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Abstract

The 3D-index is an invariant of a 3-manifold with cusps, which would be related to the volume
conjecture, and it would be useful to study properties of this invariant. In this paper, we calculate the
3D-index of the nth cyclic covers of hyperbolic knot complements, and show that the dth coefficient
of this 3D-index is equal to a polynomial in n of degree < 2d for any sufficiently large n. In particular,
we calculate these polynomials concretely for lower degrees for the 41, 52, 61 knots.

1 Introduction

The 3D-index of a 3-manifold M with cusps is introduced in [2] from the viewpoint of
mathematical physics, which can be regarded as the partition function of SL(2, C) Chern—
Simons theory as mentioned in [2]. They predict that the 3D-index is a topological
invariant of M. Let T be an ideal triangulation of M. The 3D-index is defined as a
power series in ¢ with integer coefficients by using an infinite sum over integer labels of
the edges of 7. In general, this sum does not necessarily converge. In order that this sum
converges, we need the assumption that 7 has a strict angle structure. We assume that
M is hyperbolic, and 7 is an ideal triangulation giving the hyperbolic structure of M; in
this case, 7 has a strict angle structure, and the above mentioned sum converges. For
details, see [3, 4, 5]. Further, from the mathematical viewpoint, another step is to show the
topological invariance of the 3D-index. As an extension of the 3D-index, the meromorphic
3D-index of M is introduced in [6], which is a topological invariant of M. They show
that, if 7 has a strict angle structure, the meromorphic 3D-index can be expanded into
a power series which coincides with the 3D-index. Hence, if M is a hyperbolic 3-manifold
with cusps, then the 3D-index of M is a topological invariant.

We expect that the 3D-index would be related to the volume conjecture. We recall
that the volume conjecture for knots is proposed in [11, 13], and the volume conjecture for
3-manifolds is proposed in [1]. The volume conjecture states that the hyperbolic volume
appears in the asymptotic expansion of quantum invariants of knots and 3-manifolds. The
volume conjecture is proved for some knots e.g. in [16, 17, 19], and for some 3-manifolds
in [18]. Further, “the volume conjecture for the meromorphic 3D-index” is proposed and
numerically observed for some knots in [8]. From the viewpoint of mathematical physics,
the volume conjecture is formally obtained by formally applying infinite dimensional sad-
dle point method to the path integral of the partition function of SL(2,C) Chern—Simons
theory, as mentioned in [18]. Further, it is conjectured in [12] that the hyperbolic volume



appears in the asymptotic expansion of the meromorphic 3D-index. As we mention above,
the 3D-index can be regarded as the partition function of SL(2, C) Chern—Simons theory.
Hence, we expect that the 3D-index might be an approach to prove the volume conjecture.
The volume conjecture is an important conjecture which relates quantum topology and
hyperbolic geometry. Hence, we expect that it would be useful to study properties of the
3D-index, which might be related to quantum topology and hyperbolic geometry.

In this paper, we calculate the 3D-index of finite cyclic covers of some hyperbolic knot
complements, and observe the behavior of the 3D-index of finite cyclic covers. Let K be
a hyperbolic knot. We assume that S — K has an ideal triangulation which gives the
hyperbolic structure of S®— K. Let M,(K) be the n-fold cyclic cover of S®— K. We put
coefficients of its 3D-index as

[(My(K)) = 1 +d"(K)q+d"(K)¢+- €2Z[[q]].

In Theorem 3.1, we show that, for each d > 0, c&")(K ) is equal to a polynomial in n
of degree < 2d for any sufficiently large n. Since the hyperbolic volume of the n-fold
cover of a hyperbolic manifold is equal to n times the hyperbolic volume of the hyperbolic
manifold, this behavior of the 3D-index is an extension of the behavior of the hyperbolic
volume. We calculate concrete examples of such polynomials in Theorems 3.2, 3.3, 3.4;
for the 4; knot, we have that

c§”)(4l) =0 forn > 2, cgn)(éll) =0 forn >3, cgn)(éll) =0 forn >4,

and, for the 55 knot, we have that
1
an)(52) = n(n—2) forn > 2, an)(52) = 1 n(n3 —6n’+n+ 36) for n > 4,

and, for the 6; knot, we have that

1
an)(61) = n(n—2) forn > 2, Cén)(61) = Z—ln(n3 —6n®+n+ 32) for n > 3.

We obtain these theorems in the following way. For example, for the 4, knot, I (Mn(éll))
is presented by

](Mn<41)) = Z j41 (CLO+CL3, 2@1, 2@2) j41 (a1 +ay, 2&2, 2@3)

G,():O,
a1, ,a2n—1€Z

X j41 (&2-'-&5, 2@3, 2&4) j41 (CL3+CL6, 2&4, 2@5)
N

X j41 (ag2n—2+a2n41, 22,1, 2a2,,) j41 (@2n—140a2n+2, 202, 2a2n41), (1)

where we regard the subscript of a; as modulo 2n, as we show in Section B.1. Here,
deg Jy, (01,05, 03) > 0 for {1, 0y, 05 € Z, and the equality holds if and only if ¢; = ¢y = /3.
Further, there exists an constant ¢ > 0 such that,

if degJy, (01,05, 03) >0, then deg.Jy, (¢1,0s,05) > 6. (2)



Hence, for any fixed d > 0, the degree < d part of I (Mn(41)) depends on contributions
from sequences (ag,ay,- - ,a,_1) for a sufficiently large n, only when a sequence is ob-
tained as the union of constant sequences and particular sequences. We note that, by
(2), there are finitely many such particular sequences of degree < d. By classifying such
particular sequences of degree < d, we can calculate the degree < d part of (Mn(41)) as
a polynomial in n for a sufficiently large n. In this approach, we obtain the degree < d
part of 1 (Mn(K )) as combinations of finitely many particular sequences, which can be
classified for any given d. For details, see Section 5.

Another approach to calculate I (Mn(K )) is calculation by using eigenvalues of a trans-
fer matrix. For example, for the 4, knot, I (Mn (41)) is presented by (1), where the range

of the sum is given by
ap =0, ar, -+ ,agm-1 € Z.

By putting /
a, = Qi — Qp_1,

the range of the sum is rewritten as
ag, @y, -+ g, ¢ € Z, ah +ay + -4 ah, , =0.
Further, we put

Mga/vaé) == j41 (CL0+CL3, 2@1, 2a2) j41 (a1+a4, 2&2, 2@3) u“/2+ag,

ag,a})

where u is a variable whose power counts aj + a4 + - - -, and we put the transfer matrix

by

Then, I(M,(41)) can be presented by

I(M,(41)) = (the coefficient of u” in trace M")
= (the coefficient of u® in A7 + A\ + - - - )’

where A, Ay, --- are eigenvalues of M. Hence, by calculating \;, A9, --- concretely, we
obtain concrete values of lower degree part of [ (Mn(K )) In this approach, the char-
acteristic polynomial (22) of M™! is itself an invariant of K, and it can be regarded
as a universal invariant among [ (Mn(K )) for all n; see Remark 4.4. For details of this
approach, see Section 4.

We comment on related works. We note that the “stability property” of the colored
Jones polynomial J,(K) € Z[¢*'] is discussed in [7], which means that there exists a
relatively simple function of n and ¢ such that it is equal to J,(K) for any sufficiently

large n. From this viewpoint, Theorem 3.1 means that, for each d, an) has a “polynomial
stability” for any sufficiently large n. We also note that the loop invariants and some
kinds of quantum invariants of cyclic covers of hyperbolic knot complements are studied
in [9, 10], where such invariants are expressed in terms of the twisted Neumann-Zagier
matrix, which is a Z[t*!]-lift of the Neumann-Zagier matrix of an ideal triangulation of



the hyperbolic knot complement. The Neumann-Zagier matrix given in Section 5.5 is
essentially equivalent to the twisted Neumann-Zagier matrix. Hence, the method of that
section is partially similar to the method in [9, 10].

The paper is organized, as follows. In Section 2, we review the definition of the 3D-
index. In Section 3, we give Theorems 3.2, 3.3, 3.4, which show concrete values of lower
degree part of [ (Mn(K )) for the 41, 52, 67 knots. As a generalization of them, we give
Theorem 3.1, which shows that the dth coefficient of (M, (K)) is a polynomial in n of
degree < 2d for a sufficiently large n. In Section 4, we calculate lower degree part of
I(M,(K)) by using eigenvalues of transfer matrices for the 4;, 5, 6; knots. In Section
5, we give proofs of Theorems 3.2, 3.3, 3.4 by using particular sequences of parameters.
Further, we give a proof of Theorem 3.1 as a generalization of them. In Appendix A, we
classify particular sequences of parameters for lower degrees, which are used in Section 5.
In Appendix B, we give concrete presentations of [ (Mn(K )) for the 4;, 59, 61 knots.

The author would like to thank Andrew Kricker and Stavros Garoufalidis for many
helpful comments. The author is partially supported by JSPS KAKENHI Grant Numbers
JP21H04428, JP16H02145 and JP19K21830.

2 Preliminaries

In this section, we review the definition of the 3D-index of a hyperbolic 3-manifold M
with a cusp. We also review a modification of the defining formula of the 3D-index such
that the lowest degree of the summand is non-negative which is obtained by using the
hyperbolic structure of M. For details, see [3, 4, 5].

We put
o 1n(n+1)—(n+%e)m

fme) = ¥ (—r L

n=max{0,—e}

(Dn (@ nre

for m, e € Z, where

1 if n =0,
@ = {(1—Q)(1—q2)---(1—qn) if n.> 0.
We put
I(lr, by, 03) = (—q"*) 7 I(01—Ly, l3—17)
= (=¢') " I(la—ty, t1—Lo)
= (=¢"*) B I(ls—1y, t—13),
noting that I(¢y, {3, ¢3) is invariant under all permutations of ¢y, ¢5, {3, and satisfies that

‘[(61782763) = (_ ql/Q)ic](gl + ¢, 62 +Cv 63 + C)' (3)

Let M be a hyperbolic 3-manifold with a cusp. We assume that M has an ideal
triangulation 7 which gives the hyperbolic structure of M, and 7 has m’ tetrahedra



and m edges. We assign an integer label a; to the jth edge &;. Let A; be the 7th ideal
tetrahedron of 7T, whose edges are labeled as follows,

where f, f', g, ¢', h, b/ are maps {1,--- ,m'} — {1,--- ,m} such that &y and Ep ),
&gy and Ey (i), Engy and &) are opposite edges of A;, and the edge &; is labeled by an
integer a;. The 3D-index of M is defined by

(M) = > gt [T (asm+ara), agn+ago, ap+ave) €Zld]l,  (5)
ai, - am €Z i
a;=0

where we fix any j. We can show that the right-hand side of (5) does not depend on
the choice of j, as follows. By counting the Euler number of the boundary torus of a
neighborhood of the cusp of M using m and m/, we can show that m = m’. Hence, by
(3), the summand of (5) is invariant under replacing (ay, - - , a,,) with (a1+c,- -, ay,+c).
Therefore, the right-hand side of (5) does not depend on the choice of j.

In general, the sum (5) does not necessarily converge. In order that the sum of (5)
converges, we need the assumption that 7 has a strict angle structure. Actually, in
this paper, we assume that M is hyperbolic, and 7T is an ideal triangulation giving the
hyperbolic structure of M; in this case, T has a strict angle structure, and the sum of (5)
converges. For details, see [3, 4, 5] and Section 5.4.

We define the degree of I(¢,¢5,¢3) to be the lowest degree of I(¢y,¢5,¢3). Then, we
have that

(62 — €1)<£3 — 61) — %61 if 61 < EQ and 61 < 63,

)(53 — EQ) — %fz if 62 S 61 and 52 S gg, (6)
(61 — ég)(gg — 63) — %63 if Eg S 61 and 63 S EQ.

deg [(617 52, 63) =

—~
~

—_
(s

no

We note that the degree of I(¢y,¢5,¢3) is positive in many cases, but it can be negative
in some cases.

We rewrite the sum (5) in such a way that the degree of the summand is non-negative.
In order to this, we briefly review an ideal tetrahedron in the hyperbolic space H?3. We
assign labels to the four vertices of an ideal tetrahedron such that the labels are in C U
{oc} = OHB. The shape of an ideal tetrahedron is determined by these labels, and, by
the action of PSLyC = Isom(H?), these labels are normalized in the form {cc,0, 1,2} for



some z € C — {0, 1}.

H3

.....

Then, the angles of faces are given by

Argx, Arglix, Arg (1—§),

noting that the opposite edge has the same angle. We put

1 1 1

1 1
- —A - —A
a = g Argr, g 5 M8

We note that .

since Arg x—i—Arg —+Arg (1 — —) = Arg (—1) = m. We denote these angles for tetrahedra
A; by «y, Bi, i, as follows.

A;

By (7), we have that
1
o+ Gty = 5 (8)
Since the sum of angles around the edge &; is equal to 2w, we have that

2ooit Dot ) Bk p Ak D ik ) =]

f(@)= f()=j g(i)= g'(i)=jy h(i)=j W (@)=



for each j. Hence,

ZO@ ar) + ape) + Bilage + ag@) + Yilane + aw)

Z(Za’+ZO‘%‘I'ZBZWLZ/@"'Z’VH'Z%) :Zaj.

I f@)=j fr(@)=j g(i)=j g9'(i)=j h(i)=j (9)=j J

We put
Ji (617 627 63) = qaiel+ﬁizz+’yi£31<€17 627 63)7

noting that
Ji(gl, 62, 63) = Jz(fl -+ 20, 52 + 20, 63 -+ 20)

by (3) and (8). Then, by (9), we have that

> T +ape: agn+ag. anm+awe)-

ai,,am €Z 1
a;=0

By (6) and (8), we have that
deg J; (51,52,53

)
5(62— 1)(63—61) + Bi(gz_gl) + ’)/7;<£3—€1> if 61 S 62 and 61 S 53 ,
= %(61— 2)(€3—£2) + Cki(gl—gQ) + ’}/i(gg—gQ) if gg S 61 and EQ S 63 ,
%(61—63)(62—63) + ai(ﬁl—ﬁg) + /62‘(62—63) if 63 S 61 and Eg S 62 .

In particular,

deg Ji(gl, 62, 63) 2 0
for any /1, {5, (3 € 7Z. Further, the equality holds if and only if ¢, = {5 = /5.
Lemma 2.1. There exists a constant d > 0 such that, if

deg J; (61762763) > 0,

then
dngi(fl,fg,fg) Z 0.

Proof. Let § be the minimum of «;, §;, ; for all i. By (12), we have that

Bi(la—1t1) + vi(ls—4y) if {4 < {4y and {1 < L3,
deg Ji(l1,02,03) > § a;(l1—Ls) +7i(ls—0) if lo < {4 and £y < U5,
Oéi(gl—gg) + 6@(62_63) if €3 S gl and £3 S 62 .

Hence, unless /1 = {5 = {3, we have that
deg J; (51752753) > 0,

as required.

(10)

(11)

(12)



3 Main results

In this section, we give Theorems 3.2, 3.3, 3.4, which show concrete values of lower
degree part of [ (Mn(K )) for the 44, 59, 61 knots. For a general hyperbolic knot, we give

Theorem 3.1, which states that, for any fixed d, the dth coefficient of I (Mn(K )) is equal
to a polynomial in n of degree < 2d for any sufficiently large n.

Let K be a hyperbolic knot. We assume that there exists an ideal triangulation of
S3 — K which gives the hyperbolic structure of S* — K, and we fix such a triangulation.
Let M, (K) denote the n-fold cyclic cover of S* — K, which has an ideal triangulation as
a lift of the ideal triangulation of S® — K. We regard M,,(K) as a 3-manifold with a cusp.
We put coefficients of I (M, (K)) as

I(Mo(K)) = 1+ (K)q + & (K) @+ € Zllq]).
As for behavior of values of lower degree part of I (Mn(K )) for any sufficiently large
n, we have the following theorem.
Theorem 3.1. For any positive integer d, there exist a positive integer ny and a polyno-

mial p& (n) in n of degree < 2d such that ¢ (K) = pX (n) for any n > n.

We give a proof of the theorem in Section 5.5.

We put B
Ix(n,q) = 1 +pf(n)q +pXn)¢® - € Zn][q]]-

As for concrete values of lower degree part of I (Mn(41)) for any sufficiently large n,
we have the following theorem.

Theorem 3.2. We have that
pi(n) =0,  p'(n)=0,  p3'(n)=0.

Hence, B
Li(n,q) = 1 +0(q").

We give a proof of the theorem in Section 5.1. As for concrete values of degree < 7 part
of I(M,(41)) for n < 8, it is obtained by computer calculation that

I(Mi(41)) = 1-2¢—3¢*+2¢> +8¢" +18¢° +18¢° +14¢" + O(¢®),
I(Ms(41)) = 1 +2¢% +8¢° —3¢" —32¢° — 66¢° —56¢" + O(q®),
I(Ms(4))) = 1 —2¢% — 18¢* — 6¢° + 138¢° + 306¢" + O(¢®),
I(My(41)) 1 + 2¢* 4 32¢° + 48¢° — 424¢" + O(¢®),
I(Ms(4)) = 1 —2¢° — 50¢° — 160¢" + O(¢®),
I(Mg(41)) =1 +2¢° +72¢" +0(g%),
I(Mr(4)) = 1 —2¢" +0(¢%),
I(Mg(41)) = 1 +0(g%).



We can observe that there is a particular property that coefficients of lower left part are
0. We explain a reason of this property in Theorem 4.5 later. By Theorem 3.2, we can
verify that

A"(41) =pi'(n) for any n >2, (13)
¢ (4)) = pli(n)  for any n > 3, (14)
cgn) (4)) = p3'(n) for any n > 4, (15)

which we prove for n > 6 in Section 5.1.

As for concrete values of lower degree part of I (Mn(52)) for any sufficiently large n,
we have the following theorem.

Theorem 3.3. We have that

1
PR =n(n—2),  pP(n) = gn(n®— 6n% +n+36)
Hence,
- 1
Is,(n,q) = 1 +n(n—2)q+-~n(n®>—6n>+n+36)¢ +0(q¢°).

4

We give a proof of the theorem in Section 5.2. As for concrete values of degree < 3 part
of I(M,(52)) for n <8, it is obtained by computer calculation that

I(Mi(52)) = 1 —4q —q*>+16¢° +26¢* + O(¢°),
I(Ms(52)) = 1 + 14¢* 4 6¢° — 107¢* + O(¢%),
I(M;3(52)) = 1 + 3¢+ 15¢* — 82¢° — 24¢* + O(¢),
I(My(52)) = 1 +8q +8¢> —72¢° +O(q"),
I(Ms5(52)) = 1+ 15q +20¢* + 45¢° + O(q*),
I(Mg(52)) = 1+ 24q+63¢> +216¢° + O(¢®),
I(M7(52)) = 1+35q+ 161¢° + 546¢> + O(q?),
I(Ms(52)) = 1+48q+ 344¢> +1248¢° + O(¢*).

Hence, we can observe for n < 8 t

et

(n)

" (55) = pi2(n)

hat

for any n > 2,

(52) = p5*(n)

which we prove for n > 8 in Section 5.2.

cy for any n > 4,

As for concrete values of lower degree part of [ (Mn(61)) for any sufficiently large n,
we have the following theorem.

Theorem 3.4. We have that

61

1
it (n) = n(n —2), Do (n)zz—ln(n3—6n2+n—|—32).



Hence,

) |
Is,(n,q) = 1+n(n=2)g+7n(n’—6n"+n+32)¢" +0(q")

We give a proof of the theorem in Section 5.3. As for concrete values of degree < 2 part
of I(M,(61)) for n <8, it is obtained by computer calculation that

I(My(61)) = 1 —4q +¢*>+18¢° +O(q"),

I(My(61)) = 1 +14¢* +0(¢*),

I(Ms3(61)) = 1 +3q +6¢° +O(¢),

I(My(61)) = 1 +8¢ +4¢° +O(¢*),

I(Ms5(61)) = 1+15¢+ 15¢> + O(¢*),

I(Mg(61)) = 1+24q+57¢° + O(¢®),

I(M7(61)) = 1+ 35¢+ 154¢> + O(g%),

I(Mg(61)) = 1+48¢+3364° + O(¢%).

Hence, we can observe for n < 8 that

cgn)(ﬁl) = p?l(n) for any n > 2, (18)
(61) = pSt(n)  for any n > 3, (19)

which we prove for n > 5 in Section 5.3.

4 Calculation of (Mn(K )) from eigenvalues of transfer matrices

The defining formula of I(M,(K)) can be rewritten by using the product of n copies of

some matrix, which we call a transfer matriz. In this section, we calculate I (M, (K))
from eigenvalues of a transfer matrix.

We recall the finite dimensional case. Let M be an m xm matrix. We put
7, = trace M".

We like to know the behavior of 7,,. We put

01 = T1,
op = % (Th — 01741 + O2Tho — -+ + (—1)k_lak_17'1) fork=2,---,m. (20)
Then, the characteristic polynomial of M is given by
T — o T 4+ 0T — o3 T™ 2 4o (—=1)™0,, = 0.
The eigenvalues Ay, - - - , \,,, are obtained as the solutions of this equation. Then, we have

that
Tn = AN+ A5+ -+ A0,

10



The behavior of 7, can be described by this equation.

Let K be a hyperbolic knot in S3. We assume that there exists an ideal triangulation
of S3 — K which gives the hyperbolic structure of S® — K, and we fix such a triangulation.
We consider a fundamental domain C' of the infinite cyclic cover of S® — K, which is a
union of ideal tetrahedra. The boundary of the fundamental domain C' consists of I} and
Fy; they are unions of ideal triangles, and they are naturally identified in S® — K. F} and
F, might have common edges. The n-fold cyclic cover of S® — K is obtained by gluing

n copies C*) of C' along n copies Fl(k), FQ(k) of Fy, F, by naturally identifying Fl(k) and
FyEY,

We consider a “transfer matrix” M which is an invariant of C'. In fact, we can calculate
an invariant of | J,.,, C from an invariant of | 4 C @) by using an invariant of C*) which
can often been presented by a matrix M, which we call a transfer matriz. In this case,
I(M,(K)) is obtained from M™"; for concrete formulas, see (23), (25), (27). As we can
see in these formulas, we can define a matrix M whose entries are defined to be some
factors in the defining formula of 1 (M, (K)) such that

I(M,(K)) = (the coefficient of u’ in trace M™). (21)

For simplicity, we consider the following assumption.

Assumption 4.1. We assume that the eigenvalues A\, Aa, A3, - - - of M are in (Clu*!])[[¢/?]],
and that the lowest degree of Ay with respect to ¢ goes to oo as k — oc.

We obtain lower degree part of A\, as follows.
7 = trace MF + O(q"7)
By (20), we obtain oy from 7. We consider the following equation,
1= T+ 0oT? — 03T+ -+ (=)o, T™ = O(g™2), (22)

and we assume that solutions of T are invertible elements in ¢~ - (C[u*'])[[¢"/?]]. Then,
the eigenvalues of M are obtained from its solutions, as follows,

T7' = Aoy g, € (Clet)[[g'2]].
Recalling that
trace M" = 7, = Al + A+ A + -+ € (Clu™]) [[¢*?]],
the invariant [ (Mn(K )) can be presented in the following form,
I[(M,(K)) = (the coefficient of u® in (A} + A5 + A§ +--+)) € Z[[q]].

In fact, the cases of the 4; knot and the 6; knot satisfy Assumption 4.1 in lower degrees
as we see in Sections 4.1 and 4.3, but the case of the 5, knot does not satisfy Assumption
4.1 as we see in Section 4.2.

More generally, we need the following assumption instead of Assumption 4.1, which
the case of the 55 knot satisfies in lower degrees.

11



Assumption 4.2. We assume that the eigenvalues A, Ao, A3, -+ of M are in
(Clu™])[[q"/?K1, ¢*/?52 ...]], and that the lowest degree of )\; with respect to ¢ goes to
00 as k — 00.

In general, the eigenvalues of M might belongs to (C[u*!])[[¢"/?51, ¢'/?K2 .. .]], where
C[u*!] denotes the algebraic closure of Clu*!].

Remark 4.3. As for other coefficients of (21), we have that
k
I(M,(K))( §(longitude)) = (the coefficient of u* in  trace M"),

where the general 3D-index I(M)(~) is defined for v € Hy(OM), regarding M as a 3-
manifold with a torus boundary; see [5, 4].

Remark 4.4. The right-hand side of (22) is the characteristic polynomial of M™!, and it
is itself an invariant of K, and it can be regarded as a universal invariant among I (Mn(K ))
for all n.

4.1 Calculation of [(Mn(41)) from eigenvalues of a transfer matrix

In this section, we calculate I (Mn (41)) from eigenvalues of a transfer matrix.

By (82), I(M,(41)) is presented by

[(Mn(41)> = Z j41 (CLO+&3, 2&1, 2&2) j41 (a1+a4, 2(1,2, 2&3)

X j41 (a2+a5, 2@3, 2&4) j41 (ag +&6, 2@4, 2@5)
N

X Jay (@2n—2+a2ny1, 20901, 202,) Ju, (A2n -1+ 2n12, 2020, 202041),
where we regard the subscript of a; as modulo 2n, and the range of the sum is given by
ag =0, ai, -+ ,am—1 € Z.

By putting
ay = ap — ag_1,

the range of the sum is rewritten as
ag, ay, - ,ay, , € Z, ag+ay+---+ay, ,=0.
Further, we put

MEZ;ZZ; = j41(a0+a3,2a1,2a2)j41(a1+a4,2a2,2a3) UaéJraé:

where u is a variable whose power counts al + aj + ---. Since Jy, (4 +2, o +2, l5+2) =
j41 (41,05, 03), we note that the right-hand side depends only on a}, aj, a, a;. Furthermore,
we put

M= (M)

az,ay)

12



The product of copies of M is given by

Hence, (M, (41)) can be presented by

I(M,(41)) = (the coefficient of u® in trace M™).

We calculate the first few eigenvalues of M. We put

7 = trace MP*.

Then, by computer calculation, we obtain that

1

T2

T3

T4

=1-2¢+2¢"*(u+u™") =32+ A2+ +u?) — 4¢P (u+u)
+2¢' 4+ +u?) + 0,

= 142¢> —4¢°*(u+u ™) + 234 + > + u ) — 4¢"(u +u™t)
— '3+ 4 +u?) +4¢"* (P +u P+ A(u+ut))
—16¢°(2+u* +u~?) +0(¢""?),

=1-2¢°+6¢"*(u+u"") —6¢*(3 +u?+u?)
+2¢°2 (W +u +9(u+u)) +3¢°(—2 + u +u?)
—6¢"2(3(u® +u™?) +8(u+ut))
+3¢°(46 + 28(u® + u™?) + 3(u* +u™h)) + O(¢"*?),

= 1+2¢" — 8¢"*(u+u"") +4¢° (8 + 3(u* + u™?))
— 8q!1/? (W +u?+6(u+u))+2¢°(24 +u* +u +8(u* +u?))
+ 8¢ (5(u® + u™?) + 11 (u+u™)
—4¢7 (106 + 69(u® + u?) + 12(u* +u™*)) + O(¢"?).

By observing the behavior of 77, we can expect the first eigenvalue is given by

A o= 1 +0(¢*™?).

13
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In order to calculate the next eigenvalues concretely, we put
o= (= 1)/(=q)".
By (20), we obtain o, from 7}, as follows,
oy =1
=2-2¢"?(u+u) +3¢— P2 -1 —u?)+4¢*(u+u?)

— 234+ v +u?) +0(¢"?),

1
% = — 5%~ oir)

=1-2¢"2(u+u") +q(6+u> +u?) — 4¢**(u +u™") 4 2¢
+ 6q5/2(u +ut) ¢ (22 + 7(u + u_l)) + O(q7/2),

0y = 31— o1+ oy7)
=q¢-2¢""u+u™) + A+ v’ +u?) - F (1l +4u+u™)) +0(¢"?),
1
oy = — (T — o+ oy — oy

= ¢ =20 (u+uT) + @+ u +uT?) +0(¢").
Further, we consider the following equation
1—oi T+ 0y 1% — oy T° + o} T* = O(¢").
From solutions 7' of this equation, we obtain 71 = Ay, s, as follows,
Ny =1 —¢Putu) —gq(=1+v=T(u+u))
+ q3/2ﬁ(1 + %(uz —i—ufz))
9v-1

—q2(%(u2—|—u_2)+ 81<qu gwg_i_u—?,))
— (= 2utu) - 7\5 N (W +u2) — 1£61( )

51 31 5
_ B -1 3., -3y _ 5, ,-5 7/2
TV 1(64(u+u )+128(u +u™) 128(u +u™)) +0(¢"?),
Ay = N,

u

_1>
V1
2

Further, in order to calculate the next eigenvalues concretely, we put
TR LY
They are concretely presented by
T = 1-2¢ +0(¢"?),
™ = —1—dg +0(¢"?),
= —2-30q + O(¢*?).
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By (20), we obtain o} from 7/, as follows,

ol =1 =1-2q +O(q3/2),
1

o = - o) = 120 + O
1
of = 3( — ol +o37!) = —10g +O(¢"").

In a similar way as above, we obtain the next eigenvalues, as follows.

N = e VS 1 0(¢'?),
/\/5/ _ ewﬁ/?: + O(q1/2)
Therefore, putting
Ag = _q)\127 A3 = _qua Ay = _q2)‘27 As = _q2>\/5/7
we obtain lower degree parts of the first five eigenvalues, as follows,

A =1 +0(¢"?),

A = —q +¢Pu+u) +P (- 1+ VTI(utu))
— 1?1 (1+ %(u2 +u?))
1 9y/—1 =
P (50 +u?) + D ) - Y )
+q?(=2u+ut) — 7M+E(u2+u_2) —E( *
8 2 16
51 5
4 (2t -1y , 2t /3 -3y 2 /5 5 9/2
+q ﬁ(64(u+u )+128(u +u) 128(u +u™%) +0(¢"?),
)\3 _)\_Qa
g _q2€2wﬁ/3 +O(q5/2),
Xs =M

Hence, we obtain the following theorem.

Theorem 4.5. We can present I(Mn(éll)) in terms of the above eigenvalues Ay, Ag, - - -

by

7)\5

I(M,(41)) = (the coefficient of u® in (X} + N5 + A§ + A} + A2)) + O(qmin{2n+1.8})

15



We show concrete forms of M,,(4;) obtained from the theorem for n < 8, as follows,

I(My(41)) = 1-2¢—-3¢> +0(¢%),

I(M2(41)) =1 +2¢> +8¢° — 3¢ +0(¢%),

I(Ms(4)) = 1 —2¢% — 18¢* — 6¢° +138¢° + O(¢"),
I(My(41)) = 1 + 2¢* + 32¢° + 48¢° — 424¢" + O(¢®)
I(Ms(41)) = 1 —2¢° — 50¢% — 160" + O(¢®),
1(Ms(41)) = 1 +2¢° +72¢" +0(¢%),
I(M7(41)) = 1 —2¢" +0(d"),
I(Ms(4y)) = 1 +0(d%).

We can verify these values by comparing to these values which we show after Theorem
3.2. In particular, by Theorem 4.5, we can observe that coefficients of lower left part are
0.

Remark 4.6. From Theorem 3.2 and (24), we obtain that
L1, (n,q) = A +O0(q").

In fact, we expect that Ay = 1 and f41 (n,q) = Ap, but, in order to show this in this way,
we have technical difficulty that we must calculate A; in (24) not only for lower degrees,
but also for all degrees, and we need Assumption 4.1 to ignore contributions from other
A

4.2 Calculation of I (Mn(52)) from eigenvalues of a transfer matrix

In this section, we calculate I (M, (52)) from eigenvalues of a transfer matrix.

By (84), I(M,(52)) is presented by

I(M,(52)) =
Zj52(a0+co,co+bo,a1—|—bl) Js, (aa+co, co+by, ay+bg) Js, (bo+by, ay+co, ag+as)
X Js, (ay4-c1, c14by, ag+by) Js, (ag+ci, ¢1+by, ag+by) Js, (by+by, as+cy, a;+as)
X e
X sy (n—14+Cn1s Cn1+bp_1, an+by) Js, (Ani1+Co1, Co1+bp, p+bo_1)
X S5y (b1 4Dy, G +Co 1, Q1 +ani1),

where we regard the subscripts of a;, b;, ¢; as modulo n, and the range of the sum is given
by

CL(]:O, ag,:-- 7an—17b07"' 7bn—17007"' y Cn—1 GZ

By putting
/ / /
a, = Qp —ag—1, by = by—ay, <, = cx— by,

the range of the sum is rewritten as

/ / / / / / / ’ /
gy Apqs 0o, by, Coy Gy €I ayt+ay+---+a,_, = 0.

16



Further, we put

bl 7al A A A a,
Mgbgaég = Z Js, (agtco, cotbo, artby) Js, (aztco, cotbi, artbo) Js, (botby, artco, agtas) u,

cHEL

where u is a variable whose power counts a} + al, + - - -. Since .Js, (€1+2 lo+2,054+2) =

J52 (41,05, 03), we note that the right-hand side depends only on by, ay, by, ay. Furthermore,
we put

. (b/ /
M = (M),
The product of copies of M is given by
(b, a) (b],a%)
e = (it i)
b ,al

where the parameters are related, as follows.

b b, / /

0 1 by b
A\ 4 A\ 4 A\ 4 \ 4
bo by by bs

/ /

“ ch c C3
A 4 A 4 A 4 A\ 4

Hence, (M, (52)) can be presented by

I(M,(52)) = (the coefficient of u” in trace M"). (25)

We calculate the first few eigenvalues of M. We put
7. = trace MP*.
Then, by computer calculation, we obtain that
mn o=14+¢u+u) +q(—4+u*+u?) + AP +u?)
Cl—1+u* +u™) + ¢*2 (W’ +u®=5u+u))

+ (16 4+ u® +u% +0(¢"?),

T = 142¢"(u+ut + 3q(u? +u ) + 4 (—u —ut +ud +uP)
+ (14 — 4 +u?) +5(ut +u ™))
+2¢°2( = 3(u+ut) — 2w +u™?) 4+ 3(u’ +u?))
+ (6 —12(u® +u?) —4(u +u ) + T +u0)) +0(¢"?),

17



73 = 1+43¢"(u+u") +3¢(1 +2(u® +u?))
+¢*(=3u+u) + 10w +u™?))
+3¢°(5 = 3(u* +u?) +5(ut +u?))
+3¢°2(9(u+u") = 5(ud +u ) + 7(u’ +u"))
+@( =82+ 9w+ u?) —21(ut +u ) + 28(u’ +u ")) + O(q"?),

Te = 14+4¢"(u+u ") + 2¢(4 + 5 + u?) + 4¢** (u+ut + 5(u® + u?))
+¢*(8 — 8(u? +u?) +35(ut + u™))
+4¢" (1 (u+u™t) = 7(u® +u™?) + 14(u® +u™?))
+4¢°(— 18+ 16(v” +u™?) — M(u* + u™) + 21(u® + u™%)) + O(q"?).

By (20), we obtain oy from 7, as follows,
o1 =T
=14+ ¢?u+u) 4+ q(—44+u® +u D) + PP+ u )

+ (14 ut +u™) + P (W +u = B+ uh))

+¢*(16 +u® +u%) + O(q7/2)7

1
02 = —5(7'2—017'1)
= —3q—q3/2(u+u_1)+q2(1—u2—u_2)+q5/2(—u3—u_3—2(u+u_1))

+ @@+ v +u—ut —uh) + 0P,

o3 = 5(7'3—0'17'24‘0'27'1)
=5¢ +4¢"*(u+u ) + @ (= 5+ 4w +u?) +O0(¢"?),
o4 = —1(7'4—0'17'34‘0'27'2—0'37'1)

= 2¢° + 20" (u+u™t) + 23 (=1 +u® +u”?) +0(¢"?).
We consider the following equation,
1-— 01T+02T2 — 03T3 —1—04T4 = O(q7/2).
From solutions 7' of this equation, we obtain T = A1, as follows,
M o=1+4+¢2u+u ) +g-1+u +u )+ (= 2u+u™) +u +u™?)
+ @@ +ut+u™) + (= 5u+uh) + U’ +u?)
+¢(-19-12(” +u ) +u’+u) + O(q"?).
Further, in order to calculate the next eigenvalues concretely, we put
=7, — .

They are concretely presented by
7 o= —3¢+2¢ (u+ut) = 9¢* + ¢* (35 + 12(u? + u?)) +O(¢"?),

18



7o =3¢ — 14¢"*(u+uh) + @ (70 + 4(u® + u?)) +O(¢"/?),
= 6¢> +0(¢""?)
o= —24¢° +0(¢"?)
. =0(q"*) fork=5,67,8.
By (20), we obtain o, from 7;, as follows,
of = —3¢+2¢"*(u+u) —9¢* + ¢* (35 + 12(v* + u?)) +O(¢"?),
oy =3¢ +¢"P(utu) 44’ +0(¢"),
oy =2¢° +0(¢"),
o, =0(q"*) fork=4,5---,8.
We put
on = o/
They are concretely presented by
o = =3¢""+2¢"(u+u") +0(q"°),
oy =3¢"% +0(¢"%),
of =2 +0(¢"°).
We consider the following equation,
1—o!T+o)T? -l T? = O(q"°).

From solutions 7' of this equation, we obtain 77! = A5, A5, N, as follows,

2 L1
Ny =20 =g P St uT) + g e + 007,

21/3
2 —2my/—1/3
N = 91/3,2mV/=1/3 _ q1/3 i 5 q5/6(u i ufl) 1 € e q + O(q7/6)’
2 2m/—1/3
N = 91/3,=2mV/=1/3 _ g3 + §q5/6(u_|_u—1) i € e q + O(q7/6)'

Therefore, putting
Ay = q2/3)\/2/’ Az = qg/g)‘gv M = qg/g)‘zv
we obtain lower degree parts of the first four eigenvalues, as follows,

Mo=14+¢Pu+u™) + -1+ +u ) + @2 (= 2w+ u™) +ud +u?)
+ @+ ut +u) + (=5t uh) +ud 4+ ud)

+¢* (=19 —12(u® +u™?) +ub +u™%) +O0(¢""?), (26)
2 _ 1
Ny = 23432 _ 1 4 §q3/2(u+u s quz +O(g"9),
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6_271—\/?1/3

21/3
62ﬂm/3

21/3

2
A3 = 21/3627rﬁ/3q3/2 14 . q3/2(u Fuh) 4 q5/3 i O(qll/ﬁ)’

2
N = 21/367%\/?1/3(]3/2 14+ 5 q3/2(u + ufl) + q5/3 + O(qll/G)_

Hence, we obtain the following theorem.

Theorem 4.7. We can present I(Mn(52)) in terms of the above eigenvalues A1, Ao, A3, Ay
by
O(¢®) ifn=1,
I(M,(52)) = (the coefficient of u® in AT + X5 + Xy + \f) + < O(¢®)  ifn =234,
O(¢*) ifn>5.

We show concrete forms of M,,(52) obtained from the theorem for n < 8, as follows,

I(Mi(52)) = 1 —4q +O(¢?),

I(Mz(52)) = 1 +14¢% +0(¢%),
I(Ms(55)) = 1 +3¢ +15¢°> +O(¢?),
I(My(52)) = 1 +8¢ +8¢> +0(q°),
I(Ms(55)) = 1+15q+20¢° + 45¢°> + O(q"),
I(Mg(52)) = 1+24q+63¢° +216¢° + O(q"),
I(M7(52)) = 1+ 35¢+ 161¢°> + 546¢° + O(q"),
I(Ms(52)) = 1+48q+ 344¢° + 1248¢° + O(g*).

We can verify these values by comparing to these values which we show after Theorem
3.3.

Remark 4.8. From Theorem 3.3 and (26), we obtain that
I5,(n,q) = (the coefficient of u® in A7) + O(g®).
In fact, we expect that
I;,(n,q) = (the coefficient of u° in A7),

but, in order to show this in this way, we have technical difficulty that we must calculate
A1 in (26) not only for lower degrees, but also for all degrees, and we need Assumption
4.2 to ignore contributions from other A,,.

4.3 Calculation of I (Mn(61)) from eigenvalues of a transfer matrix

In this section, we calculate / (Mn(61)) from eigenvalues of a transfer matrix.
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By (86), I(M,(61)) is presented by

[(Mn(Gl)) = Z j6173(a0+d0, a1+b0, d0+00) jﬁhl(d(]_'_bo, CL1+C(), a0+b1)
X jﬁlyg(al—i‘do, d0+b1, b0+C0) j61,1(2a1, b0+61, 2b1)
X j61,3(a1+d1,a2+b1,d1+01) j61,1<d1+b17a2+017a1+b2)

X j61,2(a2+d1, di+b2,b1+c1) j6171(2@27 b1+, 2by)
X o o

X j61,3(an—1+dn—1, an+bn_1,dn1+cn-1) jﬁl,l(dn—1+bn—1a An+Cpo1, n1+by)
X j61,2(an+dn—1a dn—l +bn7 bn—l +Cn—1) j61,1(2an7 bn—1+cna 2bn)7

where we regard the subscripts of a;, b;, ¢;, d; as modulo n, and the range of the sum is
given by

CZO:O, ala"'7an717b07"'7bn717007"'7cn717d07"'7dn71€Z'
By putting

o= b, = b o= b d, = d

ap = G — k-1, g — Y% — Ak, C = Ck — Uk, k — Ok — Ck
the range of the sum is rewritten as

/ / / ! U / / /
a07..' b07...7bn 17007'”7n17d07"'7dn—1€Z7 a’0+a1+..'+an—1:0’

9 n 1»
Further, we put
b/,c/ A oy
Mgb?c?; = Z Jo,,3(ao+do, a1+bo, do+co) Jo, 1 (do+bo, a1 +co, ag+b1)
dj,at €Z
X j61,2(a1 +dy, do+by,bo+co) j61,1(2a1, bo+c1, 2by) u™,

where u is a variable whose power counts a} + a), + - - -. Since J61 (142, ly+2,0342) =

Js,.:(01, 02, l3), we note that the right-hand side depends only on b}, ¢}, b, c,. Furthermore,
we put

_ (b+o)
M = (M),
The product of copies of M is given by

- (gean)

/
by,
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where the parameters are related, as follows.

: ) I
a a
/ao Ll a 23 ay

bo by by
/ / /
Co &1 Co

Hence, (M, (61)) can be presented by
I(M,(61)) = (the coefficient of u” in trace M").

We calculate the first few eigenvalues of M. We put
7 = trace M*.
Then, by computer calculation, we obtain that
no=1+¢"(u+u™) + (-4 +u +u7) + ¢+ u)
+ P +ut +u™) +0(¢7?),
Ty = 14+2¢"*(u+u™") 4+ 3¢(u? +u?) +4¢**(—u —u™' +u® +u)
+¢*(14 + 3u — 4u® —4u™% +5u™Y) +0((?),
73 = 1+43¢"(u+u") +3¢(1 +2(u® +u?))
+ ¢ (= 3(u+ut) + 10w +u™?))
+3¢%(2 = 3(u* +u™?) + 4ut 4+ 5ut) + O(¢%?),
o= 14+4¢"(u+ut) +2¢(4 + 5(u® + u?))
+ 46 (u+u + 5w +u?))
+?(4 4+ 31u* — 8u? — 8u~% + 35u™) + O(¢°?),

By (20), we obtain oy from 7, as follows,

oy = T1
=14+¢"Pu+u™) + g4+ +u ) + PP+ u) + A+ ut +u)
+0(¢”?),
1
02 = —5(7'2—0171)

= 30— Pu+u )+ PGB +ut —u’ —u?) + 07,

22
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1

o3 = 5(7'3 — 01Ty + 0971)
=2¢° +0(¢"?),

oy = — 1(74 — 0173 + 0979 — 037T1)
= 0(¢"?).

We consider the following equation,
- T+0y1?— 03T = O(q5/2).
From solutions 7' of this equation, we obtain 7! = )\;, as follows,
M =14+¢Pu+u™) +g(—1+d® +u )+ 2w+ u™) +ud+u?)
+@*(7T+u") +0(”?).
Further, in order to calculate the next eigenvalues concretely, we put
T = (70 = AY) /(=)™

By (20), we obtain o}, from 77, as follows,

oy =320 (ut+u"") +q(6 —u') +0(¢*?),

oh =2 +0(¢"?).
We consider the following equation,

1— O'iT + aéjﬁ = 0(¢"?).
From solutions 7' of this equation, we obtain T-1 = Ay, s, as follows,
Ny =240, Ny =1+0(¢"?

Therefore, putting
)\2 = _q)\IQa )\3 = _q)\ga

we obtain lower degree parts of the first three eigenvalues, as follows,

M =14+t u™) +g(-1+u® +ud) + @A (=2(u+u™) +ud +u?)

+@(T+u™) +0(¢*?), (28)
Xy = —2¢ +O0(¢*?),
A3 = —¢q —|—O(q3/2).

Hence, we obtain the following theorem.

Theorem 4.9. We can present I(Mn(61)) in terms of the above eigenvalues A\, g, A3 by

O(¢*)  ifn=1,

](Mn(61)) = (the coefficient of u® in (NI + Ny + AQ)) + { O(g?) ifn>2.

23



(=)

We show concrete forms of M, (6;) obtained from the theorem for n < 8, as follows,

I(My(61)) = 1 —4q +0(q%),
I(M2(6,)) =1 +14¢> +O(¢°),
I(M3(61)) = 1 +3¢ +6¢° +O(¢*),
I(My(61)) = 1 +8¢ +4¢*> +O(¢*),
I(M5(61)) = 1415¢+ 15¢* + O(g®),
I(Mg(61)) = 1+24q+57¢> +O(¢%),
I(M7(61)) = 1+35¢+ 154¢> + O(q*),
I(Ms(61)) = 1+48¢q+ 336> +O(¢*).

We can verify these values by comparing to these values which we show after Theorem
3.4.

Remark 4.10. From Theorem 3.4 and (28), we obtain that
Is,(n,q) = (the coefficient of u° in A7) + O(g®).
In fact, we expect that
Is,(n,q) = (the coefficient of u° in A7),

but, in order to show this in this way, we have technical difficulty that we must calculate
A1 in (28) not only for lower degrees, but also for all degrees, and we need Assumption
4.1 to ignore contributions from other A,,.

5 Calculation of / (Mn(K )) from contributions from subsequences
of parameters

In this section, we show Theorems 3.2, 3.3, 3.4 in Sections 5.1, 5.2, 5.3, respectively. We
also show Theorem 3.1 in Section 5.5.

5.1 Proof of Theorem 3.2 for the 4; knot

In this section, we give a proof of Theorem 3.2. In fact, we prove (13), (14) and (15) for
n > 6, noting that (13), (14) and (15) are verified for n < 6 by concrete computational
results shown after Theorem 3.2, i.e., we calculate the degree < 3 part of I(M,(4)) for
n > 6.

As we mention in Section 2, we put
Ju (b, b, ) = PR I(0y 0y, 1)

where aa = = = %, and this value is obtained in Section B.1.
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Proof of Theorem 3.2. As mentioned above, it is sufficient to calculate the degree < 3
part of I(M,(41)) for n > 6. By (82), I(M,(41)) is presented by

I(Mn(41>) = Z j41 ((10+CL3, 2@1, 2@2) j41 (CLl +a4, 2@2, 2@3)

ap=0
ai,,a2n—1 €%

X j41 (a2+a5, 2(13, 2@4) j41 (CL3+(16, 2@4, 2(15)
X e

A

X Jyy (Q2n—274Gony1, 20201, 202,) Ja, (A2n—1 242, 2020, 2G2n41),

where we regard the subscript of a; as modulo 2n, i.e., as, = ag, Aoni1 = a1, Aopio = ao.

We consider a sequence of the form
/ / !/
U = (a,a,a, az,aq4, - a1, a’,a’,a’). (29)

We define the length of U to be ¢, and define the height of U to be a’ — a. We define
Ju, (U) by
i (U) = Ju, (a+as, 2a,2a) Jy, (a+ay, 2a, 2a3)
X j41 (a+a5, 2a3, 2&4) j41 (CL3+CL6, 2&4, 2a5)
x PN

X j41 (age—1+d’,2d,2a’),

and we define the degree of U to be the lowest degree of Jy, (U), which is a non-negative

half integer. We note that, for any fixed d, there are a finite number of such sequences U

of degree d; we show a classification of such sequences of degree 1, 2, 3 in Section A.1.
For another sequence of the form (29)

! ! ! ! / / ! " /i 1/
U = (d,d,d, ay,ay, - ,ap_q, a",a",ad").
we define the union of U and U’ by
/ / ! ! ! ! li 1 /! "
U-U = (a,a,a, az,aq4, - ,ap-1, a',a’,a As, Ay, Qp_qy, @ ,4 ,Q )

We note that the degree of U - U’ is equal to the sum of degrees of U and U’. Further, we
consider a constant sequence

4 _
Uconst - (CL, a,a,---,a, a,a, a)a
N—— —

L

noting that Jy, (U¢

const

) =1(0,0,0)*, and its degree is 0.

We calculate the degree < 3 part of [ (Mn(41)) For a sufficiently large n, there are
contributions to [ (Mn(41)) only from a union of finite number of sequences of the form
(29) and constant sequences,

[t U, - U4 Uy- - -U, - [tm

const const const*
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It is sufficient to consider the following cases,

(1,0) = Z (degree of U;, height of UZ-),

(2,0) = Z (degree of U;, height of Ui),
(3,0) = Z (degree of U;, height of Uy).
It follows from the classification in Section A.1 that the range of (d, h) = (degree, height)
satisfies that
|| < 2d, |h| < 6—2d. (30)
Hence, as concrete sums of (d,h) = (degree, height), it is sufficient to consider the
following cases,

(1,0) + (1,0),

(2,0) +
(1,0) + (1,0) + (1,0).
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We consider a sequence
U = (a07 ag,: - 7a2n71)7

which we regard as a cyclic sequence, i.e., as, = ag, G211 = A1, Q2,12 = G2. In this proof,
we write f = g if f =g+ O(q*).

Case (0,0) In this case, we have the following sequence,

U = (a'07"' 7a2n—1) - UQTL

const ?

and hence,
Ju(U) = 1(0,0,0" = (1-q—2¢"—2¢°)"
= 1-2nqg + (2n(—¢*) + % 2n(2n — 1) (—q)?)
+ (2n(—2¢%) + 2n(2n — 1) (—q)(—2¢°) + é -2n(2n — 1)(2n — 2) (—q)?)

1 1
= 1—2nq +5-2n(2n —5) ¢ — 3 2n (2n? — 15m + 13) ¢*. (31)

Case (1,0) In this case, we have the following sequence,

U = Ufo . U11,0,4 . U€1

const const
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and hence,

> Jn(U) = 20 Jy, (U 1(0,0,00* = 2n(q —2¢°)(1 — g — 2¢°)*"*
Lo

= 2nq(1 —24% (1 — 2n—4)g+ (2n—4)(-2¢°) + % (2n — 4)(2n — 5) (—q)2)>
= 2nq(1—2¢°)(1 — (2n—4) ¢+ (2n° — 13n + 18) ¢°)
= 2nq —2n(2n —4)¢* +2n (2n* — 13n + 16) ¢°. (32)

The sum of (31) and (32) is given by
1 2, 1 2 3
1+§-2n(2n—3)q +§-2n(4n —24n+35) ¢°, (33)
whose degree < 1 part gives the degree < 1 part of the required formula.

Case (2,0) In this case, we have the following sequences,

Uy = U UP™" - U

const
_ Lo 2,0,7 £
U(2) - Uconst : Ul U,

const

and hence,

> Jn(Uny) = 20 s, (U 1(0,0,0"* = 2n¢” (1 - )"
Lo

2ng’(1— (2n —4)q) = 2nq*> —2n(2n —4) ¢,
> JuUw) = 20J,(UF*) 1(0,0,0*"7 = 2n¢* (1 —¢)*
Lo

= 2ng*(1—(2n—"T)q) = 2nq¢* —2n(2n—17)¢".
Their sum is given by
4nq* —2n (4n — 11) ¢*. (34)
Case (2,0) = (1,0) 4+ (1,0) In this case, we have the following sequence,
U U - U0 - Uggs (35)

and hence,

2n(2n — 7
Z Ju, (U) = % Jay (UILOA)Q I(Ov 0, 0)2n_8
Lo,

2n(2n —7) (¢ — 2¢%)*(1 — ¢)* "

2n(2n —7) (1 — 44°) (1 —(2n — 8)‘1)

NN =N

2n(2n —7) ¢ — % 2n(2n —7)(2n — 8) ¢°. (36)
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The sum of (33), (34) and (36) is given by
1
L+ 3 2n(4n® — 24n + 35) ¢°,
whose degree < 2 part gives the degree < 2 part of the required formula.

Case (3,0) In this case, we have the following sequences,

— KO 37074 él
U(l) - Uconst ’ Ul ’ Uconst )
— Lo 3,0,7 0 .
U(Q)vi - Uconst ’ Uz : Uconst for i = 1, 2,
_ Lo 3,0,10 A
U(3) - Uconst ’ Ul ’ Uconst )

and hence,

> I Uay) = 20y, (U = 2ng,

Lo
S e = > 2y (UPOT) = 2n- 2,

6 1<i<2 1<i<2

ZJ41(U(3)) = 20 J, (UP"Y) = 2ng’.
Lo

Their sum is given by
2n - 4¢3

Case (3,0) = (2,0) + (1,0) In this case, we have the following sequences,

1t 204 716 1,04 770y
U(l) - Uconst ’ Ul ’ Uconst ' Ul ' Uconst )

1t 20,7 716 1,04 770y
U(2) - Uconst ’ Ul ’ Uconst ' Ul ' Uconst )

and hence,

Z Ju(Uw) = 2n0(2n = 7) Ju, (UP™) Ty, (U7 )

4,1
2n(2n —7)q-¢* = 2n(2n —7) ¢,

Z Jin(U) = 2n(2n — 10) Ju, (UT7) Ju, (U
Lo, 01
2n(2n —10) ¢ ¢* = 2n(2n — 10)¢".

Their sum is given by
2n(4n — 17) ¢°.

Case (3,0) = (1,0) +(1,0) + (1,0) In this case, we have the following sequence,

b 1,04 716 1,04 71l
U = Uconst ' Ul : Uconst ’ Ul ’ Uconst

1,0,4
LUt [t

const »
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and hence,

2n(2n — 10)(2n — 11
S sy = 20D oy =
Lo 01,03

2n(2n — 10)(2n — 11) ¢°.

(40)

The sum of (37), (38), (39) and (40) is given by
1.

This is the degree < 3 part of I (Mn(41)) for a sufficiently large n. Therefore, we obtain
the theorem. O

5.2 Proof of Theorem 3.3 for the 5, knot

In this section, we give a proof of Theorem 3.3. In fact, we prove (16) and (17) for n > 8,
noting that (16) and (17) are verified for n < 8 by concrete computational results shown
after Theorem 3.3, i.e., we calculate the degree < 2 part of I(Mn(41)) for n > 8.

As we mention in Section 2, we put
Jsy (1, o, by) = q*TPETI(0) 0y, 0y)
where o = 0.164, § = 0.224, v = 0.112, and these values are obtained in Section B.2.

Proof of Theorem 3.3. As mentioned above, it is sufficient to calculate the degree < 2
part of I(M,(5s)) for n > 8. By (84), I(M,(52)) is presented by

(M, (52)) =

Z j52(a0+00, co+bo, a1 +by) j52(a2+00, co+b1, a1+bo) j52(bo+bl> ai+co, ap+az)
al,---ag:geZ
by, bpn_1€Z

Co, Cn—1€7Z

X j52(a1+01, c1+b1, a2+ b2) j52(a3+01, c1+b2, as+by) j52(b1 +bo, ag+cy1, a1 +as3)
X P

X j52 (an—l +Cn—17 Cpn—1 +bn—17 an+bn) j52 (an+1+cn—17 Cp—1 +bn7 an+bn—1)

X j52 (bn—l +bn7 an+cn—17 Ap—1 +an+1)7

where we regard the subscripts of a;, b;, ¢; as modulo n.

We consider a sequence of the form

!/ !/ !/
V = ((I,CZ,CO, aablaCb a27b27627 Ty a(—labf—lacf—la a,a,x*, a’)' (41)
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We define the length of V' to be £, and define the height of V' to be a’ — a. We define
‘]52(V) by
J52<V) = j52 (a+007 CO—|—CZ, a+b1) j52 (a2+CO7 CO+b17 a+a> j52 (a_'_bla CL+Co, a_'_a?)
X j52 (CL+01, C1 +b1, a2—|—b2) j52 (CLg‘FCh Cl+b2, a2+bl) j52 (bl +b2, CL2+Cl, (I+CL3)
>< ..
X Js, (g1 +Co1, Co14be_y,d' +a') Joy (' +¢o_1, co_1+d', a'+bp_y)
X j52(be—1 +a',d ey, a1 +d),

and we define the degree of V' to be the lowest degree of Js,(V'), which is a non-negative
half integer. We note that, for any fixed d, there are a finite number of such sequences V'
of degree d; we show a classification of such sequences of degree 1, 2 in Section A.2.

For another sequence of the form (41)

/ ! ! / ! / / ! / / / / / 1 " 1
Vo= (a,a,co, avblﬁcla a2ab2702a ) aé’-17b£’—17ce/—17 a,a ,*, a )7
we define the union of V' and V' by
!
V.-V = (CL7CL,CO7 a7b17cla a27b27027 Ty af—hbe—lacf—la
/ / / / / / / / / ! / / " 1 /i
a,a',cy, a' by, ¢, ag, by, oy ey, by cp_q, @y a” %, a”).

We note that the degree of V - V' is equal to the sum of degrees of V' and V’. Further,
we consider a constant sequence
V@

const — (gvavaﬁ a,a, @, -+, a,a,a, a,a,?*, CL),

3¢

noting that Js, (VY ..) = 1(0,0,0)3, and its degree is 0.

const

We calculate the degree < 2 part of [ (Mn(52)) For a sufficiently large n, there are
contributions to / (Mn(52)) only from a union of finite number of sequences of the form

(41) and constant sequences,

Vo

const

B VA Ve

const

VA VA VA

const*
It is sufficient to consider the following cases,
(1,0) = Z (degree of V;, height of Vi),
(2,0) = Z (degree of V;, height of V;).
It follows from the classification in Section A.2 that the range of (d, h) = (degree, height)

satisfies that
|h| < 2d, || < 4-2d (42)

Hence, concrete values of (d, h) = (degree, height) are

(d,h) = (%,:I:l), (1,0), (1,42), (g,il).

30



Therefore, as concrete sums of (d,h) = (degree, height), it is sufficient to consider the
following cases,

0.0)

(1,0),

(1,0) = (3.1) + (5, -1),

(2.0),

(270) = (150) + (150)7

(270) = (L 2) + (L _Q)a

2,0) = 5 1 L 1

( ) )_ (5) ) (2a )7

3 1

(2,0) = (5’ 1+ (5»1)7

(2,0) = (1,0) + (5, 1)+ (5, 1),

(2,0) = (1,2) + (3, ~1) + (5,-D)

(2.0) = (1,-2) + (3,1) + (5, 1),

(2,0) = (5, 1) + (5. 1) + (5,1 + (5, 1),
We consider a sequence

V = <a07b07607 e 7an—17bn—17cn—1)7

where we regard the subscripts of a;, b;, ¢; as modulo n. In this proof, we write f = g if
f=9+0().

Case (0,0) In this case, we have the following sequence,

V = V;gnst’
and hence,
1
J5,(V) = I1(0,0,0" = (1—q—2¢*)*" = 1-3nq+ 5 3n(3n - 5)q*. (43)

Case (1,0) In this case, we have the following sequences,

i EO 17071 gl
‘/(1) - chonst ’ ‘/1 ’ ‘/const )
I EO 17072 gl
‘/(2) - V::onst ’ ‘/l ’ ‘/const )
Vg = Vedy -V Vi, fori=1,2,34
(3),i — Veconst * Vi " Veconst ori=1,42,9,4,
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and hence,

ZJ52(V(1)) = nJs, (V) 1(0,0,0)3D
Lo

n(—¢—-¢)1-q"" = —ng+n@Bn-4)¢,

> I, (Vig) = nJs, (V%) 1(0,0,0)°"2
Lo

nq(l—q)

2

3n—6 = nq_n(gn_G)q‘

stz(v(s),l) = nJs, (V") 1(0,0,0)33)
Lo

n(q

=3¢)(1 =)™ = ng—n(@Bn-6)¢,

S (Vi) = m s (V3% 1(0,0,0)0
Lo

n(q

21 —q)*? = ng—n(Bn-7) ¢,

stz(v(za),g) = nJs, (Vi) 1(0,0,0)3
Lo

n(q

- 4‘]2)(1 - Q>3n_9 = nq—n(3n—>5) e

ZJSQ(V(:S)A) = nJg,Q(X/;’O’S) [(070’0)3(71—3)
Lo

n(q

Their sum is given by

— 4q2)(1 — q)3n—9 = nqg—n(3n—>5) q2‘

dnq —n(12n — 25) ¢*.

Case (1,0) = (3,1) + (3,—1) In this case, we have the following sequence,

vV = Vh

const

and hence,

D Ja(V) = n(n = 3) J5, (VP12 I, (2 712) 1(0,0,0)%09

£o,41

n(n —

n(n —

n(n —

The sum of (43), (44) and (45)

1 27_172 4
Tk

const

1/2,1,2 Y

const

3) (q1/2 B 3q3/2> <q1/2 B 3q3/2) (1 - q)3n712
3)q(1 - 6q)(1 — (3n — 12)q)
3)qg — n(n —3)(3n — 6)¢°.

1
1+n(n=2)q = (6~ 150+ 1)¢" +0(")
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whose degree < 1 part gives the degree < 1 part of the required formula. The above 3
cases determine the coefficient of ¢. Hence, ¢{™(53) = n(n — 2) for any n > 4. Therefore,

pi*(n) =n(n —2).
In the remaining cases, we

Case (2,0) In this case, we

and hence,

calculate the coefficient of ¢2.

have the following sequences,

‘/(1) — Vfo X 12,0,1 . Vél

const const »
‘/(2) = V;:Zc?nst ' 127072 ’ ‘/c{)lnst )
‘/(3),i = ‘/cli)onst ’ ‘/;27073 ’ chl;lnst )
‘/(4):i = ‘/Cionst ’ ‘/;27074 ’ ‘/célnst )
‘/(5):i = chgoonst ’ ‘/;2’075 ’ ‘/cgolnst )

> I (Vi) = nJs, (V™) = ng’,

Lo

> J5 (Vi)

Lo

> (Vi)
1<i<11 £

Z ZJ52<V(4)72')
1<e<17 4y

S (Vi)
1<i<22 £

Their sum is given by

Case (2,0) = (1,0) +(1,0)
Viy =

Vi =

V)i

= nJ5,(V7"?) = ng,

1<i<11

= Z n Js, (VP = 17n¢?,
1<i<17

= Z n Js,(V2") = 22n¢%
1<i<22

42n ¢°.

In this case, we have the following sequences,

‘/cﬁ)onst ’ 117071 ’ ‘/cl;lnst ’ 11,071 ’ ‘/c%nst )
= ‘/cﬁonst ’ 117071 ’ ‘/cilnst ’ ‘/11,072 ’ sz)znst )
= V;@nst ’ 1170’1 ’ V::{)lnst ’ ‘/;17075 : ‘/CZO2HSt )
‘/Cl;()nst ’ ‘/117072 ’ V::l;lnst ’ ‘/‘11,072 ’ V::%nst )
= V:f)onst ’ ‘/117072 ’ V::Zolnst ’ ‘/;17073 ’ ‘/C%nst )
= ‘/;?nst ’ %1,0:3 ’ V;Eolnst ’ V;'LO’S ’ ‘/c%nst )
= ‘/cgoonst ’ %1,0,3 ’ ‘/cgolnst ’ ‘/jLO,3 ’ ‘/c%nst )
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and hence,

S I (Visya)

1<i<4 £o 04

1<i<4 £o 01

Z Z JI5, (‘/(6)72)

1<i<4 4o 41

S I (Vinay) =

1<i<j<d by, 0

Their sum is given by

Case (2,0) = (1,2) + (1,-2)

n(n - 1) 1,0,1\2
9 J52(V1 )

2 1 2
gun =1 (=7 = gnn-1)7,
n(n —2) Js, (V") J5, (V,02)
n(n—2)(—q)-q¢ = —n(n—2)¢,

1<i<4
dn(n—3)(=q)-q = —4n(n—3) ¢,
n(n —3 1

( 5 )J52<V'11,0,2)2 = 571(71—3) q27
> n(n —4) J5, (V%) Js, (V1)
1<i<4
dn(n—4)q-q = 4n(n —4) ¢,

-5

Z n<n2 ) J52(‘/i1,0,3)2 = zn(n o 5) q2’
1<i<4

> n(n—5) Js, (VM) 5, (V) = 6n(n —5) ¢
1<i<j<4

n (8n — 44) ¢*. (48)

In this case, we have the following sequences,

‘/(1) - ‘/Ycionst : ‘/11’272 ' ‘/cl;lnst ' ‘/11’_2’2 : ‘/c%nst )
‘/(2) = V;:ionst : ‘/11’272 ' ‘/Yclijlnst ' ‘/11’_2’3 : ‘/c%nst )
‘/(3) = V;f)onst : ‘/11’273 ' V;f)lnst ' ‘/11’_2’2 : ‘/c%nst )
‘/(4) = V;f)onst ' ‘/11’273 ' V;f)lnst ' ‘/117—2,3 : ‘/;:%nst )
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and hence,

Z J52 (‘/(1)) =

£o,01

Z I3, (‘/(2)) =

£o,01

Z I3, (‘/(3)) =

£o,01

Z I3, (‘/(4)) =

£o,61

Their sum is given by

4n(n —4) ¢*
Case (2,0) = (3,1) +(3,—1) In this case, we have the following sequences,
3/2,1,2 1/2,-1,2
Ving = Vigws Ve Vi - VT Vi,
‘/(Q)ui = ‘/;?nst ’ %3/2,173 ’ V::l;lnst ’ ‘/11/2’7172 ’ ‘/c%nst )
Vv(3),i = ‘/cgoonst ’ ‘/;3/27174 ) ‘/;li)lnst ’ ‘/11/27_172 ’ ‘/c%nst )

and hence,

Z Z J52 (‘/(1),

1<4i<2 €0, 0

Z Z s, (V(2)7

1<i<5 4o, 01

Z Z s, (V(3)7

1<i<T 4o, 01

Their sum is given by

1)

n(n—3) Js, (Vi) Js, (V" 727) = n(n —3) ¢,

n(n —4) Js, (Vi) Js, (V' 727) = n(n —4) ¢,

n(n —4) Js, (Vi) Js, (VI 727) = nln —4) ¢,

n(n —5) Js,(V"*°) I, (V") = n(n—5)¢%

Z) _ Z n(n—3) JSQ(V;S/Z,LQ) J52(V11/2’71’2)

1<i<2

2n(n —3) (—=¢*?) - ¢** = —2n(n - 3)¢*,

z) — Z n(n—4) J52(Vi3/2,1,3> J52<V11/2,—1,2)

1<i<5
5n(n —4)¢*? - ¢/ = 5n(n —4) ¢,

2) — Z n(n—5) J52(Vig/2’1’4)J52(V11/2’_1’2)

1<4<7

n(n —5)¢** ¢"/* = Tn(n—5)¢.

n(10n — 49) ¢*.

In this case, we have the following sequences,
Lo 3/2,—1,2 01 1/2,1,2 Lo
V::onst : V; : ‘/const : ‘/1 : ‘/const )
Z() 3/277173 Zl 1/27172 £2
‘/Const ’ ‘/’L ' ‘/;onst ' ‘/1 : ‘/COIlSt )
J— ZO 3/27_1)4 él 1/2’172 62
- ‘/const ’ V; ! ‘/COIISt ! ‘/1 ’ ‘/const )
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and hence,

SN I (Ve = Y nln—3) J, (V) g5, (V)

1<i<2 4p, 01 1<i<2
= 2n(n—3)(—=¢**) - ¢** = —2n(n - 3) ¢,
3/2,—1,3 1/2,1,2
SN I (Vi) = Y nln—4) Js, (V) g, (/21)
1<4i<5 4p,01 1<:i<h

= Sn(n—4)¢? ¢*? = sn(n—4) ¢,

Z Z J52 (V(?)),i) = Z n(n — 5) J52(‘/;3/2’_1’4> J52<V11/2’1’2)

1<i<T lo,1 1<i<7
n(n —5)¢*% ¢"* = Tn(n —5) ¢

Their sum is given by
n(10n — 49) ¢°. (51)

Case (2,0) = (1,0) + (3,1) 4+ (3,—1) In this case, we have the following sequences,

2

Viy = Vi - VO Va2 Ve Ayl
‘/(2) = ‘/cgoonst : ‘/1170,2 : ‘/cli)lnst : ‘/11/2’1’2 : ‘/c%nst ' ‘/11/2,71’2 ' ‘/ceosnst ;
‘/(3),7; = V;:eoonst : ‘/;170’3 : ch{)lnst : ‘/11/2’172 : ‘/c%nst : ‘/11/27_172 ' V;:f)snst )
and hence,
N Ja(Vay) = nln—3)(n - 4) J5, (V) Ja, (G21) s, (V2 71)
Loty ,02
= n(n—3)(n—4)(—q) - ¢"* - ¢"* = —n(n-3)(n—4) ¢,

7 T (Vi) = nln—4)(n — 5) Js, (VM) J5, (Vi/212) Jg, (V2 712)
Lo 41,02

= nn—4)(n—->5)q - ¢"*-¢"* = n(n—4)(n—-5) ¢,

7D TV = > nln—5)(n—6) J5, (VM) J5, (122) J5, (72712)

1<i<4 £, 61,6 1<i<4
= 4dn(n—5)(n—6)q-¢"* ¢"* = 4n(n —5)(n —6)¢*.

Their sum is given by
n(4n® — 46n + 128). (52)

Case (2,0) = (1,2) + (3,—1) +(3,—1) In this case, we have the following sequences,

Vo = it ‘/11,2,2 yh ‘/11/2,—1,2 Lyl ‘/11/2,—1,2 Lyl

const const const const »
J— eO 17273 el 1/27_172 £2 1/27_172 €3
‘/(2) - ‘/const ’ Vvl ' V;:onst ’ ‘/1 ’ V;:onst ’ ‘/1 ’ ‘/const )
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and hence,

S Vi) = gl = 4)(n = 5) Jo, (V22) Jy, (5127122
£o,l1,62
_ 1 1/2\2 — 1 2
= gnn—4)n—=5)¢-(¢77) = gnn—4)n-5)q,
S Vi) = gl —5)(n— 6) Jo, (V) Jy, (527122
£o,01,42
_ 1 1/2\2 _ 1 2
= 5nn=5)(n—6)¢ (¢7")° = Sn(n—"5)(n—06)q"
Their sum is given by
n(n — 5)2. (53)

Case (2,0) = (1,—2) + (%,1) + (£,1) In this case, we have the following sequences,

2’ P

J— ZO 17_272 61 1/27132 [2 1/27172 eS
Vv(l) - ‘/const . ‘/1 ' V;:onst ' VVI ' Vz:onst ' ‘/1 : V::onst ’

‘/(2) = ‘/c{)onst ' ‘/1177273 ’ V;:{)lnst ’ ‘/11/27172 ’ ‘/c%nst : ‘/11/2’172 : cheognst ,
and hence,
1 —
Z ‘]52(‘/(1)) D) n(n —4)(n —5) J52(V11’ 272) Js, (‘/11/11,2)2
Lo 01,02
_ ! /202 1 )
= Jnn =4 =5)g- (¢ = Snn -4 -5)¢,
1 J—
> Tn(Vi) = 5nln—5)(n - 6) Js, (") J5, (/2122
£o,01 02
_ 1 1/2\2 — 1 )
= Sn(n=5)n=6)g- (@) = 5n(n—5)n—6)¢"
Their sum is given by
n(n —5)°. (54)

Case (2,0) = (3,1) + (3,1) + (3,—1) + (3,—1) In this case, we have the following se-
quence,

A 1/21,2 0 1/2,1,2 0 1/2,1,2 05 1/2,-1,2 1,05 1/2,-1,2 1,0,
Vo= ‘/::onst : ‘/1 : V;:onst : VYI . V;:onst : Vvl : V;:onst : Vvl : V;:onst : ‘/1 ' ‘/;:onst ’
and hence,

Z J52 (V) =

Lo,l1,02,03

(= 5)(n = 6)(m — 7) Jy (V> 2)2 5, (12727

= = s

n(n = 5)(n—6)(n—17)(¢"?)* - (¢"*)

n(n —5)(n —6)(n —17)¢*. (55)
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The sum of (46), (47), (48), ---, (55) is given by
1
1 +n(n—2)q +Z—Ln(n3—6n2+n+36)q2.

This is the degree < 2 part of [ (Mn(52)) for a sufficiently large n. Therefore, we obtain
the theorem. O

5.3 Proof of Theorem 3.4 for the 6; knot

In this section, we give a proof of Theorem 3.4. In fact, we prove (18) and (19) for n > 6,
noting that (18) and (19) are verified for n < 6 by concrete computational results shown
after Theorem 3.3, i.e., we calculate the degree < 2 part of I(Mn(61)) for n > 6.

As we mention in Section 2, we put
j61,1(€17€27£3> = gmathilmbs gy 0y 03),
j61,2(€17€27£3) = it 0, 05),
j61,3(€1>€2>€3) = OB rb(g) 0y 03),

where

o = 0.166, B =0.24, 7 = 0.094,
Qg = 0224, 52 = 01467 Yo = 0137
az = 0.074, B3 =0.036, ~3=0.39,

and these values are obtained in Section B.3.

Proof of Theorem 3.4. As mentioned above, it is sufficient to calculate the degree < 2
part of I(M,(61)) for n > 6. By (86), I(M,(61)) is presented by
[(Mn(61>) = Z j@l’g(ao‘i‘do, CL1—|—bQ, d0—|—Cg> j@hl(do—l-bo, CL1—|—CQ, a0+b1)
X j61,2<a1+d0, d0+b1, b0+C0) j61’1 (2(11, b0+01, 2b1>
X j61,3(a1+d17a2+b1;d1+01) j61,1(d1+b17a2+017a1+b2)

X j61,2(a2+d1,d1—|—b2,b1+01) j61,1(2a2, b1+02,2b2)
YRR

X j61,3(an—1 +dn—17 an+bn—1a dn—1+cn—1) j61,1(dn—1+bn—17 an+cn—17 Ap—1 +bn)
X j61,2(an+dn—1a dn—l"'bna bn—1+cn—1) j61,1(2an7 bn—l +Cna 2bn)>

where we regard the subscripts of a;, b;, ¢;, d; as modulo n.

We consider a sequence of the form

/ / !/
W = (aacL?a’dOa alablacladla T a@*labéflacffladffb a,a,a). (56)
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We define the length of W to be £, and define the height of W to be @' — a. We define
‘]61 (W) by
Js,(W) = Js, s(a+do, a1 +a,dy+a) Js, 1 (do+a, ay +a, a+b)
X j6172(a1 +d0, d0+bl, CZ+CL> j6171(2a1, a—+cy, 2[)1)
X j61,3(a1 +d1, a2+b1, d1+01) j6171(d1+b1, ao+cC1,aq +b2)
x Jg, 2(as+dy, di+ba, by+c1) o, 1(2as, by +cz, 2by)
X “ ..
X j61,3(a£f1+de71, a +b_1,de1+coq) jﬁl,l(défl b1, a' +co1, ap_1+a’)
X Joyo(a' +dp 1, dpy+a be e ) Joy 1 (20 by ', 2d"),
and we define the degree of W to be the lowest degree of Jg, (W), which is a non-negative
half integer. We note that, for any fixed d, there are a finite number of such sequences

W of degree d; we show a classification of such sequences of degree 1, 2 in Section A.3.
For another sequence of the form (56)

! / / / U / / / ! / / / ! " " "
W' = (d,d,d,dy, a},by, ¢, dy, -, ap_y by, Gy dy_y, a” a” ad"),
we define the union of W and W' by
/
W-W'" = (a,a,a,dy, ay,by,c1,dy, -, ap1,bp-1,¢1,dp1,
/ / / U / / / ! / / / U " " "
a,a,d,dy, aj, b, c,dy, s ap by, Cp_q,dy_q, a” a” a").

We note that the degree of W - W is equal to the sum of degrees of W and W’. Further,
we consider a constant sequence

4 _
Wconst - (gaa7a7a7 ,a,a,a,a, a,a,a),

-~

40

) =1(0,0,0)*, and its degree is 0.

noting that Jg, (W}

const

We calculate the degree < 2 part of / (Mn(61)) For a sufficiently large n, there are
contributions to [ (Mn(61)) only from a union of finite number of sequences of the form
(56) and constant sequences,

choonst ’ Wl ’ Wc%nst ’ W2 e Wm : Qme

const -

It is sufficient to consider the following cases,

(1,0) = Z (degree of W, height of I/Vi),
(2,0) = Z (degree of W;, height of W;).

1

It follows from the classification in Section A.3 that the range of (d, h) = (degree, height)
satisfies that
|h| < 2d, |h]| < 4-2d (57)
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Hence, concrete values of (d, h) = (degree, height) are
1 3
(d,h) = (E,il), (1,0), (1,£2), (5711).

Therefore, as concrete sums of (d,h) = (degree, height), it is sufficient to consider the
following cases,

(0,0,
(1,0,

(1,0) = (3.1) + (5, -1),

(2,0),

(270) = (1a0)+(1a0)7

(270) = (LZ) + (la 2)a

2,0) = 5 1 1 1
(7)_(57)""(27 )7

(2,0)= (5. -1+ (5 1),

(2,0) = (1,0) + (5, 1)+ (5, 1),

(2,0) = (1,2) + (5,-1) + (3, -1,

(2,0) = (1,-2) + (3,1) + (5, )

(2.0)= (3. 1)+ (5. ) + (3, -1 + (5, -1).

We consider a sequence

W = (CLO? b07 Co, d07 s, -1, bnfla Cp—1, dnfl)u
where we regard the subscripts of a;, b;, ¢;, d; as modulo n. In this proof, we write f =g
if f=g+0(¢).

Case (0,0) In this case, we have the following sequence,
W = W2

const ?

and hence,

1
Jo, (W) = I1(0,0,0)" = (1-q—2¢)*" = 1—4nq+ 5 4n(4n — 5) ¢°. (58)

Case (1,0) In this case, we have the following sequences,

Wiy = Wil Wi Wik,
Wiy = Wil Wi Wik,
Wiy = Wil Wo™? Wik,
Wiy = Wil Wy Wik,
W(5) = chgnst . W417072 : Wcé(;nsta
Wie) = Weby - W52 - Wik,
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and hence,

S Ja(Way) = nJe, (W) 1(0,0,0)4Y

Lo

n(—q)(1—q)"* = —ng+nn—4)¢,

N Ja (W) = nJe, (WH%)1(0,0,0)4
Lo

Il
N
—
LS
|
oS
(S
[\
S~—
—~
—_
)
~—
S
7
oo
Il
3
L
|
3
—~
e~
N
|
W
~—
LS
\.l\')

Z Joy (W(?’)) = nJs (WQLOIZ) I(Oa 0, 0)4(n_2)
Lo

Il
S
—
(S
|
DO
L
[\
~
—~
—_
)
~—
S
1
oo
Il
3
(S
|
3
—~
W~
S
|
D
~—
L
\.l\')

S Jo (W) = nJe, (Wi 1(0,0,0)4
Lo

Il
S
—~
(S
I
L)
[\
~—
—~
—_
()
~—
S
i
[e)
|
3
L
I
S
—~
W~
S
I
EN|
~—
Q
[\

Z Joy (W(5)) = nJs (W4170’2) I(Oa 0, 0)4(n_2)
Lo

Il
S
—~
(S
I
w
L
[\o}
~
—~
—_
|
)
~—
W
S
oo
Il
3
(S
I
S
—~
e~
S
|
ot
~—
L
\.l\')

Z Joy (W(G)) = nJs, (W5170’2) I(Oa 0, 0)4(n_2)
Lo

n(g—2¢")1-q)"™® = ng—n(4n—6)¢".

Their sum is given by
dngq —n (16n — 24) ¢*.

Case (1,0) = (3,1) + (3,—1) In this case, we have the following sequence,

1/2,—1,1
o I 45

const

1/2,1,2
WA wh

const

W = WZ

const

and hence,

" Js (W) = n(n —2) Jo, (Wy*2) Jo, (W27 1(0,0,0)4

£o,01

n(n —2) (¢"% — 4¢°%) (¢"* — 2¢*%) (1 — q)*" 2

n(n —2)q(1 —6¢)(1 — (4n — 12)q)
= n(n—2)q —n(n —2)(4n — 6) ¢*.

The sum of (58), (59) and (60) is given by
1 +n(n—2)q +n(—4n*>+6n+2) ¢*
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n(n — 2) for any n > 4. Therefore, p3*(n) = n(n — 2).

In the remaining cases, we calculate the coefficient of ¢2.

Case (2,0)

and hence,

> T (W)
Lo
j{: j£:<ﬁh(WQ2LJ

1<i<10 £

D Je (W)

1<i<17

Their sum is given by

Case (2,0) = (1,0) +(1,0)
— wh

and hence,

> Js (W)

£o,01

Z Z J6, (W(Q),i)

1<4i<5 £g,01

Z Z Jo, (W(3)7i)

1<i<5 4o, 01

— Wh

Z ZJ61(W(4),Z'7]') =

1<i<j<5 4o, la

= W

In this case, we have the following sequences,

— ZO 27071 El
W(l) - WCOnSt : Wl ’ Wconst )
J— EO 2’072 él
W(Q),Z - Wconst : VVZ ' Wconst )
_ eo 2,073 gl
W(3),1 - Wconst ' VVz ' Wconst )

nJs, (W) = ng’,

> onde, (W)

1<4<10

> nde (W)

1<i<17

22 ¢>.

In this case, we have the following sequences,
1,0,1 0 1,0,1 lo

' Wl ’ Wconst ' Wl ’ Wconst )
1,0,1 1,0,2

WP W WO W

1,0,2 1,0,2

. I/I/Z sy . ‘/I/Z syé

const const
1,0,2 1,0,2

const

Who

const

wh W

const const

wh W

const const

const

const

n(n —1)

o e (M)
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whose degree < 1 part gives the degree < 1 part of the required formula. Hence, c§”)

(52) =

(62)



Their sum is given by
n (8n — 28) ¢°.

Case (2,0) = (1,2) + (1,—2) In this case, we have the following sequences,

Wy = Webie - W2 Wby - W20 W2,
W) = Webhe - Wi Wby - W20 W2
and hence,
> Ts, (W) = nln—2) Jo, (W) Jo, (W) = n(n—2) ¢,
Lo,01
> Je (W) = nln—3) Js,(W)*%) Jo, (W™ = n(n—3)¢"
Lo,01

Their sum is given by
n(2n — 5) ¢*.

Case (2,0) = (2,1) + (3,—1) In this case, we have the following sequences,

J— ZO 3/27172 el 1/27_171 ZQ
W(l)vi - WConst ’ I/Vz ’ Wconst : Wl ’ Wconst )
3/2,1,3 1/2,-1,1
Wi = Wi WP Wl - w2 owt

const ~ VVj const const

and hence,

Z ZJGI(W(I)’Z») = Z n(n —2) J61<Wi3/2,1,2)J61<W11/2,71,1)

1<i<5 4,0 1<i<h
n(n—2) (3¢"* = 2¢*?) - ¢'* = n(n-2)¢,

DD T W) = 3 nln = 3)Jo, (W) Jo, (W27

1<i<6 Lo, 0 1<i<6
6n(n —3) g% ¢"/* = 6n(n —3) ¢,

Their sum is given by

n(Tn — 20) ¢°.
Case (2,0) = (3,-1) + (3,1) In this case, we have the following sequences,
W(1)7i = Wcégnst ’ I/Vi3/27_171 ' chénst ’ VVII/27172 ’ Wc%nst )
Wi = Wb WP Wi W2 Wi
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and hence,

Z ZJ61(W(1)7'£> =

1<i<2 4o,01

Z ZJ61(W(2);£> =

1<i<T7 {01

Their sum is given by

Case (2,0) = (1,0) + (3,1) + (3,-1)

const

D nln = 2) Jo, (WM g, (721%)

1<i<2 '

2n(n—2) (=¢**) - ¢'* = —=2n(n—-2)¢,
D nln = 3) Jo, (W2 712) Jg, (W)/217)
1<:<7

n(n —3)¢** ¢"* = Tn(n —3) ¢

n(5n — 17) ¢°. (66)
2 In this case, we have the following sequences,
' ‘/Vll’oy1 ’ Wf;nst ' VV11/2’1’2 ’ Wc%nst ’ I/V11/277172 ’ ngnst )

_ Lo 1,0,2 1 1/2,1,2 53 1/2,—1,2 /3
W(Q)ﬂ' - Wconst - W; : Wconst : Wl ' Wconst : Wl ’ Wconst )

Way = W
and hence,
> Je (W)
£Lo,l1,02

Z Z Je, (W(2),i)

1<i<5 Lo 1,02

Their sum is given by

Case (2,0) = (1,2) + (1,-1) + (3, -1)

Way =
W) =

who

const

Wi

const

1,2,3
W W

)

= n(n —2)(n — 3) Jo, (W) Jo, (W)/212) Jo, (W20

= n(n—2)(n-3)(~q) - ¢'*-¢"?
= —n(n—2)(n—3)¢,

= 3 nln = 3)(n—4) Jo, (W2) S, (W,722) g, (W17

n(n — 3)(4n — 18) ¢°. (67)

2 In this case, we have the following sequences,

WY2=12 gyl /212 gt

const ~ VV1 const

1/2,-1,2
.Wl/a ) -ng

const

1,2,2
W W

const ~ VV1

1/27_172 42
const * Wl ' Wconst
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and hence,

1 —
> Ja (W) = 5n(n=2)(n—3) Jo, (WE22) o (Wh/2-11y2
£o,l1,L2
_ ! 122 _ 1 )
= jnn—=2)(n-3)q¢- (@) = gnn-2)n-3)q,
1 —
Z J61 (W(Q)) = 5 n(n — 3)(” _ 4) J61 (W11,273) J61 (Wll/l 171)2
£o,€1,02
_ L 1/2\2 _— 1 )
= S =3)n-1q- (@7 = Jnn=3)n-1)¢"
Their sum is given by
nin =3 (68)

Case (2,0) = (1,—2) 4 (3,1) 4+ (3,1) In this case, we have the following sequence,
W= Wil W Wi - W2 W - W2 W

and hence,

n(n = 3)(n —4) Jo, (W21 Jg, (92122

—_

n(n—3)(n—4)q-(¢'?)? = Snn-3)(n-4¢ (69

.
3
I
N — N

\)

Case (2,0) = (3,1) + (3,1) + (3,—1) + (3,—1) In this case, we have the following se-
quence,

W= Wh WA wh Wl Bl WAl
and hence,
1 —
ST Ja(W) = paln—3)(n— 4 - 5) Jo, (W42 Jg (W72
£o,€1,62,03

1

= ;n(n=3)(n—4)(n —5) (¢ (¢"*)?
1

= ;nn=3)(n—-4)(n-5)¢" (70)

The sum of (61), (62), (63), ---, (70) is given by

1
1 +nn-2)q +Zn(n3—6n2+n+32)q2.

This is the degree < 2 part of I(M,(61)) for a sufficiently large n. Therefore, we obtain
the theorem. O
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5.4 Convergence of the sum of the defining formula of the 3D-index

It is shown in [3] (see also [4]) that the infinite sum of the defining formula of the 3D-
index converges. In this section, we review the proof of the convergence. We generalize
the method of this section to the case of cyclic covers of a hyperbolic knot complement
in the next section.

Let M be a hyperbolic 3-manifold with a cusp. We assume that there exists an ideal
triangulation 7~ which gives the hyperbolic structure of M, and 7 has m tetrahedra and
m edges. We denote by a’ the label of the jth edge £7, and, as in (4), we denote labels of
edges of the ith tetrahedron A? by af®, of'() q9@) @9 @ o' in this section. We
recall that the defining formula (11) of the 3D-index is given by

I(M) — Z HJ f()+af( a9()+a9() (l)_l_ah,(l)) (71)
a? 7~-C-L _OGZ i

We review the Neumann-Zagier matrix, as follows. We put three m xm matrices by
) # J,
# Js
- ]7
=7,

~

N = R O NNR RO N R~ O
—
Y
S

A= (4), A=

o]
Il
—~
X
S
~—
Sy
=
Il
N 7 N 7
—-
iy
~
/\/\/-\/-\
~.
N—
N
.
&
=
o,
=
N N N N
\/S/\_/\_/

Ql
I
Q
Q
I

Ve

Further, we put o o

A =A-C, B = B-C.
The Neumann-Zagier matriz is defined to be ( B). It is shown in [15, Theorem 2.2
— Proposition 2.5] and [14, Theorem 4.1] that the rank of the Neumann-Zagier matrix
(A|B) is m—1.

Example 5.1. For the 6; knot Kg,, its complement S®— Ky, is M,(61). Hence, by (86),
its 3D-index is presented by

I1(S*—Ks,) = Z ¢ [(a+d, a+b, d+c) I(b+d, atc, a+b)
bedes
x I(a+d, b+d, b+c) I(2a, b+c, 2b). (72)
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We have that

K:

— O
— = O
O = =

B = , C -

_ o O
—_ o~ O
_ 0 O =
OO O N
OO~
_ O R O
——_= 0 O

0 0

O~ =k O
O O N O

These matrices are obtained in such a way that, for example, the first entries of four
factors in the right-hand side of (72) is given by

(a b ¢ d) A = (a+d, b+d, a+d, 2a).

Proposition 5.2 ([3], see also [4]). The 3D-index I(M) is well-defined, i.e., the infinite
sum of the defining formula (11) of the 3D-index converges as a power series.

Proof. We put
E = {(a',d* - ,a™)ez™} = 7",
QZ(Z) = {(fl,gg,gg) € Z3} = 73
We define ‘ 4
F:E — QZ)
by
Fia',a?, - a™) = (af(i) + af/(i)7 a9® 4 ag’(i)’ @ 4 ah/(i)).
Further, we define A ‘
D': Q'(Z) — Ry
by
Di(£1,£2,€3) = deg J;({1, Lo, (3)
$(ba—0)(L3—L1) + Bi(la— 1) +7i(ls—4y)  if £y < 0y and 6 < L3,
= 1(51—42)(53—@) + %(51—52) + %(53—52) if lo < 4y and ly < /3, (73)
(01 —1C3)(La—Ls) + (b1 —l3) + Bi(ba—1l3) if £5 < ¢y and l3 < Ly,

NI= N

where the second equality is obtained by (12).

We put Eg = EQR = R™ and Q' (R) = Q"(Z) ® R = R?, and we give standard metrics
to them. The above maps F' and D? are naturally extended to the following maps, which
we also denote by F' and D*,

Ex 25 Q(R) 25 Rs. (74)

By (73), D' naturally induces D' : Q'(R)/R — R, where the denominator R of Q*(R)/R
is spang{(1,1,1)} € Q(R). Further, F' : Ex — Q'(R)/R naturally induces F' : Ex/R —
Q'(R)/R, where the denominator R of Eg/R is spang{(1,1,---,1)} C Eg. Then, from
(74), we obtain the following maps,

Ex/R 5 QR)/R 25 Ryp.
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By making the direct sum of the middle vector space with respect to i, we obtain the
following maps,

Er/R - P (Q'(R)/R) = Rso,
where we put F = @F" and D = > Di. We consider the dual map of F, as follows,

P E®)/R) — (Ex/R)".
This map is surjective by Lemma 5.3 below. Hence, the map F is injective.

Let D be any positive integer. From the definition (73) of D*, we obtain that D ([0, D])
is bounded. Hence, D~* ([0, D]) is bounded. Therefore, Fip-1 ([0, D)) is bounded, since
Fis injective. When we restrict the sum (71) to the part of degree < D, the sum can be

regarded as a sum over integer points of F~1D~! ([0, D]). Hence, this restricted sum is a
finite sum.

Therefore, we obtain the proposition. O

Lemma 5.3. The map F* is surjective.

Proof. The matrix (K | B | E)T is a presentation matrix of the linear map,

oF : B — PO R).
Hence, the matrix (A|B)T is a presentation matrix of the linear map,
oF : Br — P (Q'R)/R).
Therefore, the matrix (A}B) is a presentation matrix of the dual linear map,

P @' ®)/R) — E;.

i

As mentioned before, the rank of the Neumann-Zagier matrix (A}B) is m — 1. Hence,
the image of the above linear map is the (m—1)-dimensional subspace (Eg/R)* of Ef ,

D (@ ®)/R) Ts (Ex/R)" C Ej.

i

Therefore, F* is surjective, as required. O
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5.5 Proof of Theorem 3.1

In this section, we give a proof of Theorem 3.1. We generalize the method of the previous
section to the case of cyclic covers of a hyperbolic knot complement. This proof is also a
generalization of the proofs in Sections 5.1, 5.2, 5.3.

As in Section 2, let K be a hyperbolic knot. We assume that there exists an ideal
triangulation 7 which gives the hyperbolic structure of the complement of K, and T has
m tetrahedra and m edges. We denote by @’ the label of the jth edge £, and, as in (4),
we denote labels of edges of the ith tetrahedron A’ by af®, of'() q9@) q9' (@) gh@) ol @)
in this section.

We consider the n-fold cyclic cover T of T, which is a triangulation of the n-fold cyclic
cover M, (K) of the complement of K. We denote by AL and & (for 0 < k < n) lifts of
A’ and & in T such that the deck transformatlon takes A} and & to A, and Sk
Then, the labels of edges of A% are given by akJrE " agis), , ak(+)€ 2 ak/fe), , a;ﬁil?’, a’,;‘;(e)zg
for some €;1, €} |, €12, €9, €i3, €; 3 Which are constants mdependent of k. Wlthout loss of
generality, we assume that mln{szyl, €i1>Ei2,€52,€i35 €13 ‘ 1< < m} = 0. The 3D-index
of M,,(K) is given by

f(4) f(@) g(1) g'(3) h(1) ' (3)
I Z H H J ak+5 1+ ak-l-a’ ) ak+612+ ak—l—a’ ) ak+613+ ak+£ ) (75)

where the sum is taken over

aé:()’ ag’...7a6”€Z7 a},---,a’{”EZ, cee a:l_lj..-7a,nm_1€Z.
We put
(0 if (f(i),ei1) # (k) and (f'(i),e},) # (5, k),
% _ ) 1 if (f(l),&“zl) = (j, k) and (f,@)vg;,l) # (4, k),
Ak (Aﬂvk) Aﬂk ) 1 if (f(i%ghl) 7& (], ]{) and (fl@'),g;,l) = (]7 k)’
L 2 it (f(i)75i,1) = (]a k) and (f/(i)agg,l) = (]’ k)v
(0 if Eg(z’),m; #(j.k) and Eg’(z’),e;,zg £ (),
— - _ 1 if g(i),gi,z = (]a k) and g/(i>’€;,2 7é (]a k)v
B = (Bjis): B 1 if (g(i),ei2) # (j, k) and (¢'(0),€},) = (4, k),
(2 if (g(i),fim) = (j,k) and (9,@)752,2) = (4, k),
(0 (hi)eis) # (k) and (W(i),2ls) # (s K.
— ) 1 if (h(i),e3) = (j, k) and (h’(i),5§’3) # (4, k),
O = (@) Ok = 1 i (hi)ocas) # GA) and (W(0)<hs) = (1K),
(2 if (h(i),ei3) = (j, k) and (W'(i),€}4) = (4, k).
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For simplicity, when max{ei,l,sgyl,si,g,sgg, €i3,Ei3 | 1<i< m} =1, we put

A A,
A, A,
A = A, :
A
A, A
By B,
B: B
B = B, :
B,
B, By
Co C
C, Gy
C = C
Co
C, G

Then, the Neumann-Zagier matrix (A‘B) is given by

A=A-C, B=B-C

Example 5.4. For the 6, knot, by (86), we have that

I(Mn(ﬁl)) = E qao+---+an—1+bo+---+bn_1+c0+---+cn_l+d0+_,,+dn_1

a0:0, al,---,an,1€Z
bo, - ,bn_1€EZ
Co, -t yCn—1€Z
do,dn—1€Z
x I(ao+dy, a1+bo, do+co) I(by+do, a1 +co, ag+b1)
X I(a1+d0, b1 +d0, b0+C0) [(2&1, b0+61, 2b1>
x I(a1+dy, as+by,di+c1) I(by+dy, as+ci, a1+bo)

X I(a2+d1, b2+d1, b1 +C1) 1(2(12, bl +CQ, 2b2>

>< ..
X I(an—1+dn—17 an"'bn—lu dn—1+cn—1) I<bn—1+dn—1’ an+cn—17 Ap—1 +bn)
X [<an+dn717 bn_'_dnfl; bnfl +Cn71) [(2ana bnfl +Cn7 2bn)7 (76)

where we regard the subscripts of a;, b;, ¢;, d; as modulo n. Hence, for example, Ay and
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A, are given by

o O O
S O N

A(]: ) Klz

—_ O O =
— O = O
—_— o O O
OO OO
OO OO
OO O =

0 0

These matrices are obtained in such a way that the first entries of the second and third
lines of (76) is given by

(ao bo <o do) A, + (al by dl) A, = (a0+d0, bo+do, a1+do, 2(11)-
As mentioned before, we assume that min{sz-’l,sg,l,sivg,e;g, €i3,€03 ‘ 1<i < m} =0.
Further, we put max{siﬁl,sgyl,si,g,egvg, €i3, ;3 | 1< < m} =Z.

Proof of Theorem 3.1. We put

]E — {(a(l)’ag’... 7a6n7 a%’a%,... ’QT‘, s aﬁll—l’a/?q,—l?”' ’a'gl_l) EZmN} — Z’m,’n,7
Qk = {61,52,53 EZS} = Z°.
We define ' '
F.: E — Q.(Z)
by
ﬁ(aé,ag,--~ a81> aia%?'“ agn’ T a7lz 1,(1% 1 ’GZL—O
_ f(3) 1) g(%) g’ (3) h(3) R (3)
- (ak—‘rs 1 + ak-i—e’ ’ ak—i—a 2 + ak+e’ ’ ak—i—a 3 + ak+5 )

where we regard the subscripts in the right-hand side as modulo n. Further, we define
Dj.: QZ) — Rxg
by
Di (01, 0o, 03) = degJ;(l1, s, 03)

L(ly—01)(ls—11) + Bi(la—01) + v (l3—01)  if €3 < ly and £; < {3,

3 )
= %(61—82)(63—62) -+ 061(51—62) + ’}/1(83 62) if 62 S 61 and 62 S 83, (77)
%(61—63)(€2—€3) + @1(61—63) + ﬁl(gg 53) if 63 S fl and 63 S 62,
where the second equality is obtained by (12). By Lemma 2.1, there exists a constant
0 > 0 such that,
if DZ(€1,€2,€3) > 0, then Dfﬁ(ﬁl,éz,é;},) > 0. (78)

We put Eg = EQR and Q},(R) = Qi.(Z)®@R. The above maps F}, and D}, are naturally
extended to the following maps,

Fi . Dz
ER — Q%(R) — R>0
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Similarly as in the previous section, these maps induces the following maps,

Ex/R 25 QLR)/R —% Rsg,

and we obtain the following maps,

F ; D
Er/R — P (QL(R)/R) — R,
ik
As shown in the previous section, the map Fis injective.

We fix any positive integer D. Similarly as in the previous section, we show that the
degree < D part of the sum (75) can be reduced to a finite sum, as follows. By (78), the
number of (i, k) with Di(---) > 0 is bounded by D/§. We consider a sequence of such

(i, k),

S = ((ir, k1), (i ko), -, (inkn)),

79
where k; < kjyy for each j, and i; < ij41 if kj = kj41, and h < D/S, (79)

noting that there are finitely many such sequences. We put

_ (QLR)/R)™ if (i,k) € S,
Os = @{{0} if (i, k) ¢ S,

where (Q}C(R)/R)X = (Qi(R)/R) — {0}. Then, D (Qi(R)/R) is presented as the

disjoint union of finitely many Qg,

D (QL®R)/R) = | |Qs v Q. (80)

ik

i,k

where @' is the complement of LisQg, noting that the degree obtained from a sequence of
Q' is greater than D, which we can ignore. Similarly as in the previous section,

[T D& (0.0))

(i,k)e S

is bounded by a constant independent of n. Hence, D! ([0, D]) is bounded. Therefore,
similarly as in the previous section, we obtain that the degree < D part of the sum (75)
can be reduced to a finite sum, and hence, the sum converges. However, we note that the
bounding constant of the range of this sum depends on n.

We consider to reduce the degree D part of the sum (75) further, in such a way that
the bounding constant of the range of the sum is independent of n, as follows. Let S
be the set of sequence of the form (79). When 1 < j < j' < h and k;_; + & < k; and
kjy_1+E+1 < kjy, we consider a sequence,

S, - ((ilakl)v'” 7(Z‘j—1akj—1)7(ij7kj+1)7"' a(ij’—lakj’—1+1)7(ij’akj’)f" 7(ih7kh))-
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We consider the equivalence relation of S generated by the equivalence between such S
and S’. In each equivalence class, we say that S of the form (79) is minimal if kv +- - -+ ky,
is minimal. We choose a representative sequence of such equivalence class from minimal
sequences. Let § be the set of representative sequences. We note that the cardinality of
S is bounded by (E+1) - D/d, which is independent of n. We consider to rewrite LigQg of

(80) by

| ]es =] |]es

ses S5e8 S~5
In Sections 5.1, 5.2, 5.3, we consider “case” when we calculate the 3D-index. For example,
n (35), we consider the sequence,

U = er U104 Ufl U104 UZQ

const const const

where we can change (g, {1, {5 in the same case, and Jy, (U) does not change independently
of 0y, l1,05. Hence, the contribution from this case can be written in terms of a power
series with coefficients of polynomials in n for a sufficiently large n. Here, this polynomial
is obtained from the number of the ways of putting two copies of Uy’ 104 in the whole
sequence of length 2n. Hence, this polynomial is a polynomial in n of degree 2 in this
case. More generally, we consider a sequence,

¢
U = Ufgnst Uy - Ufénst Up----- Ud chnst
Then, the number of ways of putting Uy, --- , U, in the whole sequence is a polynomial

in n of degree d. Since the degree of Jy, (U;) is at least %, we have that %d < D. Hence,
the polynomial is a polynomial of degree < 2D. Further, we note that, if two sequences
a,a’ € E are in the same case, F(a) and F(a’) belong to Qg and Qg of equivalent .S and
S’. Similarly, when S and S’ are equivalent,

[T 2 (o) and [T 27 (0.0)

(i,k)e S (i',k") e S’

can be naturally identified, and identified sequences give the same contribution to the sum
of the 3D-index, because of the same reason as above. Therefore, the sum of the defining
formula (75) of I(M,(K)) can be written as the sum of partial sums over S such that
the contribution from each partial sum is a power series with coefficients of polynomials
in n of degree < 2D for a sufficiently large n. Since the cardinality of S is bounded by a
constant independent of n, this sum is a power series with coefficients of polynomials in
n of degree < 2D.

Hence, we obtain the theorem. O

A Classification of particular sequences of parameters to calcu-
late I(M,(K))

As we mention in Section 5, in order to calculate the lower degree part of I (Mn(K )), it

is sufficient to calculate contributions only from a union of finite number of particular
sequences and constant sequences of parameters in the defining formula of 1 (Mn(K ))
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In this section, we classify such particular sequences for the 41, 55, 6; knots in Sections
A1, A2, A.3 respectively.

A.1 Sequences for the 4; knot

In this section, in order to calculate the degree < 3 part of I (Mn(41)), we classify partic-
ular sequences of parameters which contribute to this part, by computer search.

We denote by U%™¢ a sequence of the form (29) of degree d, height h and length ¢,
where we define the degree of US"* to be the lowest degree of Jy, (U%™%). Tt is sufficient
to classify such sequences of degree < 3.

Degree 1: The sequence of the form UM% of degree 1 is given by
U =1(0,0,0,1,0,0,0),  Ju, (U = q—2¢°.

Degree 2: The sequences of the form U2%* of degree 2 are given by

U™t =(0,0,0,2,0,0,0), Jy, (U = ¢,
U’ =(0,0,0,1,0,0,1,0,0,0),  Juy, (U*") =¢q

Degree 3: The sequences of the form U2%* of degree 3 are given by

Ut =(0,0,0,3,0,0,0), Tu,( )=g¢
U =(0,0,0,1,0,0,2,0,0,0), T (UP07) = ¢,
U =(0,0,0,2,0,0,1,0,0,0), Ju, ( ) = ¢,
Uy =(0,0,0,1,0,0,1,0,0,1,0,0,0),  Ju, (UP*") = ¢,

A.2 Sequences for the 5, knot

In this section, in order to calculate the degree < 2 part of I (Mn(52)), we classify partic-
ular sequences of parameters which contribute to this part, by computer search.

We denote by V4" a sequence of the form (41) of degree d, height h and length ¢,
where we define the degree of V"¢ to be the lowest degree of Js,(V.4MY). Tt is sufficient
to classify such sequences of degree < 2.

Degree %: The sequences of the form V2R of degree % are given by
V1/2 b (0 O 0 _1?_1a _15_17*a _1)? J52(V1/2 12) q1/2 _3q3/2’
V1/2 1,2 = (0,0,0, 0,0,0, 1,1,%, 1), J52(V11/2’1’2) = q1/2 _ 3q3/2.

Degree 1:
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e Height 0: The sequences of the form V1%* of degree 1 and height 0 are given by

101

=(0,0,-1, 0,0,%, 0), I, ( )=—q—¢,

V%% =(0,0,0, 0,1,0, 0,0,%, 0), Js, (VH9?) = ¢,
V9% =(0,0,0, 0,0,—1, 1,0,0, 0,0,%, 0), Js, (VM9?) = ¢ — 3¢2,
V7% =(0,0,0, 0,0,0, 1,0,0, 0,0,%, 0), Js, (V0% = ¢ — 2¢2,
V1°3 (000 0,0,1, 1,0,0, 0,0, %, 0), Js, (V503 = ¢ — 4¢?,
Vo3 = (0, —1,-1, —1,-1,—1, 0,0,%, 0),  J5,(V;""?) = ¢ — 4¢>.

V532 =(0,0,0, 0,0,0, 2,2,%, 2), Js, (VM2?) = ¢ — 3¢2,
V3% =(0,0,0, 0,0,0, 1,1,1, 2,2,%, 2),  J;

e Height —2: The sequences of the form V.1=2* of degree 1 and height —2 are given
by

V22 = (0,0, -2,
1

) _25 _23 _27 _27 *, _2)5 J52 (‘/117_272) =q— 3q27
VT2 = (0,0, 1

0
) 07 ) _27 _1a _27 _2a _27 _2a *, _2)7 J52 (‘/117_273) =q— 3q2

Degree 2:

o Length < 2: The sequences of the form V2%¢ (£ = 1,2) of degree 2 and length < 2
are given by

V2% =(0,0,1, 0,0,%, 0), Js, (V2O

V202 (0,0,0, 0,2,0, 0,0,%, 0),  Js,(V,2*?)

7,
7.

e Length 3: The sequences of the form V293 of degree 2 and length 3 are given by

V29 =(0,0,0, 0,—1,—1, —1,—1,—1, 0,0,%, 0),

0,0,0, 0,0, 210000,*,0)
0,0,0, 0,0,—2, 2,0,0, 0,0,*, 0),
0,0,0, 0,0,—1, 2,0,0, 0,0,*, 0),
0,0,0, 0,0,0, 2,0,0, 0,0,*, 0),

= (

V203 (

=(

= (

= (
203 =(0,0,0, 0,0,1, 2,0,0, 0,0, 0),

(

= (0,

(0,

(0,

= (0,

203
203

203

V7203 0,0,0, 0,0,2, 2,0,0, 0,0,%, 0),

|/ -2, 0,-2,-2, —2,-2,-2, 0,0, %, 0),
V9203
Vig™® =

2,0,3
Vll

2 17717 ]-a 7]-a 0a05*7 0)7
17 ’ 17_17 1a _2 O 0)*7 0)
~1,0,—1,-1, —1,-1,0, 0,0, , 0).

) 7
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Their invariants are given by

—¢* if i=1,2,9,10,11,

q° otherwise.

e Length 4: The sequences of the form V2% of degree 2 and length 4 are given by

V2ot =(0,0,0, 0,0,—2, 1,—1,—1, —1,—1,—1, 0,0, %, 0),

0,0,0, 0,0,—1, 1,—1,—1, —1,—1,—1, 0,0, *, 0),
0,0,0, 0,0,0, 1,—1,—1, —1,—1,—1, 0,0,%, 0),
0,0,0, 0,0,0, 1,1,—1, 2,0,0, 0,0, *, 0),

0,0,0, 0,0,0, 1,1,0, 2,0,0, 0,0,%, 0),

0,0,0, 0,0,0, 1,1,1, 2,0,0, 0,0,%, 0),

0,0,0, 0,0,0, 1,2,0, 1,0,0, 0,0,%, 0),

0,0,0, 0,0,—1, 2,1,0, 1,0,0, 0,0, *, 0),

= (

204 (

=(

= (

= (

= (

=(

= (
1/9204 (0,0,0, 0,0,0, 2,1,0, 1,0,0, 0,0,%, 0),

(

(

= (0,

= (0,

(0,

(0,

= (0,

= (0,

204
204
204
204

204
Vo
204

b ) )

2,0,4
VlG
204

9 _17_17 170u07 0707*7 0)7
) _17_1»07 170703 ana*, 0)

Va0t =(0,0,0, 0,0,1, 2,1,0, 1,0,0, 0,0,*, 0),
vE%t =(0,0,0, 0,1,-1, 0,—1,—1, —1,—1,—1, 0,0, %, 0),
Vot —2,0,-2,-2, —2,—2,—2, —1,—1,—1, 0,0, %, 0),
2"4 1, 0,—1,-2, —=1,-2,—2, —2,-2,—2, 0,0, %, 0),
V12404 -1, 0,—1,—1, —=1,—1,—1, 0,1,0, 0,0, *, 0),
Va0t = —1, 0,—1,—1, —=1,—1,-2, 1,0,0, 0,0, %, 0),

-1, 0,—1,-1 1,

-1, 0,—1,—1

b ) )

Their invariants are given by

‘]52(1/204) = q2 for i=1,2,---,17.

e Length 5: The sequences of the form V295 of degree 2 and length 5 are given by

=(0,0,0, 0,0,—1, 1,0,—1, 0,—1,—1, —=1,—1,—1, 0,0, %, 0),
=(0,0,0, 0,0,—1, 1,0,0, 0,0,—1, 1,0,0, 0,0,%, 0),
=(0,0,0, 0,0,—1, 1,0,0, 0,0,0, 1,0,0, 0,0, *, 0),

= (0,0,0, 0,0,—1, 1,0,0, 0,0,1, 1,0,0, 0,0,%, 0),

V2% =(0,0,0, 0,0,0, 1,0,-1, 0,1, -1, —1,-1,—1, 0,0,%, 0),
= (0,0,0, 0,0,0, 1,0,0, 0,0,—1, 1,0,0, 0,0,%, 0),

=(0,0,0, 0,0,0, 1,0,0, 0,0,0, 1,0,0, 0,0,%, 0),

= (0,0,0, 0,0,0, 1,0,0, 0,0,1, 1,0,0, 0,0, %, 0),

= (0,0,0, 0,0,0, 1,1,0, 2,1,0, 1,0,0, 0,0, %, 0),
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V%% =(0,0,0, 0,0,0, 1,1,1, 2,1,0, 1,0,0, 0,0, , 0),
VZ%% =(0,0,0, 0,0,0, 1,1,2, 2,1,0, 1,0,0, 0,0, %, 0),
V3% =(0,0,0, 0,0,1, 1,0,—1, 0,—1,—1, —1,—1,—1, 0,0,%, 0),
V3% =(0,0,0, 0,0,1, 1,0,0, 0,0,—1, 1,0,0, 0,0,%, 0),
V12405 (0,0,0, 0,0,1, 1,0,0, 0,0,0, 1,0,0, 0,0, %, 0),
V%% =(0,0,0, 0,0,1, 1,0,0, 0,0,1, 1,0,0, 0,0, *, 0),
Va2 =(0,0,-1, 0,-1,-2, —=1,-2,-2, —2,-2,—2, —1,—1,—1, 0,0, %, 0),
V2% =(0,0,-1, 0,—1,—1, —1,—1,-2, 0,—1,—1, —1,—1,—1, 0,0,%, 0),
vy%® =(0,0,-1, 0,-1,-1, —1,—1,-1, 0,—1,-1, —1,-1,—1, 0,0,%, 0),
Vfg“ (0,0,—1, 0,—1,—-1, —1,—-1,—1, 0,0,—1, 1,0,0, 0,0, , 0),
V% =(0,0,-1, 0,—1,-1, —=1,—1,-1, 0,0,0, 1,0,0, 0,0,%, 0),
V22105 (0,0,—1, 0,—1,—1, —1,—1,—1, 0,0,1, 1,0,0, 0,0,, 0),
V3% =(0,0,—1, 0,—1,—1, —=1,—1,0, 0,—1,—1, —1,—1,—1, 0,0,%, 0).

Their invariants are given by

J52(V205) = q2 fOr 22172’ 722

Degree %:
e Height 1, length 2: 'The sequences of the form VAl
2 are given by

% of degree

V22 = (0,0,0, 0,0,—1, 1,1,%, 1),
V212 = (0,0,0, 0,0,1, 1,1,%, 1).

Their invariants are given by

Js,(VAP1E) = 32 fori=1,2.

7

e Height 1, length 3: The sequences of the form V;*/*"?

3 are given by

ofdegree
V2% = (0,0,0, 0,0,0, 1,2,1, 1,1,%, 1),
3/“3 =(0,0,0, 0,0,—1, 2,1,1, 1,1,%, 1),
V3/213 (0,0,0, 0,0,0, 2,1,1, 1,1,*, 1),
| (0 0,0, 0,0,1, 2,1,1, 1,1,%, 1),
= (0,

3/2,1,3 “1,-1

, —1,-1,-1, 1,1,%, 1).
Their invariants are given by

Js, (VA3 = 32 fori=1,2,--- 5.

(2
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e Height 1, length 4: The sequences of the form V32 o degree %, height 1, length

4 are given by

V24 = (0,0,0, 0,0,—1, 1,0,0, 0,0,0, 1,1,%, 1),

V214 = (0,0,0, 0,0,0, 1,0,0, 0,0,0, 1,1,%, 1),

V24 = (0,0,0, 0,0,0, 1,1,0, 2,1,1, 1,1,%, 1),

V3 =(0,0,0, 0,0,0, 1,1,1, 2,1,1, 1,1,%, 1),
( )
(
(

070707 070707 171a27 271717 1717*7 1 )

Their invariants are given by

Js, (VPN = 32 fori=1,2,--- 7.

7

3/2,—1,2
v/

e Height —1, length 2: The sequences of the form V; of degree %, height —1,

length 2 are given by

VY2712 2 (0,0,0, 0,—1, -1, —1,—1,%, —1),
V222 Z(0,0,-2, 0,—1, 1, —1,—1,%, —1).

Their invariants are given by

Js, (VAP = 3% fori=1,2.

V321

e Height —1, length 3: The sequences of the form V; % of degree %, height —1,

length 3 are given by

VY278 2 (0,0,0, 0,0,—-2, 1,—1,—1, —1,—1,%, —1),

= (

VY27 = (0,0,0, 0,0,—1, 1,—1,—1, —1,—1,%, —1),

V278 = (0,0,0, 0,0,0, 1,—1,—-1, —1,—1,%, —1),

VY2 = (0,0,0, 0,1,—-1, 0,—1,—-1, —1,—1,%, —1),
= (

0,0,—2, 0,—-2,-2, —2,—2,—2, —1,—1,*, —1).

7 )

3/2,—1,3
V5/

Their invariants are given by

Js, (VAP = 32 fori=1,2,--- 5.

)

V321,

e Height —1, length 4: The sequences of the form V; *of degree %, height —1,

length 4 are given by

V27 = (0,0,0, 0,0,—1, 1,0,—1, 0,—1,—1, —1,—1,%, —1),

) ) 7

‘/23/27_174 = (050707 07070a ]-aoa*]-v 07715717 -1,-1,% 71)5

7 ) )
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V2714 = (0,0,0, 0,0,1, 1,0,—1, 0,—1,—1, —1,—1,%, —1),
V43/2—174: 0,0,—1, 0,—1,-2, —1,-2,-2, —2, -2, -2 —1,—1,%, —1),
V53/2 2t =1(0,0,-1, 0,-1,—1, —=1,—1,-2, 0,—1,—1, —1,—1,%, —1),
%3/2 14 _ (0,0,-1, 0,—1,-1, =1,—-1,-1, 0,—1,—1, —1,—1,%, —1),
V73/2 ' =1(0,0,-1, 0,-1,-1, —1,—1,0, 0,—1,—1, —1,—1,%, —1),

Their invariants are given by

Js, (VAP = 32 fori=1,2,--- 7.

A.3 Sequences for the 6; knot

In this section, in order to calculate the degree < 2 part of I (Mn(61)), we classify partic-
ular sequences of parameters which contribute to this part, by computer search.

We denote by W& a sequence of the form (56) of degree d, height h and length ¢,

where we define the degree of W3¢ to be the lowest degree of Jg, (W), Tt is sufficient
to classify such sequences of degree < 2.

1/2,% %

Degree %: The sequences of the form W and their invariants which have the lowest

degree < 2 are given by
WA = (0,0,0,—1, —1,—1,=1),  Jo, (W27 01 = ¢1/2 — 23/,
w212 = (0,0,0,0, 0,170 0, 1,1,1),  Jo, (W,/31%) = ¢1/2 — 4¢3/2.
Degree 1:
e Height 0: The sequences of the form W1%* of degree 1, height 0 are given by

W%t =(0,0,0,-1,0,0,0), Jo, W) = —¢,
w2 = (0,0,0,0, 0,0,1,0, 0,0,0), Jo, (W02 = g — 4¢,
W21 02 —(0,0,0,0, 0,1,0,—1, 0,0,0),  Js, (Wy"?) =q—2¢2,
W, = (0,0,0,0, 0,1,0,0, 0,0,0), Jo, (W3*?) = ¢ — ¢2,
w, %% = (0,0,0,0, 0,1,0,1, 0,0,0), Jo, (W3 %) = g — 3¢,
w.%? = (0,0,0,0, 1,0,0,0, 0,0,0), Jo, W92 = g — 242

e Height —2: The sequence of the form W1 =2* of degree 1, height —2 is given by

Wh2h = (0,0,0, -2, —2,-2,-2), Js, (W} 21 = ¢ —24%

e Height 2: The sequences of the form W1%* of degree 1, height 2 are given by

w?? =(0,0,0,0, 0,2,0,0, 2,2,2), Jo, (W% = ¢ — 4¢2,
W% =(0,0,0,0, 0,1,0,0, 1,2,1,1, 2,2,2),  Js, (W>?) = ¢ — 4¢>.
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Degree 2:
e Length 1: The sequence of the form W2%! of degree2, length 1 is given by

w2t =(0,0,0,1,0,0,0), Js, (W2 = ¢

e Length 2: The sequences of the form W?2%2 of degree2, length 2 are given by

w2%? = (0,0,0,—1, 0,0,1,0, 0,0,0),
2” 0,0,0,0, 0,0,—1,-1, 0,0,0),

W3202 0,0,0,0, 0,0,2,0, 0,0,0),
202

= (
= (
(
=(0,0,0,0, 0,1,0,—2, 0,0,0),
W202 (0,0,0,0, 0,2,0,-2, 0,0,0),
w2 = (0,0,0,0, 0,2,0,—1, 0,0,0),
W?“ (0,0,0,0, 0,2,0,0, 0,0,0),
W™ = (0,0,0,0, 0,2,0,1, 0,0,0),
= (0,0,0,0, 0,2,0,2, 0,0,0),
= (0,0,0,0, 2,0,0,0, 0,0,0).

W2 0,2
2,0,2
WlO
Their invariants are given by

—¢* fori=1,24,

2

Ji VV202 =
o ) q otherwise.

e Length 3: The sequences of the form W20%3 of degree2, length 3 are given by

w2%? =(0,0,0,-1, —=1,—-1,-2,-2, —1,0,—1,—1, 0,0,0),
W§03 0,0,0,0, 0,0,1,0, 0,0,1,0, 0,0,0),

w2%% = (0,0,0,0, 0,1,0,-1, 0,0,—1, 1, 0,0,0),
W4203 0,0,0,0, 0,1,0,—1, 0,0,1,0, 0,0,0),
w2 = (0,0,0,0, 0,1,0,0, 0,0,—1,—1, 0,0,0),

2,0,3
W
203

= (
(
= (
(
(
= (0,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0),
= (0,0,0,0, 0,1,0,0, 1,1,2,0, 0,0,0),
W§°3 (0,0,0,0, 0,1,0,0, 1,2,1,—1, 0,0,0),
Wy =(0,0,0,0, 0,1,0,0, 1,2,1,0, 0,0,0),
w3 =(0,0,0,0, 0,1,0,0, 1,2,1,1, 0,0,0),
W™ =(0,0,0,0, 0,1,0,0, 2,1,1,0, 0,0,0),
w3™ =(0,0,0,0, 0,1,0,1, 0,0,—1,—1, 0,0
(0,0,0,0, 0,1,0,1, 0,0,1,0, 0,0,0),
= (0,0,0,0, 1,0,0,0, 0,0,1,0, 0,0,0),

,0);
W -

2,0,3
Wi
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2,0,3

Wig™
2,0,3

Wig”

2,0,3
Wi

= (0,0,0,0,
= (0,0,0,0,
= (0,0,0,0,

Their invariants are given by

Degree 3:
e Height —1, length 1:

length 1 are given by

Jo, (W07)

The sequences of the form Wi

Their invariants are given by

e Height —1, length 2: The sequences of the form Wi

length 2 are given by

W3/2’
W3/2 —-1,2

W3/2 —-1,2

W3/2 —-1,2

W/
Wi/

=(0,0,0,—1, —1,—1,-2,—2, —1,
=(0,0,0,—1, —1,
=(0,0,0,0, 0,0,1,—1, —1,—1,—1
w2712 = (0,0,0,0,
= (
= (
= (

Their invariants are given by

0,0,0,0,
0,0,0,0,
0,0,0,0,

170a0507 0717()’_17 O7O7O)a
1a0a0507 0717()’0’ 07070)7
1,0,0,0, 0,1,0,1, 0,0,0).

2 fori=1,2,---,17.

Il
L)

3/2,—

w275 = (0,0,0, -2, 71,71,71),
w2275 = (0,0,0,0, —1,—1,—1).
(]61(1/1/3/2 =g fori=1,2.

3/2,—

_]-7 Oa _17 _]-a _1, _1)3

)
07 1u 07 _27 _1a _17 _1)7
)

071a07_1a _1a_17_1 )
Oa1a0707 17_17_1)a
1,0,0,—1, —1,—1,—1).

Jo,(WET13) = 32 forj=1,2,... 7.

e Height 1, length 2: The sequences of the form Wi

2 are given by

3/2,1,2
3/2,1,2
3/271,2
3/2,1,2

3/2

3/2,1,2

=(0,0,0,0, 0,1,0,—1, 1,1,1),
= (0,0,0,0, 0,1,0,1, 1,1,1),
=(0,0,0,0, 0,2,0,—1, 1,1,1),
= (0,0,0,0, 0,2,0,0, 1,1,1),
=(0,0,0,0, 0,2,0,1, 1,1,1).

61

717 71)7

of degree

b of degree 2 height —1,

b2 of degree 2 height —1,

, height 1, length



Their invariants are given by

—¢*?  fori=1,2
J61(W3/2,1,2) — { q or 1 y 49

¢/ otherwise.

e Height 1, length 3: The sequences of the form W8

3 are given by

of degree , height 1, length
w253 —(0,0,0,0, 0,1,0,0, 1,1,2,1, 1,1,1
0,0,0,0, 0,1,0,0, 1,2,1,0, 1,1,1
0,0,0,0, 0,1,0,0, 1,2,1,1, 1,1,1

(

W3/213 (

=(
W3/213 (0,0,0,0, 0,1,0,0, 1,2,1,2, 1,1,1),

= (

(

3/213

3213 —(0,0,0,0, 0,1,0,0, 2,1,1,1, 1,1,1),

W3/213 0,0,0,0, 1,0,0,0, 0,1,0,0, 1,1,1).

Their invariants are given by

Jo, (WL = 32 for i =1,2,-- 6.

B Presentation of /(M,(K))

In this section, we review an ideal triangulation of a hyperbolic knot complement; for
details of this topic, see [20] for the 4; knot, and [21, 22, 23] for other hyperbolic knots.
Further, we consider the nth cyclic cover of this ideal triangulation, and we obtain a
presentation of [ (Mn(K )) Furthermore, by using the hyperbolic structure of the knot
complement, we modify the presentation of I(M,(K)) in such a way that the lowest
degree of each summand of the presentation is positive. This modified presentation is
used in Sections 4 and 5. We calculate such presentations for the 44, 55, 6; knots in
Sections B.1, B.2, B.3 respectively.

B.1 Presentation of I(M,(4;))

In this section, we review an ideal triangulation of the 4; knot complement; see [20] for
details of this topic. Further, we consider the nth cyclic cover of this ideal triangulation,
and obtain a presentation of I (M, (41)).

It is known [20] that the 4; knot complement can expressed as the union of the following
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two ideal tetrahedra.

Here, the 4 faces “A”, “B”, “C”, “D” are glued respectively, where the glay characters
are on the back side of tetrahedra. The labels of vertices of a tetrahedron are regarded
in CU {oco} = OH?, where H® denotes the hyperbolic 3-space. The boundary torus of
a tubular neighbourhood of the 4; knot is expressed as the union of 8 triangles “p”,
“q”, -+ “w”, which appear in neighbourhoods of the vertices of the ideal tetrahedra. A

fundamental domain of the torus is depicted as follows.

We consider the dual decomposition of the above ideal triangulation. Its 1-skelton is

depicted as follows.
A

N

Since the 2-cells of the dual decomposition are given by

A D
Al Ag Al A2
1
b A2 A
B2 8 LD c s 2B
A? Al ¢
Al A? Al A?
C T B T
A D
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the boundary cycles of the 2-cells are given by
C—-D, B - A.
Hence, the first homology of the 4; knot complement is presented by
H1(S® — Ku,) = kernel(spany{A, B,C, D} — span,{A', A*}) /(A= B, C = D).
By homotopy equivalence collapsing the edge A, we have that
H,(S® — Ky,) = spany{C,D}/(C=D), A=B=0.

We consider the infinite cyclic ocver of the torus in the infinite cyclic cover of the 4; knot
complement. We can choose a fundamental domain as the domain between two dotted
lines in the following figure.

© ®
bg b3 C
Here, we denote by Al and A? the lifts of A' and A? in this fundamental domain. The
deck transformation of the cyclic cover takes Aj and A7 to A}, and A7 . Further, we
obtain thin lines from dotted lines by pushing them to the direction from A} , to Aj.
We denote by b; and ¢, the lifts of b and ¢ in the domain between two thin lines. Further,
the deck transformation of the cyclic cover takes b, and ¢ to b1 and cx,q1. Hence, the
edges of Al and A? are labeled, as follows.

The contribution from these tetrahedra to I(M,(4;)) is
I(Cl+b2, 2b1, 202) ](bl +63, 2[)2, 262).
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The labels of other tetrahedra A}, and A7, ; in the cyclic cover are obtained by replacing

b; and ¢; with b;,, and ¢; 4. Hence, I(Mn(éll)) is presented by

I(M,(41)) = Y gt rentor i [(cotby, 2bg, 2¢1) I (bo+ca, 2b1, 261)

cp=0,

€1, Cn—1€7Z,

bo, bn—1€7Z
X [(Cl —|—b2, 2b1, 202) [(bl —|—Cg, 2b2, 262)
N

X [(Cnfl +bn7 2bn71> an) I(bnfl +Cn+17 2bn7 QCn)v

where we regard the subscripts of b; and ¢; as modulo n.
The hyperbolicity equations are given by

(-o-y _ _, _ (-2-y
z )

This is rewritten as
T = v, ?—r+1 = 0.

The hyperbolic structure of the 4; knot complement is given by the solution

r =y =V
Hence, we have that
1 1 1 1 1
—Argz = —A — Are(l—-) = =
o e = g oAy = oA (l-0) = ¢
1 1 1 1 1 1
—A = —A = —Arg(l—-) = —.
D g(l=) =5

We put

As mentioned in Section 2, we put
T (b b, bs) = PRI b, L),

Then, (81) is rewritten as

I(M,(41)) = Y Ju(cotbi, 2o, 2e1) Ju, (bo+c2, 201, 2c1)

co=0,
Cl, ,Cn—1€ZL,
by, bn—1€Z
X j41 (C1 +bg, 2b1, 262) j41(b1 +C3, 252, 262)
NEEE

X j41 (Cn—1+bn7 2bn—1a 2071) j41 (bn—l +Cn+17 2bn7 2Cn)7
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where we regard the subscripts of b; and ¢; as modulo n. Further, by putting ¢, = a
and by = agy1, the above formula is rewritten as

I(Mn(41)) = Z j41 (ag+a3, 2(11, 2&2) j41 (a1+a4, 2(12, 2(13)

ap=0,
ai, - ,an—1€Z

X j41 ((12+6L57 2&3, 2@4) j41 (a3+a6, 2@47 2&5)
YRR

A

X j41 (2n—2+4a2nt1, 202, -1, 2a2,,) Ju, (2p—14 Q2pny2, 2000, 2a2,41), (82)

where we regard the subscript of a; as modulo 2n.

We use the formula (82) in Sections 4.1 and 5.1.

B.2 Presentation of I(M,(5,))

In this section, we review an ideal triangulation of the 55 knot complement; see [21, 22, 23]
for details of this topic. Further, we consider the nth cyclic cover of this ideal triangulation,
and obtain a presentation of I (M, (5,)).

We review an ideal triangulation of the 55 knot complement. We consider the following
1-tangle diagram whose closure is the 55 knot.

The edges of the diagram are labeled by parameters, which give the hyperbolic structure of
the 55 knot complement later. We consider 4 tetrahedra at each crossing of the diagram.
We glue them, and collapse dark gray tetrahedra near the end points of the 1-tangle
diagram, and collapse dark gray tetrahedra adjacent to the unbounded regions the 1-
tangle diagram, in the way shown in [21, 22, 23]. Then, we obtain an ideal triangulation
of the 55 knot complement. Further, we cancel two light gray tetrahedra by the 0-2
Pachner move. Then, we obtain the ideal triangulation of the 55 knot complement, which

66



consists of the following ideal three tetrahedra.

Similarly as in Section B.1, the boundary torus of a tubular neighbourhood of the 55 knot
is expressed as the union of 12 triangles, which appear in neighbourhoods of the vertices
of the ideal tetrahedra. A fundamental domain of the torus is depicted as follows.

VYT @ C c ¢ C a X b
We consider the dual decomposition of the above ideal triangulation. Its 1-skelton is

depicted as follows.
X
B TN
'
A?’

Since the 2-cells of the dual decomposition are given by

E
- B
N F B
Al A2
2 A A’
X3 Y C- o8 1-C
A2 A?
A?’ Al
Al
F T .
E
the boundary cycles of the 2-cells are given by
B+C+F, B-F+X-Y, —-B—-2C+FE—F.
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Hence, the first homology of the 55 knot complement is presented by

kernel (spang{ B, C, E, F, X,Y } — spang {A!, A% A%})
(B+C+F =0, B-F+X-Y =0, -B—2C+E—-F =0)

H(S® - K;,) &

By homotopy equivalence collapsing the edges B and C, we have that
H,(S? — Ks,) = spany{X,Y}/(X =Y), B=C=E=F=0.

We consider the infinite cyclic ocver of the torus in the infinite cyclic cover of the 55 knot
complement. We can choose a fundamental domain as the domain between two dotted
lines in the following figure.

bs Y as

0
The contribution from these tetrahedra to I(M,(52)) is

I(ag+cy, c1+bo, as+by) [(bi+bs, as+cy, a1+as) I(ay+c1, c1+b1, as+by).

The labels of other tetrahedra A}, A7,, and A}, in the cyclic cover are obtained by
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replacing a;, b; and ¢; with a;.g, by and ¢; 1. Hence, (Mn(52)) is presented by

I(M,(52)) =
Z qa0+“‘+an—l+b0+"‘+bn—100+“'+cn—1
a0=0, al,-~-,an_1EZ

bOv"' 1bn71€Z
€Oy sCn—1€E7Z

X I(ag+co, co+bo, a1+b1) I(az+co, co+b1,a1+bg) I(bo+b1, a1+co, ap+as)
X I(ay+cq1, c1+b1, aa+bo) I(ag+c1, c1+ba, ag+by) I(by+by, az+cq,a1+as)
N
X I(ap—1+¢n_1,Ch1+bn_1,a0,+by) I(ani1+Cn1,Cn1+bp, an+b,_1)
X I(bp—1+by, an+cn1, Qp_1+ani1), (83)

where we regard the subscripts of a;, b;, ¢; as modulo n.
The hyperbolicity equations are given by

(1—:@(1—&):1—%, (1—%)(1—1):1—y.

They are rewritten

Further, they are rewritten

P2t 3r—1 =0, y=-—
1—2z
Putting ' = y/x, we have that
1 1
y/: ) :1__7 1__::U7
1—=z 1—vy x y

noting that we can replace the labels z and y of Al with 1 and ¢. The hyperbolic structure
of the 55 knot complement is given by the solution

x = 0.7849201454..... + /=1 1.3071412786..... .

Then, we have that

1 1 1
ﬁArgx = %Arg (1—;) = 0.1639326..... ,

1 1

—A = —Argy = 0.2240448.....

o Pl—x  2p oY ’

L ar (1 1) - La = 0.1120224
o g o gl—y = 0.1120224.....

As approximations of these values, we put

a = 0164, B = 0224, ~ = 0.112.
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As mentioned in Section 2, we put
Jsy (U1, o, by) = g PR I(0) 0y, 0y).
Then, (83) is rewritten as

I[(M,(52)) =
Z j52 (ao+Co, Co+b0, aq +b1) j52 (Clg"i‘Co, Co+b1, aq +b0) j52(b0+b1, aq +Co, a0+a2)

a0:0, al,---,an,1€Z
bo,+ ,bn—1€Z
€0, Cn—1€7Z
X j52(a1+01, c1+b1, as+by) j52(a3+01> c1+by, az+b1) j52(b1 +by, ag+cy, a1 +a3)
N
X j52 (an—l +Cn—17 Cp—1 +bn—17 an+bn) j52 (an+1+cn—17 Cp—1 +bn7 an+bn—1)

X j52 (bn—l +bn7 an_’_cn—l) Ap—1 +an+1)a (84>

where we regard the subscripts of a;, b;, ¢; as modulo n.

We use the formula (84) in Sections 4.2 and 5.2.

B.3 Presentation of [(Mn(61))

In this section, we review an ideal triangulation of the 6; knot complement; see [21, 22, 23]
for details of this topic. Further, we consider the nth cyclic cover of this ideal triangulation,
and obtain a presentation of I(M,(6,)).

We review an ideal triangulation of the 6; knot complement. We consider the following
1-tangle diagram whose closure is the 6; knot.




In a similar way as in Section B.2, we obtain the ideal triangulation of the 6; knot
complement, which consists of the following ideal four tetrahedra.

Similarly as in Section B.1, the boundary torus of a tubular neighborhood of the 6; knot
is expressed as the union of 16 triangles, which appear in neighborhoods of the vertices
of the ideal tetrahedra. A fundamental domain of the torus is depicted as follows.

a

We consider the dual decomposition of the above ideal triangulation. Its 1-skelton is
depicted as follows.

AQ



Since the 2-cells of the dual decomposition are given by

C

the boundary cycles of the 2-cells are given by
—-B+C+D+F-X+Y, —-A+E-X+Y, A-D+X-Y, —-A-B-D+2F,
Hence, the first homology of the 6; knot complement is presented by

Hy(SP = Ky)) = kernel(spanZ{A,B,C’,D,E, F, X, Y} —>spanZ{A1,A2,A37A4})
1 o (BLCTDIF-XAY =0 “AYE—X+Y =0, ) |

A-D4+X-Y =0, -A-B-D+2E =0

By homotopy equivalence collapsing the edges A, E and F', we have that
H,(S? — Kg,) = spang{X,Y}/(X =Y), A=B=C=D=E=F=0.

We consider the infinite cyclic cover of the torus in the infinite cyclic cover of the 6; knot
complement. We can choose a fundamental domain as the domain between two dotted
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lines in the following figure.

as D Co X ;)2

Hence, in a similar way as in Section B.1, the edges of Al, A2 A3 Al are labeled, as
follows.

The contribution from these tetrahedra to I(M,(6;)) is

I(d1+b1, CL2+61, a1+b2) I(a2+d1, d1—|—bg, b1+01)
X I(2aq, by+ca, 2b2) I(a1+dy, as+by, di+c).
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The labels of other tetrahedra A;_,, A7 ,, A}, and A, in the cyclic cover are
obtained by replacing a;, b;, ¢; and d; with a; , bi1x, civr and d; k. Hence, ](Mn(61)) is
presented by

I(Mn(61)) — Z grottan—1tbot o tba ottt ten1tdot e tdn

ap=0, a1, ,an—1€Z
bo, - ,bp—1€Z
co,t Cn—1€Z
do, \dn—1€Z
X I(a0+d0, a1+bo, d0+00) [(d0+b0, aq +Co, a0+bl)
X I((l1+d0, d0+b1, b0+60) I(2a1, b0—|—01, 2b1>
X I(a1+d1, a2+b1, dl +Cl) [(dl +b1, a2+01, a1+bg)

X I(ag+dy,di+by, by+c1) 1(2ag, by +ca, 2by)

N
X I(an—l +dn—17 an+bn—1a dn—l +Cn—1) [(dn—l +bn—17 an+cn—l7 Ap—1 +bn)
X I<an+dn—17 dn—1+bnv bn—l +Cn—1) ](Q(In, bn—1+cn7 2bn)7 (85)

where we regard the subscripts of a;, b;, ¢;, d; as modulo n.
The hyperbolicity equations are given by

x 1

1—;2 = (1-2)(1--),
x 1 T

1-2)0- 1) = a-m)-2),
T 1

(1_93_2)(1_?3) = 1—u

They are rewritten
Ty = 22—z 41, x3:x2+1—ﬁ, x3+1—ﬁ20.
X )

Further, they are rewritten

23 —222+3zx—1
" .

2t =323 4622 —5x+2 =0, =2’ —z+1, z3=

The hyperbolic structure of the 6; knot complement is given by the solution
r = 0.8951233822..... + v/—1 1.5524918200..... .

Putting x}, = zo/x and x% = x3/x9, we have that

1 1 1 1
—Argz = 0.16675... , —Arg = 0.23926... , —Arg (1 — —) = 0.09397... ,
27 2 2 T

1—=x
iArgx’ = 0.22434... iArg L0145 iArg(1 — i) = 0.13036...
27 2 T 2w 1— ) T2 ) 7
iArgq;’ = 0.07250... iArg Lo 0.03639... iArg (1- l) = 0.39110... .
27 3 " 2w 1 —af " 2w xh
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As approximations of these values, we put

a1 =0.166, B =024, v =0.094,
ap = 0224, By =0.146, 7, =0.13,
a3 =0.074, B3 =0.036,  ~;=0.39.

As mentioned in Section 2, we put
j61,1 (617 627 63) = qa1€1+,31€2+’}/143](£17 627 £3>7

j61,2(€17 627 63) = qa2£1+,82£2+72€3[(€17 627 €3>7
j61,3(€17 U, lz) = qosttPstetstsg (g, 1) 0s).

Then, (85) is rewritten as

I(Mn(Gl)) = Z j6173(a0+d0, a1+bo, d0+00) jﬁhl(do—i‘bo, a1+00, a0+b1)
ap=0, a1, ,an—1€Z
bOv"'vbn—IEZ
Co,t Cn—1€Z
do, - \dn—1€Z

X j61,2(a1+d0, d0+bl, b0+C0) jﬁl’l (2&1, b0+01, 2b1>
X Joya(ar+dy, ag+by, di+cy) j61,1(d1+b1>a2+017a1+b2)

X j61,2(a2+d1,d1—|—b2,b1+01) j6171(2(12, b1+02,2b2)
VR

X j61,3(an—1 +dn—17 an+bn—1a dn—1+cn—1) j61,1(dn—1+bn—17 an+cn—17 Ap—1 +bn)
X j61,2(an+dn—la dn—l +bn> bn—l +Cn—l) j61,1(2an7 bn—l +Cna 2bn)7 (86>

where we regard the subscripts of a;, b;, ¢;, d; as modulo n.
We use the formula (86) in Sections 4.3 and 5.3.
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