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Time‑series analysis of satellite 
imagery for detecting vegetation 
cover changes in Indonesia
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Kazunari Matsudaira 1,6 & Yoshinori Ishioka 3

Indonesia has one of the world’s largest tropical forests; thus, its deforestation and environmental 
degradation are a global concern. This study is the first to perform comprehensive big data analyses 
with coherent vegetation criteria to measure the vegetation change at a high temporal resolution 
(every 16‑day period) for 20 years and the high administrative resolution (regency or city) all over 
Indonesia. The normalized difference vegetation index (NDVI) of the Moderate Resolution Imaging 
Spectroradiometer is analyzed through state space modeling. The findings reveal that the NDVI 
increases in almost all regencies, except in urban areas. A high correlation between the NDVI change 
and the time is observed in Sumatra, Papua, and Kalimantan. The gain of the NDVI values is obvious 
in the Central and Eastern Java Island. Human activities, such as the expansion of agriculture and 
forestry and forest conservation policies, are the key factors for the observed pattern.

Indonesia has been home to one of the world’s largest tropical forests and holds the largest biodiversity within 
the greatest landmass in Southeast Asia 1–3. However, by the second half of the twentieth century, environmental 
degradation in Indonesia had become a serious problem in terms of Southeast Asia’s tropical rain forest 1. This 
has become a global concern related to climate change because of its direct connection to global carbon dioxide 
sinks and greenhouse gas emission 2,4.

Despite widespread belief that Indonesia’s tropical rainforests are in a state of continuous decline, recent stud-
ies show that vegetation has grown in some administrative units as a result of conservation policies and expansion 
of forestry and agriculture 5–10. The difficulty of assessing various types of vegetation has prevented the disclosure 
of an overall vegetation trade-off over Indonesia. The lack of knowledge on long-term vegetation change may 
have misled our understanding of the global climate change, and not just that of Indonesia. Satellite-based time-
series analyses examining all available observation with dense periodicity are well-known accurate methods to 
monitor changes in vegetation for several decades 4,11–13. The normalized difference vegetation index (NDVI) 
of the Moderate Resolution Imaging Spectroradiometer (MODIS) observes every part of Earth on a near-daily 
basis and provides 16-day composite data of the vegetation index, allowing for the display of continuous vegeta-
tion changes 14–16. From February 2000 to the present, MOD13Q1 version 6.1 has provided the NDVI at 16-day 
intervals with a 250 m spatial resolution 17,18. These data are ideal for tracking the overall change of vegetation 
over a long time period and with great spatial precision.

This study measures the vegetation changes at a high temporal resolution (every 16-day period) for 20 years 
and the high administrative resolution (regency/city) throughout Indonesia. This study also examines how 
human activities, such as forest protection, agriculture, and those related to climate change, affect the way 
vegetation changes. Accordingly, special attention is placed on consistency in changes (i.e., patterns brought on 
by continuous human activities or climate changes) and values in changes (i.e., gains of the vegetation itself). 
We will describe the long-term vegetation change in Indonesia based on two measures: (1) consistency of the 
NDVI changes over 20 years, which is herein referred to as the NDVI consistent trend; and (2) comparison of 
the vegetation index values referred to as the NDVI value change over 20 years.
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Methods
Regional context. Indonesia (officially the Republic of Indonesia) is the largest archipelago country (over 
17,000 islands) and the 14th largest country by area (about 2 million  km2) in the world 19. The archipelago cov-
ers tropical rainforest, tropical monsoon, and tropical savanna climates, where there are more than 300 ethnic 
groups 19. Indonesia consists of 38 provinces, and the governance system is decentralized since the end of the 
twentieth century 19,20. In Indonesia, regencies (kabupaten) and representative cities (kota) are positioned at the 
same administrative level (level 2); the average size of regencies/cities is 3622  km2 (ranging from 10 to 44,013 
 km2). Regencies/cities are administratively separated by geographic conditions and historical (social, cultural, 
and political) backgrounds, with each regency/city having homogeneous environmental conditions and a socio-
economic status. 16.

The main drivers of the rapid deforestation in Indonesia were population growth and economic expansion, 
including the illegal clearance of forests 21,22. Indonesia’s economy has grown by > 5% per year on average since 
2000 until the Covid-19 pandemic; GDP PPP (international dollars) increased about three times from 1 Trillion 
USD in 2000 to 3.33 Trillion USD in 2019 23. Additionally, its population has increased by 1.14% annually, lead-
ing to an approximately 30% growth during this period (i.e., from 211 Million in 2000 to 273 Million in 2020), 
making it the most populous and prosperous country in Southeast Asia 19. Indonesia is also one of the largest 
emitters of greenhouse gases (GHG) 24.

In contrast, the Indonesian government is committed to unconditionally reduce its GHG emission by 29% 
and up to 41% if international assistance for finance, technology transfer, and capacity building are  provided25. 
The land-use and energy sectors are to minimize the national GHG emission. Therefore, Indonesia first intro-
duced moratorium on new forest clearance in 2011 26 and made it permanent in 2019 3. This moratorium mainly 
targeted Kalimantan, Sumatra, and Papua (New Guinea), which had been center of deforestation in the begin-
ning of 2000s 3,27.

Meanwhile, agriculture has expanded in this century, with the primary export goods (e.g., oil palm and 
rubber plantations) coming from Sumatra and Kalimantan 5. Conversely, since the turn of the century, sustain-
able forestry policies in Java have caused a surge in the forestation of local smallholders 6. There are indications 
that forests on Java Island are recovering 7,8. Due to improved forestry policies and reforestation activities, the 
deforestation rate has decreased since 2011 9. Deforestation has been reported from all over Indonesia, but the 
causes of deforestation were different from one region to another because of geographic conditions and socio-
economic statuses 28.

NDVI at the regency/city level. Many studies have demonstrated that the NDVI is related to the leaf 
area, green biomass, percent green cover, and a fraction of absorbed photosynthetically active radiation (fAPAR) 
18,29,30; moreover, NDVI is a global-based vegetation index. We utilized the product of NASA’s MODIS Terra Pro-
gram version 6.1. This product provides data at 16-day intervals (i.e., composite data for a 16-day period derived 
from images that are acquired almost every day) at 250 m spatial resolution after correction for atmospheric 
effects (aerosols and gases) and sensor degradation, angular consideration, and minimization of the influence of 
daily cloud covers for consistent spatial and temporal comparisons of vegetation 17,18. The NDVI runs from − 1 
to + 1 (acceptable range for the NDVI of the MODIS: from − 0.2 to + 1) and is determined from the visible and 
near-infrared light reflected by the quantity (biomass) and/or composition of vegetation.

The information used was from LP DAAC, a part of NASA’s Earth Observing System Data and Information 
System run in cooperation between the US Geological Survey and NASA. We utilized the shapefile of Administra-
tive Level 2 in April 2020 created by the Indonesian Bureau of Statistics (BPS). This was made available through 
the Humanitarian Data Exchange program (HDX) of the United Nations Office for Coordination of Humanitar-
ian Affairs (OCHA) (https:// data. humda ta. org/) 31. The Administrative Level 2 consisted of 93 cities (kota), five 
administrative cities (kota administrasi), 415 regencies (kabupaten), and one administrative regency (kabupaten 
administrasi) (Supplementary Table 1). Each MOD13Q1 picture was dissected for the Administrative Level 2 
and pixel reliability (− 1: no data; 0: excellent data; 1: poor data; 2: snow/ice; and 3: cloud). The coastal regions, 
where the pixels had recorded water cover, experienced the pixel reliability of MOD13Q1 with − 1 (no data). The 
NDVI was unreliable when the pixels were classified as level 2 (snow/ice). No NDVI was available for the pixels 
covered in clouds (pixel reliability = 3). These cases were disregarded from further analysis. Hence, the average 
NDVI was determined for regions in each regency/city at each time point with a pixel reliability range of 0 or 1. 
Seribu Islands was the sole administrative regency, which was omitted from the studies because it was composed 
of a number of tiny islands, and all pixels covering it had some sea in them. Accordingly, further evaluations 
were conducted for 513 regencies and cities throughout a 20-year span (i.e., every 16 days; 460 time points). We 
downloaded a total of 5520 pictures since 12 MOD13Q1 images at each time point cover the whole Indonesia.

Time‑series analyses. We split the NDVI changes in the MOD13Q1 data into trends, seasonal changes, 
and residuals using a stochastic level and deterministic seasonal state space model (SSM). We performed time-
series studies based on SSM 32 using two steps 16: (1) the NDVI data were averaged for each geographic unit 
(regency or city); and (2) stochastic level and deterministic seasonal models were used. The time-series change 
in this model was divided into trends, cycles, and residuals while excluding noises. The slopes and the levels were 
determined by a stochastic process, seasonal changes (annual cycle), and irregular changes with interporation 
of missing data smoothed by the Kalman filter. The maximum likelihood estimation was made for the following 
equations:

yt = µt + γt + εt , εt ∼ NID
(

0, σ 2
ε

)

https://data.humdata.org/
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for t = 1, n, where yt is the observation (NDVI) at time t; µt is the unobserved level at time t; γt = γ1,t denotes the 
seasonal component; εt is the observation disturbance term at time t; and ξt is called the level disturbance term 
at time t. The level µt was allowed to vary over time in the stochastic level and deterministic seasonal model. 
The seasonal changes, trends, and residuals are represented by γ, μ, and ε, respectively. R Software version 4.1.2 
with “dlm” package was used for the analysis 33.

Precipitation data. The USGS Earth Resources Observation and Science Center and the Climate Hazard 
Center of the University of California in Santa Barbara developed climate hazards group infrared precipitation 
with station (CHIRPS) v2p0, which provide data on rainfall estimates from rain gauge and satellite observa-
tions and is available for the entire world, including areas with sparse surface data 34. CHIRPS provide moderate 
resolution (0.05°) gridded precipitation information. We obtained the CHIRPS monthly data for Indonesia from 
2001 to 2020 and masked them at the administrative 1 (province) level (data compiled by Indonesian Statistical 
Office and available at OCHA HDX) because the resolution of CHIRPS is coarser than that of MOD13Q1. Using 
the same SSM model with the NDVI data, we decomposed the precipitation data into trends and seasonal cycles 
while excluding noises. Furthermore, the monthly average precipitation for each province over the course of 20 
years was calculated from this dataset (“rainfall level”).

Socioeconomic data. We used the population density data and the GDP at the regency/city level issued by 
the Ministry of Internal Affairs of the Republic of Indonesia 35. However, we were unable to study the time-series 
changes in socioeconomic development over a 20-year period because the administrative units increased from 
397 in 2001 to 514 in 2020 due to the administrative reforms brought about by population and economic growth. 
The data used in this study were (1) the population densities in 2020, (2) GDP proportion from agriculture, for-
estry, and fisheries (as an indicator of the land-use intensities for agricultural and forestry development), and (3) 
GDP proportion from financial and insurance activities (as urban development). These indicators reflected the 
socioeconomic conditions of Indonesia, where the inequality in development among regions is very high. The 
total GDP was not used because it was closely correlated with the three variables used in this work.

Field observation. After obtaining results of time-series analyses, we also conducted field observations in 
2022 in North Sumatra, the Special Capital Region of Jakarta, Central Java, the Special Region of Yogyakarta, 
and South Sulawesi. We visited regencies and cities showing very consistent increases or decreases in NDVI, 
rapid loss or growth in NDVI, or dramatically irregular changes (e.g., disasters); furthermore, we observed the 
reasons behind such changes. In addition, we observed vegetation changes between 2014 and 2017 in parts of 
East Nusa Tenggara 16.

Statistical analyses. We defined the Pearson’s correlation coefficients of the NDVI trend (after noise and 
cycle elimination) with time (every 16 day) as the “NDVI consistent trend.” Furthermore, we defined the NDVI 
variation between 2001 and 2020 (in other words, differences in the average NDVI between 2020 and 2001) as 
the “NDVI value change.” Pettitt’s Test was used to identify the trend change-points 36. For precipitation, the 
correlation of the trend with time and the difference in the NDVI between 2020 and 2001 were also computed 
(CHIPRS data).

We used classification and regression trees (CART), a decision tree model data mining method that explains 
how a target variable is predicted by other variables based on categorizing samples into binary classes 37; expo-
nential was used for NDVI consistent trend. The decision tree regression analysis was conducted to explore 
factors contributing to the consistent trend of the NDVI and the NDVI value changes. To minimize overfitting, 
the complexity parameter (cp) value for the biggest cross-validated prediction error of less than the minimal 
relative error plus the cross-validated prediction standard deviation was used as the cut-off (pruning tree model). 
To reflect the differences in agricultural intensities and main tree crops, all regencies and cities were classified 
into Sumatra, Western Kalimantan, Eastern Kalimantan, Western Java, Eastern Java, Nusa Tenggara, Northern 
Sulawesi, Southern Sulawesi, Maluku, and Papua (Supplementary Fig. 1). QGIS 3.22.4 Białowieża (QGIS Devel-
opment Team) (https:// qgis. org/) was utilized for the map creation.

Results
Overall patterns. The predicted NDVI values (i.e., the trend including level disturbance term plus seasonal 
fluctuations) and the NDVI trend by the SSM, respectively, for all regencies/cities are available in Supplemen-
tary Information (Figs. S2–S3). Out of the 513 regencies/cities (i.e., 415 regencies, 93 cities, and five adminis-
trative cities), 442 districts (86.2%; equivalent to 97.1% of the country’s land area) showed consistent positive 
NDVI trends (i.e., significantly positive correlation of NDVI with time; Pearson’s correlation coefficient > 0 and 

µt+1 = µt + ξt , ξt ∼ NID(0, σ 2
ξ )

γ1,t+1 = −γ 1,t−γ 2,t . . .−γ 22,t

γ2,t+1 = γ1,t

. . .

γ22,t+1 = γ21,t

https://qgis.org/
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P < 0.05); 43 had consistent negative NDVI trends (8.4%; only 0.9% of the land area); and 28 (5.5%) had no sig-
nificant correlation. Figure 1 shows the NDVI consistent trend (green: positive trend; red: negative trend). The 
Sumatra, Kalimantan, and Papua islands were expected to have positive correlations (green dense), while urban 
regions such as the Special Capital Region of Jakarta showed strong negative correlations (red). The trend was 
mildly favorable (light green) in areas with high population density, monsoon climate (e.g., Central and Eastern 
Java Island and Southern Sulawesi Island), and savanna areas (Nusa Tenggara).

The average NDVI for each year from 2001 to 2020 is displayed after seasonal cycles, and residuals have been 
considered (Supplementary Fig. 4). A total of 463 (90.3%) regencies/cities displayed an increase in the NDVI. 
This increase was visible not only in East Kalimantan, Lampung, South Sulawesi, and Papua, which had tropical 
rain forest climates, but also in Central and Eastern Java and Nusa Tenggara, which had tropical monsoon or 
savanna climates (Fig. 2). Notably, the pattern in the NDVI value change was partially different from that in the 
NDVI consistent trend.

Figure 3 shows the results of Pettitt’s Test for Change-point Detection. The NDVI change started in an earlier 
period (before 2010) in Central and Eastern Java and Nusa Tenggara and in a later period (after 2010) in many 
parts of Sumatra, Papua, Western Java, and Kalimantan.

Impact of disasters. Disasters affect vegetation. Figure 4 shows the example cases of three regencies/cities. 
The NDVI in Banda Aceh City, which is the capital city of Aceh Province, dramatically decreased when the 2004 
Indian Ocean earthquake and tsunami flushed most of the city’s greenery. When Volcano Sinabung erupted 
and its lava and pyroclastic flow destroyed vegetation in the mountain ranges, the NDVI also decreased in Karo 
Regency in North Sumatra Province (e.g., 29th August 2010, series of eruptions in 2014, and a massive erup-
tion on 21st May 2015). These cases showed that the lost vegetation rapidly recovered, depicting a regrowth of 
more than 60% of the loss in the following year (Fig. 5a). However, the NDVI in Banda Aceh City took 12 years 
to return to its pre-disaster state. East Sumba, which is one of the driest environments in Indonesia, represents 
steep seasonal NDVI changes. However, irregularities were observed in 2010 and 2016 when rainfall continued, 
even in the dry seasons, and in 2015 and 2019 when a severe drought caused social problems (Fig. 5b). These 

Figure 1.  Correlation (“NDVI consistent trend”) between the NDVI trend and time in every 16-day period 
from January 1, 2001 to December 19, 2020. This map was created by TF using QGIS 3.22.4 Białowieża software 
and open administrative boundary data published by OCHA HDX.

Figure 2.  Increase or decrease (NDVI value change) in the NDVI values from 2001 to 2020. This map was 
created by TF using QGIS 3.22.4 Białowieża software and open administrative boundary data published by 
OCHA HDX.
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extreme weather events spiked the trend, but did not affect the NDVI in the years that followed. The NDVI 
anomalies were also more apparent in drier environments with substantial seasonal cyclic changes (tropical 
monsoon and savanna) than in tropical rainforest climates with moderate seasonal changes.

Effects of the population and industries. All of the top 10 regencies/cities with a highly positive NDVI 
consistent trend (Supplementary Table 2) were located in Sumatra Island. North Padang Lawas (r = 0.990) and 
Batu Bara (r = 0.982) in North Sumatra Province are known for their large-scale agriculture. Toba Samosir 
(r = 0.952) in North Sumatra and Lebong (r = 0.964) in Bengkulu Province are popular in forestry operations in 
addition to a disturbed or protected tropical rain forest. All extremely negative trends, however, were found in 
large cities like Jambi City (r =  − 0.996) in Jambi Province, Pekalongan City (r =  − 0.994) in Central Java Prov-
ince, Langsa City (r =  − 0.981) in Aceh Province, and Palembang City (r =  − 0.956) in South Sumatra. On the 
contrary, the Central Jakarta Administrative City showed a positive trend (r = 0.85) because it was overburdened 
with urban infrastructure in the twentieth century (Fig. 5c). Consequently, urban growth has shifted to nearby 
areas (e.g., South Jakarta Administrative City: r =  − 0.61). The population density and the GDP proportions from 
financial and insurance activities, agriculture, forestry, and fisheries are shown in the maps in Supplementary 
Information (Fig. S5).

In terms of the NDVI gain (i.e., an increase in the NDVI value changes; Supplementary Table 3), the land-use 
change in agricultural lands from rice paddy fields to forests and/or oil palm plantations logically increased the 

Figure 3.  Pettitt’s Test for Change-point Detection. The darker orange color represents the recent trend 
change. The gray color indicates no significance in Pettitt’s Test. This map was created by TF using QGIS 3.22.4 
Białowieża software and open administrative boundary data published by OCHA HDX.

Banda Aceh, Aceh Karo, North Sumatra East Sumba, East Nusa Tenggara

Banda Aceh, Aceh Karo, North Sumatra East Sumba, East Nusa Tenggara

Figure 4.  Predicted NDVI (a: red line = predicted NDVI; gray line = observed NDVI) and NDVI trends (b: 
black line = NDVI trend; red zone = 95% confidence limits; gray dots = observed NDVI) in association with 
disasters. Banda Aceh City experienced the 2004 Indian Ocean earthquake and tsunami. Karo experienced a 
series of Volcano Sinabung eruptions. East Sumba eruptions abnormal rainfall and drought.
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NDVI because the vegetation loss during the off-season (i.e., scarce vegetation in the dry season) disappeared 
(Fig. 5d). These effects were visible in the NDVI gain in Central Java and Sumatra.

Correlation with climatic, demographic, and economic variables. Finally, the factors for the NDVI 
consistent trend and the NDVI value change were analyzed. The univariate correlation matrix output showed 
that the NDVI consistent trend was positively correlated with the proportions of agriculture, forestry, and fish-
eries in the GDP and the rainfall level (monthly average) and negatively correlated with the rainfall correlation 
with time and population density (Supplementary Fig. 9). The NDVI value change was positively correlated with 
the proportions of agriculture, forestry, and fishing in the GDP and the rainfall change from 2001 to 2020 and 
negatively correlated with the population density and the proportion of financial and insurance activities in the 
GDP. However, these variables were interrelated.

We also performed decision tree regression analyses (CART). The population density showed the greatest 
influence on exponential of the NDVI consistent trend (Fig. 6a). A population density ≥ 2328/km2 was classified 
as the lowest group. The regencies in Papua, Sumatra, and Western Kalimantan were segregated from the other 
regions in the group with lower population densities. Provinces with high rainfall levels (239.772 mm per month) 
exhibited the highest NDVI consistent trend in the former group (i.e., Papua, Sumatra, and Western Kalimantan), 
whereas the lowest population density was a beneficial feature in the latter group.

The population density was also the key determinant of the NDVI value change (Fig. 6b). The regencies with 
population densities greater than 5064.5/km2 showed negative NDVI value changes. Interestingly, however, cities 
with higher GDP income from financial and insurance activities (4.878%) exhibited better NDVI value changes. 
The GDP from agriculture, forestry, and fisheries was categorized with a higher NDVI gain in sparsely populated 
regencies at 8.673%. The biggest NDVI gain was found in the Central and Eastern Java regencies.

Discussion
The high temporal and geographical resolutions study over Indonesia revealed that the NDVI increased in most 
regencies in the last 20 years. The NDVI increase was remarkable in Eastern Java Island and parts of Kalimantan; 
furthermore, this increasing trend was consistent in Sumatra, Kalimantan, and Papua. The NDVI decreased 
mainly in cities. The population densities, industries, rainfall, and regional differences were the major contribu-
tors to these changes.

Figure 5.  Photos of (a) agricultural expansion in lands devastated by a volcano eruption 7 years ago in Karo 
Regency (North Sumatra, June 2022), (b) land during a dry season in Eastern Sumba Regency (East Nusa 
Tenggara, August 2012), (c) greening of the Central Jakarta City (Special Capital Region of Jakarta, May 2022), 
and (d) oil palm plantations growing in a former paddy field in Serbang Bedagai Regency (North Sumatra, June 
2022). All photos were taken by TF.
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Although the NDVI reflected a horizontal change of vegetation and vegetation activity, this study did not 
measure the vertical vegetation structure or biomass. Therefore, this study’s interpretation cannot be directly 
applied to GHG emissions or sink. In addition, we averaged the NDVI at administrative level 2 so as to match the 
vegetation change with socioeconomic and climate variables and to omit effects of cloud cover (no data pixel), 
but this method may have overlooked heterogeneity in each regency/city. Due to limitations in the availability 
of rainfall data, we used different spatial resolutions for the NDVI and the rainfall. We adopted this method 
because (i) our study prioritized the high temporal resolution (16-day period over 20 years) of the MODIS and 
(ii) the regency/city level represents good spatial resolution to match the vegetation change with socioeconomic 
and climate variables.

Despite these limitations, this work clarified the high-temporal-resolution pattern in the changes in the 
vegetation density and the trade-off between the demographic and industrial developments country-wide in 
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Indonesia and its environmental policies and climatic changes. Even though natural forest covers decreased 
because of logging, fiber, oil palm, mining, and mix concession between 2001 and 2010 1,2, the human-made 
vegetation improved because of the expansion of forestry (reforestation) and agriculture, including plantations, 
during this period 9. The deforestation on Java Island slowed until the 1960s and the forest cover began recovering 
in the 1970s as a result of the reforestation campaign policy, elevated prices of agricultural products, and rural 
depopulation 38. A study of time-series analyses of MODIS on one watershed in East Java showed that the forest 
increased because of transformation from rice paddies, upland, mixed gardens, and plantations from 2002 to 
2011 8. Reforestation and plantations were expanded from governmental to private lands, as well 6,39,40.

Although previous studies 16,41 have suggested that vegetation anomalies are correlated with the rainfall pat-
tern as a result of the extreme weather events in Indonesia, such a correlation occurred only for short periods 
(occasional extreme weather events) and this vegetation change discontinues as long as the rainfall anomalies 
discontinue. The tropical monsoon climate with a lower baseline NDVI than the tropical rain forest climate 
contributed to the apparent increase in the NDVI. Extreme weather events like the El Nino (ENSO) and La Nina 
phenomena have increased in frequency over the last two decades 42, although their impacts vary by province 
considering various agricultural systems 43. Dryland farming, forestry, and natural vegetation are especially 
vulnerable on limestone terrains, such as in East Nusa Tenggara and Central Java 44,45. A previous satellite-based 
time-series analysis on a part of Java showed that a rapid forest increase was observed only in 2010—the year of 
abnormally high rainfall 8. If people had dams (e.g., Bilibili Dam in South Sulawesi) or traditional water manage-
ment systems (e.g., subak in Bali and selokan mataram in Yogyakarta), they could control the water resources 
based on extreme weather events or agricultural necessities (e.g., multiple harvests per year for rice or dryland 
farming). The anomalies caused by rainfall and other natural disasters have affected the periodical patterns, but 
rarely impact the general pattern of increase.

In contrast, the NDVI increase was very consistent in Sumatra, Papua, and Western Kalimantan. These 
regions are characterized by tropical rain forests with high precipitation and the expansion of large-scale tropical 
agriculture involving oil palm 5. Oil palm plantations in Sumatra have spread from corporations to smallholders 
46. In addition, these regions comprise several forest conservation and forestry zones targeted in a moratorium 
on logging concessions 1,47,48. In Indonesia, socioeconomic, biophysical, and ecological factors influence the 
expansion and the intensity of smallholder agriculture and forestry 49,50.

Previous studies suggested that that Java Island and parts of Indonesia are hotspots of increased built-up 
areas 4. Although the land sizes of these cities are small, cities with large population densities contributed to the 
vegetation loss. The demographic trend in Indonesia has been urbanization or rural–urban migration, which 
has improved the rural life by easing resource pressure and thus improvement in the vegetation 51. Therefore, 
our finding that a decrease in the vegetation density was observed only in very limited areas is consistent with 
these previous findings. Furthermore, the extension of green zones is part of the urban development master 
plans, particularly in Jakarta 52; therefore, the results of urban greening were visible on the NDVI in places like 
Central Jakarta, which has a thriving financial industry. However, this might not be easy to implement in other 
cities where the population is now growing quickly.

Several tropical countries have experienced vegetation loss, and they need to find policies to reverse the 
trend. The evaluation of agriculture has been paradoxical. The expansion of monoculture farmlands could be 
detrimental to the biodiversity. Agriculture also contributes to carbon dioxide emission 24, but biomass is being 
grown particularly in oil palm plantations with high vertical structures 53. In reality, the regency with the high-
est NDVI consistent trend was known for having one of the largest oil palm plantations because the growth of 
seedlings and young palms “trade-off ” the harvest of old palms. In addition, the alang-alang (Imperata cylindrica) 
grassland that covers the land soon after deforestation or agricultural land abandonment has now been identified 
as a barrier to natural ecological succession 54. Efforts are currently being made to transform this grassland into 
productive land (e.g., Karo Regency) 55.

However, the growth of Indonesia’s vegetation density as a result of policies and people’s actions, despite the 
country’s growing population and economy, is some positive news for global warming mitigation.

Conclusions
Based on analysis of time-series satellite data at high temporal resolution (every 16-day period), this study 
found that vegetation density represented by the NDVI has consistently increased in 86.1% of regencies/cities 
during the past 20 years, and the NDVIs in 2020 were higher than those in 2001 in 90.6% of regencies/cities. 
The growth of vegetation density in Indonesia was multifactorial: forest moratoriums, reforestation, plantation 
growth, and urban greening. We observed that the loss of the NDVI was centered in newly developed urban 
areas. Disasters did not affect the long-term trend. Although further studies are necessary to confirm factors 
influencing the NDVI changes, this study suggests that vegetation density is increasing in Indonesia as a result 
of policies and people’s behavior.

Data availability
Raw data of the MODIS, CHIRPS, shapefiles, and socioeconomic data are available at respective sources described 
above. All figure and map outputs from the SSM are included in Supplementary Information. The R scripts and 
all other data will be provided upon reasonable requests to the corresponding author.
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