓ3I(ℓ1, ℓ2, ℓ3),

where

α1 = 0.166, β1 = 0.24, γ1 = 0.094,

α2 = 0.224, β2 = 0.146, γ2 = 0.13,

α3 = 0.074, β3 = 0.036, γ3 = 0.39,

and these values are obtained in Section B.3.

Proof of Theorem 3.4. As mentioned above, it is sufficient to calculate the degree ≤ 2
part of I

(
Mn(61)

)
for n ≥ 6. By (86), I

(
Mn(61)

)
is presented by

I
(
Mn(61)

)
=
∑

Ĵ61,3(a0+d0, a1+b0, d0+c0) Ĵ61,1(d0+b0, a1+c0, a0+b1)

× Ĵ61,2(a1+d0, d0+b1, b0+c0) Ĵ61,1(2a1, b0+c1, 2b1)

× Ĵ61,3(a1+d1, a2+b1, d1+c1) Ĵ61,1(d1+b1, a2+c1, a1+b2)

× Ĵ61,2(a2+d1, d1+b2, b1+c1) Ĵ61,1(2a2, b1+c2, 2b2)

× · · ·
× Ĵ61,3(an−1+dn−1, an+bn−1, dn−1+cn−1) Ĵ61,1(dn−1+bn−1, an+cn−1, an−1+bn)

× Ĵ61,2(an+dn−1, dn−1+bn, bn−1+cn−1) Ĵ61,1(2an, bn−1+cn, 2bn),

where we regard the subscripts of ai, bi, ci, di as modulo n.

We consider a sequence of the form

W = (a, a, a, d0, a1, b1, c1, d1, · · · , aℓ−1, bℓ−1, cℓ−1, dℓ−1, a′, a′, a′). (56)
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We define the length of W to be ℓ, and define the height of W to be a′ − a. We define
J61(W ) by

J61(W ) = Ĵ61,3(a+d0, a1+a, d0+a) Ĵ61,1(d0+a, a1+a, a+b1)

× Ĵ61,2(a1+d0, d0+b1, a+a) Ĵ61,1(2a1, a+c1, 2b1)

× Ĵ61,3(a1+d1, a2+b1, d1+c1) Ĵ61,1(d1+b1, a2+c1, a1+b2)

× Ĵ61,2(a2+d1, d1+b2, b1+c1) Ĵ61,1(2a2, b1+c2, 2b2)

× · · ·
× Ĵ61,3(aℓ−1+dℓ−1, a

′+bℓ−1, dℓ−1+cℓ−1) Ĵ61,1(dℓ−1+bℓ−1, a
′+cℓ−1, aℓ−1+a′)

× Ĵ61,2(a
′+dℓ−1, dℓ−1+a′, bℓ−1+cℓ−1) Ĵ61,1(2a

′, bℓ−1+a′, 2a′),

and we define the degree of W to be the lowest degree of J61(W ), which is a non-negative
half integer. We note that, for any fixed d, there are a finite number of such sequences
W of degree d; we show a classification of such sequences of degree 1, 2 in Section A.3.

For another sequence of the form (56)

W ′ = (a′, a′, a′, d′0, a′1, b
′
1, c

′
1, d

′
1, · · · , a′ℓ′−1, b

′
ℓ′−1, c

′
ℓ′−1, d

′
ℓ′−1, a′′, a′′, a′′),

we define the union of W and W ′ by

W ·W ′ = (a, a, a, d0, a1, b1, c1, d1, · · · , aℓ−1, bℓ−1, cℓ−1, dℓ−1,

a′, a′, a′, d′0, a′1, b
′
1, c

′
1, d

′
1, · · · , a′ℓ′−1, b

′
ℓ′−1, c

′
ℓ′−1, d

′
ℓ′−1, a′′, a′′, a′′).

We note that the degree of W ·W ′ is equal to the sum of degrees of W and W ′. Further,
we consider a constant sequence

W ℓ
const = (a, a, a, a, · · · , a, a, a, a︸ ︷︷ ︸

4ℓ

, a, a, a),

noting that J61(W
ℓ
const) = I(0, 0, 0)4ℓ, and its degree is 0.

We calculate the degree ≤ 2 part of I
(
Mn(61)

)
. For a sufficiently large n, there are

contributions to I
(
Mn(61)

)
only from a union of finite number of sequences of the form

(56) and constant sequences,

W ℓ0
const ·W1 ·W ℓ1

const ·W2 · · · · ·Wm ·QW ℓm
const.

It is sufficient to consider the following cases,

(1, 0) =
∑
i

(
degree of Wi, height of Wi

)
,

(2, 0) =
∑
i

(
degree of Wi, height of Wi

)
.

It follows from the classification in Section A.3 that the range of (d, h) = (degree, height)
satisfies that ∣∣h ∣∣ ≤ 2d,

∣∣h ∣∣ ≤ 4− 2d. (57)
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Hence, concrete values of (d, h) = (degree, height) are

(d, h) = (
1

2
,±1), (1, 0), (1,±2), (

3

2
,±1).

Therefore, as concrete sums of (d, h) = (degree, height), it is sufficient to consider the
following cases,

(0, 0),

(1, 0),

(1, 0) = (
1

2
, 1) + (

1

2
,−1),

(2, 0),

(2, 0) = (1, 0) + (1, 0),

(2, 0) = (1, 2) + (1,−2),

(2, 0) = (
3

2
, 1) + (

1

2
,−1),

(2, 0) = (
3

2
,−1) + (

1

2
, 1),

(2, 0) = (1, 0) + (
1

2
, 1) + (

1

2
,−1),

(2, 0) = (1, 2) + (
1

2
,−1) + (

1

2
,−1),

(2, 0) = (1,−2) + (
1

2
, 1) + (

1

2
, 1),

(2, 0) = (
1

2
, 1) + (

1

2
, 1) + (

1

2
,−1) + (

1

2
,−1).

We consider a sequence

W = (a0, b0, c0, d0, · · · , an−1, bn−1, cn−1, dn−1),

where we regard the subscripts of ai, bi, ci, di as modulo n. In this proof, we write f ≡ g
if f = g +O(q3).

Case (0,0) In this case, we have the following sequence,

W = W n
const ,

and hence,

J61(W ) = I(0, 0, 0)4n ≡ (1− q − 2q2)4n ≡ 1− 4n q +
1

2
· 4n(4n− 5) q2. (58)

Case (1,0) In this case, we have the following sequences,

W(1) = W ℓ0
const ·W

1,0,1
1 ·W ℓ1

const ,

W(2) = W ℓ0
const ·W

1,0,2
1 ·W ℓ1

const ,

W(3) = W ℓ0
const ·W

1,0,2
2 ·W ℓ1

const ,

W(4) = W ℓ0
const ·W

1,0,2
3 ·W ℓ1

const ,

W(5) = W ℓ0
const ·W

1,0,2
4 ·W ℓ1

const ,

W(6) = W ℓ0
const ·W

1,0,2
5 ·W ℓ1

const ,
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and hence, ∑
ℓ0

J61(W(1)) = nJ61(W
1,0,1
1 ) I(0, 0, 0)4(n−1)

≡ n (−q)(1− q)4n−4 ≡ −n q + n (4n− 4) q2,∑
ℓ0

J61(W(2)) = nJ61(W
1,0,2
1 ) I(0, 0, 0)4(n−2)

≡ n (q − 4q2)(1− q)4n−8 ≡ n q − n (4n− 4) q2,∑
ℓ0

J61(W(3)) = nJ61(W
1,0,2
2 ) I(0, 0, 0)4(n−2)

≡ n (q − 2q2)(1− q)4n−8 ≡ n q − n (4n− 6) q2,∑
ℓ0

J61(W(4)) = nJ61(W
1,0,2
3 ) I(0, 0, 0)4(n−2)

≡ n (q − q2)(1− q)4n−8 ≡ n q − n (4n− 7) q2,∑
ℓ0

J61(W(5)) = nJ61(W
1,0,2
4 ) I(0, 0, 0)4(n−2)

≡ n (q − 3q2)(1− q)4n−8 ≡ n q − n (4n− 5) q2,∑
ℓ0

J61(W(6)) = nJ61(W
1,0,2
5 ) I(0, 0, 0)4(n−2)

≡ n (q − 2q2)(1− q)4n−8 ≡ n q − n (4n− 6) q2.

Their sum is given by
4n q − n (16n− 24) q2. (59)

Case (1,0) = (1
2
,1) + (1

2
,−1) In this case, we have the following sequence,

W = W ℓ0
const ·W

1/2,1,2
1 ·W ℓ1

const ·W
1/2,−1,1
1 ·W ℓ2

const ,

and hence, ∑
ℓ0,ℓ1

J61(W ) = n(n− 2) J61(W
1/2,1,2
1 ) J61(W

1/2,−1,1
1 ) I(0, 0, 0)4(n−3)

≡ n(n− 2) (q1/2 − 4q3/2) (q1/2 − 2q3/2) (1− q)4n−12

≡ n(n− 2) q(1− 6q)
(
1− (4n− 12)q

)
≡ n(n− 2) q − n(n− 2)(4n− 6) q2. (60)

The sum of (58), (59) and (60) is given by

1 + n(n− 2) q + n(−4n2 + 6n+ 2) q2. (61)
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whose degree ≤ 1 part gives the degree ≤ 1 part of the required formula. Hence, c
(n)
1 (52) =

n(n− 2) for any n ≥ 4. Therefore, p521 (n) = n(n− 2).

In the remaining cases, we calculate the coefficient of q2.

Case (2,0) In this case, we have the following sequences,

W(1) = W ℓ0
const ·W

2,0,1
1 ·W ℓ1

const ,

W(2),i = W ℓ0
const ·W

2,0,2
i ·W ℓ1

const ,

W(3),i = W ℓ0
const ·W

2,0,3
i ·W ℓ1

const ,

and hence, ∑
ℓ0

J61(W(1)) = nJ61(W
2,0,1
1 ) ≡ n q2,∑

1≤i≤10

∑
ℓ0

J61(W(2),i) =
∑

1≤i≤10

nJ61(W
2,0,2
i ) ≡ n(7q2 − 3q2) ≡ 4n q2,∑

1≤i≤17

∑
ℓ0

J61(W(3),i) =
∑

1≤i≤17

nJ61(W
2,0,3
i ) ≡ 17n q2.

Their sum is given by
22n q2. (62)

Case (2,0) = (1,0) + (1,0) In this case, we have the following sequences,

W(1) = W ℓ0
const ·W

1,0,1
1 ·W ℓ1

const ·W
1,0,1
1 ·W ℓ2

const ,

W(2),i = W ℓ0
const ·W

1,0,1
1 ·W ℓ1

const ·W
1,0,2
i ·W ℓ2

const ,

W(3),i = W ℓ0
const ·W

1,0,2
i ·W ℓ1

const ·W
1,0,2
i ·W ℓ2

const ,

W(4),i,j = W ℓ0
const ·W

1,0,2
i ·W ℓ1

const ·W
1,0,2
j ·W ℓ2

const ,

and hence, ∑
ℓ0,ℓ1

J61(W(1)) =
n(n− 1)

2
· J61(W

1,0,1
1 )2

≡ 1

2
n(n− 1) (−q)2 ≡ 1

2
n(n− 1) q2,∑

1≤i≤5

∑
ℓ0,ℓ1

J61(W(2),i) =
∑
1≤i≤5

n(n− 2) J61(W
1,0,1
1 ) J61(W

1,0,2
i )

≡ 5n(n− 2) (−q) · q ≡ −5n(n− 2) q2,∑
1≤i≤5

∑
ℓ0,ℓ1

J61(W(3),i) =
∑
1≤i≤5

n(n− 3)

2
J61(W

1,0,2
i )2 ≡ 5

2
n(n− 3) q2,∑

1≤i<j≤5

∑
ℓ0,ℓ1

J61(W(4),i,j) =
∑

1≤i<j≤5

n(n− 3) J61(W
1,0,2
i ) J61(W

1,0,2
j ) ≡ 10n(n− 3) q2.

42



Their sum is given by
n (8n− 28) q2. (63)

Case (2,0) = (1,2) + (1,−2) In this case, we have the following sequences,

W(1) = W ℓ0
const ·W

1,2,2
1 ·W ℓ1

const ·W
1,−2,1
1 ·W ℓ2

const ,

W(2) = W ℓ0
const ·W

1,2,3
1 ·W ℓ1

const ·W
1,−2,1
1 ·W ℓ2

const ,

and hence,∑
ℓ0,ℓ1

J61(W(1)) = n(n− 2) J61(W
1,2,2
1 ) J61(W

1,−2,1
1 ) ≡ n(n− 2) q2,∑

ℓ0,ℓ1

J61(W(2)) = n(n− 3) J61(W
1,2,3
1 ) J61(W

1,−2,1
1 ) ≡ n(n− 3) q2.

Their sum is given by
n(2n− 5) q2. (64)

Case (2,0) = (3
2
,1) + (1

2
,−1) In this case, we have the following sequences,

W(1),i = W ℓ0
const ·W

3/2,1,2
i ·W ℓ1

const ·W
1/2,−1,1
1 ·W ℓ2

const ,

W(2),i = W ℓ0
const ·W

3/2,1,3
i ·W ℓ1

const ·W
1/2,−1,1
1 ·W ℓ2

const ,

and hence,∑
1≤i≤5

∑
ℓ0,ℓ1

J61(W(1),i) =
∑
1≤i≤5

n(n− 2) J61(W
3/2,1,2
i ) J61(W

1/2,−1,1
1 )

≡ n(n− 2) (3q3/2 − 2q3/2) · q1/2 ≡ n(n− 2) q2,∑
1≤i≤6

∑
ℓ0,ℓ1

J61(W(2),i) =
∑
1≤i≤6

n(n− 3) J61(W
3/2,1,3
i ) J61(W

1/2,−1,1
1 )

≡ 6n(n− 3) q3/2 · q1/2 ≡ 6n(n− 3) q2,

Their sum is given by
n(7n− 20) q2. (65)

Case (2,0) = (3
2
,−1) + (1

2
,1) In this case, we have the following sequences,

W(1),i = W ℓ0
const ·W

3/2,−1,1
i ·W ℓ1

const ·W
1/2,1,2
1 ·W ℓ2

const ,

W(2),i = W ℓ0
const ·W

3/2,−1,2
i ·W ℓ1

const ·W
1/2,1,2
1 ·W ℓ2

const ,
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and hence, ∑
1≤i≤2

∑
ℓ0,ℓ1

J61(W(1),i) =
∑
1≤i≤2

n(n− 2) J61(W
3/2,−1,1
i ) J61(W

1/2,1,2
1 )

≡ 2n(n− 2) (−q3/2) · q1/2 ≡ −2n(n− 2) q2,∑
1≤i≤7

∑
ℓ0,ℓ1

J61(W(2),i) =
∑
1≤i≤7

n(n− 3) J61(W
3/2,−1,2
i ) J61(W

1/2,1,2
1 )

≡ 7n(n− 3) q3/2 · q1/2 ≡ 7n(n− 3) q2.

Their sum is given by
n(5n− 17) q2. (66)

Case (2,0) = (1,0) + (1
2
,1) + (1

2
,−1) In this case, we have the following sequences,

W(1) = W ℓ0
const ·W

1,0,1
1 ·W ℓ1

const ·W
1/2,1,2
1 ·W ℓ2

const ·W
1/2,−1,2
1 ·W ℓ3

const ,

W(2),i = W ℓ0
const ·W

1,0,2
i ·W ℓ1

const ·W
1/2,1,2
1 ·W ℓ2

const ·W
1/2,−1,2
1 ·W ℓ3

const ,

and hence,∑
ℓ0,ℓ1,ℓ2

J61(W(1)) = n(n− 2)(n− 3) J61(W
1,0,1
1 ) J61(W

1/2,1,2
1 ) J61(W

1/2,−1,1
1 )

≡ n(n− 2)(n− 3) (−q) · q1/2 · q1/2

≡ −n(n− 2)(n− 3) q2,∑
1≤i≤5

∑
ℓ0,ℓ1,ℓ2

J61(W(2),i) =
∑
1≤i≤5

n(n− 3)(n− 4) J61(W
1,0,2
i ) J61(W

1/2,1,2
1 ) J61(W

1/2,−1,1
1 )

≡ 5n(n− 3)(n− 4) q · q1/2 · q1/2

≡ 5n(n− 3)(n− 4) q2.

Their sum is given by
n(n− 3)(4n− 18) q2. (67)

Case (2,0) = (1,2) + (1
2
,−1) + (1

2
,−1) In this case, we have the following sequences,

W(1) = W ℓ0
const ·W

1,2,2
1 ·W ℓ1

const ·W
1/2,−1,2
1 ·W ℓ2

const ·W
1/2,−1,2
1 ·W ℓ3

const ,

W(2) = W ℓ0
const ·W

1,2,3
1 ·W ℓ1

const ·W
1/2,−1,2
1 ·W ℓ2

const ·W
1/2,−1,2
1 ·W ℓ3

const ,
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and hence,∑
ℓ0,ℓ1,ℓ2

J61(W(1)) =
1

2
n(n− 2)(n− 3) J61(W

1,2,2
1 ) J61(W

1/2,−1,1
1 )2

≡ 1

2
n(n− 2)(n− 3) q · (q1/2)2 ≡ 1

2
n(n− 2)(n− 3) q2,∑

ℓ0,ℓ1,ℓ2

J61(W(2)) =
1

2
n(n− 3)(n− 4) J61(W

1,2,3
1 ) J61(W

1/2,−1,1
1 )2

≡ 1

2
n(n− 3)(n− 4) q · (q1/2)2 ≡ 1

2
n(n− 3)(n− 4) q2.

Their sum is given by
n(n− 3)2 q2. (68)

Case (2,0) = (1,−2) + (1
2
,1) + (1

2
,1) In this case, we have the following sequence,

W = W ℓ0
const ·W

1,−2,1
1 ·W ℓ1

const ·W
1/2,1,2
1 ·W ℓ2

const ·W
1/2,1,2
1 ·W ℓ3

const ,

and hence,∑
ℓ0,ℓ1,ℓ2

J61(W ) =
1

2
n(n− 3)(n− 4) J61(W

1,−2,1
1 ) J61(W

1/2,1,2
1 )2

≡ 1

2
n(n− 3)(n− 4) q · (q1/2)2 ≡ 1

2
n(n− 3)(n− 4) q2. (69)

Case (2,0) = (1
2
,1) + (1

2
,1) + (1

2
,−1) + (1

2
,−1) In this case, we have the following se-

quence,

W = W ℓ0
const ·W

1/2,1,2
1 ·W ℓ1

const ·W
1/2,1,2
1 ·W ℓ2

const ·W
1/2,−1,2
1 ·W ℓ3

const ·W
1/2,−1,2
1 ·W ℓ3

const ,

and hence,∑
ℓ0,ℓ1,ℓ2,ℓ3

J61(W ) =
1

4
n(n− 3)(n− 4)(n− 5) J61(W

1/2,1,2
1 )2 J61(W

1/2,−1,1
1 )2

≡ 1

4
n(n− 3)(n− 4)(n− 5) (q1/2)2 · (q1/2)2

≡ 1

4
n(n− 3)(n− 4)(n− 5) q2. (70)

The sum of (61), (62), (63), · · · , (70) is given by

1 + n(n− 2) q +
1

4
n (n3 − 6n2 + n+ 32) q2.

This is the degree ≤ 2 part of I
(
Mn(61)

)
for a sufficiently large n. Therefore, we obtain

the theorem.
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5.4 Convergence of the sum of the defining formula of the 3D-index

It is shown in [3] (see also [4]) that the infinite sum of the defining formula of the 3D-
index converges. In this section, we review the proof of the convergence. We generalize
the method of this section to the case of cyclic covers of a hyperbolic knot complement
in the next section.

Let M be a hyperbolic 3-manifold with a cusp. We assume that there exists an ideal
triangulation T which gives the hyperbolic structure of M , and T has m tetrahedra and
m edges. We denote by aj the label of the jth edge E j, and, as in (4), we denote labels of
edges of the ith tetrahedron ∆i by af(i), af

′(i), ag(i), ag
′(i), ah(i), ah

′(i) in this section. We
recall that the defining formula (11) of the 3D-index is given by

I
(
M
)

=
∑

a2,··· ,am ∈Z
a1=0

∏
i

Ji
(
af(i) + af

′(i), ag(i) + ag
′(i), ah(i) + ah

′(i)
)
. (71)

We review the Neumann-Zagier matrix, as follows. We put three m×m matrices by

A =
(
Aji

)
, Aji =


0 if f(i) ̸= j and f ′(i) ̸= j,

1 if f(i) = j and f ′(i) ̸= j,

1 if f(i) ̸= j and f ′(i) = j,

2 if f(i) = j and f ′(i) = j,

B =
(
Bji

)
, Bji =


0 if g(i) ̸= j and g′(i) ̸= j,

1 if g(i) = j and g′(i) ̸= j,

1 if g(i) ̸= j and g′(i) = j,

2 if g(i) = j and g′(i) = j,

C =
(
Cji

)
, Cji =


0 if h(i) ̸= j and h′(i) ̸= j,

1 if h(i) = j and h′(i) ̸= j,

1 if h(i) ̸= j and h′(i) = j,

2 if h(i) = j and h′(i) = j.

Further, we put
A = A−C, B = B−C.

The Neumann-Zagier matrix is defined to be
(
A
∣∣B). It is shown in [15, Theorem 2.2

– Proposition 2.5] and [14, Theorem 4.1] that the rank of the Neumann-Zagier matrix(
A
∣∣B) is m−1.

Example 5.1. For the 61 knot K61 , its complement S3−K61 is M1(61). Hence, by (86),
its 3D-index is presented by

I
(
S3−K61

)
=

∑
a=0

b,c,d∈Z

qa+b+c+d I(a+d, a+b, d+c) I(b+d, a+c, a+b)

× I(a+d, b+d, b+c) I(2a, b+c, 2b). (72)

46



We have that

A =


1 0 1 2
0 1 0 0
0 0 0 0
1 1 1 0

 , B =


1 1 0 0
1 0 1 1
0 1 0 1
0 0 1 0

 , C =


0 1 0 0
0 1 1 2
1 0 1 0
1 0 0 0

 .

These matrices are obtained in such a way that, for example, the first entries of four
factors in the right-hand side of (72) is given by(

a b c d
)
A = (a+d, b+d, a+d, 2a).

Proposition 5.2 ([3], see also [4]). The 3D-index I(M) is well-defined, i.e., the infinite
sum of the defining formula (11) of the 3D-index converges as a power series.

Proof. We put

E =
{
(a1, a2, · · · , am) ∈ Zm

}
= Zm,

Qi(Z) =
{
(ℓ1, ℓ2, ℓ3) ∈ Z3

}
= Z3.

We define
F i : E −→ Qi(Z)

by
F i(a1, a2, · · · , am) =

(
af(i) + af

′(i), ag(i) + ag
′(i), ah(i) + ah

′(i)
)
.

Further, we define
Di : Qi(Z) −→ R≥0

by

Di(ℓ1, ℓ2, ℓ3) = deg Ji(ℓ1, ℓ2, ℓ3)

=


1
2
(ℓ2−ℓ1)(ℓ3−ℓ1) + βi(ℓ2−ℓ1) + γi(ℓ3−ℓ1) if ℓ1 ≤ ℓ2 and ℓ1 ≤ ℓ3,

1
2
(ℓ1−ℓ2)(ℓ3−ℓ2) + αi(ℓ1−ℓ2) + γi(ℓ3−ℓ2) if ℓ2 ≤ ℓ1 and ℓ2 ≤ ℓ3,

1
2
(ℓ1−ℓ3)(ℓ2−ℓ3) + αi(ℓ1−ℓ3) + βi(ℓ2−ℓ3) if ℓ3 ≤ ℓ1 and ℓ3 ≤ ℓ2,

(73)

where the second equality is obtained by (12).

We put ER = E⊗R = Rm and Qi(R) = Qi(Z)⊗R = R3, and we give standard metrics
to them. The above maps F i and Di are naturally extended to the following maps, which
we also denote by F i and Di ,

ER
Fi

−→ Qi(R) Di

−→ R≥0. (74)

By (73), Di naturally induces D̂i : Qi(R)/R → R≥0, where the denominator R of Qi(R)/R
is spanR{(1, 1, 1)} ⊂ Qi(R). Further, F i : ER → Qi(R)/R naturally induces F̂ i : ER/R →
Qi(R)/R, where the denominator R of ER/R is spanR{(1, 1, · · · , 1)} ⊂ ER. Then, from
(74), we obtain the following maps,

ER/R
F̂ i

−→ Qi(R)/R D̂i

−→ R≥0 .

47



By making the direct sum of the middle vector space with respect to i, we obtain the
following maps,

ER/R
F̂−→

⊕
i

(
Qi(R)/R

) D̂−→ R≥0 ,

where we put F̂ = ⊕F̂ i and D̂ =
∑

D̂i. We consider the dual map of F̂ , as follows,

F̂∗ :
⊕
i

(
Qi(R)/R

)∗ −→
(
ER/R

)∗
.

This map is surjective by Lemma 5.3 below. Hence, the map F̂ is injective.

LetD be any positive integer. From the definition (73) ofDi, we obtain that D̂i−1(
[0, D]

)
is bounded. Hence, D̂−1

(
[0, D]

)
is bounded. Therefore, F̂−1D̂−1

(
[0, D]

)
is bounded, since

F̂ is injective. When we restrict the sum (71) to the part of degree ≤ D, the sum can be

regarded as a sum over integer points of F̂−1D̂−1
(
[0, D]

)
. Hence, this restricted sum is a

finite sum.

Therefore, we obtain the proposition.

Lemma 5.3. The map F̂∗ is surjective.

Proof. The matrix
(
A
∣∣B ∣∣C)T is a presentation matrix of the linear map,

⊕F i : ER −→
⊕
i

Qi(R).

Hence, the matrix
(
A
∣∣B)T is a presentation matrix of the linear map,

⊕F̂ i : ER −→
⊕
i

(
Qi(R)/R

)
.

Therefore, the matrix
(
A
∣∣B) is a presentation matrix of the dual linear map,⊕

i

(
Qi(R)/R

)∗ −→ E∗
R .

As mentioned before, the rank of the Neumann-Zagier matrix
(
A
∣∣B) is m − 1. Hence,

the image of the above linear map is the (m−1)-dimensional subspace (ER/R)∗ of E∗
R ,⊕

i

(
Qi(R)/R

)∗ F̂∗
−→

(
ER/R

)∗ ⊂ E∗
R .

Therefore, F̂∗ is surjective, as required.
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5.5 Proof of Theorem 3.1

In this section, we give a proof of Theorem 3.1. We generalize the method of the previous
section to the case of cyclic covers of a hyperbolic knot complement. This proof is also a
generalization of the proofs in Sections 5.1, 5.2, 5.3.

As in Section 2, let K be a hyperbolic knot. We assume that there exists an ideal
triangulation T which gives the hyperbolic structure of the complement of K, and T has
m tetrahedra and m edges. We denote by aj the label of the jth edge E j, and, as in (4),
we denote labels of edges of the ith tetrahedron ∆i by af(i), af

′(i), ag(i), ag
′(i), ah(i), ah

′(i)

in this section.

We consider the n-fold cyclic cover T̂ of T , which is a triangulation of the n-fold cyclic
cover Mn(K) of the complement of K. We denote by ∆i

k and E j
k (for 0 ≤ k < n) lifts of

∆i and E j in T̂ such that the deck transformation takes ∆i
k and E j

k to ∆i
k+1 and E j

k+1.

Then, the labels of edges of ∆i
k are given by a

f(i)
k+εi,1

, a
f ′(i)
k+ε′i,1

, a
g(i)
k+εi,2

, a
g′(i)
k+ε′i,2

, a
h(i)
k+εi,3

, a
h′(i)
k+ε′i,3

for some εi,1, ε
′
i,1, εi,2, ε

′
i,2, εi,3, ε

′
i,3 which are constants independent of k. Without loss of

generality, we assume that min
{
εi,1, ε

′
i,1, εi,2, ε

′
i,2, εi,3, ε

′
i,3

∣∣ 1 ≤ i ≤ m
}
= 0. The 3D-index

of Mn(K) is given by

I
(
Mn(K)

)
=
∑ ∏

k

∏
i

Ji
(
a
f(i)
k+εi,1

+ a
f ′(i)
k+ε′i,1

, a
g(i)
k+εi,2

+ a
g′(i)
k+ε′i,2

, a
h(i)
k+εi,3

+ a
h′(i)
k+ε′i,3

)
, (75)

where the sum is taken over

a10 = 0, a20, · · · , am0 ∈ Z, a11, · · · , am1 ∈ Z, · · · , a1n−1, · · · , amn−1 ∈ Z.

We put

Ak =
(
Aji,k

)
, Aji,k =


0 if

(
f(i), εi,1

)
̸= (j, k) and

(
f ′(i), ε′i,1

)
̸= (j, k),

1 if
(
f(i), εi,1

)
= (j, k) and

(
f ′(i), ε′i,1

)
̸= (j, k),

1 if
(
f(i), εi,1

)
̸= (j, k) and

(
f ′(i), ε′i,1

)
= (j, k),

2 if
(
f(i), εi,1

)
= (j, k) and

(
f ′(i), ε′i,1

)
= (j, k),

Bk =
(
Bji,k

)
, Bji,k =


0 if

(
g(i), εi,2

)
̸= (j, k) and

(
g′(i), ε′i,2

)
̸= (j, k),

1 if
(
g(i), εi,2

)
= (j, k) and

(
g′(i), ε′i,2

)
̸= (j, k),

1 if
(
g(i), εi,2

)
̸= (j, k) and

(
g′(i), ε′i,2

)
= (j, k),

2 if
(
g(i), εi,2

)
= (j, k) and

(
g′(i), ε′i,2

)
= (j, k),

Ck =
(
Cji,k

)
, Cji,k =


0 if

(
h(i), εi,3

)
̸= (j, k) and

(
h′(i), ε′i,3

)
̸= (j, k),

1 if
(
h(i), εi,3

)
= (j, k) and

(
h′(i), ε′i,3

)
̸= (j, k),

1 if
(
h(i), εi,3

)
̸= (j, k) and

(
h′(i), ε′i,3

)
= (j, k),

2 if
(
h(i), εi,3

)
= (j, k) and

(
h′(i), ε′i,3

)
= (j, k).
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For simplicity, when max
{
εi,1, ε

′
i,1, εi,2, ε

′
i,2, εi,3, ε

′
i,3

∣∣ 1 ≤ i ≤ m
}
= 1, we put

A =



A0 A1

A1 A0

A1
. . .
. . . A0

A1 A0

 ,

B =



B0 B1

B1 B0

B1
. . .
. . . B0

B1 B0

 ,

C =



C0 C1

C1 C0

C1
. . .
. . . C0

C1 C0

 .

Then, the Neumann-Zagier matrix
(
A
∣∣B) is given by

A = A−C, B = B−C.

Example 5.4. For the 61 knot, by (86), we have that

I
(
Mn(61)

)
=

∑
a0=0, a1,··· ,an−1∈Z

b0,··· ,bn−1∈Z
c0,··· ,cn−1∈Z
d0,··· ,dn−1∈Z

qa0+···+an−1+b0+···+bn−1+c0+···+cn−1+d0+···+dn−1

× I(a0+d0, a1+b0, d0+c0) I(b0+d0, a1+c0, a0+b1)

× I(a1+d0, b1+d0, b0+c0) I(2a1, b0+c1, 2b1)

× I(a1+d1, a2+b1, d1+c1) I(b1+d1, a2+c1, a1+b2)

× I(a2+d1, b2+d1, b1+c1) I(2a2, b1+c2, 2b2)

× · · ·
× I(an−1+dn−1, an+bn−1, dn−1+cn−1) I(bn−1+dn−1, an+cn−1, an−1+bn)

× I(an+dn−1, bn+dn−1, bn−1+cn−1) I(2an, bn−1+cn, 2bn), (76)

where we regard the subscripts of ai, bi, ci, di as modulo n. Hence, for example, A0 and
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A1 are given by

A0 =


1 0 0 0
0 1 0 0
0 0 0 0
1 1 1 0

 , A1 =


0 0 1 2
0 0 0 0
0 0 0 0
0 0 0 0

 .

These matrices are obtained in such a way that the first entries of the second and third
lines of (76) is given by(

a0 b0 c0 d0
)
A0 +

(
a1 b1 c1 d1

)
A1 =

(
a0+d0, b0+d0, a1+d0, 2a1

)
.

As mentioned before, we assume that min
{
εi,1, ε

′
i,1, εi,2, ε

′
i,2, εi,3, ε

′
i,3

∣∣ 1 ≤ i ≤ m
}
= 0.

Further, we put max
{
εi,1, ε

′
i,1, εi,2, ε

′
i,2, εi,3, ε

′
i,3

∣∣ 1 ≤ i ≤ m
}
= ε.

Proof of Theorem 3.1. We put

E =
{
(a10, a

2
0, · · · , am0 , a11, a

2
1, · · · , am1 , · · · , a1n−1, a

2
n−1, · · · , amn−1) ∈ Zmn

}
= Zmn,

Qi
k(Z) =

{
(ℓ1, ℓ2, ℓ3) ∈ Z3

}
= Z3.

We define
F i

k : E −→ Qi
k(Z)

by

F i
k(a

1
0, a

2
0, · · · , am0 , a11, a

2
1, · · · , am1 , · · · , a1n−1, a

2
n−1, · · · , amn−1)

=
(
a
f(i)
k+εi,1

+ a
f ′(i)
k+ε′i,1

, a
g(i)
k+εi,2

+ a
g′(i)
k+ε′i,2

, a
h(i)
k+εi,3

+ a
h′(i)
k+ε′i,3

)
,

where we regard the subscripts in the right-hand side as modulo n. Further, we define

Di
k : Qi

k(Z) −→ R≥0

by

Di
k(ℓ1, ℓ2, ℓ3) = deg Ji(ℓ1, ℓ2, ℓ3)

=


1
2
(ℓ2−ℓ1)(ℓ3−ℓ1) + βi(ℓ2−ℓ1) + γi(ℓ3−ℓ1) if ℓ1 ≤ ℓ2 and ℓ1 ≤ ℓ3,

1
2
(ℓ1−ℓ2)(ℓ3−ℓ2) + αi(ℓ1−ℓ2) + γi(ℓ3−ℓ2) if ℓ2 ≤ ℓ1 and ℓ2 ≤ ℓ3,

1
2
(ℓ1−ℓ3)(ℓ2−ℓ3) + αi(ℓ1−ℓ3) + βi(ℓ2−ℓ3) if ℓ3 ≤ ℓ1 and ℓ3 ≤ ℓ2,

(77)

where the second equality is obtained by (12). By Lemma 2.1, there exists a constant
δ > 0 such that,

if Di
k(ℓ1, ℓ2, ℓ3) > 0, then Di

k(ℓ1, ℓ2, ℓ3) ≥ δ. (78)

We put ER = E⊗R and Qi
k(R) = Qi

k(Z)⊗R. The above maps F i
k and Di

k are naturally
extended to the following maps,

ER
F i

i−→ Qi
k(R)

Di
i−→ R≥0 .
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Similarly as in the previous section, these maps induces the following maps,

ER/R
F̂i

k−→ Qi
k(R)/R

D̂i
k−→ R≥0 ,

and we obtain the following maps,

ER/R
F̂−→

⊕
i,k

(
Qi

k(R)/R
) D̂−→ R≥0 ,

As shown in the previous section, the map F̂ is injective.

We fix any positive integer D. Similarly as in the previous section, we show that the
degree ≤ D part of the sum (75) can be reduced to a finite sum, as follows. By (78), the
number of (i, k) with Di

k(· · · ) > 0 is bounded by D/δ. We consider a sequence of such
(i, k),

S =
(
(i1, k1), (i2, k2), · · · , (ih, kh)

)
,

where kj ≤ kj+1 for each j, and ij < ij+1 if kj = kj+1, and h ≤ D/δ,
(79)

noting that there are finitely many such sequences. We put

QS =
⊕
i,k

{(
Qi

k(R)/R
)×

if (i, k) ∈ S,

{0} if (i, k) /∈ S,

where
(
Qi

k(R)/R
)×

=
(
Qi

k(R)/R
)
− {0}. Then,

⊕
i,k

(
Qi

k(R)/R
)
is presented as the

disjoint union of finitely many QS,⊕
i,k

(
Qi

k(R)/R
)

=
⊔
S

QS ⊔ Q′, (80)

where Q′ is the complement of ⊔SQS, noting that the degree obtained from a sequence of
Q′ is greater than D, which we can ignore. Similarly as in the previous section,∏

(i,k)∈S

D̂i
k

−1(
[0, D]

)
is bounded by a constant independent of n. Hence, D̂−1

(
[0, D]

)
is bounded. Therefore,

similarly as in the previous section, we obtain that the degree ≤ D part of the sum (75)
can be reduced to a finite sum, and hence, the sum converges. However, we note that the
bounding constant of the range of this sum depends on n.

We consider to reduce the degree D part of the sum (75) further, in such a way that
the bounding constant of the range of the sum is independent of n, as follows. Let S
be the set of sequence of the form (79). When 1 ≤ j < j′ < h and kj−1 + ε < kj and
kj′−1 + ε+ 1 < kj′ , we consider a sequence,

S ′ =
(
(i1, k1), · · · , (ij−1, kj−1), (ij, kj+1), · · · , (ij′−1, kj′−1+1), (ij′ , kj′), · · · , (ih, kh)

)
.
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We consider the equivalence relation of S generated by the equivalence between such S
and S ′. In each equivalence class, we say that S of the form (79) is minimal if k1+ · · ·+kh
is minimal. We choose a representative sequence of such equivalence class from minimal
sequences. Let Ŝ be the set of representative sequences. We note that the cardinality of
Ŝ is bounded by (ε+1) ·D/δ, which is independent of n. We consider to rewrite ⊔SQS of
(80) by ⊔

S ∈S

QS =
⊔
Ŝ ∈ Ŝ

⊔
S∼Ŝ

QS.

In Sections 5.1, 5.2, 5.3, we consider “case” when we calculate the 3D-index. For example,
in (35), we consider the sequence,

U = U ℓ0
const · U

1,0,4
1 · U ℓ1

const · U
1,0,4
1 · U ℓ2

const ,

where we can change ℓ0, ℓ1, ℓ2 in the same case, and J41(U) does not change independently
of ℓ0, ℓ1, ℓ2. Hence, the contribution from this case can be written in terms of a power
series with coefficients of polynomials in n for a sufficiently large n. Here, this polynomial
is obtained from the number of the ways of putting two copies of U1,0,4

1 in the whole
sequence of length 2n. Hence, this polynomial is a polynomial in n of degree 2 in this
case. More generally, we consider a sequence,

U = U ℓ0
const · U1 · U ℓ1

const · U2 · · · · · Ud · U ℓd
const.

Then, the number of ways of putting U1, · · · , Ud in the whole sequence is a polynomial
in n of degree d. Since the degree of J41(Ui) is at least

1
2
, we have that 1

2
d ≤ D. Hence,

the polynomial is a polynomial of degree ≤ 2D. Further, we note that, if two sequences
a, a′ ∈ E are in the same case, F̂(a) and F̂(a′) belong to QS and QS′ of equivalent S and
S ′. Similarly, when S and S ′ are equivalent,∏

(i,k)∈S

D̂i
k

−1(
[0, D]

)
and

∏
(i′,k′)∈S′

D̂i′

k′
−1(

[0, D]
)

can be naturally identified, and identified sequences give the same contribution to the sum
of the 3D-index, because of the same reason as above. Therefore, the sum of the defining
formula (75) of I

(
Mn(K)

)
can be written as the sum of partial sums over Ŝ such that

the contribution from each partial sum is a power series with coefficients of polynomials
in n of degree ≤ 2D for a sufficiently large n. Since the cardinality of Ŝ is bounded by a
constant independent of n, this sum is a power series with coefficients of polynomials in
n of degree ≤ 2D.

Hence, we obtain the theorem.

A Classification of particular sequences of parameters to calcu-
late I

(
Mn(K)

)
As we mention in Section 5, in order to calculate the lower degree part of I

(
Mn(K)

)
, it

is sufficient to calculate contributions only from a union of finite number of particular
sequences and constant sequences of parameters in the defining formula of I

(
Mn(K)

)
.
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In this section, we classify such particular sequences for the 41, 52, 61 knots in Sections
A.1, A.2, A.3 respectively.

A.1 Sequences for the 41 knot

In this section, in order to calculate the degree ≤ 3 part of I
(
Mn(41)

)
, we classify partic-

ular sequences of parameters which contribute to this part, by computer search.

We denote by Ud,h,ℓ
∗ a sequence of the form (29) of degree d, height h and length ℓ,

where we define the degree of Ud,h,ℓ
∗ to be the lowest degree of J41(U

d,h,ℓ
∗ ). It is sufficient

to classify such sequences of degree ≤ 3.

Degree 1: The sequence of the form U1,0,∗
∗ of degree 1 is given by

U1,0,4
1 = (0, 0, 0, 1, 0, 0, 0), J41(U

1,0,4
1 ) ≡ q − 2q3.

Degree 2: The sequences of the form U2,0,∗
∗ of degree 2 are given by

U2,0,4
1 = (0, 0, 0, 2, 0, 0, 0), J41(U

1,0,4
1 ) ≡ q2,

U2,0,7
1 = (0, 0, 0, 1, 0, 0, 1, 0, 0, 0), J41(U

2,0,7
1 ) ≡ q2

Degree 3: The sequences of the form U3,0,∗
∗ of degree 3 are given by

U3,0,4
1 = (0, 0, 0, 3, 0, 0, 0), J41(U

3,0,4
1 ) ≡ q3,

U3,0,7
1 = (0, 0, 0, 1, 0, 0, 2, 0, 0, 0), J41(U

3,0,7
1 ) ≡ q3,

U3,0,7
2 = (0, 0, 0, 2, 0, 0, 1, 0, 0, 0), J41(U

3,0,7
1 ) ≡ q3,

U3,0,10
2 = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0), J41(U

3,0,10
1 ) ≡ q3.

A.2 Sequences for the 52 knot

In this section, in order to calculate the degree ≤ 2 part of I
(
Mn(52)

)
, we classify partic-

ular sequences of parameters which contribute to this part, by computer search.

We denote by V d,h,ℓ
∗ a sequence of the form (41) of degree d, height h and length ℓ,

where we define the degree of V d,h,ℓ
∗ to be the lowest degree of J52(V

d,h,ℓ
∗ ). It is sufficient

to classify such sequences of degree ≤ 2.

Degree 1
2
: The sequences of the form V

1/2,∗,∗
∗ of degree 1

2
are given by

V
1/2,−1,2
1 = (0, 0,−1, 0,−1,−1, −1,−1, ∗, −1), J52(V

1/2,−1,2
1 ) ≡ q1/2 − 3q3/2,

V
1/2,1,2
1 = (0, 0, 0, 0, 0, 0, 1, 1, ∗, 1), J52(V

1/2,1,2
1 ) ≡ q1/2 − 3q3/2.

Degree 1:
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• Height 0 : The sequences of the form V 1,0,∗
∗ of degree 1 and height 0 are given by

V 1,0,1
1 = (0, 0,−1, 0, 0, ∗, 0), J52(V

1,0,1
1 ) ≡ −q − q2,

V 1,0,2
1 = (0, 0, 0, 0, 1, 0, 0, 0, ∗, 0), J52(V

1,0,2
1 ) ≡ q,

V 1,0,3
1 = (0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, ∗, 0), J52(V

1,0,3
1 ) ≡ q − 3q2,

V 1,0,3
2 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ∗, 0), J52(V

1,0,3
2 ) ≡ q − 2q2,

V 1,0,3
3 = (0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, ∗, 0), J52(V

1,0,3
3 ) ≡ q − 4q2,

V 1,0,3
4 = (0, 0,−1, 0,−1,−1, −1,−1,−1, 0, 0, ∗, 0), J52(V

1,0,3
4 ) ≡ q − 4q2.

• Height 2 : The sequences of the form V 1,2,∗
∗ of degree 1 and height 2 are given by

V 1,2,2
1 = (0, 0, 0, 0, 0, 0, 2, 2, ∗, 2), J52(V

1,2,2
1 ) = q − 3q2,

V 1,2,3
1 = (0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, ∗, 2), J52(V

1,2,3
1 ) = q − 3q2.

• Height −2 : The sequences of the form V 1,−2,∗
∗ of degree 1 and height −2 are given

by

V 1,−2,2
1 = (0, 0,−2, 0,−2,−2, −2,−2, ∗, −2), J52(V

1,−2,2
1 ) = q − 3q2,

V 1,−2,3
1 = (0, 0,−1, 0,−1,−2, −1,−2,−2, −2,−2, ∗, −2), J52(V

1,−2,3
1 ) = q − 3q2

Degree 2:

• Length ≤ 2 : The sequences of the form V 2,0,ℓ
∗ (ℓ = 1, 2) of degree 2 and length ≤ 2

are given by
V 2,0,1
1 = (0, 0, 1, 0, 0, ∗, 0), J52(V

2,0,1
1 ) ≡ q2,

V 2,0,2
1 = (0, 0, 0, 0, 2, 0, 0, 0, ∗, 0), J52(V

2,0,2
1 ) ≡ q2.

• Length 3 : The sequences of the form V 2,0,3
∗ of degree 2 and length 3 are given by

V 2,0,3
1 = (0, 0, 0, 0,−1,−1, −1,−1,−1, 0, 0, ∗, 0),

V 2,0,3
2 = (0, 0, 0, 0, 0,−2, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,3
3 = (0, 0, 0, 0, 0,−2, 2, 0, 0, 0, 0, ∗, 0),

V 2,0,3
4 = (0, 0, 0, 0, 0,−1, 2, 0, 0, 0, 0, ∗, 0),

V 2,0,3
5 = (0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, ∗, 0),

V 2,0,3
6 = (0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, ∗, 0),

V 2,0,3
7 = (0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, ∗, 0),

V 2,0,3
8 = (0, 0,−2, 0,−2,−2, −2,−2,−2, 0, 0, ∗, 0),

V 2,0,3
9 = (0, 0,−2, 0,−1,−1, −1,−1,−1, 0, 0, ∗, 0),

V 2,0,3
10 = (0, 0,−1, 0,−1,−1, −1,−1,−2, 0, 0, ∗, 0),

V 2,0,3
11 = (0, 0,−1, 0,−1,−1, −1,−1, 0, 0, 0, ∗, 0).
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Their invariants are given by

J52(V
2,0,3
i ) ≡

{
−q2 if i = 1, 2, 9, 10, 11,

q2 otherwise.

• Length 4 : The sequences of the form V 2,0,4
∗ of degree 2 and length 4 are given by

V 2,0,4
1 = (0, 0, 0, 0, 0,−2, 1,−1,−1, −1,−1,−1, 0, 0, ∗, 0),

V 2,0,4
2 = (0, 0, 0, 0, 0,−1, 1,−1,−1, −1,−1,−1, 0, 0, ∗, 0),

V 2,0,4
3 = (0, 0, 0, 0, 0, 0, 1,−1,−1, −1,−1,−1, 0, 0, ∗, 0),

V 2,0,4
4 = (0, 0, 0, 0, 0, 0, 1, 1,−1, 2, 0, 0, 0, 0, ∗, 0),

V 2,0,4
5 = (0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, ∗, 0),

V 2,0,4
6 = (0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, ∗, 0),

V 2,0,4
7 = (0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,4
8 = (0, 0, 0, 0, 0,−1, 2, 1, 0, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,4
9 = (0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,4
10 = (0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,4
11 = (0, 0, 0, 0, 1,−1, 0,−1,−1, −1,−1,−1, 0, 0, ∗, 0),

V 2,0,4
12 = (0, 0,−2, 0,−2,−2, −2,−2,−2, −1,−1,−1, 0, 0, ∗, 0),

V 2,0,4
13 = (0, 0,−1, 0,−1,−2, −1,−2,−2, −2,−2,−2, 0, 0, ∗, 0),

V 2,0,4
14 = (0, 0,−1, 0,−1,−1, −1,−1,−1, 0, 1, 0, 0, 0, ∗, 0),

V 2,0,4
15 = (0, 0,−1, 0,−1,−1, −1,−1,−2, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,4
16 = (0, 0,−1, 0,−1,−1, −1,−1,−1, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,4
17 = (0, 0,−1, 0,−1,−1, −1,−1, 0, 1, 0, 0, 0, 0, ∗, 0).

Their invariants are given by

J52(V
2,0,4
i ) ≡ q2 for i = 1, 2, · · · , 17.

• Length 5 : The sequences of the form V 2,0,5
∗ of degree 2 and length 5 are given by

V 2,0,5
1 = (0, 0, 0, 0, 0,−1, 1, 0,−1, 0,−1,−1, −1,−1,−1, 0, 0, ∗, 0),

V 2,0,5
2 = (0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,5
3 = (0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,5
4 = (0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,5
5 = (0, 0, 0, 0, 0, 0, 1, 0,−1, 0,−1,−1, −1,−1,−1, 0, 0, ∗, 0),

V 2,0,5
6 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,5
7 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,5
8 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,5
9 = (0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 1, 0, 0, 0, 0, ∗, 0),
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V 2,0,5
10 = (0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 0, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,5
11 = (0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 1, 0, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,5
12 = (0, 0, 0, 0, 0, 1, 1, 0,−1, 0,−1,−1, −1,−1,−1, 0, 0, ∗, 0),

V 2,0,5
13 = (0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,5
14 = (0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,5
15 = (0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,5
16 = (0, 0,−1, 0,−1,−2, −1,−2,−2, −2,−2,−2, −1,−1,−1, 0, 0, ∗, 0),

V 2,0,5
17 = (0, 0,−1, 0,−1,−1, −1,−1,−2, 0,−1,−1, −1,−1,−1, 0, 0, ∗, 0),

V 2,0,5
18 = (0, 0,−1, 0,−1,−1, −1,−1,−1, 0,−1,−1, −1,−1,−1, 0, 0, ∗, 0),

V 2,0,5
19 = (0, 0,−1, 0,−1,−1, −1,−1,−1, 0, 0,−1, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,5
20 = (0, 0,−1, 0,−1,−1, −1,−1,−1, 0, 0, 0, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,5
21 = (0, 0,−1, 0,−1,−1, −1,−1,−1, 0, 0, 1, 1, 0, 0, 0, 0, ∗, 0),

V 2,0,5
22 = (0, 0,−1, 0,−1,−1, −1,−1, 0, 0,−1,−1, −1,−1,−1, 0, 0, ∗, 0).

Their invariants are given by

J52(V
2,0,5
i ) ≡ q2 for i = 1, 2, · · · , 22.

Degree 3
2
:

• Height 1, length 2 : The sequences of the form V
3/2,1,2
∗ of degree 3

2
, height 1, length

2 are given by

V
3/2,1,2
1 = (0, 0, 0, 0, 0,−1, 1, 1, ∗, 1),

V
3/2,1,2
2 = (0, 0, 0, 0, 0, 1, 1, 1, ∗, 1).

Their invariants are given by

J52(V
3/2,1,2
i ) = −q3/2 for i = 1, 2.

• Height 1, length 3 : The sequences of the form V
3/2,1,3
∗ of degree 3

2
, height 1, length

3 are given by

V
3/2,1,3
1 = (0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, ∗, 1),

V
3/2,1,3
2 = (0, 0, 0, 0, 0,−1, 2, 1, 1, 1, 1, ∗, 1),

V
3/2,1,3
3 = (0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1, ∗, 1),

V
3/2,1,3
4 = (0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 1, ∗, 1),

V
3/2,1,3
5 = (0, 0,−1, 0,−1,−1, −1,−1,−1, 1, 1, ∗, 1).

Their invariants are given by

J52(V
3/2,1,3
i ) = q3/2 for i = 1, 2, · · · , 5.
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• Height 1, length 4 : The sequences of the form V
3/2,1,4
∗ of degree 3

2
, height 1, length

4 are given by

V
3/2,1,4
1 = (0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 1, 1, ∗, 1),

V
3/2,1,4
2 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, ∗, 1),

V
3/2,1,4
3 = (0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 1, 1, 1, ∗, 1),

V
3/2,1,4
4 = (0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, ∗, 1),

V
3/2,1,4
5 = (0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 1, 1, 1, 1, ∗, 1),

V
3/2,1,4
6 = (0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, ∗, 1),

V
3/2,1,4
7 = (0, 0,−1, 0,−1,−1, −1,−1,−1, 0, 0, 0, 1, 1, ∗, 1).

Their invariants are given by

J52(V
3/2,1,4
i ) = q3/2 for i = 1, 2, · · · , 7.

• Height −1, length 2 : The sequences of the form V
3/2,−1,2
∗ of degree 3

2
, height −1,

length 2 are given by

V
3/2,−1,2
1 = (0, 0, 0, 0,−1,−1, −1,−1, ∗, −1),

V
3/2,−1,2
2 = (0, 0,−2, 0,−1,−1, −1,−1, ∗, −1).

Their invariants are given by

J52(V
3/2,−1,2
i ) = −q3/2 for i = 1, 2.

• Height −1, length 3 : The sequences of the form V
3/2,−1,3
∗ of degree 3

2
, height −1,

length 3 are given by

V
3/2,−1,3
1 = (0, 0, 0, 0, 0,−2, 1,−1,−1, −1,−1, ∗, −1),

V
3/2,−1,3
2 = (0, 0, 0, 0, 0,−1, 1,−1,−1, −1,−1, ∗, −1),

V
3/2,−1,3
3 = (0, 0, 0, 0, 0, 0, 1,−1,−1, −1,−1, ∗, −1),

V
3/2,−1,3
4 = (0, 0, 0, 0, 1,−1, 0,−1,−1, −1,−1, ∗, −1),

V
3/2,−1,3
5 = (0, 0,−2, 0,−2,−2, −2,−2,−2, −1,−1, ∗, −1).

Their invariants are given by

J52(V
3/2,−1,3
i ) = q3/2 for i = 1, 2, · · · , 5.

• Height −1, length 4 : The sequences of the form V
3/2,−1,4
∗ of degree 3

2
, height −1,

length 4 are given by

V
3/2,−1,4
1 = (0, 0, 0, 0, 0,−1, 1, 0,−1, 0,−1,−1, −1,−1, ∗, −1),

V
3/2,−1,4
2 = (0, 0, 0, 0, 0, 0, 1, 0,−1, 0,−1,−1, −1,−1, ∗, −1),
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V
3/2,−1,4
3 = (0, 0, 0, 0, 0, 1, 1, 0,−1, 0,−1,−1, −1,−1, ∗, −1),

V
3/2,−1,4
4 = (0, 0,−1, 0,−1,−2, −1,−2,−2, −2,−2,−2, −1,−1, ∗, −1),

V
3/2,−1,4
5 = (0, 0,−1, 0,−1,−1, −1,−1,−2, 0,−1,−1, −1,−1, ∗, −1),

V
3/2,−1,4
6 = (0, 0,−1, 0,−1,−1, −1,−1,−1, 0,−1,−1, −1,−1, ∗, −1),

V
3/2,−1,4
7 = (0, 0,−1, 0,−1,−1, −1,−1, 0, 0,−1,−1, −1,−1, ∗, −1),

Their invariants are given by

J52(V
3/2,−1,4
i ) = q3/2 for i = 1, 2, · · · , 7.

A.3 Sequences for the 61 knot

In this section, in order to calculate the degree ≤ 2 part of I
(
Mn(61)

)
, we classify partic-

ular sequences of parameters which contribute to this part, by computer search.

We denote by W d,h,ℓ
∗ a sequence of the form (56) of degree d, height h and length ℓ,

where we define the degree of W d,h,ℓ
∗ to be the lowest degree of J61(W

d,h,ℓ
∗ ). It is sufficient

to classify such sequences of degree ≤ 2.

Degree 1
2
: The sequences of the form W

1/2,∗,∗
∗ and their invariants which have the lowest

degree ≤ 2 are given by

W
1/2,−1,1
1 = (0, 0, 0,−1, −1,−1,−1), J61(W

1/2,−1,1
1 ) ≡ q1/2 − 2q3/2,

W
1/2,1,2
1 = (0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1), J61(W

1/2,1,2
1 ) ≡ q1/2 − 4q3/2.

Degree 1:

• Height 0 : The sequences of the form W 1,0,∗
∗ of degree 1, height 0 are given by

W 1,0,1
1 = (0, 0, 0,−1, 0, 0, 0), J61(W

1,0,1
1 ) ≡ −q,

W 1,0,2
1 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0), J61(W

1,0,2
1 ) ≡ q − 4q2,

W 1,0,2
2 = (0, 0, 0, 0, 0, 1, 0,−1, 0, 0, 0), J61(W

1,0,2
2 ) ≡ q − 2q2,

W 1,0,2
3 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), J61(W

1,0,2
3 ) ≡ q − q2,

W 1,0,2
4 = (0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0), J61(W

1,0,2
4 ) ≡ q − 3q2,

W 1,0,2
5 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), J61(W

1,0,2
5 ) ≡ q − 2q2.

• Height −2 : The sequence of the form W 1,−2,∗
∗ of degree 1, height −2 is given by

W 1,−2,1
1 = (0, 0, 0,−2, −2,−2,−2), J61(W

1,−2,1
1 ) ≡ q − 2q2.

• Height 2 : The sequences of the form W 1,2,∗
∗ of degree 1, height 2 are given by

W 1,2,2
1 = (0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 2), J61(W

1,2,2
1 ) ≡ q − 4q2,

W 1,2,3
1 = (0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1, 1, 2, 2, 2), J61(W

1,2,3
1 ) ≡ q − 4q2.
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Degree 2:

• Length 1 : The sequence of the form W 2,0,1
∗ of degree2, length 1 is given by

W 2,0,1
1 = (0, 0, 0, 1, 0, 0, 0), J61(W

2,0,1
1 ) ≡ q2.

• Length 2 : The sequences of the form W 2,0,2
∗ of degree2, length 2 are given by

W 2,0,2
1 = (0, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0),

W 2,0,2
2 = (0, 0, 0, 0, 0, 0,−1,−1, 0, 0, 0),

W 2,0,2
3 = (0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0),

W 2,0,2
4 = (0, 0, 0, 0, 0, 1, 0,−2, 0, 0, 0),

W 2,0,2
5 = (0, 0, 0, 0, 0, 2, 0,−2, 0, 0, 0),

W 2,0,2
6 = (0, 0, 0, 0, 0, 2, 0,−1, 0, 0, 0),

W 2,0,2
7 = (0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0),

W 2,0,2
8 = (0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0),

W 2,0,2
9 = (0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0),

W 2,0,2
10 = (0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0).

Their invariants are given by

J61(W
2,0,2
i ) ≡

{
−q2 for i = 1, 2, 4,

q2 otherwise.

• Length 3 : The sequences of the form W 2,0,3
∗ of degree2, length 3 are given by

W 2,0,3
1 = (0, 0, 0,−1, −1,−1,−2,−2, −1, 0,−1,−1, 0, 0, 0),

W 2,0,3
2 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0),

W 2,0,3
3 = (0, 0, 0, 0, 0, 1, 0,−1, 0, 0,−1,−1, 0, 0, 0),

W 2,0,3
4 = (0, 0, 0, 0, 0, 1, 0,−1, 0, 0, 1, 0, 0, 0, 0),

W 2,0,3
5 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0,−1,−1, 0, 0, 0),

W 2,0,3
6 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0),

W 2,0,3
7 = (0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0),

W 2,0,3
8 = (0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1,−1, 0, 0, 0),

W 2,0,3
9 = (0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0),

W 2,0,3
10 = (0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1, 1, 0, 0, 0),

W 2,0,3
11 = (0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 0),

W 2,0,3
12 = (0, 0, 0, 0, 0, 1, 0, 1, 0, 0,−1,−1, 0, 0, 0),

W 2,0,3
13 = (0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0),

W 2,0,3
14 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),
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W 2,0,3
15 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,−1, 0, 0, 0),

W 2,0,3
16 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),

W 2,0,3
17 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0).

Their invariants are given by

J61(W
2,0,3
i ) ≡ q2 for i = 1, 2, · · · , 17.

Degree 3
2
:

• Height −1, length 1 : The sequences of the form W
3/2,−1,1
∗ of degree 3

2
, height −1,

length 1 are given by

W
3/2,−1,1
1 = (0, 0, 0,−2, −1,−1,−1),

W
3/2,−1,1
2 = (0, 0, 0, 0, −1,−1,−1).

Their invariants are given by

J61(W
3/2,−1,1
i ) ≡ −q3/2 for i = 1, 2.

• Height −1, length 2 : The sequences of the form W
3/2,−1,2
∗ of degree 3

2
, height −1,

length 2 are given by

W
3/2,−1,2
1 = (0, 0, 0,−1, −1,−1,−2,−2, −1,−1,−1),

W
3/2,−1,2
2 = (0, 0, 0,−1, −1,−1, 0,−1, −1,−1,−1),

W
3/2,−1,2
3 = (0, 0, 0, 0, 0, 0, 1,−1, −1,−1,−1),

W
3/2,−1,2
4 = (0, 0, 0, 0, 0, 1, 0,−2, −1,−1,−1),

W
3/2,−1,2
5 = (0, 0, 0, 0, 0, 1, 0,−1, −1,−1,−1),

W
3/2,−1,2
6 = (0, 0, 0, 0, 0, 1, 0, 0, −1,−1,−1),

W
3/2,−1,2
7 = (0, 0, 0, 0, 1, 0, 0,−1, −1,−1,−1).

Their invariants are given by

J61(W
3/2,−1,2
i ) ≡ q3/2 for i = 1, 2, · · · , 7.

• Height 1, length 2 : The sequences of the form W
3/2,1,2
∗ of degree 3

2
, height 1, length

2 are given by

W
3/2,1,2
1 = (0, 0, 0, 0, 0, 1, 0,−1, 1, 1, 1),

W
3/2,1,2
2 = (0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1),

W
3/2,1,2
3 = (0, 0, 0, 0, 0, 2, 0,−1, 1, 1, 1),

W
3/2,1,2
4 = (0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 1),

W
3/2,1,2
5 = (0, 0, 0, 0, 0, 2, 0, 1, 1, 1, 1).
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Their invariants are given by

J61(W
3/2,1,2
i ) ≡

{
−q3/2 for i = 1, 2,

q3/2 otherwise.

• Height 1, length 3 : The sequences of the form W
3/2,1,3
∗ of degree 3

2
, height 1, length

3 are given by

W
3/2,1,3
1 = (0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 1, 1, 1, 1),

W
3/2,1,3
2 = (0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 1, 1, 1),

W
3/2,1,3
3 = (0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1, 1, 1, 1, 1),

W
3/2,1,3
4 = (0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1, 2, 1, 1, 1),

W
3/2,1,3
5 = (0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 1, 1, 1, 1, 1),

W
3/2,1,3
6 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1).

Their invariants are given by

J61(W
3/2,1,3
i ) ≡ q3/2 for i = 1, 2, · · · , 6.

B Presentation of I
(
Mn(K)

)
In this section, we review an ideal triangulation of a hyperbolic knot complement; for
details of this topic, see [20] for the 41 knot, and [21, 22, 23] for other hyperbolic knots.
Further, we consider the nth cyclic cover of this ideal triangulation, and we obtain a
presentation of I

(
Mn(K)

)
. Furthermore, by using the hyperbolic structure of the knot

complement, we modify the presentation of I
(
Mn(K)

)
in such a way that the lowest

degree of each summand of the presentation is positive. This modified presentation is
used in Sections 4 and 5. We calculate such presentations for the 41, 52, 61 knots in
Sections B.1, B.2, B.3 respectively.

B.1 Presentation of I
(
Mn(41)

)
In this section, we review an ideal triangulation of the 41 knot complement; see [20] for
details of this topic. Further, we consider the nth cyclic cover of this ideal triangulation,
and obtain a presentation of I

(
Mn(41)

)
.

It is known [20] that the 41 knot complement can expressed as the union of the following
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two ideal tetrahedra.

∆1
∞

0

1

x

c

c

b

b

c

b

∆2
∞

0

1

y

c

c

b

b

c

b

Here, the 4 faces “A”, “B”, “C”, “D” are glued respectively, where the glay characters
are on the back side of tetrahedra. The labels of vertices of a tetrahedron are regarded
in C ∪ {∞} = ∂H3, where H3 denotes the hyperbolic 3-space. The boundary torus of
a tubular neighbourhood of the 41 knot is expressed as the union of 8 triangles “p”,
“q”, · · · “w”, which appear in neighbourhoods of the vertices of the ideal tetrahedra. A
fundamental domain of the torus is depicted as follows.

b

b

c

c

b

b

c

c

b

b

We consider the dual decomposition of the above ideal triangulation. Its 1-skelton is
depicted as follows.

∆1 ∆2

Since the 2-cells of the dual decomposition are given by

b

∆2

∆1

∆2∆1

∆2

∆1

c

∆1

∆2∆1

∆2

∆1 ∆2
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the boundary cycles of the 2-cells are given by

C −D, B − A.

Hence, the first homology of the 41 knot complement is presented by

H1(S
3 −K41)

∼= kernel
(
spanZ{A,B,C,D} −→ spanZ{∆1,∆2}

)
/(A = B, C = D).

By homotopy equivalence collapsing the edge A, we have that

H1(S
3 −K41)

∼= spanZ{C,D}/(C = D), A = B = 0.

We consider the infinite cyclic ocver of the torus in the infinite cyclic cover of the 41 knot
complement. We can choose a fundamental domain as the domain between two dotted
lines in the following figure.

b1

b2

b3

∆2
1

∆2
2

∆1
1

∆1
2

c1

c2

c3

∆2
0

∆2
1

∆1
1

∆1
2

b1

b2

b3

∆2
1

∆2
2

∆1
1

∆1
2

c1

c2

c3

∆2
0

∆2
1

∆1
1

∆1
2

b1

b2

b3

Here, we denote by ∆1
1 and ∆2

1 the lifts of ∆1 and ∆2 in this fundamental domain. The
deck transformation of the cyclic cover takes ∆1

k and ∆2
k to ∆1

k+1 and ∆2
k+1. Further, we

obtain thin lines from dotted lines by pushing them to the direction from ∆∗
k+1 to ∆∗

k.
We denote by b1 and c1 the lifts of b and c in the domain between two thin lines. Further,
the deck transformation of the cyclic cover takes bk and ck to bk+1 and ck+1. Hence, the
edges of ∆1

1 and ∆2
1 are labeled, as follows.

∆1
1

∞

0

1

x

c1

c2

b1

b1

c2

b2

∆2
1

∞

0

1

y

c3

c2

b2

b2

c2

b1

The contribution from these tetrahedra to I
(
Mn(41)

)
is

I(c1+b2, 2b1, 2c2) I(b1+c3, 2b2, 2c2).
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The labels of other tetrahedra ∆1
k+1 and ∆2

k+1 in the cyclic cover are obtained by replacing

bi and ci with bi+k and ci+k. Hence, I
(
Mn(41)

)
is presented by

I
(
Mn(41)

)
=

∑
c0=0,

c1,··· ,cn−1∈Z,
b0,··· ,bn−1∈Z

qc0+···+cn−1+b0+···+bn−1I(c0+b1, 2b0, 2c1) I(b0+c2, 2b1, 2c1)

× I(c1+b2, 2b1, 2c2) I(b1+c3, 2b2, 2c2)

× · · ·
× I(cn−1+bn, 2bn−1, 2cn) I(bn−1+cn+1, 2bn, 2cn), (81)

where we regard the subscripts of bi and ci as modulo n.
The hyperbolicity equations are given by

(1− x)(1− y)

x
= −1 =

(1− x)(1− y)

y
.

This is rewritten as
x = y, x2 − x+ 1 = 0.

The hyperbolic structure of the 41 knot complement is given by the solution

x = y = eπ
√
−1/3.

Hence, we have that

1

2π
Arg x =

1

2π
Arg

1

1− x
=

1

2π
Arg

(
1− 1

x

)
=

1

6
,

1

2π
Arg y =

1

2π
Arg

1

1− y
=

1

2π
Arg

(
1− 1

y

)
=

1

6
.

We put

α = β = γ =
1

6
.

As mentioned in Section 2, we put

Ĵ41(ℓ1, ℓ2, ℓ3) = qαℓ1+βℓ2+γℓ3I(ℓ1, ℓ2, ℓ3).

Then, (81) is rewritten as

I
(
Mn(41)

)
=

∑
c0=0,

c1,··· ,cn−1∈Z,
b0,··· ,bn−1∈Z

Ĵ41(c0+b1, 2b0, 2c1) Ĵ41(b0+c2, 2b1, 2c1)

× Ĵ41(c1+b2, 2b1, 2c2) Ĵ41(b1+c3, 2b2, 2c2)

× · · ·
× Ĵ41(cn−1+bn, 2bn−1, 2cn) Ĵ41(bn−1+cn+1, 2bn, 2cn),
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where we regard the subscripts of bi and ci as modulo n. Further, by putting ck = a2k
and bk = a2k+1, the above formula is rewritten as

I
(
Mn(41)

)
=

∑
a0=0,

a1,··· ,a2n−1∈Z

Ĵ41(a0+a3, 2a1, 2a2) Ĵ41(a1+a4, 2a2, 2a3)

× Ĵ41(a2+a5, 2a3, 2a4) Ĵ41(a3+a6, 2a4, 2a5)

× · · ·
× Ĵ41(a2n−2+a2n+1, 2a2n−1, 2a2n) Ĵ41(a2n−1+a2n+2, 2a2n, 2a2n+1), (82)

where we regard the subscript of ai as modulo 2n.

We use the formula (82) in Sections 4.1 and 5.1.

B.2 Presentation of I
(
Mn(52)

)
In this section, we review an ideal triangulation of the 52 knot complement; see [21, 22, 23]
for details of this topic. Further, we consider the nth cyclic cover of this ideal triangulation,
and obtain a presentation of I

(
Mn(52)

)
.

We review an ideal triangulation of the 52 knot complement. We consider the following
1-tangle diagram whose closure is the 52 knot.

1

1

∞

x

y

0

1

1

1

∆3

∆1

∆2

The edges of the diagram are labeled by parameters, which give the hyperbolic structure of
the 52 knot complement later. We consider 4 tetrahedra at each crossing of the diagram.
We glue them, and collapse dark gray tetrahedra near the end points of the 1-tangle
diagram, and collapse dark gray tetrahedra adjacent to the unbounded regions the 1-
tangle diagram, in the way shown in [21, 22, 23]. Then, we obtain an ideal triangulation
of the 52 knot complement. Further, we cancel two light gray tetrahedra by the 0-2
Pachner move. Then, we obtain the ideal triangulation of the 52 knot complement, which
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consists of the following ideal three tetrahedra.

∆1
∞

y

0

x

c

b

c

b

a

a

∆2
∞

x

0

1

a

a

b

b

c

a

∆3
∞

x

0

1

b

c

c

a

b

a

Similarly as in Section B.1, the boundary torus of a tubular neighbourhood of the 52 knot
is expressed as the union of 12 triangles, which appear in neighbourhoods of the vertices
of the ideal tetrahedra. A fundamental domain of the torus is depicted as follows.

b

b

∆3

∆2

a

a

∆1

∆2

∆3

c

c

b
∆3

∆1

c

c

∆1

∆2
∆3

a

a

∆2

∆1

b

b
We consider the dual decomposition of the above ideal triangulation. Its 1-skelton is
depicted as follows.

∆1 ∆2

∆3

Since the 2-cells of the dual decomposition are given by

a

∆2

∆1

∆2

∆3
∆2

∆1

∆3

b

∆2

∆3

∆1

∆2

∆1
∆3

c

∆3

∆1
∆3

∆1

∆2

the boundary cycles of the 2-cells are given by

B + C + F, B − F +X − Y, −B − 2C + E − F.
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Hence, the first homology of the 52 knot complement is presented by

H1(S
3 −K52)

∼=
kernel

(
spanZ{B,C,E, F,X, Y } −→ spanZ{∆1,∆2,∆3}

)
(B+C+F = 0, B−F+X−Y = 0, −B−2C+E−F = 0)

.

By homotopy equivalence collapsing the edges B and C, we have that

H1(S
3 −K52)

∼= spanZ{X, Y }/(X = Y ), B = C = E = F = 0.

We consider the infinite cyclic ocver of the torus in the infinite cyclic cover of the 52 knot
complement. We can choose a fundamental domain as the domain between two dotted
lines in the following figure.

b1

b2

b3

∆3
1

∆3
2

∆2
1

∆2
2

a1

a2

a3

∆1
0

∆1
1

∆2
0

∆2
1

∆3

c0

c1

c2

b1

b2

∆3
0

∆3
1

∆1
1

∆1
2

c0

c1

c2

∆2
1

∆2
2

∆1
0

∆1
1

∆3
1

∆3
2

a1

a2

a3

∆2
0

∆2
1

∆1
0

∆1
1

b0

b1

b2

Hence, in a similar way as in Section B.1, the edges of ∆1
1, ∆

2
1, ∆

3
1 are labeled, as follows.

∆1
1

∞

y

0

x

c1

b1

c1

b2

a2

a3

∆2
1

∞

x

0

1

a1

a2

b1

b2

c1

a3

∆3
1

∞

x

0

1

b2

c1

c1

a1

b1

a2

The contribution from these tetrahedra to I
(
Mn(52)

)
is

I(a3+c1, c1+b2, a2+b1) I(b1+b2, a2+c1, a1+a3) I(a1+c1, c1+b1, a2+b2).

The labels of other tetrahedra ∆1
k+1, ∆

2
k+1 and ∆3

k+1 in the cyclic cover are obtained by
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replacing ai, bi and ci with ai+k, bi+k and ci+k. Hence, I
(
Mn(52)

)
is presented by

I
(
Mn(52)

)
=∑

a0=0, a1,··· ,an−1∈Z
b0,··· ,bn−1∈Z
c0,··· ,cn−1∈Z

qa0+···+an−1+b0+···+bn−1c0+···+cn−1

× I(a0+c0, c0+b0, a1+b1) I(a2+c0, c0+b1, a1+b0) I(b0+b1, a1+c0, a0+a2)

× I(a1+c1, c1+b1, a2+b2) I(a3+c1, c1+b2, a2+b1) I(b1+b2, a2+c1, a1+a3)

× · · ·
× I(an−1+cn−1, cn−1+bn−1, an+bn) I(an+1+cn−1, cn−1+bn, an+bn−1)

× I(bn−1+bn, an+cn−1, an−1+an+1), (83)

where we regard the subscripts of ai, bi, ci as modulo n.
The hyperbolicity equations are given by

(1− x)
(
1− 1

x

)
= 1− y

x
,

(
1− y

x

)(
1− 1

y

)
= 1− y.

They are rewritten

y = x2 − x+ 1, y + 1− y

x
= 0.

Further, they are rewritten

x3 − 2x2 + 3x− 1 = 0, y =
x

1− x
.

Putting y′ = y/x, we have that

y′ =
1

1− x
,

1

1− y′
= 1− 1

x
, 1− 1

y′
= x,

noting that we can replace the labels x and y of ∆1
1 with 1 and y′. The hyperbolic structure

of the 52 knot complement is given by the solution

x = 0.7849201454.....+
√
−1 1.3071412786..... .

Then, we have that

1

2π
Arg x =

1

2π
Arg

(
1− 1

y′
)

= 0.1639326..... ,

1

2π
Arg

1

1− x
=

1

2π
Arg y′ = 0.2240448..... ,

1

2π
Arg

(
1− 1

x

)
=

1

2π
Arg

1

1− y′
= 0.1120224..... .

As approximations of these values, we put

α = 0.164, β = 0.224, γ = 0.112.
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As mentioned in Section 2, we put

Ĵ52(ℓ1, ℓ2, ℓ3) = qαℓ1+βℓ2+γℓ3I(ℓ1, ℓ2, ℓ3).

Then, (83) is rewritten as

I
(
Mn(52)

)
=∑

a0=0, a1,··· ,an−1∈Z
b0,··· ,bn−1∈Z
c0,··· ,cn−1∈Z

Ĵ52(a0+c0, c0+b0, a1+b1) Ĵ52(a2+c0, c0+b1, a1+b0) Ĵ52(b0+b1, a1+c0, a0+a2)

× Ĵ52(a1+c1, c1+b1, a2+b2) Ĵ52(a3+c1, c1+b2, a2+b1) Ĵ52(b1+b2, a2+c1, a1+a3)

× · · ·
× Ĵ52(an−1+cn−1, cn−1+bn−1, an+bn) Ĵ52(an+1+cn−1, cn−1+bn, an+bn−1)

× Ĵ52(bn−1+bn, an+cn−1, an−1+an+1), (84)

where we regard the subscripts of ai, bi, ci as modulo n.

We use the formula (84) in Sections 4.2 and 5.2.

B.3 Presentation of I
(
Mn(61)

)
In this section, we review an ideal triangulation of the 61 knot complement; see [21, 22, 23]
for details of this topic. Further, we consider the nth cyclic cover of this ideal triangulation,
and obtain a presentation of I

(
Mn(61)

)
.

We review an ideal triangulation of the 61 knot complement. We consider the following
1-tangle diagram whose closure is the 61 knot.

1

1

∞

x

x2

x3

0

1

1

1

1

∆1

∆2

∆3

∆4
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In a similar way as in Section B.2, we obtain the ideal triangulation of the 61 knot
complement, which consists of the following ideal four tetrahedra.

∆1
∞

x

0

1

a

c

d

b

a

b∆2
∞

x2

0

x

c

d

d

a

b

b

∆3
∞

x

0

1

b

b

a

a

c

b

∆4

∞

x3

0

x2

c

a

a

d

b

d

Similarly as in Section B.1, the boundary torus of a tubular neighborhood of the 61 knot
is expressed as the union of 16 triangles, which appear in neighborhoods of the vertices
of the ideal tetrahedra. A fundamental domain of the torus is depicted as follows.

a

a

c

c

∆4 ∆3

∆2

∆1

b

b

∆3

∆2

∆4

d

d

∆4

∆1

∆2

d

d

∆1

∆3

∆4

∆2

b

b

∆3

∆1

a

a

We consider the dual decomposition of the above ideal triangulation. Its 1-skelton is
depicted as follows.

∆1 ∆4

∆2

∆3
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Since the 2-cells of the dual decomposition are given by

a

∆4

∆2

∆3

∆4
∆1

∆3

∆1

b

∆4

∆3

∆2

∆3
∆1

∆3

∆2
∆1

c

∆3

∆1

∆2

∆4

d

∆4

∆2

∆1
∆4

∆2

the boundary cycles of the 2-cells are given by

−B+C +D+F −X + Y, −A+E −X + Y, A−D+X − Y, −A−B−D+2E,

Hence, the first homology of the 61 knot complement is presented by

H1(S
3 −K61)

∼=
kernel

(
spanZ{A,B,C,D,E, F,X, Y } −→ spanZ{∆1,∆2,∆3,∆4}

)( −B+C+D+F−X+Y = 0, −A+E−X+Y = 0,
A−D+X−Y = 0, −A−B−D+2E = 0

) .

By homotopy equivalence collapsing the edges A, E and F , we have that

H1(S
3 −K61)

∼= spanZ{X,Y }/(X = Y ), A = B = C = D = E = F = 0.

We consider the infinite cyclic cover of the torus in the infinite cyclic cover of the 61 knot
complement. We can choose a fundamental domain as the domain between two dotted
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lines in the following figure.

a1

a2

a3

c0

c1

c2

∆4
1

∆4
2

∆3
0

∆3
1

∆2
0

∆2
1

∆1
0

∆1
1

b0

b1

b2

∆3
0

∆3
1

∆2
0

∆2
1

∆4
1

∆4
2

d0

d1

d2

∆4
0

∆4
1

a1

a2

∆1
1

∆1
2

∆2
1

∆2
2

d0

d1

d2

∆1
0

∆1
1

∆3
0

∆3
1

c1

c2

∆4
1

∆4
2

∆2
1

∆2
2

b1

b2

b3

∆3
1

∆3
2

∆1
1

∆1
2

a1

a2

a3

Hence, in a similar way as in Section B.1, the edges of ∆1
1, ∆

2
1, ∆

3
1, ∆

4
1 are labeled, as

follows.

∆1
∞

x

0

1

a1

c1

d1

b1

a2

b2∆2
∞

x2

0

x

c1

d1

d1

a2

b2

b1

∆3
∞

x

0

1

b2

b1

a2

a2

c2

b2

∆4

∞

x3

0

x2

c1

a2

a1

d1

b1

d1

The contribution from these tetrahedra to I
(
Mn(61)

)
is

I(d1+b1, a2+c1, a1+b2) I(a2+d1, d1+b2, b1+c1)

× I(2a2, b1+c2, 2b2) I(a1+d1, a2+b1, d1+c1).
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The labels of other tetrahedra ∆1
k+1, ∆

2
k+1, ∆

3
k+1 and ∆4

k+1 in the cyclic cover are

obtained by replacing ai, bi, ci and di with ai+k, bi+k, ci+k and di+k. Hence, I
(
Mn(61)

)
is

presented by

I
(
Mn(61)

)
=

∑
a0=0, a1,··· ,an−1∈Z

b0,··· ,bn−1∈Z
c0,··· ,cn−1∈Z
d0,··· ,dn−1∈Z

qa0+···+an−1+b0+···+bn−1+c0+···+cn−1+d0+···+dn−1

× I(a0+d0, a1+b0, d0+c0) I(d0+b0, a1+c0, a0+b1)

× I(a1+d0, d0+b1, b0+c0) I(2a1, b0+c1, 2b1)

× I(a1+d1, a2+b1, d1+c1) I(d1+b1, a2+c1, a1+b2)

× I(a2+d1, d1+b2, b1+c1) I(2a2, b1+c2, 2b2)

× · · ·
× I(an−1+dn−1, an+bn−1, dn−1+cn−1) I(dn−1+bn−1, an+cn−1, an−1+bn)

× I(an+dn−1, dn−1+bn, bn−1+cn−1) I(2an, bn−1+cn, 2bn), (85)

where we regard the subscripts of ai, bi, ci, di as modulo n.
The hyperbolicity equations are given by

1− x2

x
= (1− x)

(
1− 1

x

)
,(

1− x2

x

)(
1− 1

x2

)
= (1− x2)

(
1− x3

x2

)
,(

1− x3

x2

)(
1− 1

x3

)
= 1− x3.

They are rewritten

x2 = x2 − x+ 1, x3 = x2 + 1− x2

x
, x3 + 1− x3

x2

= 0.

Further, they are rewritten

x4 − 3x3 + 6x2 − 5x+ 2 = 0, x2 = x2 − x+ 1, x3 =
x3 − 2x2 + 3x− 1

x
.

The hyperbolic structure of the 61 knot complement is given by the solution

x = 0.8951233822.....+
√
−1 1.5524918200..... .

Putting x′
2 = x2/x and x′

3 = x3/x2, we have that

1

2π
Arg x = 0.16675... ,

1

2π
Arg

1

1− x
= 0.23926... ,

1

2π
Arg

(
1− 1

x

)
= 0.09397... ,

1

2π
Arg x′

2 = 0.22434... ,
1

2π
Arg

1

1− x′
2

= 0.14528... ,
1

2π
Arg

(
1− 1

x′
2

)
= 0.13036... ,

1

2π
Arg x′

3 = 0.07250... ,
1

2π
Arg

1

1− x′
3

= 0.03639... ,
1

2π
Arg

(
1− 1

x′
3

)
= 0.39110... .
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As approximations of these values, we put

α1 = 0.166, β1 = 0.24, γ1 = 0.094,

α2 = 0.224, β2 = 0.146, γ2 = 0.13,

α3 = 0.074, β3 = 0.036, γ3 = 0.39.

As mentioned in Section 2, we put

Ĵ61,1(ℓ1, ℓ2, ℓ3) = qα1ℓ1+β1ℓ2+γ1ℓ3I(ℓ1, ℓ2, ℓ3),

Ĵ61,2(ℓ1, ℓ2, ℓ3) = qα2ℓ1+β2ℓ2+γ2ℓ3I(ℓ1, ℓ2, ℓ3),

Ĵ61,3(ℓ1, ℓ2, ℓ3) = qα3ℓ1+β3ℓ2+γ3ℓ3I(ℓ1, ℓ2, ℓ3).

Then, (85) is rewritten as

I
(
Mn(61)

)
=

∑
a0=0, a1,··· ,an−1∈Z

b0,··· ,bn−1∈Z
c0,··· ,cn−1∈Z
d0,··· ,dn−1∈Z

Ĵ61,3(a0+d0, a1+b0, d0+c0) Ĵ61,1(d0+b0, a1+c0, a0+b1)

× Ĵ61,2(a1+d0, d0+b1, b0+c0) Ĵ61,1(2a1, b0+c1, 2b1)

× Ĵ61,3(a1+d1, a2+b1, d1+c1) Ĵ61,1(d1+b1, a2+c1, a1+b2)

× Ĵ61,2(a2+d1, d1+b2, b1+c1) Ĵ61,1(2a2, b1+c2, 2b2)

× · · ·
× Ĵ61,3(an−1+dn−1, an+bn−1, dn−1+cn−1) Ĵ61,1(dn−1+bn−1, an+cn−1, an−1+bn)

× Ĵ61,2(an+dn−1, dn−1+bn, bn−1+cn−1) Ĵ61,1(2an, bn−1+cn, 2bn), (86)

where we regard the subscripts of ai, bi, ci, di as modulo n.
We use the formula (86) in Sections 4.3 and 5.3.
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