
Vol. 63 (2022) No. 4 December n. 214

 Copyright © 2022 by Kazuki Hayashi, Makoto Ohsaki and Masaya Kotera
232 Published by the International Association for Shell and Spatial Structures (IASS) with permission.

ASSEMBLY SEQUENCE OPTIMIZATION OF SPATIAL TRUSSES
USING GRAPH EMBEDDING AND REINFORCEMENT LEARNING

Kazuki HAYASHI1, Makoto OHSAKI2 and Masaya KOTERA3

1Assistant Professor, Kyoto University, Kyotodaigaku-katsura, Nishikyo, Kyoto 615-8540, Japan,
hayashi.kazuki@archi.kyoto-u.ac.jp

2Professor, Kyoto University, Kyotodaigaku-katsura, Nishikyo, Kyoto 615-8540, Japan,
ohsaki@archi.kyoto-u.ac.jp

3Graduate Student, Kyoto University, Kyotodaigaku-katsura, Nishikyo, Kyoto 615-8540, Japan,
kotera.masaya.25n@st.kyoto-u.ac.jp

Editor’s Note: The first author of this paper is one of the four winners of the 2022 Hangai Prize, awarded for outstanding
papers that are submitted for presentation and publication at the annual IASS Symposium by younger members of
the Association (under 30 years old). It is published here with permission of the editors of the proceedings of the IASS
Symposium 2022 “Innovation, Sustainability and Legacy”, that was held in September 2022 in Beijing, China.

DOI: https://doi.org/10.20898/j.iass.2022.016

ABSTRACT

We consider a truss as a graph consisting of nodes and edges, and combine graph embedding (GE) and
reinforcement learning (RL) to develop an agent for generating a stable assembly path for a truss with arbitrary
configuration. GE is a method of embedding the features of a graph into a vector space. By using GE, the agent
can obtain numerical information on neighboring members and nodes considering their connectivity. Since the
stability of a structure is strongly affected by the relative positions of members and nodes, feature extraction by
GE should be effective in considering the stability of a truss. The proposed method not only can train agents using
trusses with arbitrary connectivity but also can apply trained agents to trusses with arbitrary connectivity,
ensuring the versatility of the trained agents’ applicability. In the numerical examples, the trained agents are
verified to find rational assembly sequences for various trusses more than 1000 times faster than metaheuristic
approaches. The trained agent is further implemented as a user-friendly component compatible with 3D modeling
software.

Keywords: truss, assembly sequence optimization, machine learning, reinforcement learning, graph embedding

1. INTRODUCTION

To deal with the increasing construction costs and
ensure the safety of construction work, it is
becoming more and more important to improve the
efficiency of construction processes. There have
been many attempts to introduce optimization
methods to create a rational construction plan. In
particular, the problem of optimizing the order of
assembling discrete structural components is a
combinatorial optimization problem with a huge
number of patterns, and is also an area of recent
interest in robot-assisted construction planning
[1,2].

Most of the existing optimization approaches to
assembly planning are based on mathematical
programming and metaheuristics. When the
structural stability changes in the middle of the

assembly sequence, structural analysis is required at
each step. Accordingly, mathematical programming
and metaheuristics, which rely heavily on iterative
calculations, require enormous computational time
to obtain reasonable solutions of assembly sequence.

If there is a mathematical model that can capture the
causal relationship between the assembly sequence
and its performance, not only can the assembly
sequence be searched more efficiently, but also
human engineers modify the construction sequence
while referring to the output of the mathematical
model; in this sense, a new collaborative design
process between humans and computers can also be
expected.

To this end, we focus on reinforcement learning (RL),
which is a type of machine learning, in order to build
a mathematical model. RL is a method to learn a

mailto:hayashi.kazuki@archi.kyoto-u.ac.jp
mailto:ohsaki@archi.kyoto-u.ac.jp
mailto:kotera.masaya.25n@st.kyoto-u.ac.jp
https://doi.org/10.20898/j.iass.2022.016
mailto:hayashi.kazuki@archi.kyoto-u.ac.jp
mailto:hayashi.kazuki@archi.kyoto-u.ac.jp
mailto:ohsaki@archi.kyoto-u.ac.jp
mailto:ohsaki@archi.kyoto-u.ac.jp
mailto:kotera.masaya.25n@st.kyoto-u.ac.jp
mailto:kotera.masaya.25n@st.kyoto-u.ac.jp
https://doi.org/10.20898/j.iass.2022.016
https://doi.org/10.20898/j.iass.2022.016
https://doi.org/10.20898/j.iass.2022.016

JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR SHELL AND SPATIAL STRUCTURES: J. IASS

 233

sequential decision-making process to maximize
rewards through a huge number of simulations.
Although RL has been reported to perform well in
tasks that are difficult to control by rule-based
programming [3] and in solving optimization
problems [4], RL has rarely been applied to the field
of skeletal structures because of its complex
connectivity [5].

Figure 1 illustrates the training scheme outlined in
this paper. In this research, truss models are
converted into a data structure called a graph
consisting of nodes and edges, and a method
combining graph embedding (GE) [6] and RL is
applied to develop an agent that can efficiently
generate a stable assembly path for arbitrary 3D
trusses. Furthermore, the trained agent is
successfully implemented within 3D modeling
software as a user-friendly component.

Figure 1: Training scheme for assembly sequence

optimization

This paper is organized as follows. Section 2
formulates the assembly sequence optimization
problem dealt with in this paper. Section 3 outlines
the method of converting the optimization problem
into an RL task and the combined method of GE and
RL to train the agent. Section 4 presents numerical
examples using various truss models. Section 5
describes the deployment of the trained agent and
provides examples of visualization of the assembly
sequence generated by the component. Finally,
Section 6 presents the conclusions.

2. ASSEMBLY SEQUENCE OPTIMIZATION
PROBLEM

A step of the assembly sequence of a truss shall be
considered as a process of installing one member,
and the assembly of a truss with mn members is
supposed to be completed in mn steps. Let ()c

d
tn be

the total number of DOFs that are not constrained by
permanent supports at step ct , ()crank ()tK be the
rank of the global stiffness matrix () () ()c c

c d dR
t tn nt ×∈K at

step ct , and () () ()c c c
is d rank ()t t tn n= − K be the degree of

instability. At this step, there are ()c
is
tn zero-

eigenvalues for ()ctK , and the eigenmodes
corresponding to the zero eigenvalues are unstable
deformations that should be constrained by

temporary supports. To reduce the workload
involved in the installation and removal of temporary
supports, the temporary supports from the previous
step are preferentially selected as a candidate for
temporary supports.

Let ()c
ts
tn denote the number of temporary supports at

step ct , the cost function F for minimizing the
number of temporary supports in the entire
construction process is defined as

 ()
m

c

c

ts
1

n
t

t
F n

=

=∑ (1)

3. TRAINING METHOD

3.1. Conversion to a reinforcement learning
task

Consider the process of reversely tracing the
assembly sequence, i.e., removing a member at each
step from the completed state until all members have
been removed. The decision-making process in a
typical RL task is assumed to be a Markov decision
process (MDP), in which the transition to the next
state 's and the observed reward r depend only on
the current state s and action a . For this
prerequisite, we first define the components s , a ,
and r of the disassembly process.

The action a is defined as the operation of removing
one member from the existing members at the
current step. The reward associated with the removal
of the member at step ct is determined in accordance
with Eq. (1) as

()c
ts
tr n= − (2)

Let c()
n
tn and c()

m
tn denote the numbers of existing

nodes and members at step ct , respectively. The
state s can be expressed as a tuple { }ˆ,C v , in which

() ()c c
m nR

t tn n×∈C is a connectivity matrix with respect to
existing truss members at step ct , and

()c
fn nˆ R

tn n×∈v is
the input matrix that concatenates node inputs kv

fnR n∈ c()
n(1, ,)tk n= . Here, fn 2n = binary flags to

distinguish permanent pin-supports and locally
unstable nodes are adopted as node input. In
particular, the binary flag for local instability is very
important because nodal instability cannot be
evaluated solely by member connectivity. For
example, while the support condition and member
connectivity between the two trusses in Fig. 2 are the
same, the central node in the left figure is locally
stable and that in the right figure is unstable.

Vol. 63 (2022) No. 4 December n. 214

234

Figure 2: Stable (left) and unstable (right) two-bar trusses

Local instability of nodes can be numerically
determined according to the dimensionality of the
truss model. For a 2D truss, if all the existing
members connected to a certain node are on the same
axis, the node is regarded as locally unstable. For a
3D truss, when all the existing members connected
to a certain node are on the same plane, the node is
regarded as locally unstable.

The node inputs do not include properties that
require structural analysis, such as stresses,
displacements, and eigenvalues of stiffness matrices.
This implies that the agent can estimate the assembly
order without performing any structural analysis
after the training by RL is completed. From the
above settings, the reward r and the next state 's
are uniquely determined by the current state-action
pair s and a , and this disassembly process is
successfully formulated as an MDP.

However, the state { }ˆ,s = C v is difficult to handle by
RL because the sizes of C and v̂ change according
to the numbers of existing nodes and members,
which requires unrealistic computational costs to
train the agent for each truss that is to be assembled.
To address this problem, GE is introduced below to
construct an RL agent trainable using various trusses
with fewer parameters.

3.2. Extraction of member features using graph
embedding

In this section, the feature vectors of each member
with size fn are extracted using GE to approximate
the state { }ˆ,s = C v . Using fully connected neural
network layers 1 5, ,Φ Φ with fn units and
trainable parameters 1 5, ,θ θ , respectively, the
member feature matrix ()ˆ

ut
μ

()c
f mR

tn n×∈ is updated by
the following equation:

()()()T
(1) 1 2ˆ ˆϕ ϕ= Φ Φ Aμ v C (3a)

() ()

()()TTT
2 5 A

3 41 c
1

ˆ
ˆ ˆ

u

u u

t
k

t t
k k

ϕ
ϕ+

=

 Φ = Φ +Φ

∑
C C μ

μ μ
n

 (3b)

where AC is a matrix that takes an absolute value for
each component of the connectivity matrix C , 1C is
a matrix whose components take 1 when the
corresponding component of C is −1 and 0
otherwise, and 2C is a matrix whose components
take 1 when the corresponding component of C is 1
and 0 otherwise. c

kn
()c

f mR
tn n×∈ is a matrix in which

the row vector containing the number of members
connected to their k th end is repeated in the column
direction fn times. ϕ is a Leaky Rectified Linear
Unit (Leaky ReLU) function with a gradient for
negative inputs of 0.2. See Ref. [5] for details.

The concepts of the formulation of Eq. (3) are
summarized as follows:

 Convolutional operation using connectivity matrix

In order to extract features taking into account the
member connectivity, we have introduced a
convolutional operation that propagates the
numerical information of neighboring nodes and
members using a connectivity matrix.

 Linear transformation using trainable parameters

Trainable parameters 1 5, ,θ θ are introduced for
calculating weighted linear sums from inputs and
features. By adjusting these parameters during the
learning process, meaningful features taking
structural properties into consideration are
extracted.

 Nonlinear transformation using activation function

Since the nonlinear approximation cannot be
performed only by the above linear transformation,
the nonlinear function Leaky ReLU is introduced.

 Feature scaling

Feature values are scaled using the number of
connected members c

1n and c
2n so that their

magnitude is uniform regardless of the number of
members connected to the node.

Equation (3b) needs to be repeated multiple times in
order to consider the contribution of nodes and
members that are not directly adjacent to each other.
In the following, Eq. (3b) is repeated twice, and the
feature (3)ˆ ˆ=μ μ is regarded as the member feature
matrix that expresses the current state.

JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR SHELL AND SPATIAL STRUCTURES: J. IASS

 235

3.3. Estimation of action values using extracted
member features

In a value-based RL, the action value (), RQ s a ∈ is
defined as the expected return, a sum of rewards in
this study, by taking action a in a certain state s
and then following the current policy.

From the member feature matrix μ̂ , the action
values of all members denoted by Q̂

()c
mR

tn∈ can be
estimated by introducing another trainable
parameters f1 2

6 R n×∈θ as

() []6ˆ ˆ ˆ;Σ=Q μ θ μ μ (4)

where [];• • is a concatenation operator. ˆ Σμ ∈
()c

f mR
tn n× is a matrix in which the sums of each row of

μ̂ are arranged c()
m
tn times in the row direction, and

can be regarded as the features of the entire truss.
Once the action values have been estimated, the
action with the highest expected return can be
determined by the following equation, which is
called the greedy policy.

() ()argmax ,
a

s Q s aπ = (5)

3.4. Loss minimization for training

Here, the learning problem can be defined as
adjusting the trainable parameters { }1 6, ,=Θ θ θ
so as to appropriately select the best actions and
maximize the return. To this end, it is important to
define the error that Θ should minimize. When
action a is taken in state s , and next state 's and
reward r are observed, the estimation error δ of the
action value is defined by

()

()

1

'1
',argmax ', ' | |

, |

m
t m

t
at

r Q s Q s a

Q s a

γ γ
δ

−

=

 +
 =

−

∑ Θ Θ

Θ

 (6)

where Θ is the trainable parameters obtained at the
previous learning step, and is synchronized with the
current trainable parameter Θ every 100 steps,
which stabilizes the training [3]. The number m is
the hyper-parameter of multi-step learning [7], in
which the rewards from the current state to m steps
ahead are memorized, and the loss is computed using
those rewards and the estimated action value in the
state m steps ahead. Since the gradient of δ
becomes discontinuous at 0δ = , the squared error

2L δ= shall be the loss to be minimized.

To stabilize the training process, we further
introduce mini-batch training, in which trainable
parameters are updated using multiple samples at the
same time [5]. During the sampling phase,
prioritized experience replay [8] is further employed
to preferentially use samples that are highly
unexpected to the agent. Specifically, the most recent
error iδ calculated for sample i is used to weight the
sampling probability ip as follows:

B

1

i
i N

k
k

p ν

ν
=

=

∑
 (7a)

()0.60.001i iν δ= + (7b)

The average of errors in the mini-batch is defined as
the loss function to be minimized in mini-batch
training. The trainable parameters are optimized
using Adam [9], which is a gradient-based
optimization algorithm frequently adopted for
training neural networks.

4. NUMERICAL EXAMPLES

4.1. Training settings

In the following, the units are omitted because they
are not important. An episode is defined as the
process of removing all members from the
completed truss. At the beginning of the episode, the
shape and connectivity of the truss is randomly
generated from a set of trusses for training. At each
step of the episode, the agent calculates the action
value from the input based on Eqs. (3) and (4),
selects an action, removes a member, and computes
temporary support positions using eigenvalue
analysis. Since the location of the temporary
supports does not depend on the material or cross-
sectional information, the Young's modulus and the
cross-sectional area of the members are 1.0 for
convenience.

As shown in Fig. 3(a), various trusses of different
shape and connectivity are used for training so that
the agent can demonstrate generalization
performance. The flat roof trusses have four
permanent pin-supports randomly selected from the
bottom nodes to form a rectangle. The bottom nodes
of the dome truss are always permanently pin-
supported. During training, initial nodal positions are
subjected to small irregularity with a probability of
0.05, so that the agent can properly learn the local
instability.

Vol. 63 (2022) No. 4 December n. 214

236

In order to let the agent experience various states and
actions during training, the agent acts based on the
ε -greedy policy that selects random behavior with a
low probability ε , while the agent adopts the greedy
policy that eliminates randomness during
verification. In order to reduce randomness as the
training progresses, ε is calculated by the following
equation:

ep ep

ep

0.2
n n

n
ε

−
= ⋅ (8)

where epn is the number of trained episodes and epn
is the total number of episodes, which is 5000 in this
study.

(a)

(b) (c)

(d)

Figure 3: Spatial trusses used during training. (a): for
training. (b,c,d): for validation.

4.2. Training results

It took 2.5 hours to complete the 5000-episode
training. Figure 4 shows the history of cumulative
rewards for the trusses of Figs. 3(b) and 3(c)
recorded every 10 episodes. For both models, the
cumulative reward sharply increases in the first 200
episodes and continues to maintain high values. This
stable history is noteworthy considering that these
shapes were not used during training. This implies
that the agent exhibited generalization performance
through limited learning materials.

Figure 4: History of cumulative rewards in each test

Figure 5: Assembly sequence of the dome model (Fig.

2(b)) predicted by the best agent (plan view)

▲: permanent support
▲: temporary support

JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR SHELL AND SPATIAL STRUCTURES: J. IASS

 237

Figure 6: Assembly sequence of the flat model (Fig. 2(c))

predicted by the best agent (plan view)

Let the agent at 3470 trained episodes, which has the
least product of cumulative rewards obtained for

each of the two trusses in Figs. 3(b) and 3(c), be the
best agent. The assembly sequences of the trusses for
validation estimated by the best agent are shown in
Figs. 5-7, respectively. In the dome model, the
members were sequentially constructed from the
outer supports to the inner nodes. In the flat model,
members were sequentially constructed from a pair
of supports to the other pair of supports, and then the
outer peripheral members were finally constructed.
In the latticed shell model, the arch shape was
constructed from the support and then the members
were constructed towards the remaining support.

(step 200) (step 400)

(step 600) (step 797, fully assembled)

Figure 7: Assembly sequence of the latticed shell model
(Fig. 2(d)) predicted by the best agent

4.3. Comparison to metaheuristic methods

In order to quantitatively evaluate the ability of the
trained agent for searching solutions, we compare
the trained agent with two metaheuristic methods,
genetic algorithm (GA) and covariance matrix
adaptation evolution strategy (CMA-ES) [10].

The GA-based method proposed by Kaneko et al.
[11] is adopted as the first benchmark because this
method deals with the similar problem of minimizing
the number of temporary supports. The setting of GA
hyperparameters conforms to Ref. [11] (population:
50, generation: 100, crossover rate: 0.4, mutation
rate: 0.005, elite selection rate: 0.02, parent selection
by roulette search, etc.). However, in the crossover
process, the original method is not used, and a
uniform order crossover that can efficiently obtain
almost equivalent crossover results is used. For
selection methods other than elite-selected
individuals not described in Ref. [11], roulette
selection based on fitness is employed.

Vol. 63 (2022) No. 4 December n. 214

238

Table 1: Comparison of the optimization performance (te:
average elapsed time for each optimization)

* Not implemented due to huge computational cost

CMA-ES introduces covariance matrix adaptation
(CMA) into a stochastic algorithm, evolution
strategy (ES). CMA-ES is chosen as the second
benchmark method because CMA-ES-based
methods outperform other metaheuristics for
functions that are difficult to optimize [12], and
because it has relatively few hyperparameters. Since
CMA-ES is a method that deals with continuous
variables, the sorted index of the continuous
variables is used as the assembly order. The number
of individuals and the number of generations are set
to 50 and 100, respectively.

GA and CMA-ES algorithms are implemented using
DEAP [13], a Python library for evolutionary
algorithms. Since the quality of solutions obtained
by metaheuristics strongly depends on the initial
solution, GA and CMA-ES algorithms are
implemented 5 times for randomly generated initial
solutions.

Table 1 shows the results of optimizing the assembly
sequence using the trained agent (denoted as
GE+RL), GA, and CMA-ES. Note again that the
smaller F is, the more rational the assembly order
is with fewer temporary supports. It can be seen that
GE+RL efficiently obtains better solutions than
those obtained by GA and CMA-ES, which required
a huge computational time.

The superior computational efficiency of GE+RL is
due not only to the small computational load of using
the trained agent, but also to the saving
computational cost for poor solutions, which is
wasted in GA and CMA-ES. Since GA and CMA-
ES are stochastic approaches, poor solutions that
require a large number of temporary supports occur
during optimization. In such cases, more repetitive

eigenvalue analysis is required to determine the
temporary support locations compared with superior
solutions. On the other hand, in GE + RL, the agent
attempts to generate superior solutions based on
experience, thus avoiding an increase in the
computational cost for the eigenvalue analysis
during training. This is the reason why the time
required to train the agent was relatively short.

5. DEPLOYMENT

Figure 8: Developed Grasshopper component that
packages the trained RL agent

Figure 9: Colormaps of predicted assembly sequences

visualized in Rhino and Grasshopper

Since the process of calculating the action values by
this method is a sequence of simple matrix
operations, the trained agent can be easily used on
different computers once the trainable parameters
are imported. Taking advantage of this, we packaged
the trained agent as a component compatible with
Grasshopper, a visual programming interface of the
Rhino 3D modelling software, as shown in Fig. 8.

Model GE+RL GA CMA-ES

Fig. 4(b)
n

m

25
56

n
n

=
=

F 63 medianF 163 medianF 85

minF 117 minF 77

et [s] 0.2 et [s] 4936.2 et [s] 772.9

Fig. 4(c)
n

m

28
80

n
n

=
=

F 108 medianF 605 medianF 290

minF 543 minF 285

et [s] 0.3 et [s] 50197.6 et [s] 5293.9

Fig. 4(d)
n

m

220
797

n
n

=
=

F 666 medianF --* medianF --*

minF --* minF --*

et [s] 47.5 et [s] --* et [s] --*

JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR SHELL AND SPATIAL STRUCTURES: J. IASS

 239

This component automatically calculates the
assembly order using the trained agent by specifying
the nodal positions, the line segments representing
the member connectivity, and the positions of the
supports. This component is freely available in
Food4Rhino, plug-in community service for Rhino.
See more details at https://www.food4rhino.com/en/
app/assembly-sequence-predictor.

Figure 9 shows examples of displaying the assembly
sequence predicted by the developed component in a
colormap. The red members are assembled in the
early stage, and the blue members are assembled in
the final stage. In this way, packaging the agent for
use within 3D modeling software has made it
possible to easily visualize complex sequence data in
an easy-to-see format.

6. CONCLUSION

We propose a machine learning method that
combines GE and RL for the assembly sequence
optimization for spatial trusses to minimize the
number of temporary supports in the assembly
process. Representing the state of the trusses by GE
enables to extract the feature vectors of the same size
and consider the connectivity of nodes and members.
Since the sizes of trainable parameters do not depend
on the numbers of nodes and members, the same
calculation procedure can be applied to trusses of
different configuration. Owing to this property,
various trusses can be used during training and the
trained agent can also be applied to various trusses.

The trained agent successfully generated superior
solutions with much less computational cost
compared with metaheuristic approaches. The
trained agent is further implemented as a
Grasshopper component for easy use. These
achievements may accelerate the use of machine
learning for discrete structures, which have been
difficult to apply machine learning methods.

ACKNOWLEDGMENTS

This research was sponsored by JSPS KAKENHI
No. JP20H04467 and JSPS Grant-in-Aid for Young
Scientists (Start-up) No. JP21K20461.

DATA AVAILABILITY

All data and code used for this publication are
publicly available from the following repository:
https://github.com/kazukihayashi/AssemblySequen
ceOptimization.git. The developed Grasshopper
component is available at https://www.food4rhino.
com/en/app/assembly-sequence-predictor.

REFERENCES

[1] M. McEvoy, E. Komendera and N. Correll,
“Assembly path planning for stable robotic
construction,” in 2014 IEEE International
Conference on Technologies for Practical
Robot Applications (TePRA), Boston, MA,
USA, April 14-15, 2014, IEEE, pp. 1-6, 2014.
(DOI: 10.1109/TePRA.2014.6869152)

[2] L. Brodbeck and F. Iida, “Automatic real-
world assembly of machine-designed
structures,” in 2014 IEEE International
Conference on Robotics and Automation
(ICRA), Hong Kong, China, May 31-June 5,
2014,pp.1221-1226,2014.
(DOI: 10.1109/ICRA.2014.6907009)

[3] V. Mnih et al., “Human-level control through
deep reinforcement learning,” Nature, vol.
518,pp.529–533,2015.
(DOI: 10.1038/nature14236)

[4] K. M. Powell, D. Machalek and T. Quah,
“Real-time optimization using reinforcement
learning,” Computers & Chemical
Engineering, vol. 143, no. 107077, 2020.
(DOI: 10.1016/j.compchemeng.2020.107077)

[5] K. Hayashi and M. Ohsaki, “Graph-based
reinforcement learning for discrete cross-
section optimization of planar steel frames,”
Advanced Engineering Informatics, vol. 51,
no.101512,2021.
(DOI:10.1016/j.aei.2021.101512)

[6] H. Cai, V. W. Zheng and K. Chang, “A
comprehensive survey of graph embedding:
Problems, techniques, and applications”,
IEEE Transactions on Knowledge and Data
Engineering, vol. 30, no. 9, pp. 1616–1637,
2018. (DOI: 10.1109/TKDE.2018.2807452)

[7] R. S. Sutton and A. G. Barto, Introduction to
Reinforcement Learning, MIT Press,
Cambridge, MA, USA, 1st edition, 1998.
(ISBN: 978-0262039246)

[8] T. Schaul, J. Quan, I. Antonoglou and D.
Silver, “Prioritized experience replay,” arXiv,
no.1511.05952,2015.
(DOI: 10.48550/arXiv.1511.05952)

[9] D. P. Kingma and J. Ba, “Adam: A Method for
Stochastic Optimization,” arXiv, no.
1412.6980,2014.
(DOI: 10.48550/arXiv.1412.6980)

https://doi.org/10.1109/TePRA.2014.6869152
https://doi.org/10.1109/ICRA.2014.6907009
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.compchemeng.2020.107077
https://doi.org/10.1016/j.aei.2021.101512
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.48550/arXiv.1511.05952
https://doi.org/10.48550/arXiv.1412.6980
http://www.food4rhino.com/en/
http://www.food4rhino
https://doi.org/10.1109/TePRA.2014.6869152
https://doi.org/10.1109/TePRA.2014.6869152
https://doi.org/10.1109/ICRA.2014.6907009
https://doi.org/10.1109/ICRA.2014.6907009
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.compchemeng.2020.107077
https://doi.org/10.1016/j.compchemeng.2020.107077
https://doi.org/10.1016/j.aei.2021.101512
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.48550/arXiv.1511.05952
https://doi.org/10.48550/arXiv.1511.05952
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980

Vol. 63 (2022) No. 4 December n. 214

240

[10] H. Nikolaus and O. Andreas, “Adapting
arbitrary normal mutation distributions in
evolution strategies: The covariance matrix
adaptation,” in the 1996 IEEE International
Conference on Evolutionary Computation,
Nagoya, Japan, May 20-22, 1996, IEEE, pp.
312-317,1996.
(DOI: 10.1109/ICEC.1996.542381)

[11] Y. Kaneko et al., “Construction process
optimization for truss structures by genetic
algorithms,” J. Struct. Constr. Eng., AIJ, vol.
63, no. 508, pp. 87–92, 1998. (in Japanese).
(DOI: 10.3130/aijs.63.87_3)

[12] N. Hansen, A. Auger, R. Ros, S. Finck and P.
Pošík, “Comparing results of 31 algorithms
from the black-box optimization
benchmarking BBOB-2009,” in the 12th
annual conference companion on Genetic and
Evolutionary computation, Portland, OR,
USA, July 7-11, 2010, Association for
Computing Machinery, pp. 1689-1696, 2010.
(DOI: 10.1145/1830761.1830790)

[13] F. Fortin et al., “DEAP: Evolutionary
algorithms made easy,” Journal of Machine
Learning Research, vol. 13, pp. 2171-2175,
2012.

https://doi.org/10.1109/ICEC.1996.542381
https://doi.org/10.3130/aijs.63.87_3
https://doi.org/10.1145/1830761.1830790
https://doi.org/10.1109/ICEC.1996.542381
https://doi.org/10.1109/ICEC.1996.542381
https://doi.org/10.3130/aijs.63.87_3
https://doi.org/10.3130/aijs.63.87_3
https://doi.org/10.1145/1830761.1830790
https://doi.org/10.1145/1830761.1830790

