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1. INTRODUCTION

Nowadays, the performance assesment of existing structures using numerical models is widely 

studied to determine the necessity and priority of their repair and reinforcement. For the purpose 

of model vaidation and verification, it is important to calibrate the model parameters so that the 

model response coincides as close as possble to the actual structural behavior. This procedure is 

referred to as model updating. 

In deterministic model updating (Mottershead et al. 2011), parameter values are estimated to 

minimize the error between the model response and the observed system behavior. In this case, 

the observed features are treated as deterministic values, and thus uncertainties in the observed 

data are not taken into account. In contrast, the Bayesian inference, a type of probabilistic model 

updating (Mares et al. 2006) that has been widely studied in recent years, estimates parameters as 

a posterior distribution accounts for the likelihood of multiple observations. It should be noted 

that the posterior distribution obtained by the Bayesian inference represents the degree of 

plausibility about which parameter ranges are more probable than others based on observations; 

thus, it does not represent the probability distribution that the parameters themselves physically 

and spatially follow.  
On the other hand, uncertainties in the model parameters are often not inevitable due to e.g., 

the manufacturing tolerance, environmental conditions, and aging conditions. In such cases, the 

objective of model updating is to estimate the probability distribution that the parameters follow 

to reproduce the variability of the observed data. The hierarchical Bayesian inference (Jia et al. 

2022), which treats the hyperparameters of the probability distribution as the parameters to be 

updated, is effective for this purpose.. However, since the distribution family that the parameters 
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belongs is rarely known a priori, it is common to assume a Gaussian distribution as the unique 

target distribution for convenience (Jia et al. 2022).  
In contrast to that, the first author and his co-wokers have proposed a hierarchical Bayesian 

inference that does not assume a specific distribution shape by using staircase density functions 

(SDFs) (Crespo et al. 2018), which can approximate a wide range of distributions discretely 

(Kitahara et al. 2022). Although the application of SDFs to hierarchical Bayesian inference has 

been discussed in Kitahara et al. 2022, its applicability to various typs of distributions has not 

been thoroughly investigated. 

 In this study, we first examine the usefulness of the proposed method in comparison with 

the conventional Bayesian method using a simple numerical example with linear, monotonically 

increasing nonlinear, and convex nonlinear relationships between model parameters and model 

responses. We then verify the robustness of the proposed method to various distribution shapes, 

such as asymmetric, flat, sharped, and multimodal distributions, as well as normal distributions. 

2. OVERVIEW OF HIERARCHICAL BAYESIAN INFERENCE 

2.1. Hierarchical Bayesian Method 

In general, Bayesian inference updates the prior distribution P(x) of the parameter x to the poste-

rior distribution P(x|D) using the observed data D, which is done based on the Bayes' theorem 

shown in Equation (1). 

                            𝑃(𝒙|𝓓) ∝ ℒ(𝓓|𝒙)𝑃(𝒙)                              (1) 

where the likelihood function L(D|x) quantifies the degree of agreement between the observed 

data D and the model response M(x) and is often given by Equation (2), assuming a normal dis-

tribution for the modeling error.  

 ℒ(𝓓|𝒙) = ∏ 𝒩(𝓓(𝑘) − ℳ(𝒙), 𝜎𝜀
2)

𝑛

𝑘=1

 (2) 

where N(Exp, Var) represents the normal distribution with the expected value Exp and variance 

Var, σε
2 is the error variance that is often chosen as the variance of the observed data D, and n is 

the number of observed data. In the above formulation, the model response M(x) for x is a definite 

value, and the parameter uncertainty is not considered. 

In contrast, the hierarchical Bayesian inference considered in this study assumes a probability 

distribution fx(x,θ) that characterizes the parameter uncertainty and replaces Equation (1) to the 

following equation by taking the hyperparameter θ as the parameters to be updated. 

             𝑃(𝜽|𝓓) ∝ ℒ(𝓓|𝜽)𝑓𝒙(𝒙, 𝜽)𝑃(𝜽)              (3) 

Since the model response M(x,θ) is obtained from the probability distribution of x determined for 

an instance of θ, M(x,θ) also follows a probability distribution. Therefore, the derivation of the 

likelihood function does not require the assumption of modeling error and can be expressed as 

the conditional probability of the observed data D for an instance θ: 

      ℒ(𝓓|𝜽) = ∏ 𝑃(𝓓(𝑘)|𝒙, 𝜽)

𝑛

𝑘=1

 (4) 

In general, the posterior distributions in Equations (1) and (3) cannot be obtained analytically, 

and sampling from the posterior distribution by the Monte Carlo method is commonly used. For 

example, Kuroda and Nishio (2016) and Matsuoka et al. (2020) used Markov chain Monte Carlo 
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(MCMC) (Tierney 1994) and Hayashi et al. 2018 used a particle filter (Kitagawa 1996). In this 

study, we employ the transitional Markov chain Monte Carlo (TMCMC) (Ching and Chen 2007). 

This method pushes samples from the prior distribution to the posterior distribution step by step 

by repeatedly sampling from the intermediate distribution, which has a nested relationship with 

the prior and posterior distributions. In its last step, samples are generated using MCMC where 

samples that follow the posterior distribution are used as the seeds; thus, the burn-in in MCMC 

does not necessary to be considered. Compared to MCMC, which samples directly from the pos-

terior distribution, TMCMC is known to be suitable for high-dimensional problems and sampling 

from complex-shaped distributions. 

2.2. Approximate Bayesian computation based on Bhattacharyya distance 

In the hierarchical Bayesian approach, the likelihood evaluation for each instance of θ requires 

the estimation of the probability density function (PDF) of the model response M(x,θ) using the 

Monte Carlo method. This hinders its application to the problem where the time consuming model, 

e.g., finite element model, is employed in the likelihood function. Hence, in this study, we 

approximate Bayesian computation (ABC) is utilized to reduce the computational burden for the 

likelihood evaluation (Kitahara et al. 2021) In ABC, instead of the exact likelihood function in 

Equation (4), an approximate likelihood function based on an arbitrary statistic that quantifies the 

degree of agreement between the observed data and the model response is used. In this study, the 

following Equation based on the most common Gaussian kernel function is used as the 

approximate likelihood function. 

      ℒ̅(𝓓|𝒙) ∝ exp {−
𝑆(𝓓, ℳ(𝒙))

2

𝜀2 } (5) 

where S(D, M(x)) is a statistic that expresses the degree of agreement between the observed data 

D and the model response M(x), and ε is the centralization coefficient of the posterior distribution. 

Its optimal value depends on the problem, but generally, a value between 0.01 and 0.1 is 

considered to be appropriate (Patelli 2017). In this study, it is set to be ε = 0.01. In addition, the 

Bhattacharyya distance (Bhattacharyya 1946), which quantifies the degree of overlap between 

two probability distributions, D and M(x), is used as the statistic S. Its theoretical definition is 

based on the PDFs of two different sample sets. However, both D and M(x) are obtained as 

discrete distributions; thus, the probability mass function (PMF) is used instead to approximate 

the Bhattacharyya distance as the following equation: 

      𝑑𝐵(𝓓, ℳ(𝒙)) = ∑ √𝑙𝓓
𝑗

𝑙
ℳ(𝒙)
𝑗

𝑛𝑏𝑖𝑛

𝑗=1

 (6) 

where nbin is the number of bins commonly defined to obtain the PMFs of D and M(x), and l jD 

and l j
M(x) are the PMF values of D and M(x) in the jth bin. Since the approximate likelihood 

function using the Bhattacharyya distance is based on discrete PMFs, it can significantly reduce 

the computational cost compared to the exact likelihood function. 

2.3. Staircase Density Functions (SDFs) 

As shown in Equation (3), the posterior distribution P(θ|D) depends on the underlying probability 

distribution fx(x,θ) of x. Thus its estimation accuracy depends on the choice of the distribution 

family for fx(x,θ). However, its optimal choice is generally unknown a priori, which hinders the 

practical application of the hierarchical Bayesian approach.  

Alternatively, we consider to approximate fx(x,θ) by means of SDF, which is a probability 
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distribution defined for a recently proposed class of random variable, called staircase random 

variable (SRV) (Crespo et al. 2018). Consider a univariate case, SRV has the bounded support 

domain [𝑥, 𝑥]  and four hyperparameters 𝜽 = [𝜇, 𝜎2, 𝑚̃3, 𝑚̃4] , consistin  of the mean, 

variance, skewness, and kurtosis. It is noted that the skewness and kurtosis are defined as 𝑚̃3 =
𝑚3 𝜎3⁄   and 𝑚̃4 = 𝑚4 𝜎4⁄   usin  the third and fourth order central moments m3 and m4, 

respectively. The hyperparameters θ should satisfy the constraint conditions  iven as a series of 

inequalities presented in Table 1. By dividin  the support domain [𝑥, 𝑥] of x equally into nb bins 

of len th 𝜅 = (𝑥 − 𝑥) 𝑛𝑏⁄ , the SDF is  iven by 

      𝑓𝒙(𝒙) = {
𝑙𝑗   ∀𝑥 ∈ (𝑥𝑗,𝑥𝑗+1], ∀𝑗 = 1,2, ⋯ , 𝑛𝑏

0   otherwise                                        
 (7) 

where l j is the PDF value at the jth bin and 𝑥𝑗 = 𝑥 + (𝑗 − 1)𝜅 is the leftmost of the jth bin. 

For all bins, Equation (7) satisfies l j≥0 as well as 𝜅 ∑ 𝑙𝑗 = 1
𝑛𝑏
𝑗=1  . The PDF value 𝒍 =

[𝑙1, 𝑙2, ⋯ , 𝑙𝑛𝑏]  can be obtained by solvin  an optimization problem based on the moment 

matchin  constraint expressed as follows. 

𝒍̂ = argmin
𝒍≥0

{𝐽(𝒍): ∑ ∫ 𝑥𝑙𝑗𝑑𝑥 = 𝜇,
𝑥𝑗+1

𝑥𝑗

𝑛𝑏

𝑗=1

 

               ∑ ∫ (𝑥 − 𝜇)𝑟𝑙𝑗𝑑𝑥 = 𝑚𝑟, 𝑟 = 2,3,4
𝑥𝑗+1

𝑥𝑗

𝑛𝑏

𝑗=1

} 

(8) 

where m2=σ2 and J(l) is an arbitrary cost function. In this study, the followin  equation is used to 

maximize the entropy. 

                                𝐽(𝒍) = 𝜅 log 𝒍T 𝒍                                    (9) 

Table 1 Hyperparameter constraints 

 constraint inequality 𝑔𝑖 ≤ 0 

  𝜇 𝑔1 = 𝑥 − 𝜇, 𝑔2 = 𝜇 − 𝑥 

𝜎2 𝑔3 = −𝜎2, 𝑔4 = 𝜎2 − (𝜇 − 𝑥)(𝑥 − 𝜇) 

𝑚̃3 𝑔5 = 𝜎4 − 𝜎2(𝜇 − 𝑥)
2

− 𝜎3𝑚̃3(𝑥 − 𝜇), 𝑔6 = 𝜎3𝑚̃3(𝑥 − 𝜇) − 𝜎2(𝑥 − 𝜇)2 + 𝜎2, 

𝑔7 = 4𝜎4 + 𝜎6𝑚̃3
2 − 𝜎4(𝑥 − 𝑥)

2
, 𝑔8 = 6√3𝜎3𝑚̃3 − (𝑥 − 𝑥)

3
, 𝑔9 = −6√3𝜎3𝑚̃3 −

(𝑥 − 𝑥)
3
 

𝑚̃4 𝑔10 = −𝑚̃4, 𝑔11 = 12𝜎4𝑚̃4 − (𝑥 − 𝑥)
4
, 𝑔13 = 𝜎6𝑚̃3

2 + 𝜎6 − 𝜎6𝑚̃4,  

𝑔12 = {𝜎4𝑚̃4 − 𝜎2(𝜇 − 𝑥)(𝑥 − 𝜇) − (𝑥 + 𝑥 − 𝜇)}{(𝜇 − 𝑥)(𝑥 − 𝜇) − 𝜎2}

+ {𝜎3𝑚̃3 − 𝜎2(𝑥 + 𝑥 − 𝜇)}
2
 

 

Fi ure 1 shows the PDFs obtained from the optimization problem in Equation (8) for three 

hyperparameter sets θ(1)=[1.0,0.04,0,3.0], θ(2)=[1.0,0.33,0,1.8], and θ(3)=[1.0,0.42,0.42,1.37] that 

satisfy the constraints in Table 1. The support domain is fixed as [0,2] for all the cases. θ(1) 

corresponds to a Gaussian distribution with the mean 1.0 and the standard deviation 0.2. The 

obtained SDF shows  ood a reement with this distribution  iven by the dashed line in the fi ure, 

indicatin  that the approximation accuracy of SDF is sufficient. It should be noted that the SDF 

is defined on the bounded support set [0,2], while the actual Gaussian distribution has infinete 

support set. Similarly, θ(2) corresponds to a uniform distribution with the lower bound 0 and the 

upper bound 2.0 and θ(3) corresponds to a bimodal distribution. As can be observed, even if the 

mean is fixed as 1.0, SDF can approximate various distributions by chan in  the remainin  

hyperparameters as appropriate. Therefore, by inferrin  the hyperparameters of SDF throu h the 
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hierarchical Bayesian approach, it is expected to estimate arbitrary probability distributions that 

are plausible to reproduce observations without limitin  constraints on the distribution families. 

Based on the moment constraints in Table 1, the support domain of the hyperparameters 

conditional to the support domain of [𝑥, 𝑥] of x can be analytically obtained as shown in Table 
2. It should noted that the support domain is not defined for the skewness and kurtosis but for 

their unnormalized parameters, i.e., the third- and fourth-order central moments. In the proposed 

hierarchical Bayesian approach, the prior distribution of the hyperparameters θ is  iven as a 

uniform distribution over the support domain. 

                                         

                                       Table 2 Suppor domain for θ 

 Interval 

 𝜇 [𝑥, 𝑥] 

𝜎2 [0,
(𝑥 − 𝑥)

2

4
] 

𝑚3 [−
(𝑥 − 𝑥)

3

6
,
(𝑥 − 𝑥)

3

6
] 

𝑚4 [0,
(𝑥 − 𝑥)

4

12
] 

 

Table 3 Numerical model functions 

Linear 𝑦 = 0.2𝑥 + 1 

Monotonically  

increasing nonlinear 

𝑦 = exp (0.2𝑥) 

Convex nonlinear 𝑦 = 0.1(𝑥 + 1)2 + 0.5 

      Figure 1 Examples of SDF in [0, 2].  

 

3. NUMERICAL EXAMPLES 

3.1. Problem descriptions 

A numerical model y=f(x), which can be described by one parameter for both input and output, is 

assumed as a preliminary study, and three input-output relationships, i.e., linear, monotonically 

increasing nonlinear, and convex nonlinear, are considered, as shown in Table 3. Figure 2 shows 

these three input-output relationships in the range of [-5,5]. 

Consider the case where the parameter x follows a standard normal distribution. From this 

distribution, 1000 samples of x are generated, and the model responses with the relationships in 

Table 3 are also computed. Histograms of the model outputs are given in Figure 3. In the linear 

case, the histogram shows good agreement with the Gaussian distribution with the mean 1.0 and 

the standard deviation 0.2 given by the dashed line in the figure. In contrast, as the nonlinearity 

is increased, the histograms show deviations from the Gaussian distribution. Herein, these 1000 

samples of the model outputs are employed as the observed data. 

3.2. Comparison of the conventional and hierarchical Bayes approaches 

With the aforementioned problem descriptions, both the conventional and hierarchical Bayesian 

approaches are employed. In the conventional Bayesian approach, the prior distribution of x is 

assumed to be a uniform distribution within [-5,5], and posterior distribution is estimated by 

TMCMC. The obtained posterior distributions are summarized in Fi ure 4 in the order of linear, 

monotonically increasin  nonlinear, and convex nonlinear cases. The dashed lines in the fi ures  

3 ,---------,-----,------,------, 

- Casel: 0=[1.0 0.04 0 0.3] 

2.5 - Case2: 0=[1.0 0.33 0 0.1 ] 
- Case3: 0=[1.0 0.42 0.42 1.37] 

2 
- - - N (l 0.2) 

oL-L-- .6. __ ___::::;::=====_;:,,,,- _ ___J 

0 0.5 1.5 2 

X 
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Figure 4 Posterior PDFs by conventional Bayes. 

 

corresponds to the mean (i.e., x=0) of the tar et standard normal distribution. In the linear and 

monotonically increasin  nonlinear cases, the posterior distribution is peaked around x=0, 

indicatin  that the maximum likelihood value of x can be estimated with a very hi h de ree of 

accuracy due to a sufficient number of observations (1000 samples). In contrast, in the convex 

nonlinear case, the posterior distribution shows multimodality with peaks around x = -2.4 and x 

= 0.4. This is due to the non-unique solution for the input-output relationship shown in Fi ure 2. 

In addition, a peak x = 0.4 is still bit far from the true mean x=0 compared to the former two cases. 

This is because the modelin  error is assumed to follow a Gaussian distribution while it actually 

does not the case due to the stron  nonlinearlity as shown in Fi ure 3.  

In addition, the number of observations n is chan ed to 10, 100, amd 500 to investi ate its 

effect on the resultant posterior distribution. The posterior distributions obtained for the linear 

case are shown in Fi ure 5. As can be seen, the posterior distribution for n=100 shows a relatively 

lar e variance and a deviation is also found between its peak value and the maximum likelihood 

value of x (i.e., x=0). In contrast, for the cases of n=100 and n=500, the posterior variance is 

Figure 2 Model functions.  

 

Figure 3 Model output histo rams. 

 

Figure 5 Influence of sample size.  
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reduced as the number of observations increases and the posterior distribution is sharply 

distributed around the maximum likelihood value of x. This is because the likelihood function in 

equation (2) is  iven by the sum of products of the data, and the contribution of the likelihood 

function to the posterior distribution becomes more dominant as the number of data increases. 

These results also confirm that, in the conventional Bayesian approach, the posterior distribution 

shows the de ree of plausibility accordin  to the observations and does not denotes the probability 

distribution that the parameters follow to reproduce the observed data. 

In the proposed hierarchical Bayesian approach, on the other hand, the support domain of x 

is set to be [-5,5]. Then, the prior distribution of the hyperparameters θ of the SDF is assumed as 

a uniform distribution within their support domain that is derived from Table 2. The posterior 

distribution of θ is estimated usin  TMCMC. The numbers of bins for the Bhattacharya distance 

evaluation and the SDF estimation are set to be nbin=10 and nb=50, respectively. The obtained 

posterior distributions are shown in Fi ure 6 in the order of the linear, monotonically increasin  

nonlinear, and convex nonlinear cases. The dashed lines in the fi ure correspond to the mean, 

variance, skewness, and kurtosis of the standard normal distribution, respectively. 

 

 
Figure 6 Posterior PDFs by hierarchical Bayes.    Figure 7 Infuluence of sample size to the     

                                                hierarchcal Bayes results. 
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For the linear and monotonically increasin  nonlinear cases, the posterior distributions are 

sharply distributed around the correspondin  hyperparameter values of the standard normal 

distribution. Compared to the mean and variance, the posterior distributions of skewness and 

kurtosis have lar er support sets, indicatin  that these parameters are relatively insensitive to the 

variability of the model response. On the other hand, in the convex nonlinear case, the posterior 

distributions of mean and skewness are flat compared to the above two cases, indicatin  that the 

estimation accuracy is relatively low. 

Fi ure 7 illustrates histo rams of the SDFs obtained by assinin  the most probable values of 

the posterior distributions. For all cases, the SDF shows  ood a reement with the PDF of the 

standard normal distribution shown by the dashed line in the fi ure. This demonstrates that the 

proposed hierarchical Bayesian approach can accurately estimate the probability distribution of 

model parameters from observations, even in the case with stron  nonlinearity. 

3.3. Robustness to various Distribution Shapes 

Finally, to verify the applicability of the proposed method to various types of distributions, the 

tar et probability distribution of x is chan ed from the standard normal distribution usin  SDFs. 

The support set is fixed as [-5,5], and five sets of the hyperparameters θ(1)=[-1.2,1.0,0.5,3.0], 

θ(2)=[1.2,1.0,-0.5,3.0], θ(3)=[0,2.2,0,2.25], θ(4)=[0,0.5,0,4.0 ], and θ(5)=[1.0,1.5,0.8,2.0] are then 

considered. By decreasin  the mean and increasin  the skewness from the standard normal 

distribution, θ(1) corresponds to the SDF biased to the left, and oppsite for θ(2). In addition, by 

increasin  the variance and decreasin  the kurtosis from the standard normal distribution, we can 

see that θ(3) provides a flat distribution, and conversely, θ(4) provides a sharp distribution. 

Furthermore, θ(5) corresponds to the SDF with bimodality. 

Fi ure 8 shows histo rams of the SDFs obtained by the proposed approach. In all cases, the 

SDF is in  ood a reement with the tar et probability distribution  iven by the dashed line. This 

indicates that the proposed approach can infer a wide ran e of parameter distributions from the 

indirect measurements. The proposed approach does not require any limitin  constraints on the 

parameter distributions; thus, it has lar er applicability compared to the most of the hierarchical 

Bayesian approach where it is assumed that the model parameters follow Gaussian distributions.  

 

 
Figure 8 Results of the proposed method for various parameter distributions. 
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4. CONCLUSIONS 

The findin s of this study are as follows. 

1) The proposed hierarchical Bayesian inversion method can accurately estimate the probability 

distribution of model parameters even for the case where the input-output relationship of the 

numerical model shows nonlinearity. 

2) By updatin  the hyperparameters of the SDF, the proposed method could accurately estimate 

various types of distributions as appropriate. 

 

REFERENCES 

Beck, J. L. and Yuen, K. V. 2004. Model Selection Usin  Response Measurements: Bayesian 

Probabilistic Approach, J. Eng. Mech., 130(2), 192-203. 
Betz, W., Papaioannou, I. and Straub, D. 2016. Transitional Markov Chain Monte Carlo: 

Observations and Improvements, J. Eng. Mech., 142(5), 04016016. 
Bhattacharyya, A. 1946. On a measure of diver ence between two multinominal populations, 

Indian J. Stat., 7(4), 401-406. 
Chin , J. and Chen, Y. C. 2007. Transitional Markov Chain Monte Carlo Method for Bayesian 

Model Updatin , Model Class Selection, and Model Avera in , J. Eng. Mech., 133(7), 816-

832,. 

Crespo, L. G., Kenny, S. P., Giesy, D. P. and Stanford, B. K. 2018. Random variables with 

moment-matchin  staircase density functions, Appl. Math. Model., 64, 196-213. 
Hayashi, G., Kim, C. W., Mimasu, T., Goi, Y., Yoshida, I. and Su iura, K. 2018. FE modelin  of 

a steel plate twin  irder brid e usin  particle filter, Journal of Japan Society of Civil 

Engineering, Ser. A2, 74(2). I_705- I_714 (in Japanese). 
Jia, X., Sedehi, O., Papadimitriou, C., Katafy iotis, L. S. and Moaveni, B. 2022. Hierarchical 

Bayesian modelin  framework for model updatin  and robust predictions in structural 

dynamics usin  modal features, Mech. Syst. Signal Process., 170, 108784. 
Kita awa, G. 1996. Monte Carlo filter and smoother for non-Gaussian nonlinear state space 

models, J. Comp. Graph. Stat, 5, 1-25. 
Kitahara, M., Bro  i, M. and Beer, M. 2021. Residual seismic performance estimation of seismic-

isolated brid es based on model updatin  usin  approximate Bayesian computation, Journal 

of Japan Society of Civil Engineering, Ser. A1, 77(4), I_61- I_70 (in Japanese). 

Kitahara, M., Bi., S., Bro  i, M. and Beer, M. 2022. Nonparametric Bayesian stochastic model 

updatin  with hybrid uncertainties, Mech. Syst. Signal Process., 163, 108195. 

Kuroda, R. and Nishio, M. 2016. Reliability assessment of an existin  steel  irder brid e usin  

posterior distributions of model parameters, Journal of Japan Society of Civil Engineering, 

Ser. A1, 72(3), 380-392 (in Japanese). 
Mares, C., Mottershead, J. E. and Friswell, M. I.2006. Stochastic model updatin : Part 1-theory 

and simulated example, Mech. Syst. Signal Process., 20(7), 1674-1695. 
Matsuoka, K., Shinozuka, S. and Kaito, K. 2020. Structural model update considerin  uncertainty 

and reliability assessment of stren thenin  effect: Application to additional supportin  

stren thenin  of a hi h-speed railway brid e, Journal of Japan Society of Civil Engineering, 

Ser. A1, 76(3), 560-579 (in Japanese). 
Mottershead, J. E., Link, M. and Friswell, M. I. 2011. The sensitivity method in finite element 

model updatin : A tutorial, Mech. Syst. Signal Process., 25(7), 2275-2296. 
Patelli, E., Govers, Y., Bro  i, M., Gomes, H. M., Link, K. and Mottershead, J. E. 2017. 

Sensitivity or Bayesian model updatin : comparison of techniques usin  the DLR AIRMOD 

test data, Arch. Appl. Mech., 87, 905-925. 
Tierney, L. 1994. Markov Chains for Explorin  Posterior Distributions, Annal. Stat., 22(4)4, 

1701-1761. 


