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ABSTRACT 

We consider a truss as a graph consisting of nodes and edges, and combine graph embedding (GE) and 
reinforcement learning (RL) to develop an agent for generating a stable assembly path for a truss with arbitrary 
configuration. GE is a method of embedding the features of a graph into a vector space. By using GE, the agent 
can obtain numerical information on neighboring members and nodes considering their connectivity. Since the 
stability of a structure is strongly affected by the relative positions of members and nodes, feature extraction by 
GE should be effective in considering the stability of a truss. The proposed method not only can train agents using 
trusses with arbitrary connectivity but also can apply trained agents to trusses with arbitrary connectivity, 
ensuring the versatility of the trained agents’ applicability. In the numerical examples, the trained agents are 
verified to find rational assembly sequences for various trusses more than 1000 times faster than metaheuristic 
approaches. The trained agent is further implemented as a user-friendly component compatible with 3D modeling 
software. 
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1. INTRODUCTION 

To deal with the increasing construction costs and 
ensure the safety of construction work, it is 
becoming more and more important to improve the 
efficiency of construction processes. There have 
been many attempts to introduce optimization 
methods to create a rational construction plan. In 
particular, the problem of optimizing the order of 
assembling discrete structural components is a 
combinatorial optimization problem with a huge 
number of patterns, and is also an area of recent 
interest in robot-assisted construction planning 
[1,2]. 

Most of the existing optimization approaches to 
assembly planning are based on mathematical 
programming and metaheuristics. When the 
structural stability changes in the middle of the 

assembly sequence, structural analysis is required at 
each step. Accordingly, mathematical programming 
and metaheuristics, which rely heavily on iterative 
calculations, require enormous computational time 
to obtain reasonable solutions of assembly sequence. 

If there is a mathematical model that can capture the 
causal relationship between the assembly sequence 
and its performance, not only can the assembly 
sequence be searched more efficiently, but also 
human engineers modify the construction sequence 
while referring to the output of the mathematical 
model; in this sense, a new collaborative design 
process between humans and computers can also be 
expected. 

To this end, we focus on reinforcement learning (RL), 
which is a type of machine learning, in order to build 
a mathematical model. RL is a method to learn a 
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sequential decision-making process to maximize 
rewards through a huge number of simulations. 
Although RL has been reported to perform well in 
tasks that are difficult to control by rule-based 
programming [3] and in solving optimization 
problems [4], RL has rarely been applied to the field 
of skeletal structures because of its complex 
connectivity [5]. 

Figure 1 illustrates the training scheme outlined in 
this paper. In this research, truss models are 
converted into a data structure called a graph 
consisting of nodes and edges, and a method 
combining graph embedding (GE) [6] and RL is 
applied to develop an agent that can efficiently 
generate a stable assembly path for arbitrary 3D 
trusses. Furthermore, the trained agent is 
successfully implemented within 3D modeling 
software as a user-friendly component. 

  
Figure 1: Training scheme for assembly sequence 

optimization 

This paper is organized as follows. Section 2 
formulates the assembly sequence optimization 
problem dealt with in this paper. Section 3 outlines 
the method of converting the optimization problem 
into an RL task and the combined method of GE and 
RL to train the agent. Section 4 presents numerical 
examples using various truss models. Section 5 
describes the deployment of the trained agent and 
provides examples of visualization of the assembly 
sequence generated by the component. Finally, 
Section 6 presents the conclusions. 

2. ASSEMBLY SEQUENCE OPTIMIZATION 
PROBLEM 

A step of the assembly sequence of a truss shall be 
considered as a process of installing one member, 
and the assembly of a truss with mn  members is 
supposed to be completed in mn  steps. Let ( )c

d
tn  be 

the total number of DOFs that are not constrained by 
permanent supports at step ct , ( )crank ( )tK  be the 
rank of the global stiffness matrix ( ) ( ) ( )c c

c d dR
t tn nt ×∈K  at 

step ct , and ( ) ( ) ( )c c c
is d rank ( )t t tn n= − K  be the degree of 

instability. At this step, there are ( )c
is
tn  zero-

eigenvalues for ( )ctK , and the eigenmodes 
corresponding to the zero eigenvalues are unstable 
deformations that should be constrained by 

temporary supports. To reduce the workload 
involved in the installation and removal of temporary 
supports, the temporary supports from the previous 
step are preferentially selected as a candidate for 
temporary supports. 

Let ( )c
ts
tn  denote the number of temporary supports at 

step ct , the cost function F for minimizing the 
number of temporary supports in the entire 
construction process is defined as 

                           ( )
m

c

c

ts
1

n
t

t
F n

=

=∑  (1) 

3. TRAINING METHOD 

3.1. Conversion to a reinforcement learning 
task 

Consider the process of reversely tracing the 
assembly sequence, i.e., removing a member at each 
step from the completed state until all members have 
been removed. The decision-making process in a 
typical RL task is assumed to be a Markov decision 
process (MDP), in which the transition to the next 
state 's  and the observed reward r  depend only on 
the current state s  and action a . For this 
prerequisite, we first define the components s , a , 
and r  of the disassembly process. 

The action a  is defined as the operation of removing 
one member from the existing members at the 
current step. The reward associated with the removal 
of the member at step ct is determined in accordance 
with Eq. (1) as 

( )c
ts
tr n= −  (2) 

Let c( )
n
tn and c( )

m
tn  denote the numbers of existing 

nodes and members at step ct , respectively. The 
state s  can be expressed as a tuple { }ˆ,C v , in which 

( ) ( )c c
m nR

t tn n×∈C  is a connectivity matrix with respect to 
existing truss members at step ct , and 

( )c
fn nˆ R

tn n×∈v is 
the input matrix that concatenates node inputs kv  

fnR n∈  c( )
n( 1, , )tk n=  . Here, fn 2n =  binary flags to 

distinguish permanent pin-supports and locally 
unstable nodes are adopted as node input. In 
particular, the binary flag for local instability is very 
important because nodal instability cannot be 
evaluated solely by member connectivity. For 
example, while the support condition and member 
connectivity between the two trusses in Fig. 2 are the 
same, the central node in the left figure is locally 
stable and that in the right figure is unstable. 
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Figure 2: Stable (left) and unstable (right) two-bar trusses 

Local instability of nodes can be numerically 
determined according to the dimensionality of the 
truss model. For a 2D truss, if all the existing 
members connected to a certain node are on the same 
axis, the node is regarded as locally unstable. For a 
3D truss, when all the existing members connected 
to a certain node are on the same plane, the node is 
regarded as locally unstable. 

The node inputs do not include properties that 
require structural analysis, such as stresses, 
displacements, and eigenvalues of stiffness matrices. 
This implies that the agent can estimate the assembly 
order without performing any structural analysis 
after the training by RL is completed. From the 
above settings, the reward r  and the next state 's  
are uniquely determined by the current state-action 
pair s  and a , and this disassembly process is 
successfully formulated as an MDP.  

However, the state { }ˆ,s = C v  is difficult to handle by 
RL because the sizes of C  and v̂  change according 
to the numbers of existing nodes and members, 
which requires unrealistic computational costs to 
train the agent for each truss that is to be assembled. 
To address this problem, GE is introduced below to 
construct an RL agent trainable using various trusses 
with fewer parameters. 

3.2. Extraction of member features using graph 
embedding 

In this section, the feature vectors of each member 
with size fn  are extracted using GE to approximate 
the state { }ˆ,s = C v . Using fully connected neural 
network layers 1 5, ,Φ Φ  with fn  units and 
trainable parameters 1 5, ,θ θ , respectively, the 
member feature matrix ( )ˆ

ut
μ  

( )c
f mR

tn n×∈ is updated by 
the following equation: 

( )( )( )T
(1) 1 2ˆ ˆϕ ϕ= Φ Φ Aμ v C  (3a) 

( ) ( )

( )( )TTT
2 5 A

3 41 c
1

ˆ
ˆ ˆ

u

u u

t
k

t t
k k

ϕ
ϕ+

=

  Φ   = Φ +Φ 
  
 

∑
C C μ

μ μ
n

 (3b) 

where AC  is a matrix that takes an absolute value for 
each component of the connectivity matrix C , 1C  is 
a matrix whose components take 1 when the 
corresponding component of C  is −1 and 0 
otherwise, and 2C  is a matrix whose components 
take 1 when the corresponding component of C  is 1 
and 0 otherwise. c

kn
( )c

f mR
tn n×∈ is a matrix in which 

the row vector containing the number of members 
connected to their k th end is repeated in the column 
direction fn  times. ϕ  is a Leaky Rectified Linear 
Unit (Leaky ReLU) function with a gradient for 
negative inputs of 0.2. See Ref. [5] for details. 

The concepts of the formulation of Eq. (3) are 
summarized as follows: 

 Convolutional operation using connectivity matrix 

In order to extract features taking into account the 
member connectivity, we have introduced a 
convolutional operation that propagates the 
numerical information of neighboring nodes and 
members using a connectivity matrix. 

 Linear transformation using trainable parameters 

Trainable parameters 1 5, ,θ θ  are introduced for 
calculating weighted linear sums from inputs and 
features. By adjusting these parameters during the 
learning process, meaningful features taking 
structural properties into consideration are 
extracted. 

 Nonlinear transformation using activation function 

Since the nonlinear approximation cannot be 
performed only by the above linear transformation, 
the nonlinear function Leaky ReLU is introduced. 

 Feature scaling 

Feature values are scaled using the number of 
connected members c

1n  and c
2n  so that their 

magnitude is uniform regardless of the number of 
members connected to the node. 

Equation (3b) needs to be repeated multiple times in 
order to consider the contribution of nodes and 
members that are not directly adjacent to each other. 
In the following, Eq. (3b) is repeated twice, and the 
feature (3)ˆ ˆ=μ μ  is regarded as the member feature 
matrix that expresses the current state. 
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3.3. Estimation of action values using extracted 
member features 

In a value-based RL, the action value ( ), RQ s a ∈  is 
defined as the expected return, a sum of rewards in 
this study, by taking action a  in a certain state s  
and then following the current policy.  

From the member feature matrix μ̂ , the action 
values of all members denoted by Q̂

( )c
mR

tn∈  can be 
estimated by introducing another trainable 
parameters f1 2

6 R n×∈θ  as 

( ) [ ]6ˆ ˆ ˆ;Σ=Q μ θ μ μ  (4) 

where [ ];• •  is a concatenation operator. ˆ Σμ ∈ 
( )c

f mR
tn n×  is a matrix in which the sums of each row of 

μ̂  are arranged c( )
m
tn  times in the row direction, and 

can be regarded as the features of the entire truss. 
Once the action values have been estimated, the 
action with the highest expected return can be 
determined by the following equation, which is 
called the greedy policy. 

( ) ( )argmax ,
a

s Q s aπ =  (5) 

3.4. Loss minimization for training 

Here, the learning problem can be defined as 
adjusting the trainable parameters { }1 6, ,=Θ θ θ  
so as to appropriately select the best actions and 
maximize the return. To this end, it is important to 
define the error that Θ  should minimize. When 
action a  is taken in state s , and next state 's  and 
reward r  are observed, the estimation error δ  of the 
action value is defined by 

( )

( )

1

'1
',argmax ', ' | |

, |

m
t m

t
at

r Q s Q s a

Q s a

γ γ
δ

−

=

 +  
 =

−

∑ Θ Θ

Θ


 (6) 

where Θ  is the trainable parameters obtained at the 
previous learning step, and is synchronized with the 
current trainable parameter Θ  every 100 steps, 
which stabilizes the training [3].  The number m  is 
the hyper-parameter of multi-step learning [7], in 
which the rewards from the current state to m  steps 
ahead are memorized, and the loss is computed using 
those rewards and the estimated action value in the 
state m  steps ahead. Since the gradient of δ
becomes discontinuous at 0δ = , the squared error 

2L δ=  shall be the loss to be minimized. 

To stabilize the training process, we further 
introduce mini-batch training, in which trainable 
parameters are updated using multiple samples at the 
same time [5]. During the sampling phase, 
prioritized experience replay [8] is further employed 
to preferentially use samples that are highly 
unexpected to the agent. Specifically, the most recent 
error iδ  calculated for sample i  is used to weight the 
sampling probability ip  as follows: 

B

1

i
i N

k
k

p ν

ν
=

=

∑
 (7a) 

( )0.60.001i iν δ= +  (7b) 

The average of errors in the mini-batch is defined as 
the loss function to be minimized in mini-batch 
training. The trainable parameters are optimized 
using Adam [9], which is a gradient-based 
optimization algorithm frequently adopted for 
training neural networks. 

4. NUMERICAL EXAMPLES 

4.1. Training settings 

In the following, the units are omitted because they 
are not important. An episode is defined as the 
process of removing all members from the 
completed truss. At the beginning of the episode, the 
shape and connectivity of the truss is randomly 
generated from a set of trusses for training. At each 
step of the episode, the agent calculates the action 
value from the input based on Eqs. (3) and (4), 
selects an action, removes a member, and computes 
temporary support positions using eigenvalue 
analysis. Since the location of the temporary 
supports does not depend on the material or cross-
sectional information, the Young's modulus and the 
cross-sectional area of the members are 1.0 for 
convenience. 

As shown in Fig. 3(a), various trusses of different 
shape and connectivity are used for training so that 
the agent can demonstrate generalization 
performance. The flat roof trusses have four 
permanent pin-supports randomly selected from the 
bottom nodes to form a rectangle. The bottom nodes 
of the dome truss are always permanently pin-
supported. During training, initial nodal positions are 
subjected to small irregularity with a probability of 
0.05, so that the agent can properly learn the local 
instability. 
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In order to let the agent experience various states and 
actions during training, the agent acts based on the 
ε -greedy policy that selects random behavior with a 
low probability ε , while the agent adopts the greedy 
policy that eliminates randomness during 
verification. In order to reduce randomness as the 
training progresses, ε  is calculated by the following 
equation: 

ep ep

ep

0.2
n n

n
ε

−
= ⋅  (8) 

where epn  is the number of trained episodes and epn  
is the total number of episodes, which is 5000 in this 
study. 

 

(a) 

 

(b)                                          (c) 

 

(d) 

Figure 3: Spatial trusses used during training. (a): for 
training. (b,c,d): for validation. 

4.2. Training results 

It took 2.5 hours to complete the 5000-episode 
training. Figure 4 shows the history of cumulative 
rewards for the trusses of Figs. 3(b) and 3(c) 
recorded every 10 episodes. For both models, the 
cumulative reward sharply increases in the first 200 
episodes and continues to maintain high values. This 
stable history is noteworthy considering that these 
shapes were not used during training. This implies 
that the agent exhibited generalization performance 
through limited learning materials. 

 
Figure 4: History of cumulative rewards in each test 

 
Figure 5: Assembly sequence of the dome model (Fig. 

2(b)) predicted by the best agent (plan view) 

▲: permanent support 
▲: temporary support 
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Figure 6: Assembly sequence of the flat model (Fig. 2(c)) 

predicted by the best agent (plan view) 

Let the agent at 3470 trained episodes, which has the 
least product of cumulative rewards obtained for 

each of the two trusses in Figs. 3(b) and 3(c), be the 
best agent. The assembly sequences of the trusses for 
validation estimated by the best agent are shown in 
Figs. 5-7, respectively. In the dome model, the 
members were sequentially constructed from the 
outer supports to the inner nodes. In the flat model, 
members were sequentially constructed from a pair 
of supports to the other pair of supports, and then the 
outer peripheral members were finally constructed. 
In the latticed shell model, the arch shape was 
constructed from the support and then the members 
were constructed towards the remaining support. 

 
(step 200)                               (step 400) 

 
(step 600)                  (step 797, fully assembled) 

Figure 7: Assembly sequence of the latticed shell model 
(Fig. 2(d)) predicted by the best agent 

4.3. Comparison to metaheuristic methods 

In order to quantitatively evaluate the ability of the 
trained agent for searching solutions, we compare 
the trained agent with two metaheuristic methods, 
genetic algorithm (GA) and covariance matrix 
adaptation evolution strategy (CMA-ES) [10]. 

The GA-based method proposed by Kaneko et al. 
[11] is adopted as the first benchmark because this 
method deals with the similar problem of minimizing 
the number of temporary supports. The setting of GA 
hyperparameters conforms to Ref. [11] (population: 
50, generation: 100, crossover rate: 0.4, mutation 
rate: 0.005, elite selection rate: 0.02, parent selection 
by roulette search, etc.). However, in the crossover 
process, the original method is not used, and a 
uniform order crossover that can efficiently obtain 
almost equivalent crossover results is used. For 
selection methods other than elite-selected 
individuals not described in Ref. [11], roulette 
selection based on fitness is employed. 
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Table 1: Comparison of the optimization performance (te: 
average elapsed time for each optimization) 

* Not implemented due to huge computational cost 
 

CMA-ES introduces covariance matrix adaptation 
(CMA) into a stochastic algorithm, evolution 
strategy (ES). CMA-ES is chosen as the second 
benchmark method because CMA-ES-based 
methods outperform other metaheuristics for 
functions that are difficult to optimize [12], and 
because it has relatively few hyperparameters. Since 
CMA-ES is a method that deals with continuous 
variables, the sorted index of the continuous 
variables is used as the assembly order. The number 
of individuals and the number of generations are set 
to 50 and 100, respectively. 

GA and CMA-ES algorithms are implemented using 
DEAP [13], a Python library for evolutionary 
algorithms. Since the quality of solutions obtained 
by metaheuristics strongly depends on the initial 
solution, GA and CMA-ES algorithms are 
implemented 5 times for randomly generated initial 
solutions. 

Table 1 shows the results of optimizing the assembly 
sequence using the trained agent (denoted as 
GE+RL), GA, and CMA-ES. Note again that the 
smaller F  is, the more rational the assembly order 
is with fewer temporary supports. It can be seen that 
GE+RL efficiently obtains better solutions than 
those obtained by GA and CMA-ES, which required 
a huge computational time.  

The superior computational efficiency of GE+RL is 
due not only to the small computational load of using 
the trained agent, but also to the saving 
computational cost for poor solutions, which is 
wasted in GA and CMA-ES. Since GA and CMA-
ES are stochastic approaches, poor solutions that 
require a large number of temporary supports occur 
during optimization. In such cases, more repetitive 

eigenvalue analysis is required to determine the 
temporary support locations compared with superior 
solutions. On the other hand, in GE + RL, the agent 
attempts to generate superior solutions based on 
experience, thus avoiding an increase in the 
computational cost for the eigenvalue analysis 
during training. This is the reason why the time 
required to train the agent was relatively short. 

5. DEPLOYMENT 

          

Figure 8: Developed Grasshopper component that 
packages the trained RL agent 

 

 

 

 
Figure 9: Colormaps of predicted assembly sequences 

visualized in Rhino and Grasshopper 

Since the process of calculating the action values by 
this method is a sequence of simple matrix 
operations, the trained agent can be easily used on 
different computers once the trainable parameters 
are imported. Taking advantage of this, we packaged 
the trained agent as a component compatible with 
Grasshopper, a visual programming interface of the 
Rhino 3D modelling software, as shown in Fig. 8. 

Model GE+RL GA CMA-ES 

Fig. 4(b) 
n

m

25
56

n
n

=
=  

F  63 medianF  163 medianF  85 

minF  117 minF  77 

et [s] 0.2 et [s] 4936.2 et [s] 772.9 

Fig. 4(c) 
n

m

28
80

n
n

=
=  

F  108 medianF   605 medianF  290 

minF  543 minF  285 

et [s] 0.3 et [s] 50197.6 et [s] 5293.9 

Fig. 4(d) 
n

m

220
797

n
n

=
=  

F  666 medianF  --* medianF  --* 

minF  --* minF  --* 

et [s] 47.5 et [s] --* et [s] --* 
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This component automatically calculates the 
assembly order using the trained agent by specifying 
the nodal positions, the line segments representing 
the member connectivity, and the positions of the 
supports. This component is freely available in 
Food4Rhino, plug-in community service for Rhino. 
See more details at https://www.food4rhino.com/en/ 
app/assembly-sequence-predictor. 

Figure 9 shows examples of displaying the assembly 
sequence predicted by the developed component in a 
colormap. The red members are assembled in the 
early stage, and the blue members are assembled in 
the final stage.  In this way, packaging the agent for 
use within 3D modeling software has made it 
possible to easily visualize complex sequence data in 
an easy-to-see format. 

6. CONCLUSION 

We propose a machine learning method that 
combines GE and RL for the assembly sequence 
optimization for spatial trusses to minimize the 
number of temporary supports in the assembly 
process. Representing the state of the trusses by GE 
enables to extract the feature vectors of the same size 
and consider the connectivity of nodes and members. 
Since the sizes of trainable parameters do not depend 
on the numbers of nodes and members, the same 
calculation procedure can be applied to trusses of 
different configuration. Owing to this property, 
various trusses can be used during training and the 
trained agent can also be applied to various trusses. 

The trained agent successfully generated superior 
solutions with much less computational cost 
compared with metaheuristic approaches. The 
trained agent is further implemented as a 
Grasshopper component for easy use. These 
achievements may accelerate the use of machine 
learning for discrete structures, which have been 
difficult to apply machine learning methods. 
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