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In the approximate valence bond (VB) description of 1 
molecular electronic structures, the resonating VB effect 2 
might be incorporated in an efficient manner by mixing the 3 
triplet component into conventional singlet geminals. We 4 
developed a variational optimization scheme for this 5 
generalized pairing type wave function in the framework of 6 
the spin Hamiltonian model. With numerical verifications, 7 
we found the resonance stabilization is partially described 8 
through the contamination of higher spin states for molecules 9 
such as non-Kekulé hydrocarbons. 10 
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The valence bond (VB) theory, based on the Lewis’s 13 

electron pair concept, is an appealing chemical theory 14 
providing insights into molecular electronic structures from a 15 
perspective different from delocalized molecular orbitals.1–3 16 
The Heisenberg model, or classical VB model, is quite useful 17 
to qualitatively understand electronic structures from a 18 
viewpoint of localized chemical bonds. Notably, the 19 
Ovchinnikov’s rule,4 which predicts the ground state spin 20 
multiplicity of hydrocarbons, is derived from the Heisenberg 21 
model. This spin Hamiltonian theory was extensively applied 22 
to conjugated hydrocarbons.5–14 The accumulated results 23 
show that the neutral ground and low-lying excited states of 24 
many conjugated hydrocarbons are well described by this 25 
simple spin Hamiltonian model. Theoretical developments in 26 
the classical VB theory were reviewed by Klein et al.15 27 

In the rigorous VB model, however, the number of 28 
resonance structures combinatorically increases as the 29 
number of electrons in the system increases; we need to 30 
consider a huge number of VB basis functions even for 31 
medium-sized molecules. This fact complicates the 32 
computation and interpretation of VB wave functions. The 33 
situation is essentially the same in both ab initio16–18 and 34 
qualitative VB theories. Due to these circumstances, one 35 
representative resonance structure is often used to describe 36 
the electronic state in simple terms. (Chemists may 37 
unconsciously make a selection for the chemical structure 38 
formula of a conjugated hydrocarbon.) This approximation in 39 
the VB method is called perfect pairing (PP). If a simple 40 
method to correct the resonating VB effect ignored in this 41 
approximation is established, it is expected to efficiently 42 
improve the numerical accuracy of the compact trial wave 43 
function while maintaining a clear chemical picture.  44 

We mention the theory of many-electron wave functions 45 
based on the two-electron unit or geminal,19–21 a fundamental 46 
basis of our present study. Several researchers devised 47 
methods to efficiently correct the geminal product type wave 48 
functions by partially relaxing the spin symmetry of 49 

geminals.22–25 Furthermore, Surján, Szabados and their 50 
coworkers developed a perturbation theory26 and spin-51 
projection techniques27–30 to improve spin-unrestricted 52 
geminals. Some other directions to extend geminal product 53 
wave functions can be found in refs [31–33]. Notably, in the 54 
field of quantum Monte Carlo, the idea of generalized pairing 55 
(GP),34,35 or fully extended spin functions in geminals, was 56 
proposed to capture the electron correlation. By mixing the 57 
triplet functions into standard singlet-type geminals, inter-58 
geminal correlation effect is expected to be incorporated in 59 
an efficient manner. To the best of our knowledge, however, 60 
the GP concept has not been well tested especially for 61 
polyatomic molecular systems. In addition, its chemical 62 
meaning does not seem to be fully understood. 63 

In this work, a new method to incorporate the resonating 64 
VB effect into the simple PP wave function was devised and 65 
numerically tested in the framework of the Heisenberg model. 66 
We propose a variational optimization scheme for GP type 67 
wave functions and the chemical meaning is clarified for 68 
unsaturated hydrocarbons. 69 

In what follows, we present the formulation and method 70 
for the computation of GP type VB wave functions based on 71 
the variational principle. The Heisenberg spin Hamiltonian 72 
considered here is 73 

H J


=  S S  
 

   (1) 74 

where Jμν is the exchange interaction constant and Jνμ = Jμν (μ 75 
< ν) is satisfied for convenience. The spin operator acts on the 76 
orthogonal basis functions χμ placed on the atomic sites. We 77 
assume Jμν > 0, i.e., antiferromagnetism. The constant 78 
parameters are assumed to include some non-orthogonality 79 
effects, which are generally important for the VB description. 80 
The spin operator can be represented as 81 
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where aμ
σ+ and aμ

σ are creation and annihilation operators for 83 
spinorbital χμ

σ (having spatial part χμ and spin part σ), 84 
respectively. 85 

The tested trial wave functions for 2N-electron systems are 86 
written as 87 

1 1 2 2 3 4 2 1 2
ˆ[ ( , ) ( , ) ( , )]N N NA x x x x x x   − =  (3) 88 

where ψi is an antisymmetrized geminal, A
^

 is the 89 
antisymmetrizer between geminals, and xn shows the spatial 90 
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coordinate rn and spin coordinate. The PP wave function ΦPP 1 
for the singlet state is simply constructed using normalized 2 
singlet geminals as ψi in eq (3),  3 

PP      ( , )i i   

         = −  .  (4) 4 

The notation μ, ν ∈ i means χμ and χν are exclusively involved 5 
in the geminal labeled i. Higher spin states can be described 6 
by replacing the singlet geminals with proper spin functions. 7 
Correspondence between ΦPP and a chemical structure is 8 
obvious by linking the atomic sites where χμ and χν in each 9 
geminal are placed on. The exact VB wave function can be 10 
represented as a superposition of all the linearly independent 11 
PP functions. 12 

 By extending the geminal to include the general spin 13 
functions,  14 

1 2 1 2

1 2

GP      ( , )i C i
   

  
 

    =  ,  (5) 15 

we give the GP wave function ΦGP as an extension of the 16 
corresponding ΦPP. The geminal expansion coefficients 17 

1 2C 


 are variational parameters. Note that the so-called 18 

strong orthogonality condition, 19 

1 2 1 3 1( , ) ( , ) 0     ( )i kr r r r dr i k  =  ,  (6) 20 

which makes the variational solution tractable, is already 21 
satisfied for ΦPP and ΦGP. Due to the strong orthogonality, the 22 
structures of one- and two-electron density matrices become 23 
quite simple. Non-zero elements of the density matrices for 24 
ΦGP are written as 25 
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We note ionic terms do not appear in the trial wave function 29 
because the present formulation is based on the spin 30 
Hamiltonian in eq (1). If ionic terms appear in ab initio cases, 31 
the non-diagonal and other elements of density matrices 32 
might have non-zero values as shown, e.g., in ref [21]. In the 33 
right-hand-side of eq (7), ν comes from the same geminal μ 34 
belongs to. 35 

Then, the energy expectation value is expressed as follows: 36 
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where the one-electron effective potential is written as 38 

( )

( )1 2

1 2

1 2

( )

1 2

( )

1 2

( )

1
   ( )

4

1
   ( )

4

1
   ( )

2

αα ββ

μλ λλ λλ

k i λ k

σ σ ββ αα

μμ μλ λλ λλ

k i λ k

σ σ

μλ λλ

k i λ k

J P P σ σ α

h J P P σ σ β

J P σ σ

 

 

 


− = =




= − = =












. (11) 39 

Since the total energy is represented as the sum of the energy 40 
attributed to each geminal and interaction energies between 41 
two geminals, variational optimization of the wave function 42 
is accomplished by the self-consistent optimization of each 43 
geminal under the field created by other geminals.20, 21,36 The 44 
two-electron effective Hamiltonian to determine the 45 
expansion coefficients in the geminal i constructed with the 46 
orbitals χμ and χν is given as 47 

( )1 2 1 2 1 2 1 2

1 2

σ σ σ σ σ σ σ σi

μμ μ μ νν ν ν μν μ ν

σ σ

H h a a h a a J+ += + +  S S . (12)  48 

We evaluated the effective Hamiltonian matrix elements 49 
1 2 3 4,

,H
   

 
for the antisymmetrized two-electron functions 50 

1 2 

    and 3 4 

   . These four-by-four matrix 51 

elements are gathered in Table 1. It can be observed that 52 
different spin parts are allowed to mix in each geminal 53 
through the effective one-electron potential. The sequential 54 
optimization of each geminal is performed as follows. Firstly, 55 
we give initial guess values for the geminal expansion 56 
coefficients and compute the density matrices based on eqs 57 
(7), (8) and (9). Since the effective one electron potential is 58 
evaluated with the density matrices, we can also compute the 59 
elements of the two-electron effective Hamiltonian matrix. 60 
By sequentially diagonalizing the Hamiltonian matrices, 61 
geminal expansion coefficients are updated. This process is 62 
repeated until the self-consistency is achieved. For the 63 
present purpose, optimization of one-electron orbitals 64 
constructing each geminal is not performed. 65 

We demonstrate several systems where the instability is 66 
caused in ΦPP, and GP solutions were obtained. The 67 
Heisenberg model requires only the information of the 68 
linkage between the atomic sites, or molecular graph. Since a 69 
molecular graph is identified with the carbon skeleton of a 70 
conjugated hydrocarbon, we refer to the graph by the name 71 
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of the corresponding compound. Through our preliminary 1 
calculations, we found the instability does not appear in ΦPP 2 
of alternant hydrocarbons such as ethylene, butadiene, 3 
benzene, anthracene, and so on. This made us realize again 4 
that the PP is a good approximation for many conjugated 5 
hydrocarbons. 6 

Firstly, we consider four atomic sites arranged on four 7 
vertices of a square, representing cyclobutadiene (CBD) 8 
molecule. Two PP functions schematically shown in Figure 9 
1 construct a complete basis for this four-electron system. 10 
These correspond to the Kekulé structures. We write ΦPP and 11 
ΦGP corresponding to the structure X as PP(X) and GP(X), 12 
respectively. Non-zero values of the exchange interactions 13 
were assumed only between adjacent sites; J12 = J34 = εJ and 14 
J14 = J23 = J where J is a constant and ε is a real parameter.  15 

 16 

 17 
Figure 1.   Two perfect pairing structures of CBD. Numbering for the 18 
atomic sites is also shown. 19 

 20 
Electronic energy changes of this system for the scaling 21 

parameter ε are shown in Figure 2. When ε is zero, the four-22 
site model can be considered as two isolated ethylene 23 
molecules forming bonds 1-4 and 2-3. The PP(2) gave the 24 

exact energy while the PP(1) gave the energy value of zero. 25 
In this context, as ε is increased from zero, the two ethylene 26 
molecules get closer. When ε becomes larger than one, two 27 
bonds are recoupled to form stronger bonds 1-2 and 3-4. The 28 
PP(1) becomes more stable than PP(2) in this region. Namely, 29 
this four-site system can be considered as a model for the 30 
bond recombination process. Because the more stable PP 31 
wave function exists, PP(1) and PP(2) are not proper 32 
representations of the system in the regions 0 ≤ ε ≤ 1 and 1 ≤ 33 
ε, respectively. Notably, the GP type solutions of GP(1) and 34 
GP(2) appeared in these regions. In the present case, there 35 
exists the PP wave function more stable than the GP solutions. 36 
The appearance of a GP solution means the instability of a 37 
certain PP function, not always indicating the existence of the 38 
globally stable geminal product wave function. We mention 39 
the ground and low-lying excited states of CBD were 40 
described by Voter and Goddard with their generalized 41 
resonating valence bond (GRVB) wave function.37 Mixing of 42 
the two PP structures leads to the resonant and anti-resonant 43 
singlet states. They showed the rectangular distortion of CBD 44 
stabilizes the resonant state and destabilizes the anti-resonant 45 
state. As the structure distorts, each state becomes similar to 46 
a different PP function. The instability of the present PP wave 47 
function, related to the emergence of GP solution, can also be 48 
understood from the putative behaviors of resonant and anti-49 
resonant states.50 

 51 
Table 1.   Matrix elements 1 2 3 4,

,H
   

 
 for the effective two-electron Hamiltonian. The rows and columns represent the types of spin functions σ1σ2 and 52 

σ3σ4, respectively. Only the upper triangular part is shown. 53 
 54 

 αβ βα αα ββ 

αβ 
1

4

αα ββ

μμ νν μνh h J+ −  
1

2
μνJ  βα

ννh  
αβ

μμh  

βα  
1

4

ββ αα

μμ νν μνh h J+ −  βα

μμh  αβ

ννh  

αα   
1

4

αα αα

μμ νν μνh h J+ +  0  

ββ    
1

4

ββ ββ

μμ νν μνh h J+ +  

55 
 56 

 57 
Figure 2.   The electronic energies of the four-site model system in the 58 
unit of J for the scaling parameter ε. See text for the notations. The exact 59 
energies are also shown. 60 

 61 
As ε is moved away from the value of one, the difference 62 

between the PP and GP energies becomes large, while the 63 
difference between the GP and exact energies also becomes 64 
large. This behavior is due to the increasing spin 65 
contamination in the GP wave function. The expectation 66 
values of the total S2 operator for GP(1) are shown in Figure 67 
3. Due to the symmetry of the system, it is sufficient to 68 
consider only the behavior at 0 ≤ ε ≤ 1. At ε = 0, the GP wave 69 
function is the spin alternant (SA) determinant (i.e., the Néel 70 
state in the literature of solid state physics), giving the value 71 
of two for 〈S2〉. At ε = 1, the GP wave function degenerates 72 
to the PP wave function. The expectation value〈S2〉 changes 73 
monotonically as ε increases. We found the numerically 74 
computed 〈S2〉 is proportional to ε at 0 ≤ ε ≤ 1. The result 75 
implies that the proportion of the triplet component contained 76 
with different signs in each geminal is proportional to ε1/4. In 77 
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our present formulation, the Sz spin-symmetry is not 1 
constrained. Thus, we obtained degenerate GP solutions in 2 
the Sz space, depending on the initial guess for the geminal 3 
expansion coefficients.  4 
 5 

 6 
Figure 3. The expectation value of the total S2 operator for the 7 
generalized pairing solution of GP(1). See text for the notations. 8 

 9 
Secondly, we discuss simple non-Kekulé molecules, 10 

tetramethylenemethane (TMM) and tetramethyleneethane 11 
(TME), as examples. The molecular graph of TMM (3) and 12 
four PP structures of TMM (4–7) are shown in Figure 4. We 13 
assumed the non-zero value of the exchange interaction 14 
constant J only between the adjacent atomic sites. Although 15 
TME has two types of bonds, our current interest lies in its 16 
non- Kekulé molecular topology, so we used a single constant 17 
parameter for simplicity. The ground electronic state of TMM 18 
is triplet, while that of TME is singlet. The PP wave function 19 
of the triplet TMM is constructed with the singlet and triplet 20 
geminals. We found ΦPP of these non-Kekulé molecules are 21 
not stable and broken symmetry solutions are obtained by the 22 
variational calculations.  23 

 24 
 25 

 26 
Figure 4. The molecular graph of TMM (3) and four perfect pairing 27 
structures of TME (4–7). Dashed lines show the singlet coupling between 28 
non-adjacent atomic sites. Numbering for the atomic sites is also shown.  29 

 30 
The electronic energies of TMM calculated with the SA, 31 

PP, GP and exact wave functions are gathered in Table 2. We 32 
found ΦGP gives lower energy than the SA determinant and 33 
ΦPP. The expectation value 〈S2〉 of ΦGP was the intermediate 34 
of those for SA and ΦPP. The GP energy accounts for 58.6 % 35 
of the resonance energy, which is here defined as the 36 
difference between the energies of the exact and the most 37 
stable PP wave function. This implies that the resonating VB 38 

effect is partially incorporated in the GP wave function while 39 
the spin contamination cannot be ignored in terms of energy. 40 

The energies of four PP structures of TME (4–7) and 41 
those of corresponding GP wave functions are shown in 42 
Table 3. The expectation value 〈S2〉 of the four GP are also 43 
given. Among the PP wave functions, PP(4) gives the lowest 44 
energy because there are two bonds 1-2 and 4-5 in the 45 
structure. Concerning the GP wave functions, GP(4) was the 46 
most stable; it is considered as the globally stable geminal 47 
product. The exact energy was −2.1642J; GP(4) accounts for 48 
71.3% of the resonance energy. Projection techniques for 49 
restoring of the spin symmetry will be one promising 50 
approach to further improve the GP wave functions. 51 

 52 
 53 

Table 2.   The electronic energies in the unit of J for TMM (3) 54 
described with the SA, PP, GP and exact wave functions. The expectation 55 
values of the total S2 operator are also shown. 56 

 Energy / J 〈S2〉 

SA −0.75 3 

PP −0.75 2 

GP −0.9571 2.2929 

Exact −1.25 2 

 57 
Table 3.   The electronic energies in the unit of J for TME described 58 
with PP (4–7) and corresponding GP wave functions. The expectation 59 
values 〈S2〉  for the GP wave functions are also shown. 60 

 PP GP 〈S2〉 

4 –1.5 –1.6908 1.4505 

5 –0.75 –1.3680 2.5528 

6 –0.75 –1.4571 2.2929 

7 0 –1.2500 3.0000 

 61 
In summary, we developed a new method to 62 

variationally optimize the generalized electron pairing type 63 
VB wave function, and verified it in the Heisenberg model. 64 
By numerical computations, chemical implications of the 65 
spin-symmetry broken wave function were explored. We 66 
found the mixing of higher spin states stabilizes the wave 67 
function in the case when a certain PP wave function is not a 68 
proper representation of the system; non-Kekulé molecule is 69 
a typical example. This instability of the perfect paring is 70 
consistent with our empirical knowledge in chemistry. The 71 
present method might also be applied to chemically 72 
interesting open-shell conjugated molecules.37 And lastly, the 73 
tested trial wave function will also be useful as an ab initio 74 
model and a reference to describe complex molecular 75 
electronic structures. 76 
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