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Abstract 11 

 For the nuclear criticality safety of a fuel solution, it is important to identify the maximum 12 

positive reactivity induced by the upper surface sloshing motion. Deterministic methods for 13 

obtaining optimum surface geometry have been previously developed. This study proposes a 14 

Monte Carlo perturbation method for this purpose. Surface importance (SI) is defined as a small 15 

reactivity added by an upward lifting of a point on the upper surface. The reactivity is obtained 16 

using the correlated sampling method. The optimum geometry is attained by iteratively changing 17 

the surface geometry such that the SI distribution is eventually flattened throughout the upper 18 

surface. Examples of optimum surface geometries are presented for the bare and water-reflected 19 

fuel solutions. 20 

 21 
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 23 

1. Introduction 24 

 Nuclear criticality safety must be ensured during all types of fissile material operation under 25 

normal and credible abnormal conditions. If the criticality safety of the fuel solution contained in 26 

a vessel is controlled by the fuel solution height, the upper surface deformation may lead to an 27 

increase in keff. Deformation is usually induced by an external force such as a seismic force. As it 28 

is difficult to identify the surface geometry during the sloshing motion of the fuel, the most 29 

conservative option in terms of nuclear criticality safety is to identify the optimum surface 30 

geometry that maximizes the keff of the fuel. 31 
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In some nuclear critical assemblies, such as the static experiment critical facility (STACY) 1 

(Yamamoto et al., 2002) and tank-type critical assembly (TCA) (Tsuruta et al., 1978), the reactivity 2 

is controlled by the height of the fuel solution or moderator. For such a critical assembly, the 3 

reactivity induced by sloshing motion is more problematic because the critical assembly is 4 

operated in a critical or slightly supercritical state. The sloshing motion may cause prompt 5 

criticality before an emergency shutdown. The development of a method for identifying the 6 

optimum surface geometry is desirable to ensure the criticality safety of fissile materials or the 7 

safe operation of critical assemblies. 8 

 Previous studies (Yamamoto and Basoglu, 1995; Yamamoto 1996) for obtaining an optimum 9 

surface geometry have already been performed based on boundary perturbation theory (Larsen and 10 

Pomraning, 1981; Rahnema, 1984). The boundary importance (BI) was defined using forward and 11 

adjoint fluxes on the outer boundary. The optimal surface geometry can be attained by iteratively 12 

changing the surface geometry so that the BI distribution eventually becomes flat on the surface. 13 

Previous studies by Yamamoto and Basoglu (1995) and Yamamoto (1996), were based on 14 

diffusion theory and transport theory, respectively, and they both used two-dimensional 15 

deterministic solvers. Meanwhile, the Monte Carlo method, which is a standard solver for nuclear 16 

criticality safety analyses, has not yet been applied to obtain optimum surface geometry. The 17 

advantage of introducing the Monte Carlo method is its flexibility in geometry description. The 18 

flexibility of the Monte Carlo method makes it suitable for searching for an optimal surface 19 

geometry because it generally has a three-dimensional shape. The objective of this study is to 20 

demonstrate the applicability of the Monte Carlo method for this purpose. 21 

 The remainder of this paper is structured as follows. In Section 2, the fundamental concept of 22 

an optimal surface geometry is revisited, and a Monte Carlo method for optimal surface geometry 23 

is proposed. In Section 3, applications of the proposed method are described. Finally, Section 4 24 

presents the conclusions of the study. 25 

 26 

2. Method for optimum surface geometry 27 

2.1 Surface importance 28 

 Optimum fuel concentration distribution of a fuel solution is attained by flattening the “fuel 29 
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importance” distribution throughout the entire fuel region (Van Dam and De Leege, 1987; Hirano 1 

et al., 1991; Greenspan et al., 1999). Fuel importance is defined as the reactivity added by an 2 

infinitesimal increase in the fuel concentration at a certain position. If the fuel importance 3 

distribution is not flattened, moving some fuel from a position of lower fuel importance to a 4 

position of higher fuel importance, leaving the total amount of fuel unchanged, causes the 5 

reactivity to increase. Repeating this procedure several times eventually results in a uniform fuel 6 

importance distribution while the reactivity continues to increase. The reactivity of the fuel 7 

solution, where the fuel importance is completely uniform, does not increase further by changing 8 

the fuel concentration distribution, which implies that the reactivity is maximized. 9 

 The optimum surface geometry of a fuel solution can be determined by analogy with the 10 

optimum fuel concentration distribution. In this study, we deal with a limited situation in which a 11 

fuel solution is contained in a vessel, and only the upper surface of the fuel solution can be 12 

deformed. Similar to fuel importance, surface importance (SI) is defined as the reactivity caused 13 

by an infinitesimal addition of fuel at a position on the surface. The relative surface importance 14 

distribution (𝑆𝐼(𝒓𝑠)) was derived from first-order boundary perturbation theory (Larsen and 15 

Pomraning, 1981; Yamamoto 1996): 16 

𝑆𝐼(𝒓𝑠) = ∫ 𝑑𝐸 ∫ 𝑑𝛀
𝒏∙𝛀<0

𝜓(𝒓𝑠, 𝐸, 𝛀) 17 

× ∫ 𝑑𝐸′ ∫ 𝑑𝛀′
𝒏∙𝛀′>0

(Σ𝑠(𝒓𝑠, 𝐸′ → 𝐸, 𝛀′ → 𝛀) +
𝜒(𝐸)

4𝜋𝑘𝑒𝑓𝑓
𝜈Σf(𝒓𝑠, 𝐸′)) 𝜙(𝒓𝑠, 𝐸′, 𝛀′),   (1) 18 

where 𝒓𝑠 is the position vector on the outer surface, 𝐸 is the energy, 𝛀 is the direction, 𝒏 is 19 

the outer unit vector normal to the surface, 𝜓  is the adjoint neutron flux, 𝜙  is the forward 20 

neutron flux, Σ𝑠  is the scattering cross-section, 𝜒(𝐸) is the fission spectrum, and 𝜈Σf is the 21 

production cross-section. Based on Eq. (1), SI can be easily calculated if a neutron transport 22 

calculation code that can handle an arbitrary geometry is available, as presented in (Yamamoto, 23 

1996). 24 

 25 

2.2 Monte Carlo method for surface importance 26 

If the continuous energy Monte Carlo method is used for calculating SI, it is not 27 
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straightforward to perform because of the difficulty in calculating the adjoint neutron flux. 1 

Recently, Monte Carlo methods have been developed to calculate the sensitivities of keff to system 2 

dimensions or reactivity caused by geometry changes (Burke and Kiedrowski, 2018; Yamamoto 3 

and Sakamoto, 2018; Li et al., 2019; Shi et al., 2020; Yamamoto and Sakamoto, 2021a). The 4 

methodologies for geometry changes in previous studies can be utilized for this study. In this study, 5 

we chose the correlated sampling method (CS) for calculating SI. CS has already been applied to 6 

perturbation calculations of geometry changes in fixed-source problems and k-eigenvalue 7 

problems (Yamamoto and Sakamoto, 2018; Yamamoto and Sakamoto, 2021a; Yamamoto and 8 

Sakamoto, 2021b). 9 

The upper surface geometry was approximated using a polyhedron, as shown in Fig. 1, to 10 

calculate the optimum surface geometry. If a fuel solution is contained in a cylindrical vessel, the 11 

surface is approximated by a polyhedron composed of side surfaces of concentric horizontally 12 

truncated cones, owing to the symmetry of the optimum surface with respect to the central axis of 13 

the cylinder. The method proposed in this study is not limited to azimuthally symmetric geometries, 14 

but can be applied to any type of geometry that can be handled by the Monte Carlo code. 15 

Furthermore, the method can be applied to a concave geometry (reentrant surface) as far as the 16 

Monte Carlo code can handle it. As shown in (Yamamoto and Sakamoto, 2021), CS can provide 17 

an accurate reactivity caused by an interface displacement. Hence, the proposed method is capable 18 

of obtaining an optimum interface geometry as well as an optimum external outer surface geometry.  19 

The SI was estimated at every vertex on the upper surface (red dots in Fig. 1). The SI at a 20 

vertex is approximated by the reactivity caused by a geometry perturbation, where the vertex is 21 

slightly lifted vertically upward, as shown in Fig. 2. The volume increase caused by the geometry 22 

perturbation must be constant for all vertices. Therefore, the increase in the vertex vertical position 23 

is determined such that the volume increase due to the geometry change becomes constant at every 24 

vertex. The accuracy involved in being approximated by a polyhedron can be enhanced with an 25 

increase in the number of vertices and a decrease in the volume change for the geometry 26 

perturbation. 27 

 28 
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 1 

Fig. 1 Approximated cylindrical geometry composed of concentric cones 2 

 3 

 4 

Fig. 2 Geometry perturbation for surface importance calculation 5 

 6 

2.3 Correlated sampling method for geometry change 7 

According to previous studies (Yamamoto and Sakamoto, 2018; 2021b), CS can provide an 8 

accurate reactivity caused by a geometry perturbation that is sufficiently small to suppress the 9 
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unbounded variance that occurs in CS for a large perturbation (Rief, 1986). Unlike other Monte 1 

Carlo perturbation methods, CS can be easily implemented. In CS, two histories (unperturbed and 2 

perturbed histories) are tracked simultaneously. The perturbed history is forced to follow the 3 

unperturbed history along the same tracks in phase space. When the two histories cross the surface 4 

that faces the perturbed geometry, the unperturbed history is terminated at the surface, whereas the 5 

perturbed history is tracked beyond the surface. A comparison between the unperturbed and 6 

perturbed histories is presented in Fig. 3. The reactivity due to geometry perturbation is caused by 7 

the perturbed history that leaves the unperturbed history behind. Therefore, the wider the 8 

unperturbed surface facing the perturbed geometry, the better the statistics of the Monte Carlo 9 

calculation. However, the perturbed geometry should be limited to some extent because a larger 10 

perturbed geometry would deteriorate the representativeness of the locality for the SI. If the 11 

collision estimator is used for k-eigenvalue calculation, the change in keff in one cycle is calculated 12 

as: 13 

∆𝑘𝑒𝑓𝑓
𝑁𝑃 =

1

𝑁
∑(𝑤𝑖,𝑝 − 𝑤𝑖,𝑢)

𝜈Σ𝑓

Σ𝑡
𝑖

,                                                     (2) 14 

where 𝑤𝑖,𝑝 and 𝑤𝑖,𝑢 are the particle weights of the perturbed and unperturbed histories at the ith 15 

collision in the cycle, respectively. The summation is carried out at every collision in the cycle. N 16 

is the sum of the starting particle’s weight in the cycle. Because 𝑤𝑖,𝑝 is equal to 𝑤𝑖,𝑢 until the 17 

unperturbed history terminates at the surface facing the perturbed geometry, Eq. (2) is expressed 18 

equivalently as follows: 19 

∆𝑘𝑒𝑓𝑓
𝑁𝑃 =

1

𝑁
∑ 𝑤𝑖,𝑝

𝜈Σ𝑓

Σ𝑡
𝑖>𝑖𝑝

,                                                          (3) 20 

where 𝑖𝑝 denotes the last collision of the unperturbed history before termination, as shown in Fig. 21 

3. 22 
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 1 

Fig. 3 Unperturbed and perturbed histories in correlated sampling method 2 

 3 

This geometric change leads to a perturbation in the fission source distribution. Eq. (2) does 4 

not account for fission source perturbation. Similar to many other Monte Carlo perturbation 5 

methods, perturbation of the fission source distribution needs to be considered (Nakagawa and 6 

Asaoka, 1978; Nagaya and Mori, 2011; Griesheimer and Goter, 2015; Kim et al., 2018; 7 

Griesheimer and Gibson, 2019; Tuya and Nagaya, 2022). This study adopted the method 8 

developed by Nagaya and Mori (2005) for fission source perturbations. In this method, the 9 

perturbed fission source effect is propagated from one cycle to the next until the effect converges 10 

to the equilibrium state. At each fission source site, the ratio of the fission source weight of the 11 

perturbed history to the weight of the unperturbed history is assigned to the fission source that is 12 

used for the next cycle calculation. In the next cycle, the ratio is updated at the fission source site 13 

and the new ratio is assigned to the progeny of the fission source in the previous cycle. This 14 

propagation cycle for fission source perturbation is repeated until the ratio fully converges. Ten 15 

propagation cycles are known to be adequate. The algorithm for fission source perturbation 16 

estimation is involved and it is omitted in this paper. For more details on the algorithm, refer to 17 

(Nagaya and Mori, 2005). 18 

The Monte Carlo calculation with the CS perturbation calculation can be performed only once 19 

for all vertices where the SI needs to be estimated. However, a relatively high data storage capacity 20 

is required to estimate the fission source perturbation effect. The amount of data to be stored is the 21 
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product of the number of histories per cycle, the number of propagation cycles (approximately ten 1 

cycles), and the number of vertices. Monte Carlo algorithms such as the Wielandt method and the 2 

superhistory method would be available to reduce the memory consumption at the expense of 3 

increased computation time (Choi and Shim, 2016; Yamamoto, 2018; Shi et al., 2020). 4 

 5 

2.4 Convergence towards optimum surface geometry 6 

 This section presents a method for obtaining an optimum surface geometry using an SI 7 

distribution calculated using the CS. An example of optimum surface geometry is shown here for 8 

a fuel solution contained in a cylindrical vessel. We started with an upright cylindrical geometry 9 

with a horizontally flat upper surface. The entire geometry of the fuel solution was divided into a 10 

cylinder (for the innermost region) and several concentric annuli, as shown in Fig. 4. Owing to the 11 

symmetry of the cylindrical geometry, it was assumed that the upper surface of the innermost 12 

cylinder was always horizontally flat even in the optimum surface geometry. Geometry 13 

perturbations to the innermost and outermost vertices are added, as shown in Figs. 5 and 6, 14 

respectively. A perturbation to the remaining vertex was added, as shown in Fig. 7. As stated in 15 

Section 2.2, the volume increase caused by the geometry perturbation must be constant for every 16 

vertex. The reactivity of the perturbation to each vertex was calculated using the CS. Using the 17 

reactivity at each vertex, the new vertical position of the vertex for the next calculation is 18 

determined as follows: 19 

ℎ𝑖
′ = ℎ𝑖 + 𝐶(𝑆𝐼𝑖 − 𝑆𝐼𝑖),                                                              (4) 20 

where ℎ𝑖  and ℎ𝑖
′  are the vertical positions at the ith vertex before and after the iteration, 21 

respectively; C is an arbitrary positive constant; 𝑆𝐼𝑖 is SI at the ith vertex; 𝑆𝐼𝑖 is the arithmetic 22 

mean of 𝑆𝐼𝑖. The operation by Eq. (4) lifts vertices whose SI are higher than the average, whereas 23 

it depresses vertices whose SI are smaller than the average. Because the volume of the fuel solution 24 

determined by ℎ𝑖
′  deviates from the initial volume, ℎ𝑖

′  is adjusted such that the volume is 25 

conserved after the iteration, as follows: 26 

ℎ𝑖
′′ =  ℎ𝑖

′ ∙
𝑉0

𝑉′
 ,                                                                     (5) 27 

where 𝑉0 is the initial volume of the fuel solution, 𝑉′ is the volume determined by ℎ𝑖
′, ℎ𝑖

′′ is 28 
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the adjusted volume to be used for the next iteration. 1 

 2 

Fig. 4 Initial state of fuel solution for optimum geometry 3 

 4 

Fig. 5 Perturbation to the innermost vertex 5 

 6 

 7 

Fig. 6 Perturbation to the outermost vertex 8 

 9 

 10 

Fig. 7 Perturbation to the remaining vertices 11 

 12 

 This procedure was repeated until the SI distribution was sufficiently flat. As an index of the 13 

flatness of the SI, the convergence index is defined as follows: 14 
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𝐶𝐼 = √∑ (
𝑆𝐼𝑖

𝑆𝐼𝑖

− 1)

2𝑁

𝑖=1

  ,                                                        (6) 1 

where N denotes the total number of vertices. This iteration was repeated until CI fell below a 2 

certain value. 3 

In summary, the optimum surface geometry is obtained by the following procedure. 4 

(1) Set up vertices on the outer surface of the initial geometry. 5 

(2) Calulate 𝑆𝐼𝑖  for the ith vertex by slightly lifting the vertical position of the vertex. This 6 

calculation is performed individually for every vertex on the surface. 7 

(3) After 𝑆𝐼𝑖 is obtained for all vertices, the vertical position of each vertex is updated according 8 

to Eq. (4). 9 

(4) Using Eq. (5), the vertical position of each vertex is adjusted in order to conserve the volume 10 

of the fuel solution. 11 

(5) Repeat steps (2) through (4) until the convergence index CI, defined by Eq. (6), is below a 12 

prescribed value. 13 

 The optimum surface geometry of the fuel solution in a cylindrical vessel is typically 14 

illustrated in Fig. 8 (Yamamoto and Basoglu, 1995). However, if a fuel solution has a horizontally 15 

long shape, the SI cannot be flattened, even if the height of the outermost vertex is zero, as shown 16 

in Fig. 9(a). The optimum geometry of such a shallow fuel solution eventually converges towards 17 

a spherical geometry, as shown in Fig. 9(b). However, the Monte Carlo code that the authors 18 

developed for this study is not designed to converge to a sphere as the optimum geometry. If one 19 

of ℎ𝑖
′, s becomes below zero, the code terminates the iteration process. To achieve convergence 20 

to a sphere as the optimum geometry, it is necessary to program a Monte Carlo code with that 21 

consideration. This study focuses on a situation in which an optimum surface geometry is given, 22 

as shown in Fig. 8, and a shallow fuel solution, where the optimum geometry is ultimately given 23 

by spherical geometry, is excluded. 24 

 25 
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 1 

Fig. 8 Typical optimum geometry of bare cylindrical fuel solution 2 

 3 
Fig. 9 Optimum geometry of shallow fuel solution 4 

 5 

3. Optimum surface geometry of cylindrical fuel solution 6 

3.1 Verification of correlated sampling method 7 

 Before presenting an example of optimum surface geometry, the verification of the CS method 8 

is presented for geometry perturbation. All calculations in this study were performed using a 9 

cylindrical geometry. The fuel was 9.97 wt.%-enriched uranyl nitrate solution. The uranium 10 

concentration was 253.6 g/L, and the acidity was 2.24 mol/L. The calculations were performed 11 

using an in-house multigroup Monte Carlo solver. Three energy group constants for the fuel 12 

solution were prepared using the SRAC code system (Okumura et al., 2007). Anisotropic 13 

scattering was considered up to the P1 order. The group constants of the fuel solution are presented 14 

in Table 1. The verification calculations were performed for the geometry shown in Fig. 10. 15 
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Table 1 Three-group constants of solution fuel 1 
 2 

 
1st group 

(10 MeV∼235 keV) 

2nd group 

(235 keV∼0.993 eV) 

3rd group 

(0.993 eV∼) 

t  (cm−1) 2.8799E-1* 1.19352 2.48124 

c  (cm−1) 5.6022E-4 5.9008E-3 2.4670E-2 

𝜈Σ𝑓 (cm−1) 6.6739E-4 2.5205E-3 6.9313E-2 

𝜒 fission spectrum 0.957934 0.042066 ― 

ggs 0  (cm−1)** 2.0206E-1 1.1058 2.4277 

ggs 1  (cm−1) *** 1.5785E-1 6.9876E-1 9.5817E-1 

10 ggs  (cm−1) ** 8.5095E-2 8.0729E-2 ― 

11 ggs  (cm−1) *** 2.7175E-2 2.9489E-2 ― 

*Read as 2.8799×10-1, **P0 component, ***P1 component 3 

 4 

 5 

Fig. 10 Perturbed and unperturbed geometries for verification calculation 6 

 7 

 The reference solution was obtained using the difference in keff between two independent 8 

Monte Carlo calculations for the perturbed and unperturbed geometries. The calculations were 9 

performed with 200,000 histories per cycle, 30 inactive cycles, and 8,000 active cycles. The 10 

number of propagation cycles for fission source perturbation was 12. The results of the CS agreed 11 

with the reference within the statistical uncertainties, as shown in Table 2. In this numerical 12 

example, the fission source perturbation effect was relatively large, which accounted for more than 13 

half of the keff change without fission source perturbation.   14 
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 1 

Table 2 keff changes due to the surface perturbation for verification 2 

Correlated sampling method 

(pcm) 

Δ𝑘𝑒𝑓𝑓
𝑁𝑃 b 1051.4 ± 0.4a 

Δ𝑘𝑒𝑓𝑓
𝑃𝑆 c −709.4 ± 0.6 

Total 342.0 ± 0.8 

Reference (pcm) 341.9 ± 2.0 

a One standard deviation 3 

b Δ𝑘𝑒𝑓𝑓
𝑁𝑃 : keff change without fission source perturbation 4 

c Δ𝑘𝑒𝑓𝑓
𝑃𝑆 : keff change due to fission source perturbation 5 

 6 

3.2 Optimum surface geometry of bare fuel solution 7 

 The optimum surface geometry was obtained for a bare fuel solution with cylindrical 8 

geometry, as shown in Fig. 11. The diameter was 56 cm, and the initial height of the solution was 9 

62 cm. Although the solution was assumed to be contained in an upright cylindrical vessel, the 10 

vessel wall was not included in the calculation model. The geometry was divided into eight regions. 11 

The radii of the regions were 2.5, 5.0, 8.0, 12.0, 16.0, 20.0, 23.0, and 26.0 cm. The initial keff was 12 

0.91079 ± 0.00001. 13 

 14 

Fig. 11 Initial geometry of bare fuel solution 15 
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 1 

 The perturbation to the innermost vertex was added by vertically lifting the vertex between 2 

the innermost cylinder and adjacent annulus by 0.5 cm, as shown in Fig. 5. The increase in the 3 

height at the remaining vertices was determined such that the volume change due to the 4 

perturbation was the same as that of the innermost perturbation. All perturbation calculations using 5 

the CS method were performed with 200,000 histories per cycle, 30 inactive cycles, and 6,000 6 

active cycles. 7 

 The Monte Carlo calculations for the optimum surface geometry were repeated eight times 8 

until the convergence index CI, defined by Eq. (6), was less than 0.1. The arbitrary constant, C, in 9 

Eq. (4) was 200,000. The SI distributions of the initial state, 1st, 2nd, and 7th (final) iterations are 10 

shown in Fig. 12. The error bar for one standard deviation is smaller than the symbol size. The 11 

final geometry of the fuel solution is illustrated in Fig. 13. The increase in keff from the initial state 12 

versus the iteration number is shown in Fig. 14. The CI versus the iteration number is shown in 13 

Fig. 15. As shown in Figs. 14 and 15, keff reasonably increases with a decrease in CI, indicating 14 

that keff increases as the SI becomes flatter. 15 

 16 

Fig. 12 Surface importance distribution of bare fuel solution 17 
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 1 

Fig. 13 Final geometry of bare fuel solution after 7th iteration 2 

 3 

Fig. 14 Increase of keff versus iteration number 4 
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 1 

Fig. 15 Convergence index versus iteration number 2 

 3 

3.3 Optimum surface geometry of water reflected fuel solution 4 

 The optimum surface geometry was obtained for a light water-reflected fuel solution, as 5 

shown in Fig. 16. The material, geometry, and calculation conditions were the same as those 6 

described in Section 3.2, except that the side surface of the fuel solution was surrounded by a 5 7 

cm-thick light water reflector. The group constants of light water are listed in Table 3. The initial 8 

keff was 0.95134 ± 0.00001. 9 

 10 

Table 3 Three-group constants of light water reflector 11 

 
1st group 

(10 MeV∼235 keV) 

2nd group 

(235 keV∼0.993 eV) 

3rd group 

(0.993 eV∼) 

t  (cm−1) 2.9767E-1* 1.3054 2.5605 

c  (cm−1) 2.8640E-4 4.3300E-4 1.6150E-2 

ggs 0  (cm−1)** 2.1000E-1 1.2222E+0 2.5444E+0 

ggs 1  (cm−1) *** 1.4952E-1 7.7311E-1 8.6888E-1 

10 ggs  (cm−1) ** 8.7358E-2 8.2727E-2 ― 

11 ggs  (cm−1) *** 3.4803E-2 3.5369E-2 ― 

 12 
*Read as 2.9767×10-1, **P0 component, ***P1 component 13 
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 1 

 2 

Fig. 16 Initial geometry of water-reflected fuel solution 3 

 4 

 While the SI decreases from the center to the outer surface in a bare fuel, as shown in Fig. 12, 5 

the SI in a water-reflected fuel does not simply decrease owing to the effect of the reflector. It is 6 

anticipated that the initial SI distribution and optimum surface geometry are more moderate in 7 

water-reflected fuel than in bare fuel. 8 

 Monte Carlo calculations for the optimum surface geometry were repeated six times until the 9 

CI was less than 0.1. The arbitrary constant, C, in Eq. (4) was 150,000. The SI distributions of the 10 

initial state, 1st, 2nd, and 5th (final) iterations are shown in Fig. 17. The SI of the initial state at 11 

the interface between the fuel and reflector was larger than that at 23 cm from the center. The final 12 

geometry of the fuel solution is shown in Fig. 18. As expected, the final surface geometry was 13 

flatter than that of the bare fuel solution. The increase in keff from the initial state versus the 14 

iteration number is shown in Fig. 14. The CI versus the iteration number is shown in Fig. 15. The 15 

increase in keff induced by the optimum surface geometry was less than half of that of the bare 16 
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solution fuel. 1 

 2 

Fig. 17 Surface importance distribution of water reflected fuel solution 3 

 4 

 5 

Fig. 18 Final geometry of water reflected fuel solution after 5th iteration 6 

 7 

4. Conclusions 8 

Deterministic methods for obtaining the optimum surface geometry of a fuel solution have 9 

already been developed based on neutron diffusion or transport theory by the author of this paper. 10 
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This study presents a new Monte Carlo method for obtaining optimum surface geometry. Optimum 1 

surface geometry is attained by flattening surface importance (SI) distribution on the entire surface 2 

to be deformed. SI is defined as the reactivity caused by an infinitesimal addition of fuel at a 3 

position on the surface. To calculate SI using the Monte Carlo method, SI is approximated by the 4 

reactivity caused by a slight lift of a slight portion of the surface. This study adopted the correlated 5 

sampling method (CS) to calculate SI. The SI is expressed by the change in keff caused by geometric 6 

perturbation. After the SI distribution is calculated on the surface, the surface geometry is updated 7 

by lifting the surface position with a higher SI and depressing the surface position of the lower SI 8 

while preserving the volume of the fuel solution. This procedure is iterated until the SI is 9 

sufficiently uniform over the entire surface. In the examples of this study, the number of iterations 10 

was less than ten.  11 

The example in this study dealt with a cylindrical geometry, which is a substantially two-12 

dimensional problem. Therefore, the number of data points where the SI needs to be calculated is 13 

very limited. The number of data points becomes much greater for a three-dimensional problem, 14 

such as a fuel solution in a rectangular vessel. However, as stated in Section 2.3, the Monte Carlo 15 

calculation for one iteration can be performed only once if a relatively large data storage capacity 16 

is available for perturbation propagation. 17 

 The CS method proposed in the study is not an exact one because SI is approximated by the 18 

small reactivity caused by the small change of surface height. The application of an exact Monte 19 

Carlo perturbation method for the sensitivity of the surface displacement will be the subject of 20 

future work. One of the potential candidates will be the development of the differential operator 21 

sampling method that provides the reactivity derivative with respect to changes in surface height. 22 
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