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Abstract: Silicon solar cells are crucial devices for gener-
ating renewable energy to promote the energy and envi-
ronmental fields. Presently, high-purity silicon, which is
employed in solar cells, is manufactured commercially via
the Siemens process. This process is based on hydrogen
reduction and/or the thermal decomposition of trichloro-
silane gas. The electrochemical process of producing
silicon has attracted enormous attention as an alternative
to the existing Siemens process. Thus, this article reviews
different scientific investigations of the electrochemical
production of silicon by classifying them based on the
employed principles (electrorefining, electrowinning, and
solid-state reduction) and electrolytes (molten oxides,
fluorides, chlorides, fluorides—chlorides, ionic liquids
[ILs], and organic solvents). The features of the electro-
lytic production of silicon in each electrolyte, as well as
the prospects, are discussed.

Keywords: electrodeposition, electrorefining, molten salt,
ionic liquid, organic solvent

1 Introduction

Silicon (Si) exists naturally as oxides or silicates, which
are widely distributed in the earth’s crust. In 1808, Berzelius
produced ferrosilicon via the reaction of silica (Si0,), carbon,
and iron [1]. In 1811, Gray, Lussac, and Thenard produced
impure amorphous Si by reacting silicon tetrafluoride (SiF,)
with potassium (K) metal [1]. In 1824, Berzelius first isolated
Si by washing the reduction product of potassium hexafluoro-
silicate (K,SiF¢) and K metal to remove the potassium
fluoride (KF) byproduct and residual potassium metal from
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the silicide [1]. Further, Deville first prepared crystalline Si
via electrodeposition in 1854 [2,3].

Silicon has been a very essential industrial material
(ranging from structural to electronic ones) since the last
half-century. Si exhibits many applications depending on
its purity. Low-purity Si with 2N (99%) purity, which is
also known as metallurgical-grade Si (MG-Si), is utilized
to produce alloys, such as silumin (Al-4~22%Si) and ferro-
silicon (Fe-15~90%Si). MG-Si is also employed as an
intermediate material for producing silicone resin and
high-purity Si. High-purity Si is employed in semicon-
ductor applications, such as large-scale integration (LSI)
and solar cells. The required purities for LSIs and solar
cells are 11-12N (semiconductor-grade Si, SEG-Si) and
6—7 N (solar-grade Si, SOG-Si), respectively.

MG-Si is manufactured via the carbothermal reduc-
tion of silica stone or sand. Silica is reduced to MG-Si in
arc furnaces equipped with carbon rod electrodes and
operating at >2,000K [4,5].

Si0,(1) + 2C(s) — Si(l) + 2CO(g). 1)

The inhomogeneous temperature and material distribu-
tions induce complicated and multiple reactions. Various
side reactions, such as the formations of silicon carbide
(SiC) and silicon monoxide (SiO), occur and introduce
impurities in the Si product and lower the reaction yield,
respectively.

Si0,(1) + 3C(s) — SiC(s) + 2CO(g), 2
Si0,(1) + C(s) — SiO(g) + CO(g). 3)

The final reaction, which yields Si, is regarded as the
reduction of silicon oxides by a SiC reductant [6-9]:

SiO(g) + SiC(s) — 2Si(l) + CO(g), (4)
Si0,(1) + 2SiC(s) — 3Si(1) + 2CO(g). 5)

Since the impurities in the raw SiO, and carbon reductant
are included in the Si product, the purity and resistivity
of MG-Si are 98-99% and 0.03 Q-cm, respectively. The
purity of the Si product did not exceed the 4 N (99.99%)
level even when high-purity SiO, and high-purity carbon
were utilized in the literature [10-14].

Historically, DuPont (in the 1960s) first industrialized
the production of high-purity Si via the reduction of
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silicon tetrachloride (SiCl,) with zinc (Zn) [15-18]. At the
time, the DuPont process was challenging because of the
removal of the residual Zn, as well as the avoidance of
boron inclusion. Thereafter, DuPont’s industrial method
for producing high-purity Si was replaced by the Siemens
process, which is based on hydrogen (H,) reduction and/
or the thermal decomposition of trichlorosilane (SiHCl;)
[19-22]. In the Siemens process, SiHCl3, which is synthe-
sized via the hydrochlorination of MG-Si, is purified and
subsequently introduced into metallic bell jars. Further,
H, reduction and/or thermal decomposition proceed on
the Si rods, which are utilized as the heating elements
and seed crystals that are installed inside the bell jars,
at approximately 1,400 K. Single crystal ingots are man-
ufactured from the produced polycrystalline Si via the
Czochralski (CZ) method [23]. The floating zone method
has also been employed to crystallize and further remove
the impurities [24,25], although it has not been employed
recently owing to the limited diameter of the produced
crystal ingot.

The demand and production capacity of polycrystal-
line high-purity Si are shown in Figure 1(a) [26,27]. The
demand was calculated by the authors of this review
based on the reported production volume and specific
Si weight of solar cells, e.g., 8 and 3.2 ton-MW ™ in 2000
and 2020, respectively. The proportion of SOG-Si in high-
purity Si is shown in Figure 1(a). Before the year 2000,
the ratio was <10% since the main product was SEG-Si,
and the off-grade SEG-Si was supplied to the photovoltaic
(PV) industry. The situation has changed drastically in
the 21st century. The installation of PV cells has increased
greatly (Figure 1(b)) in many countries owing to the neces-
sity of renewable energy and financial supports [26,27].
The total capacity of installed PV cells was 138.2GW in
2020, and it is increasing at the rate of 19%/year. In
2020, >90% of high-purity Si was utilized in the PV
industry. Most Siemens processes were performed to yield
SOG-Si as the main product. The production volumes were
~2.8 million tons and 480 thousand tons for MG-Si and
high-purity Si, respectively, in 2019. All the high-purity Si
were produced via the Siemens process.

Since some of the drawbacks of the Siemens process
are its low productivity and high energy consumption,
which are based on the gas-phase reaction, different
SOG-Si production/Si purification methods have been
developed and improved by researchers, particularly in
the mid-2000s during which the short supply of SOG-Si
was the bottleneck in the field. These processes can be
divided into the three following categories: (a) the H,
reduction and/or the decomposition of silane gases via the
improved Siemen-based processes, (b) the metallothermic
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Figure 1: (a) Transition in production volume polycrystalline Si in the
world and proportion of polycrystalline Si used for PV cells [26,27].
(b) Transition in production volume of PV cells.

reduction of silicon halides by metal reductants, such as
Zn and aluminum (Al), and (c) the purification of MG-Si
via metallurgical purification methods. Each production pro-
cess has been examined, and the details are published in
review articles [28—63]. Historically, crystalline Si was first
prepared (in 1854) by Deville via electrodeposition. Ever
since, many methods for electrochemically producing Si
have been investigated as alternative routes for producing
high-purity Si. The details of each report were examined
following the original literature and published review arti-
cles [64-70].

Figure 2 shows the flowchart for the present and
alternative production processes of substrate of Si solar
cells. The processes are categorized as follows: (1) the
refining of MG-Si to produce high-purity Si, (2) the pro-
duction of bulk polycrystalline Si via high-purity Si com-
pounds or high-purity silica using silica or MG-Si as
starting materials, and (3) the direct formation of Si films
on the substrate materials of solar cells via high-purity Si
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Figure 2: Flowchart for the present and alternative production pro-
cesses of Si substrate for solar cells.

compounds or high-purity silica using silica or MG-Si as
starting materials. A number of electrochemical pro-
cesses have been reported for all these categories.

This study reviews the electrochemical processes for
producing Si; these processes have been proposed or
investigated based on classification, following the reac-
tion principles: electrorefining, electrowinning, and direct
solid-state reduction. Since many patents have been issued,
the classification is mainly based on scientific papers.
Further, the processes are also classified based on the
utilized electrolyte (molten oxide, molten fluoride, molten
chloride, molten fluoride—chloride, ionic liquid (IL), and
organic solvent) in the reaction. The electrolytes are intro-
duced in descending order of their operating temperatures.
Regarding the mixed electrolytes, the reports are classified
based on the species with the largest proportion; the com-
ponents, except the Si species, are treated as the electro-
lytes. The foresight of this field is discussed based on the
features of electrodeposition in each electrolyte.

2 Electrorefining

Regarding the electrorefining of Si, MG-Si was utilized as
the feedstock for the anode. MG-Si was classified based
on its contents of major impurities (Fe, Al, and Ca). The
contents for standard grade 553 are lower than 0.5, 0.5,
and 0.3 wt% for Fe, Al, and Ca, respectively. Other grades,
such as 441, 3,303, and 2,202, are also commercially
employed. The typical contents of the other impurities
are 100-400 ppm each for Cr, Mg, Mn, Ni, Ti, and V and
20-40 ppm each for B, Cu, P, and Zn [42].

The behaviors of the impurities depend on the fol-
lowing ionization tendency: noble impurities precipitate

Electrochemical production of silicon =—— 249

as anode slime, while less-noble impurities dissolve and
remain in the electrolyte. Contrarily, volatile impurities
are removed as the vapor phase. One of the challenges of
electrorefining is the enrichment of impurities in the elec-
trolysis bath. Since impurity control in a continuous
operation presents an inherent shortcoming, periodic
bath cleaning, such as pre-electrolysis, is required. Regarding
the continuous operation, the utilization of a liquid alloy com-
prising alloying elements, such as Cu, can be applied similarly
to the electrorefining of Al metal known as the Hoopes
process [71,72].

Massachusetts Institute of Technology (MIT) and Elkem
proposed the electrorefining of Si in molten oxides
employing liquid alloy cathodes, such as Cu-Si [73]. They
proposed that the utilization of oxide electrolytes, CaO-SiO,,
Ca0-Mg0-Si0,, Ca0-Al,05-Si0,, and BaO-Si0,, exhibiting
melting points of <1,273 K would be beneficial.

Monnier and Giacometti reported the electrorefining
in NasAlF¢ fluoride molten salts at 1,173-1,273 K [74-76].
They employed a dual-refining cell using a liquid Cu-Si
alloy at the bottom. The current efficiency of the anode
was ~100%, whereas it was 52.5-85% for the cathode.
Olson and Carleton lowered the operation temperature
to 1,023 K by employing an LiF-KF molten salt [77], after
which they achieved the recovery of dense, coherent, and
thick Si films on graphite and the vitreous carbon sub-
strates. Sharma and Mukherjee performed continuous
electrorefining in molten LiF-KF and recovered 67.4¢g
of the Si deposits [78]. The three-layer electrolysis of
a Cu-Si anode/molten salt/Al cathode was reported by
a group from Central South University [79]. Following a
series of experiments, the selected optimum conditions
were 1,023 K and 15 mol% K,SiF¢ at 135 mA-cm™>. A Norwe-
gian group investigated electrorefining in CaF,-BaF, [80,81]
via experiments on a kilogram scale for 22 h. The obtained
cathodic current efficiency was 97.2%. The changes in the
morphology of the Si deposit under the electrolytic condi-
tions have been reported by a Korean group [82].

Electrorefining in CaCl,-based chloride melts has been
reported by different groups, including Norwegian University
of Science and Technology (NTNU) [83,84]. The utilization of
an Si electrode as the anode in chloride molten salts induces
passivation owing to the oxidation on the surface. Then,
liquid alloys such as Si—Cu are necessary. The cathode
deposit exhibited a powdery morphology, which was char-
acteristic of the electrodeposition of Si in chlorides. Metallic
Si anodes can be utilized in fluoride—chloride melts [85].

The refining ability depends on the difference between
the standard redox potentials of the impurity and Si.
Although the redox potentials vary with the electrolyte,
B and Ti are generally difficult to remove [86].
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3 Electrowinning and
Electrodeposition

Regarding the electrowinning of Si, silicon compounds
are supplied into the bath as raw materials. Different
compounds have been reported as feedstocks in the lit-
erature. A typical example is K,SiFg since fluorosilicic
acid (H,SiF¢) is a byproduct of the acid treatment for
producing phosphate fertilizer. K,SiF¢ is prepared via
the reaction of H,SiF¢ with KF or KOH.

H,SiFs + 2KF — K;SiFs + 2HF, (6)
H,SiFs + 2KOH — K;SiFs + 2H,0. (7

The purity of K,SiFy is typically 98-99% when bulk che-
micals are employed in the reactions.

3.1 Molten oxide electrolytes

Elwell et al.’s group at Stanford University reported the
electrowinning of liquid Si at different temperatures,
such as 1,723 K, which were higher than its melting point
[87—-89]. They conducted the two-electrode electrolysis
employing graphite electrodes in BaO-SiO,-BaF, and
SrO-Si0,—-SrF, electrolytes. The oxides and fluorides of
the alkali and alkaline earth metals were added to facil-
itate the melting, thereby obtaining a Si lump (1.6 g with
99.97 wt%), as shown in Figure 3, with a current efficiency
of 15-40%. The major impurities were Fe (200 ppm), Ca
(30 ppm), Mn (20 ppm), Sr (10 ppm), and Ti (10 ppm)
(Tables 1 and 2).

3.2 Molten fluoride electrolytes

There are abundant reports on the electrowinning and
electrodeposition of Si in molten fluorides [89-119], and
the representative studies are summarized in Table 3. The
electrolysis conditions (electrolyte, Si additive, concen-
tration, temperature, and cathode), methods (constant
potential, constant voltage, and constant current), and
obtained typical results (the existence of Si(i) ions, elec-
trochemical reversibility, and morphology of the obtained
Si) are also listed.

In the 1970s and 1980s, electrodeposition using fluoride
molten salts was intensively studied at Stanford University.
Cohen and Huggins reported the growths of Si substrates
via constant electrolysis in LiF-KF and LiF-NaF-KF molten
salts at <6 mA-cm ™2 [90-92]. At higher current densities, the
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Figure 3: Photograph of electrodeposited Si weighing 1.6 g produced
during an experiment from a BaO-Si0,—BaF, melt (22.2:63.2:14.5 mol%)
of 125 g for 50 h [87]. Permission from Electrochemical Society.
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morphology changed into grains with a size of 10-500 pm.
Elwell et al. conducted a series of investigations as a project
for the US Department of Energy (DOE) [93-99]. Therein,
coherent Si films were formed on a graphite substrate at
10-60 mA-cm™>; it was free from voids and exhibited a
<111> texture in molten LiF-KF, following the addition of
8-14mol% K,SiF¢ at 1,118-1,123 K. The typical cross-sec-
tional SEM images are shown in Figure 4 [94]. The depos-
ited Si film exhibited n-type characteristics with a resistivity
of up to 3 Q.cm, the carrier mobility of 100 cm*V s, and
carrier concentration of 10" atom per cm™ [97]. The com-
proportionation reaction between the Si(iv) ions and depos-
ited Si to form Si(n) ions was proposed because of the
decreased current efficiency and smoother morphology
with the growth of the film [94,95]. The homogeneous
morphology of the Si electrodeposits was obtained by
applying a current pulse (Figure 5(b)), whereas the den-
drites were formed during the electrolysis at constant cur-
rent (Figure 5(a)) [104]. The reports by Cohen and Huggins
[90] and Moore et al. [108] confirmed that a smooth epi-
taxial Si film can be electrodeposited by employing crystal-
line Si as the cathode substrate (Figure 6).

The existences of Si(n) ions in these reports are
inconsistent. Rao et al. first proposed the possibility of
Si(1) formation in which they claimed that the dissolution
of the deposited Si during the comproportionation of the
Si(1v) ions to form the Si(11) ions would yield noncoherent
deposits [93,95]. The formation of the Si(u) ion intermedi-
ates was reported via the half-peak potential in cyclic
voltammetry (CV) [104], the current-reversal chronopoten-
tiometry [105] in molten LiF-NaF-KF, and square-wave voltam-
metry (SWV) in molten LiF-KF and LiF-NaF-KF [112,113].
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*g o2 Conversely, the existence of the Si(i) ions was denied via
5o § CV in LiF-KF [96] and NaF-KF [117], SWV in molten
:\: S8 LiF-KF [116], as well as CV and open-circuit chronopoten-
] S’rl :g E tiometry in BaF,—CaF, [118]. The ionic affinity of the
2 2 %S cations might account for the stability of the Si ions with
lower valences.
§5 Regarding the electrodeposition of the Si film from
g o the SiO, feedstock in the fluoride melt, Elwell reported
g 5 that the film was only recovered on a graphite substrate
from molten NaF-CaF,, and only traces of the Si deposit
~ = were recovered from the MgF,—NaF, KF-BaF,, KF-CaF,,
= g g = and KF-MgF, melts [100]. However, a dense Si film was
% g:,, £ ; deposited on a Mo substrate in a BaF,—CaF,—-SiO, melt at
E § § g 1,573 K [118]. The different results were attributed to the
high temperature, as well as the formation of interme-
tallic compounds. Additionally, the changes in reduction
2 potentials and Si morphologies were explained by Raman
% spectroscopy which analyzed the coordination states such
g as Si fluorides, oxyfluorides, and silicate ions [119,120]. The
@ & current efficiency for the deposition of Si from LiF-NaF-KF
_Ef - containing SiO, was limited to 10% at 873 K.
= |22 | %
3 |35 |8
5 |d% a
g . o 3.3 Molten chloride electrolytes
£ |2 £
§ g g Table 4 lists the reports on the electrodeposition of Si in
‘é_ molten chlorides [121-128]. Although SiCl, gas was intro-
e | _ R duced into molten LiC1-KCl at 723 K, it barely dissolved in
8 < - the melt [122]. The different stabilities of the Si species in
—; g § the melt induced different volatilities between the fluoride
E = - and chloride melts. For example, Si(iv) ions are stable in
; fluoride melts as SiFé‘. However, such stable complex ions
X S g might not be formed in chloride melts. Further, the reac-
E § E g tion to form Si(n) could lower the current efficiency for the
g electrodeposition of Si [124]. Recently, some groups from
£ g the University of Texas (Austin) and MIT have reported the
g § S photoelectrochemical properties for Si films that were elec-
5 < n trodeposited in CaCl,-based molten salts [125-127]. The
% s introduction of 0*" ions facilitated the dissolution of Si0,
_§ A in the melt, as well as the electrodeposition of the Si films,
% g “rlg after which a compact and dense film (thickness = 35-40 pum)
z |8 @ was obtained. The photoelectrochemical measurements in an
?U g Zﬁ’ organic electrolyte containing ethyl viologen cations (EV?*)
o0 revealed the photoreduction current under illumination, thus
E R demonstrating the p-type semiconductor for the electrode-
é S . posited Si (Figure 7). The impurity contents (Ti, Cu, Ni, Cr,
E k = > and Fe) exerting harmful impact were below the tolerable
: E 5 ; é threshold. However, the B and P contents were not measured
2 g = ‘% g here. When Al,O3; powder was added into the melt, a p-type
i << n 2 Si film containing 10 ppm Al was obtained. Additionally, an
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Table 3: Continued

Reversibility ~ Potential (cp), voltage Morphology Note
(cv), current (cc)

Existence
of Si(n)

Cathode

Temp. (K)

Additive Conc.

Electrolyte

Author/

affiliation,
year, ref.

No

Ag, graphite,

and Ni

0.20-0.47 mol-kg™ 973-1,223

K,SiFg and
Na,SiFg

LiF-KF and
NaF-KF

Bieber

et al., 2011

[116,117]

Dense film

118 mA-cm~2 (cc)

Irrev.

No

1.06 x 10710 2.05 x 1,573 Mo

Sio,

Ban—Can

Hu et al.,

-3

10> mol-cm

2013 [118]

0.2-1.4V vs K*/K (cp) Smooth

Unknown

Ag

873

0.2-0.5 mol%

LiF-NaF-KF SiO,

Goto et al.,
2015

grain

coordination state

[119,120]
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n-type Si film containing 3.5 ppm P was electrodeposited
employing Cas(PO,), as an additive. When the p—n junction
was formed by combining these Si films, a power conversion
efficiency (PCE) of 3.1% was achieved with an open-circuit
voltage of 295 mV and a short-circuit current density of
23.4mA-cm~2 under a 100 mW-cm™ illumination (Figure 8)
[127]. This report represents a significant progress in the experi-
mental demonstration of the electrochemical deposition of Si as
a strategy for fabricating solar cells. The optimization of the
electrolysis conditions is expected to increase the efficiency.

3.4 Molten fluoride—chloride electrolytes

The electrochemical production of Si in fluoride—chloride
molten salts is summarized in Table 5. Fluoride—chloride
melts have been studied since the 1960s in the Soviet
Union [129-134]. Various types of fluoride—chloride melt
such as KF-KCl, LiF-KCl-CsCl, and LiF-KCl, have been
studied. Continuous and adherent Si layers were obtained
on graphite and Si substrates in molten LiF-KCl-CsCl-K,SiF¢
at 873-1,123K [133,134]. Without pre-electrolysis, the mor-
phology of the Si deposit became dendritic. The epitaxial
growth proceeded on the Si substrate on which trihedral pyr-
amids were observed. This study proceeded after the Soviet
Union was renamed Russia [135-140]. The studies revealed
that the deposition occurred as instant nucleation, following
the diffusion-controlled growth. The addition of oxygen-
containing species facilitated the change in the Si deposits
from continuous planar into fiber and powder via the for-
mations of the SiO7~ groups and oxyfluoride [137,141].
Another group at the Russian Academy of Science investi-
gated the NaCl-KCl-NaF(10 wt%)—K,SiF4 system and observed
that the reduction of the Si(iv) ions into metallic Si pro-
ceeded via a two-stage reaction [142]. The first and second
reactions involved reversible and quasi-reversible electro-
chemical processes, respectively. Regarding the KF-KCl
(+KI) systems, the electrodeposition of Si proceeded via
the addition of K,SiF¢ (+SiO,) [135]. The grain size was
reduced, following the addition of silica to the melt. Elec-
trodeposition in KF-KCl molten salt was also reported by a
group in Kyoto University; they focused on the high solu-
bility of KF in water [143-146]. Although most fluorides
exhibit low solubilities, KF exhibits exceptionally high solu-
bility in water compared with the alkali and alkaline-earth
fluorides (solubility to 100 g-H,0 at 298 K: KF, 101.6 g; LiF,
0.13 g; NaF, 0.15 g; MgF,, 0.13 g; CaF,, 0.0016 g). The reduc-
tion of Si(iv) ions into metallic Si was observed as a single
4-electron wave, which is explained by an E4E, (quasirever-
sible-reversible electron transfer reactions) mechanism.
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Aa

Figure 4: Cross-sectional SEM images of electrodeposited Si onto Ag substrates prepared at 25 mA-cm™2 in molten LiF-KF containing 12 mol%
K,SiFg at 1,023 K for (a) 1h, (b) 1.5h, (c) 2 h, (d) 3h, (e) 4 h, (f) 6 h, and (g) 8 h [94]. Permission from Elsevier.

(b)

0 1000

Figure 5: SEM images of electrodeposited Si prepared in molten LiF-NaF-KF containing 5 mol% Na,SiF¢ at 1,023 K. (a) Constant current
electrolysis at =20 mA-cm™2. (b) Pulsed current electrolysis at —40 mA-cm™2 for 30 s, +40 mA.cm~2 for 15, and 0 mA-cm ™2 for 60 s [104].
Permission from Springer.
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§) M

Figure 6: Cross-sectional SEM image of a stain-etched Si film depos-
ited on single crystalline Si in molten LiF-KF containing 10 wt% K,SiFg
at 1,123 K [108]. Permission from IEEE.

The group proposed and experimentally demonstrated the
utilization of SiCl, gas as a Si-ion source for electrodeposi-
tion, and continuous and smooth films were obtained in
the KF-KCI-K,SiFg melt [144-146]. A recent report by
MIT and the University of Texas (Austin) revealed that
the addition of a small amount of metallic tin (Sn) into
the KF-KCI-K,SiF¢ melt changed the morphology of the
Si deposit from a nanowire to a dense film [147]. Further,
the following photoelectrochemical measurements
confirmed that the Sn-doped Si film was an n-type
semiconductor. The recovery of the Si particles from the
electrolyzed liquid Ga cathode in the KF-KCI-K,SiF¢ molten
salt was achieved by a group from NTNU and Kyoto Uni-
versity [148].

3.5 lonic liquid electrolytes

Table 6 lists the reports for the electrodeposition of Si in
IL electrolytes [149-167]. The abbreviations of the consti-
tuent species of ILs and their additives are defined in the
footnote of the table.

Most studies employed bis(trifluoromethylsulfonyl)
amide (TFSA)-based ILs and liquid SiCl, additives. The
electrodeposited silicon in ionic liquids was readily oxi-
dized during the treatment following the reduction; thus,
its detection was difficult [149,153]. Furthermore, several
reports have revealed that ILs were detected in the depos-
ited Si layers. The deposition of Si is generally confirmed
via X-ray photoelectron spectroscopy (XPS) at 99.5 eV for
the Si 2p spectrum and Raman spectroscopy at 520 cm™
for the transverse optical (TO) photons of crystalline Si
or a smaller wavenumber due to the lack of long-range

DE GRUYTER

order for nanocrystalline/amorphous Si. In 2016, Zhang
et al. observed the X-ray diffraction (XRD) peaks of crys-
talline Si at 28.4°, 47.3°, and 56.1° corresponding to the
(111), (220), and (311) planes, respectively, for the deposit
that was obtained by employing the liquid Ga cathode
and [TBMA][TFSA] IL at 373K [163]. The detection of
crystalline Si via XRD was also reported by Shah et al.
[164] and Zhao et al. [167]. The deposition process was
analyzed by various techniques, including scanning tun-
neling microscopy (STM) [151,152] and electrochemical
quartz crystal microbalance (EQCM) [157-159,165]. The
smoothness of the Si film can be improved by light irra-
diation during electrodeposition [160]. Contrary to the
electrodeposition in high-temperature molten salts, the
voltammograms did not show any reduction current peak,
and the diffusion coefficient of Si cations, as well as the
existence of Si(n) ions, have not been reported. In addition
to the Si film, Si nanowires with diameters and lengths of
10-100 nm and a few hundred microns, respectively, were
obtained in [BMPy][TFSA] via repetitive two-potential elec-
trolysis for the nucleation and growth stages [156]. They
reported that the morphology of the wire accrued from
the electrolysis pattern and not from the IL species. The
effects of the anions on the deposition potential and char-
acteristics of the Si deposits were negligible [161].

3.6 Organic electrolytes

The representative reports on the electrodeposition of
Si in organic solvent electrolytes are listed in Table 7
[66,168-190]. The various abbreviations are also defined
in the footnote of the table. Owing to the low ionic con-
ductivities of organic solvents, supporting electrolytes
whose information are included in the table are neces-
sary. Many researchers have utilized propylene carbonate
(PC), tetrahydrofuran (THF), and acetonitrile (AN) as
organic solvents. Similar to the case of the ILs, the XRD
verification of the deposition of crystalline Si was reported
in the case involving the utilization of a liquid Ga electrode
[187]. Other researchers have obtained amorphous Si films,
except for ref. [179] that reported a small (111) peak for
crystalline Si.

After a study in the mid-1960s [168], the deposition of
Si in organic solvents was intensively investigated in Bat-
telle [169-171] and the University of Southern California
[172-174] as research projects for the DOE in the 1970s.
Austin et al. obtained Si films in PC by adding SiCl, or
SiHCl; and a supporting electrolyte. They obtained coarser
deposits after adding the supporting electrolyte exhibiting
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Figure 7: (a) Variation in open-circuit potentials and (b) photocur-
rent-potential characteristics for the deposited Si films and p-type
Si wafer in darkness and under illumination at 100 mW-cm~2 [125].
Light interval was 2 s. Permission from Wiley.

increased cation size (Figure 9). The boron doping of the Si
film was achieved by adding (C,Ho),NBF, into the electro-
lytic bath. The oxygen content was 3%, and the impurity
level was <0.01%. Kroger et al. electrodeposited Si from an
acetone solution containing HF and K,SiF¢. Phosphorus
doping, which was achieved by adding triethylphosphite
to the electrolyte, reduced the resistivity, as well as changed
the p-type character.

Since the reduction current for the electrodeposition
appeared clearly, several papers reported the electroche-
mical analyses, such as the investigations of the forma-
tion of surface layers [180] and growth of Si deposits via
chronoamperometry [182]. As well as the amorphous Si
films produced via the physical vapor deposition (PVD)
technique, the Si films electrodeposited in the organic
solvents were highly hydrogen-terminated (Si:H). The che-
mical bonding of the amorphous Si deposits was analyzed

DE GRUYTER
50 -
& V,.=295mV
§ Joo=23.4 mA cm™
T 251 \ PCE=3.1%
> \
5
© \\\
E ° N\
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\
25 - ~———_|
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Figure 8: Current-voltage characteristics of the electrodeposited
n-type silicon layer on p-type single crystalline silicon wafer under
dark and under 100 mW-cm~2 illumination [127]. Permission from
Springer Nature.

via XPS and infrared (IR) spectroscopy. In addition to the
Si-H bonding, the amorphous Si exhibited different bonds,
such as Si-F and Si—C from EG-H,SiF¢ [178] and Si—O and
Si—C from THF-SiCl, depending on the compositions of the
electrolyte [186]. The heat treatments induced the breaking of
the Si—H bond, as well as the formation of Si-Si bond. The
solar cell performance was also evaluated employing the
electrodeposited Si. Nicholson constructed a heterojunction
via the electrodeposition of a p-type Si layer on n-type Si
wafers (Figure 10) [179]. The efficiency of this cell using Au
and In-Ga alloy as electrical contacts was reported to be
1.8%. The same paper also reported the diode operation at
junctions of the deposited Si layers and mercury contacts.
Further, the photocurrent measurements were reported by
a Polish group [189].

4 Solid-state reduction of SiO,

The solid-state reduction of SiO, in molten chloride salts
is another method for producing Si. Oki and Inoue first
reported the solid-state electrochemical reduction of metal
oxides in molten salts (TiO, in CaCl,) [191]. Subsequently,
Okabe et al. reported electron-mediated reaction as a
method for reducing solid Nb,05 into Nb metal via elec-
trical connection to Ca metal in molten CaCl, [192]. The
direct reduction of the metal oxides in molten chlorides
was intensively studied after the report of the FFC-Cam-
bridge process by Chen et al.,, in 2000 [193] on the
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Figure 9: Surface SEM images of the Si films electrodeposited at 323 K in PC containing 1.0 M SiHCl; and various amount of TBAC and TPAC

[171]. Permission from Electrochemical Society.

reduction of TiO, into Ti metal in molten CaCl, at 1,173 K.
Additionally, the reductions of metal oxides into metals
(metallothermic reduction) were also studied in molten
salt [194—197]. The solid-state reductions of SiO, in molten
chloride salts have been reported as a review paper [70]
and as part of review papers on the direct reduction of
metal oxides in molten salts [198-200].

Table 8 reveals that CaCl,-based chloride salts were
utilized as the electrolytes for the direct reduction of SiO,
[201-236] owing to the high solubility of O*" ions [237].
The basic information, such as the phase diagrams [237-239],
properties of 0% [240,241], and stable reference electrodes
[205,242,243], which are necessary for the electrochemical
studies of oxide reduction, were also reported. Moreover,

the equilibrium potentials for the formation of Si—Ca alloys
have also been reported [228]. Regarding the direct reduction
of Si0,, its contact with conducting materials, such as Mo
[201], W [209], metallic Si [215], and carbon [227,229], is uti-
lized as a current collector since solid SiO, is an electronic
insulator even at high temperatures. Thus, it can be directly
reduced into porous solid Si in molten CaCl, by a conducting
material (Figure 11).

The reaction mechanism of the reduction of solid SiO,
into Si is explained by the three-phase boundary model
(conductor/insulator/electrolyte), which was established
employing the point-contact electrode method [201,203]
and SiO,-sheathed electrode method [209,212] (Figure 12).
The kinetics of the formation of the three-phase boundary is
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Figure 10: Photocurrent characteristics of an electrodeposited p-type
Si layer onto n-type Si wafers [179]. Permission from Electrochemical
Society.

well elucidated employing a thin-layer model that was pro-
posed and experimentally confirmed during the solid-state
reduction of AgCl in aqueous solutions [210,212,244]. The
reduction proceeded at the contact point between SiO, and
the conducting material. Thus, the contact point became a
three-phase boundary between SiO,, CaCl,, and the con-
ducting material. At the initial stage of the reduction, SiO,
at the three-phase boundary was reduced by the electrons,
which were directly supplied by the conducting material.

SiO,(s) + 4e (through a conducting material) ()
— Si(s) + 20?~ (in molten salt).

The byproduct, 0> ions, was removed from the cathode
via diffusion into the molten CaCl,. Following the reduc-
tion of SiO, into Si, it exhibited high electrical conduc-
tivity at a high temperature to generate additional elec-
tron pathways. Further, the volume decreases from SiO,
(27.2cm3mol™) to Si (12.1 cm>mol ™ for the crystalline Si)
induced the formation of vacant spaces between the Si
products, and these spaces were immediately filled with
molten salt. These behaviors induced a new three-phase
boundary inside the electrode (SiO,, the penetrated molten
CaCl,, and the produced Si), after which the reduction
occurred at the new three-phase boundary.

SiO,(s) + 4e (through a produced Si) )

— Si(s) + 202~ (in molten salt).
The reduction proceeded via the continuous production
of new three-phase boundaries in the entire SiO, layer.
The process is much faster on the SiO, surface than in the
depth direction. The reduction rate was determined via
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the diffusion of the 0% ions in the molten CaCl, filled in
the produced porous Si layer [203,212]. The reported
transfer coefficient, a, of the electroreduction of SiO,
into Si was ~0.01 [210]. The unusually small value of a
indicates its slow nuclear configuration and considerable
resistance of the Si product. Further, considerable resis-
tance was also proposed in the form of contact resistance
for the reduction of the SiO, granules [212,228].

The mechanism of the direct reduction of SiO, is dif-
ferent from that of the FFC process for metal oxides, such as
TiO,, Nb,Os, NiO, and UO,. The reduction of these oxides
proceeds via the electrons that were supplied by the oxides.

MO,(s) + 2xe™ (through MO,)

— M(s) + xO% (in molten salt).

(10)

Thereafter, the reduction of the metal oxides during
the FFC process proceeded at the two-phase interface
between the metal oxide and molten salt. The system is
similar to the case of electrodeposition because it is com-
posed of electron transfer (electrode) and an ion con-
ductor (electrolyte). Contrarily, since silicon oxides exhibit
very high electrical resistivity even at high temperatures,
electrons must be supplied from the current collector
[201,203]. Therefore, the reduction of SiO, proceeded at
the three-phase boundary between the silicon oxide, molten
salt, and conducting material according to the reactions (8)
and/or (9).

In terms of the reaction at the three-phase boundary,
the necessity of the current collector is similar to the
electrochemical reactions at the gas electrodes in fuel
cells and the active materials in Li-ion batteries (LIBs).
Thereafter, the direct reduction of SiO, would be natu-
rally treated differently from the FFC process owing to the
different reduction mechanisms.

Conversely, the possibility of liquid-to-solid reac-
tions is also proposed for the production of Si from SiO,
[218]. In the liquid-to-solid reaction, which is known as
the dissolution-to-deposition reaction, SiO, is first dis-
solved in the molten salt with a high 0°" concentration
[205,218,242], after which Si is electrodeposited from the
produced silicate ions. The formation of calcium silicates
is experimentally confirmed [219,245], and the reduction
behaviors at different 0>~ concentrations can be visually
understood employing a potential-pO*>~ diagram in which
p0O?~ is defined as p0?~ = -log ad™ (ad” is the activity of
0% ions in the molten salt) [205]. Considering that the
trace of the morphology of the Si product from the ori-
ginal SiO, varied among the reports [201,218], the reac-
tion to form Si would be a mixed one involving the
solid—solid and liquid—solid reactions, and the ratios of
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Figure 11: Cross-sectional SEM images of the reduction product
obtained by potentiostatic electrolysis of a SiO, plate at 1.0 V vs Ca®*/
Ca in molten CaCl, at 1,123 K [201]. Permission from Springer Nature.

these reactions change with conditions, such as the salt
composition and electrolysis potential. Further investiga-
tions based on quantitative analyses are necessary to
control the morphology and purity of the Si product.
Studies are ongoing to determine the various applica-
tions, such as the production of SOG-Si, the fabrication of
surface texture, and the formation of nanofibers, of electro-
deposited Si. To produce SOG-Si, high-purity SiO, was
reduced into high-purity Si during molten salt electrolysis.
Thus far, the impurity level, except those of B and C, was
lower than the acceptable level for application, and the
current density (0.7 A-cm?), which was as large as the value
for the commercial Hall-Héroult process for producing Al,
was achieved at the initial stage of the reduction [230].

5 Discussion

5.1 Features of each electrolyte

The foregoing chapters introduced and categorized the elec-
trochemical production of Si, as previously investigated.
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Figure 12: Schematic illustrations of the reaction mechanism pro-
posed by using (a) a point-contact electrode method [203], and
(b) a Si0,-sheathed electrode method [210]. Permission from
Springer Nature and American Chemical Society.

Table 9 summarizes the number of scientific papers regarding
each electrolyte in each decade from the 1960s to the 2010s.
Here the reports and patents were basically excluded from the
counting. In the 1980s, many studies on the electrodeposition
in fluoride molten salts were reported as research results of
national projects, such as the Solar Array Project by the DOE
in the USA. Further, many papers were published on electro-
deposition in ILs, as well as the direct electrolytic reduction of
Si0,, following their discovery in the 2000s. This increase
correlates with the recent high demand for solar cells and
high-purity Si.

Si has been mainly studied electrochemically for its
application in SOG-Si, while some studies have focused
on anode materials for LIBs [183,184,190]. The features of
each electrolyte are listed in Table 10. A high temperature
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Table 9: Trend of scientific papers reported on electrochemical production of Si
Electrolyte type Age Sum
1960s 1970s 1980s 1990s 2000s 2010s
Molten oxide 0 0 2 0 0 0 2
Molten fluoride 1 1 17 1 0 14 34
Molten chloride 0 0 0 1 0 6 7
Molten fluoride—chloride 1 2 1 2 1 1 18
lonic liquid 0 0 0 0 6 12 18
Organic solvent 1 0 6 2 3 8 20
Solid-state reduction of SiO, 0 0 0 0 13 22 35
Sum 3 3 26 6 23 73 134

favors the production rate. However, the material selec-
tion of the electrolysis apparatus, as well as the volume
shrinkage that are associated with the cooling procedure,
is challenging. In the case that the generated Si is solid,
the solubility of the constituent salts in water is also
important because the adhered molten salts have to be
washed. Furthermore, when the feedstock is SiO,, one of
the challenges is to develop oxygen evolution anodes.
The challenges accompanying ILs and organic solvents
include the low reaction rate and the low crystallinity of
the Si deposits. The deposits are generally amorphous,
and crystalline Si was obtained only under limited
conditions. Since amorphous Si solar cells exhibit draw-
backs, such as low conversion efficiency and light dete-
rioration, their applications are presently limited. The
highest hurdle of ILs is the anodic reaction rather than

the deposition of Si. According to Zhang et al., the evolu-
tion of Cl, did not proceed at the anode even with the
addition of C1™ ions to BMIMBF, [246]. Regarding sustain-
able electrowinning, the additive must be decomposed as
the total reaction between the anode and cathode. The
development of ILs and anode materials, which facili-
tated Cl, evolution, greatly contributed to continuous
electrowinning via the addition of SiCl,.

5.2 Morphology control

The morphology of the Si products highly depends on the
electrolytes. Typically, among the high-temperature molten
salts, the deposition of a dense and flat morphology is
possible with fluorides and fluoride—chlorides as listed in

Table 10: Feature of each electrolyte on electrochemical production of Si

Electrolyte type Advantage

Disadvantage

Molten oxide — Ultra-high reaction rate

— Selection of structural materials

- Oxygen evolution anodes not yet developed
- Volume shrinkage

Molten fluoride — High reaction rate

— Flat deposit

- Low solubility to water
- Generation of fluorine compounds

— Volume shrinkage

Molten chloride — High reaction rate

— High solubility to water
- Cl, generation

— High reaction rate

— High solubility to water
- Flat deposit

- Room temp. operation

Molten fluoride—chloride

lonic liquid

- Low solubility of Si compound

- Volume shrinkage
- Volume shrinkage

— Low reaction rate

— Unknown anodic reaction
- Low crystallinity

Organic solvent — Room temp. operation

— Low reaction rate

- Low crystallinity

Solid-state reduction of SiO, — High reaction rate (initial)

- Porous product

— Oxygen evolution anodes not yet developed
- Decreased reaction rate of 0%~ diffusion control (with the progress)
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Tables 3 and 5, respectively. The oxides in the molten salts
account for the key factor that determines the morphology.
Zaykov et al. reported that the fluorides, oxyfluorides, and
silicate silicon complexes were formed via the addition
of oxides, which hindered the flat deposition of the Si
layer [135,137]. The deposition of fibrous and granule Si
in the oxide-containing melt has also been reported by
other groups [100-102,119,124] except recent papers that
reported the deposition of a dense and flat Si layer from
CaCl,—Ca0-Si0O, melts [125,126]. Moreover, other factors
would determine the morphology of the deposits.

During low-temperature electrodeposition in ILs and
organic solvents, the formation of a dense and flat Si film
was generally achieved. This tendency might be closely
related to the large overpotential that is required for the
deposition at low temperatures since the morphology is
typically dendritic when the reaction is governed by the
diffusion of the ionic species.

In aqueous solution systems, the influence of the fac-
tors on the morphology of the deposit has been discussed
employing the so-called Winand diagram [247-249], which
affords the stability of Fischer’s types of electrodeposits
[250] as a function of two main parameters, namely the ratio
of the current density to the diffusion-limiting current den-
sity and the inhibitions, such as the organic additives,
exchange current densities, and hydrogen overvoltage.
Even in high-temperature molten salts, the dependence
of morphology on mass transfer, nucleation, and crystal
growth provides insight into the electrocrystallization pro-
cess. The relationship between the current density and ion
concentration in molten KF-KCl was plotted and dis-
cussed employing the same methodology as that of the
Winand diagram [144]. The optimum condition for electro-
depositing a compact and smooth film was investigated as
a function of the current density and the concentration of
Si(iv) ions. The formation of the oxyfluoride complex ions
(described above) would be an inhibition factor due to
larger energy required for the desorption of ligands and
larger distance between the Si atoms and the electrode
surface than those for Si fluoride ions. The establishment
of systematic theories in molten salts, as well as aqueous
solutions, is desirable.

The direct electrolytic reduction of SiO, differs from
the other cases in that the product becomes consistently
porous owing to the volume decrease of SiO,. Thus, the
direct reduction of SiO, is not directly applicable to sur-
face coating employing a compact Si layer. Instead, it
exposes an effective pathway for synthesizing nanostruc-
tured Si, and several studies are ongoing to elucidate the
phenomenon. The formation of Si nanowires via chemical
vapor deposition requires the utilization of catalysts.
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However, such catalysts are not required in electrolytic
methods; free-standing nanoarrays have been reported
[221,233].

5.3 Purity control

In the discussion on the purity of Si and the PV perfor-
mance, the level of the metal impurity is generally
considered a determining factor. However, the C and O
contents severely affected the PV performance. For
instance, single-crystal pulling in the CZ method is impos-
sible at C concentrations of >5 x 10'® atom per cm® since
they become growth nuclei that interrupt the growth of
the seed crystals [251]. Most previous studies utilized
inductively coupled plasma-atomic emission spectroscopy
(ICP-AES) on analyzing the impurity contents for the elec-
trochemical production of Si. The measurements of the
p—n characteristics and carrier concentrations by Elwell
et al. [97] in the 1980s, as well as the photoelectrochemical
measurements and formation of the p—n junctions by Bard
et al. [125-127,226,227] in the 2010s, are desirable research
works. Since the electrochemical production of Si is
mostly aimed at PV applications, these evaluations must
be driven by a collaboration with researchers in applied
physics.

The target Si purity depends on the processes, i.e.,
the direct utilization of the Si films as solar cell substrates
(Route (3), Figure 2) or the alternative of the Siemens
process to produce high-purity polycrystalline Si (Route
(2)). When the Si deposit is directly utilized (Route (3)), a
high-purity of the 6 N level is required. By comparison,
the required purity is less for producing polycrystalline Si
(Route (2)). Thereafter, the polycrystalline Si product is
cast into a mold to produce polycrystalline Si ingots; CZ
pulling might also apply. High-purity Si is obtained from
the feed polycrystalline Si in high yields because the
metal impurities are enriched in the liquid phase during
casting. However, the B, C, and P contents, which are
challenging to remove via solidification refining owing
to the high segregation coefficients, must be reduced at
the stage of the feed polycrystalline Si.

In most studies, the Si precursors for the electrolysis
utilize K,SiF¢ in high-temperature molten salts and SiCl,
in ILs and organic solvents. The drawback of utilizing
K,SiF¢ is the preparation of high-purity precursors. As
described in Section 3, K,SiFg is commercially manufac-
tured via the neutralization of hexafluorosilicic acid with
potassium hydroxide (Reactions (6) and (7)). Not only
could metal impurities present limitations to the products,



268 —— Kouji Yasuda and Toshiyuki Nohira

but the inclusions of oxides and hydroxides can also be
problematic. As discussed in Section 5.2, the addition of
oxides into the molten salts would impact the morphology
of the deposit into non-flat structures, such as granules
and fibers. Conversely, rather than using SiO, itself as a
precursor for electrolysis, it is appropriate to use it as a
precursor for another compound. Rice husk [252-254] and
diatomaceous earth [255-259] have also been proposed as
the SiO, sources (shown as the arrows on the right side of
Figure 2), and their reductions by C, Mg, electrons, etc.,
have been reported. For example, silica was first dissolved
into an aqueous alkaline solution at pH 12.0 to remove
heavy-metal impurities as precipitates [256,259]. There-
after, the pH was controlled to 10.5 to yield high-purity
silica. Solvent extraction employing 2-ethyl-1,3-hexanediol
(EHD) with toluene as the solvent was employed to
remove the light elements, including B [257-259]. Pre-
sently, high-purity SiO, is produced for optical applications
via the reaction of SiCl, with O, or H,0, which is produced by
the chlorination of MG-Si. The high cost of production hinders
its application in PV cells. High-temperature HCl leaching and
the utilization of the Na,SiF byproduct of fertilizer have been
proposed as potential sources of high-purity SiO, [10,11]. Elec-
trowinning from the SiO, precursor is susceptible to carbon
contamination because the anodic reaction corresponds to
CO, evolution with a side reaction to produce CO3~ formation.
In addition to carbon deposition from CO%™ anions, the impu-
rities in the anode materials will be included in the melt to
become potential impurities in the Si products. Regarding the
electrochemical processes, it is necessary to establish a system
that includes the anode materials and cell structure. From the
standpoint of product quality, the impurities from the anode,
particularly at high temperatures, represent the most chal-
lenging issue. For instance, in the molten CaCl, system
that was investigated for the direct electrolytic reduction
of Si0,, the utilization of a carbon anode could make it
difficult to avoid the deposition of C on the Si product at
the cathode via the formation of CO3~ ions [219]. Although
the solubility of CO, gas in the molten CaCl,-based salt is
not high [260], that of CaCOs is quite high [261] and the
formation of CO%™ has been proposed [262-264]. In the
case of inclusion of residual moisture in the electrolytes,
the contamination issues also apply to the electrodeposi-
tion of Si layers other than the direct electrolytic reduction
of Si0,. Therefore, as mentioned in Section 5.1, the devel-
opment of the contamination-free anodes is one of the most
important tasks, including the oxygen evolution electrodes
for the electrowinning from the SiO, feedstock.

The above discussion indicates that the utilization of
SiCl, in high-temperature molten salts is promising. The
preparation of inexpensive high-purity SiCl, can be
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Figure 13: Flowchart for the electroplating in fluoride—chloride melt
and the use of SiCl, precursor.

accomplished via the carbochlorination of silica ores, fol-
lowed by distillation. A research group at Kyoto University
proposed the introduction of SiCl, as Si precursor for electro-
deposition in fluoride—chloride mixed melt [143,146]. The
supply of SiCl, gas into KF-KCl molten salt facilitated the
following chemical reactions to form SiFZ~ complex anions.

SiCl,(g) + 6KF(l) — KSiFs(l) + 4KCI1).  (11)

The feasibility of utilizing SiCl, as a precursor was ver-
ified through thermodynamic calculations, as well as
electrochemical studies. A further advantage is that in
the case of the fluoride—chloride mixed melt, the anodic
reaction is the evolution of Cl, gas. In addition to pre-
venting the impurity inclusion from the anode materials,
the formed Cl, gas can be reused in the carbochlorination
process, which ensured the establishment of a closed
cycle (Figure 13). Although the solubility of SiCl, in the
chloride melt is very low, it is highly soluble in fluoride—
chloride melt via the ion-exchange reaction shown
above. The high solubility allows for the fast electro-
deposition of Si films.

To produce bulk polycrystalline SOG-Si, the utiliza-
tion of liquid Si is theoretically promising for controlling
the purity. Although a 6 N purity of Si is required for the
PV applications, the purities that were achieved in past
studies were at most 4 N level. Although a recent paper
reported that the purity reached 99.99989%, the mea-
sured elements were limited and the exact purity was
unknown [127]. The electrochemical fabrication of p—n
junctions for solar cells makes great sense, but the pro-
cess is very sensitive to product contamination, and sig-
nificant hurdles remain in its realization in terms of
required purity and quality stability. Another issue is
that the technology for doping impurities into Si has
not yet been established. Figure 14 compares the flow-
charts for (a) direct production of solid Si and (b) produc-
tion of Si utilizing liquid Si alloy as an intermediate pro-
duct. In the direct production, most of the impurities from
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Figure 14: Flowcharts for the electrochemical production of Si in (a)
direct production of solid Si and (b) production of Si by using liquid
Si alloy as an intermediate product.

the Si precursor, anode material, molten salt, structural
components of the electrolysis cell, etc., contaminate the
Si products at the cathode. These impurities must be
removed, if it is possible, by the washing treatment using,
e.g., HCl aq. and HNOs aq. + HF aqg. On the other hand,
the process employing liquid Si alloy includes the purifi-
cation step, following the electrolysis. During the separa-
tion of the solid Si phase from the liquid alloy, the impu-
rities are concentrated in the remaining liquid phase
according to the solid-liquid distribution, which ensures
the production of high-purity Si. As well as the solidifica-
tion refining at the solid Si-liquid Si [265], the segrega-
tion purification has been also investigated for various
liquid alloys including Si—Al [266-282]. Since the contin-
uous operation of the process (Figure 14(b)) enriches the
impurities in the liquid phase, the purification, such as via
distillation, of the collector metal is necessary after several
runs. The establishment of a technology for efficiently
precipitating solid Si from the liquid alloy is required.

6 Conclusion

In the past, SOG-Si was supplied from off-grade portions
of SEG-Si that were manufactured via the Siemens pro-
cess. Presently, many Siemens plants for producing SOG-
Si production have been operating to deal with the
increased demand for PV-based power generation. In
the near future, as more and more electricity will be sup-
plied by PVs, new types of SOG-Si production/Si puri-
fication processes will be required.
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Electrochemical methods can potentially manufac-
ture polycrystalline SOG-Si, and even facilitate the direct
formation of solar cell substrates. The previously pro-
posed or investigated electrochemical processes for pro-
ducing Si were reviewed here by classification based on
the reaction principles and employed electrolytes. Based
on an overview of various reports, the important factors
for Si electrodeposition such as morphology control and
purity control were discussed. The aspects necessary for
the establishment of future processes were also proposed.

The PV industry will definitely play a decisive role in
the energy and environmental fields in the future. Therefore,
the mass production of inexpensive SOG-Si is an urgent
global task. Further research and development are required
to establish the future production process.
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