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Abstract

This dissertation consists of three chapters about dynamic coordination games, learning, and

their connections.

The first chapter presents a dynamic coordination game in the context of an investment

crash. Agents decide whether and when to invest in a risky project while observing past

activities over time. The optimal action timing of an agent is determined by her constant

trading off the informational gain of delaying versus its opportunity cost. The chapter

characterizes the optimal action timing of each agent and further shows the uniqueness of

such a monotone equilibrium, shedding testable insights into analysis and policy guidance.

Various comparative statics questions are answered, including the impact of learning on

coordination success and behaviors. Furthermore, the analysis applies to all ranges of

information precisions, resolving a long difficulty in the literature in which most existing

studies can only tackle the vanishing noise situations. Additionally, I show that full learning

about the state achieves in the limit, and give conditions on which observing actions reveals

more accurate information about the state than directly observing it.

The second chapter is based on a classical market-based learning model in the presence

of both private and public observations of market aggregates. Existing studies show that the

learning speed is slow with only public learning, which undermines the value of information

since market situations change. This chapter incorporates a private learning channel through

observing market data with idiosyncratic noise. I demonstrate that now learning efficiency is
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improved, in the sense that both public and private information become limit accurate and

furthermore, the asymptotic learning rates are linear, higher than in the pure public learning

case. Various intuitive features of the learning process have also been verified.

The third chapter combines the above two chapters by constructing a model in which

agents interact and learn from each other prior to a coordination game. Learning still

happens from both public and private observation of market aggregates. I show that learning,

or equivalently the higher information precision, improves agents’ expected payoffs and

coordination success. In addition, I demonstrate that the incorporation of private learning,

instead of dispersing agents’ information, contributes to its conformity, and thus prompts

multiple equilibria in the global game.
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Chapter 1

Learning and Strategic Delay in a

Dynamic Coordination Game

1.1. Introduction

Coordination games of incomplete information like currency crises or investment crashes

impact the economy massively and draw much attention from economists. One prominent

approach to analyze such problems is the global games model pioneered by Carlsson and

Van Damme (1993) and Morris and Shin (1998). It introduces asymmetric information

into the traditional coordination game framework and remarkably obtains a unique and

analytically convenient equilibrium, shedding testable insights on policy guidance and

welfare implications. However, the existing studies are mostly in static contexts, despite the

economic activities are inherently dynamic. Budget-constrained agents delay their investment

decisions to learn from their predecessors’ behaviors, for example. That said, learning and

delaying behaviors of agents are prevalent in practice and worth exploring, but the static

models cannot provide predictions or analysis for those dynamic aspects.
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Particularly in coordination games, learning and delay behaviors become more notable

because agents face not only the payoff uncertainty about the economic fundamentals,

but also the strategic uncertainty about their opponents’ (past, current, and future) beliefs.

Consequently, it is almost inevitable to extend the static models into multi-periods and

consider learning and delaying behaviors of agents, to capture their intrinsic motivations

to mitigate both sorts of uncertainties. And the investigation into dynamic environments

is not a simple extension of the static model because of the strategic delay consideration

of agents to try to select the optimal action timing. That is, delay provides informational

gains through agents’ observation of past activities, but is also costly due to discounting and

shrinking opportunities, so agents must constantly trade off the benefit and the cost of delay

to determine when to act, and this crucial trade-off cannot be captured in static frameworks.

Therefore in this paper, we construct an N ∈ N period model in an investment context to

investigate the impact of learning and delay options on agents’ behaviors, based on the static

global game of Morris and Shin (2000). The prospect of an investment project, or the state,

is deterministic but ex ante unknown, and a continuum of heterogeneously informed agents

can undertake a fixed-size investment once. They independently select the investment timing

(if at all) out of N periods, while observing a stream of noisy signals about past activities

over time, which represents the learning behavior and is the informational gain of delay.

To capture the coordination motive and the opportunity cost of delay, we let the payoff of

the investment to an agent, paid at the end of the game, be positively correlated with the

aggregate investment, while negatively with her investment timing, if ever invested. Hence

agents with one-time investment opportunity need to trade off the informational gain of delay

versus its opportunity cost to decide their optimal investment timing.

After constructing the model, we solve for its equilibrium and demonstrate the existence

and the uniqueness of a monotone equilibrium, in which agents take a symmetric threshold
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strategy profile (i.e., an agent invests in one period if and only if her belief about the state

exceeds some threshold prescribed for that period.) This monotone form of strategy is

documented in almost all relevant literature and is as well intuitively appealing in this

dynamic environment. To see it, agents select their investment timing by trading off the

informational gain of delay against its opportunity cost, so if an agent believes the state

is good enough in one period, she expects the investment is profitable and consequently,

the expected opportunity cost to her is huge while the informational gain is little; thereby

she invests immediately. Otherwise she delays to the next period, in which she updates

her information by observing what others have done, and then make decisions by the same

trade-off logic as before, and so on.

Noteworthy in equilibrium, the investment decisions of an agent only depend on her

beliefs about the state, even though the payoff involves her fellow agents’ behaviors. This

is so because (i) the payoff depends on the aggregate investment and (ii) the aggregate

investment is (shown to be) deterministic given the state. There two properties are standard

in global games literature and essentially stem from the Law of Large Numbers. Recall that

agents form a continuum, which allows us to characterize a one-to-one relation between

the aggregate action and the state. Hence a belief about the state suffices to evaluate the

corresponding aggregate investment. Also with this deterministic relation, the information

learned from past actions is shown to be summarized in a closed-form statistic centered

around the state, for all learning precision levels. This is one of the novelty of this paper

because the past literature in dynamic environments only allows analysis in limit accurate

learning situations (cf., Dasgupta (2007)). The comparison to the existing literature will be

elaborated in the literature review section soon.

Our following analysis is thus focused on this unique monotone equilibrium and addresses

two questions. The first probes the dynamics of agents’ behaviors in equilibrium, and the
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second investigates comparative statics, particularly the impact of learning and delay options

on coordination success and welfare.

First, we summarize agents’ equilibrium behaviors. In period 1, the optimistic agents

who observe favorable signals (that exceed the equilibrium threshold of period 1) invest

immediately, since they believe the investment’s prospect is already good and thus outweigh

the opportunity cost of delay over its informational gain. In the subsequent intermediate

periods, the remaining agents constantly revise their expectations about the investment

through cumulative learning, and depending on learning efficiency, a large or small fraction

of agents will switch into investing. Noteworthy, if the learning efficiency is modest (i.e., the

accuracy of endogenous signals is low), in every period will a few agents newly invest, so

the relatively inertia phenomenon documented in the literature (Angeletos et al. (2007)) is

expected. Also by implication, had no learning effect existed, agents would only act in the

first period and stay inactive till the last period. We indeed verify this conjecture and show

that the mere delay option without learning opportunities has no impact on the game, relative

to the one-shot game. In the last period, there is no stage to delay to, so another positive

fraction of remaining agents will choose to invest.

Next we discuss comparative statics. To begin with, we contrast agents’ behaviors with

that in the one-shot game. Results show that agents are less aggressive (i.e., less likely to

invest) in the intermediate periods than in the static game. Intuitively, agents are tempted by

the information learned from delaying and hence choose to wait. On the other hand, agents

behave more aggressively in the last period of the dynamic game, due to a higher expected

total investment and the coordination motive.

We next investigate the values of learning opportunities and the consequent welfare impli-

cations. It is demonstrated that learning opportunities increase agents’ expected continuation

payoffs and thus improve coordination success and social welfare. Intuitively, coordination
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fails because agents, facing the uncertainty about whether others will cooperate, may choose

not to invest, even if it is their collective interest to do so. Learning alleviates this problem by

reducing the strategic uncertainty among agents, since it makes agents’ signals more accurate

and thereby better aligned. Also we show that agents more accurately infer the state in the

presence of learning, indicating the payoff uncertainty is also mitigated.

Note that agents learn the state through observing past activities, and we are interested in

how efficient such a learning mechanism is, relative to learning from directly observing the

state. We find that as long as agents’ initial information is precise enough, observing actions

reveals more accurate information than directly observing the state. Intuitively, learning

efficiency of observing actions depends on (i) how accurately agents’ private information is

about the state and (ii) how accurately endogenous signals reflect their actions (and hence

their private information). The two channels are shown to be mutually reinforced and

therefore, if one of them is accurate enough, it is possible that indirect learning delivers more

accurate information about the state than direct learning.

Lastly, we discuss the equilibrium selection in the dynamic model. One of the remark-

able results that static global game models provide is the uniqueness in equilibrium when

information among agents is sufficiently diffused (see Morris and Shin (2003)), resolving the

indeterminacy of equilibria problem in complete information coordination games. And we

indeed obtain a unique monotone equilibrium in this dynamic environment. However, other

forms of strategies than a threshold strategy cannot be excluded to constitute an equilibrium.

This is because the dynamic environment provides other dimensions for coordination and

thus multiplicity. For instance, if all agents believe their opponents will take some specific

strategy form, so may they, and this mutual effect in turn justifies the usage of that strategy

form. Aside from this, as Angeletos and Werning (2006) demonstrate, when learning is

through public observation of actions, multiple equilibria can arise even when agents are
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endowed with limit accurate private information. The feature is also present in our model

when we consider that learning is through public observation of actions in Section 4.

Also in section 4, we extend the game to infinite periods and show that the properties of

the N-period game are still valid; furthermore, we find that agents completely learn the true

state in the limit, avoiding the usual information cascade when learning is through observing

past activities (Bikhchandani et al. (1992) and Banerjee (1992)). Indeed, in our model, pooled

information of agents reveals the true state, so it is at least plausible for agents to fully learn

the state. And the signal structures we consider are continuous due to normal noise; as Lee

(1993) demonstrate, this continuity prevents information cascade, because any tiny variation

in agents’ behaviors will be, at least noisily, reflected by signals.

1.1.1 Related literature

This paper is most related to Angeletos et al. (2007) and Dasgupta (2007). Angeletos et al.

(2007) investigate a dynamic regime change game in which short-lived agents (in the sense

that agents are new and given a unit of perishable endowment every period) repeatedly decide

whether to attack a regime, while observing the outcomes of the past attacks. By contrast,

agents in our model are long-lived and have budget constraints in the sense that they can only

act at most once, and thus face an active timing problem. Moreover, we consider that all past

activities cumulatively affect the payoff of the investment, while they assume only the action

of the present period affects agents’ payoffs. In addition, a continuous payoff structure is

assumed in our paper, as opposed to the discrete payoff structures of the regime change game

(which pays either a lump sum or nothing, depending on whether the regime switches), so our

result about the dynamics of agents’ behaviors complements that of Angeletos et al. (2007):

agents in our model respond continuously to information variations, while their agents have

complete inertia unless receiving a large change of information.
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It is worth stressing that though payoffs are continuous in parameters in our model,

agents’ strategies are not because of the feature of the threshold strategy. That said, agents’

actions can change discontinuously and dramatically with a small perturbation of information

(even given the state of the world); to see it, consider those with signals around the threshold.

Consequently, volatile non-fundamental variations of actions exist in our model, which is

one of the highlights of the global games approach to explain sudden changes of behaviors in

crises phenomena; see Morris and Shin (2003).

Dasgupta (2007) considers a regime change game in a two-period span, with agents

endowed with limit accurate private information as well as learning is of limit accurate, so

learning is almost immaterial there. Our analysis instead spans N, and further infinite, periods

and applies to all learning efficiencies. Furthermore, the almost fully informed agents in

Dasgupta’s work always benefit from the delay option, while we find that, when agents are

not fully informed, what helps improve coordination success is the learning effects and that

the delay option alone does not affect the outcomes, relative to the static game.

Some works focus exclusively on learning effects, especially the effects of public signals

on equilibrium selection in global games. The pioneers are Angeletos and Werning (2006),

who show the rise of multiple equilibria when learning is through public observation. Most

distinctively, our paper differs from theirs because in that their game is essentially static, in

the sense that one group of agents act in the first period in the financial market of Grossman

and Stiglitz (1976), and then another group, observing price or activity in the market, act in a

static global game; the two groups share no payoff transfers. Also connecting to the rational

learning literature, our learning mechanism, particularly the Gaussian signal structure, has

the similar updating rule as in Vives (1993).

There are works on global coordination games that study different aspects than this

paper. For example, Hellwig et al. (2006) consider endogenous interest rates, Angeletos et al.
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(2006) analyze the signaling effects, and Szkup and Trevino (2015) study costly information

acquisition. See also Morris and Shin (1998) for currency crises, Goldstein and Pauzner

(2005) for bank runs, and Edmond (2013) for sociopolitical revolutions.

In very different setups, the option value of delay has been examined by Chamley and

Gale (1994) in a noncooperation environment with perfect observation of past activities. Gale

(1995) studies strategic delay in a complete information coordination game.

The rest of the paper is structured as follows. Section 2 investigates the game comprising

two periods and captures our core results. Section 3 considers multiple periods and confirms

the validity of the results in the two-period model. Section 4 discusses the extension

concerning infinite periods and public learning.

1.2. The Two-Period Model

In this section, we examine a two-period game with a linear payoff structure; it captures our

core results. The stage game is based on Morris and Shin (2000). The general model that

comprises N ∈ N periods and a general payoff will be explored in Section 3.

1.2.1 Setup

A measure-one continuum of agents, denoted i or j, independently decide whether to invest

in a risky project at time t = 1 or t = 2, if at all. An agent can invest at most once irreversibly.

Let ati ∈ {0,1} denote agent i’s action at time t, where 1 (or 0) refers to investing (or

not investing); it is then required that a1i + a2i ∈ {0,1}. Moreover, let at =
∫

i atidi be the

aggregate investment at time t, and ât = ∑
t
1 ak the cumulative investment till t. The return of

the project is determined after all investment decisions are completed, so payoffs are realized

at the end of time 2. The payoff of an agent who does not invest is normalized to 0, and that
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to investing is the sum of two factors. The first is the total investment â2, and the second is

the exogenous investment environment, which is driven by other economic fundamentals.

We summarize the second factor by a single parameter r ∈ R. In sum, the return to an agent

who chooses ati ∈ {0,1} equals

ati(r+ â2). (1.1)

In each t = 1,2, agent i chooses ati ∈ {0,1} to maximize her aggregate expected payoff,

E[∑2
t=1 δ t−1ati(r+ â2)], given her available information at that time, where δ ∈ (0,1) is the

timing cost on investment. Note that δ acts similarly as a discount factor, but since agents

only receive payments at the end of the game, δ is interpreted as shrinking opportunities.

The state parameter r is deterministic but ex ante unknown, and is uniformly distributed

over the entire real line, so agents hold an improper prior about it: r ∼ Unif(R). In period 1,

agent i observes a private signal x1i about the realization of r:

x1i = r+
1

√
τ1

ε1i, (1.2)

and in period 2, agent i additionally receives x2i about the past activity a1:

x2i = Φ
−1(a1)+

1
√

τ2
ε2i, (1.3)

where Φ is the CDF of the standard normal and τt > 0, t = 1,2, measures the information

quality, and εti is a standard normal variable, independent across time and agents and of r

(i.e., εti|r = εti ∼ N (0,1), i.i.d. for any t and i). Here we follow the literature (Dasgupta

(2007) and Angeletos and Werning (2006)) to choose the analytically convenient information

aggregation technology Φ−1, but as we will see soon, the qualitative results of the paper are

valid for other learning technologies. Furthermore, we impose the Law of Large Numbers
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(LLN) convention through out the paper, namely, the proportion of agents who receive signals

higher than some real number is equal to the probability of an individual agent receiving

such signals. Consequently, no aggregate uncertainty about r exists since the idiosyncratic

noise cancels out:
∫

i ε1idi = 0.

In summary, the game proceeds as follows.

0. Nature randomly draws r from R.

1. In period 1, agent i privately observes x1i about r and then makes an investment

decision. The total investment a1 is thus determined.

2. Subsequently in period 2, agent i privately observes x2i about a1 and then takes a

feasible action. The aggregate investment â2(= a1 +a2) of the game is thus determined.

3. The payoffs to investment depending on r and â2 are realized at the end of period 2.

Recall that in period 2, the only feasible action to agents who have invested is action 0.

1.2.2 Threshold Strategies and Monotone Equilibria

In line with the literature, we consider that agents play a symmetric threshold strategy in

each period - an agent invests iff her expectation of r at that period exceeds some threshold

number. Specifically, a threshold strategy σ1 in period 1 for agent i who observes x1i takes

the form

σ1(x1i) =


1, if x1i > x1

0, otherwise,

for some x1 ∈ R (we differentiate signals and thresholds by subscript i). By construction,

the agent selects not investing at a tie when x1i = x1. The expression of a threshold strategy

in period 2 requires closer inspection because of endogenous learning. To see it, note that

a1(r) = P(x1i > x1 | r) = Φ(
√

τ1(r− x1)) for any realization of r, when all agents follow a
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threshold strategy with threshold x1 in period 1. Hence endogenous signal x2i becomes

x2i =
√

τ1(r− x1)+
1

√
τ2

ε2i,

rearranging which we obtain

x2i√
τ1

+ x1 = r+
1

√
τ2τ1

ε2i.

Therefore, if we define

x′2i ≡
x2i√

τ1
+ x1,

then

x′2i = r+
1√
τ ′2

ε2i,

where τ ′2 ≡ τ1τ2. Note that x′2i is informationally equivalent to x2i with respect to r. Therefore

by Bayes’ rule, agent i’s updated belief about r in period 2 can be summarized by a sufficient

statistic x̂2i(x1i,x2i) with

x̂2i(x1i,x2i) = x̂2i(x1i,x′2i) =
τ1x1i + τ ′2x′2i

τ1 + τ ′2
= r+

1√
τ̂2

ε2i, (1.4)

where τ̂2 ≡ τ1 + τ ′2.1 A threshold strategy σ2 in period 2 is defined by the rule

σ2(x1i,x2i) =


1−σ1(x1i), if x̂2i(x1i,x2i)> x2

0, otherwise,

1Recall ε1i and ε2i are both standard normals, and by abusing notation, we let ε2i in (1.4) denote a normal
noise in agent i’s belief towards r at t = 2.
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for some x2 ∈ R, given agents follow σ1 in period 1. This completes the definition of a

threshold strategy profile in the dynamic game. 2 When no confusion might occur, we

write x̂2i ≡ x̂2i(x1i,x2i) and x̂1i ≡ x1i (and hence define τ̂1 = τ ′1 ≡ τ1), and denote a threshold

strategy profile by its thresholds, say, (x1,x2).

It should be noted that when all the agents follow (x1,x2), the size of investment at at

time t = 1,2 is a deterministic function of r, such that

a1(r) =
∫

i
P(x̂1i > x1 | r)di = P(x̂1i > xt | r), a2(r) = P(x1i < x1, x̂2i > x2|r),

by LLN.3 That said, when all agents play a threshold strategy, the payoff to investment

depends on (r, â2(r)), so that the estimation about r suffices to evaluate decisions even â2

enters the payoff function. In this paper, we consider symmetric perfect Bayesian equilibria

in which all agents follow a threshold strategy profile, and call such equilibria monotone

equilibria. In what follows, we refer to monotone equilibria as equilibria unless otherwise

stated.

It is worth stressing that the key in obtaining an analytical form of posterior belief

x̂2i(x1i,x2i) in period 2 is the transformation from x2i centered around Φ−1(a1) to x′2i centered

around r. The transformation is plausible because no aggregate uncertainty exists in the

model (
∫

i x1idi = r indicates pooling the continuum’s information reveals r), so that when

all agents follow a threshold strategy in period 1, the aggregate activity a1 is deterministic

given r, and thus the observation of a monotone function of it (i.e., Φ−1(a1)) leads to an

estimation of r. This line of reasoning implies that the specific aggregation rule Φ−1 of x2i

2Note that σ2 is only well defined when agents take a threshold strategy in period 1; it suffices for our
purpose since we restrict to agents playing a threshold strategy profile.

3Note that a2(r) =P(x1i < x1, x̂2i > x2|r) =P(x̂2i > x2|r,x1i < x1)P(x1i < x1|r) =P(x̂2i > x2|r)P(x1i < x1|r),
since r suffices to estimate x̂2i by (1.4).
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is not qualitatively restrictive: any one-to-one aggregation rule results in an estimation of r

from observing a1; we choose Φ−1 to obtain the well-behaved transformed signal.

Moreover, since the estimation of r is derived from x2i, the quality of the estimation

depends on how precise (i.e., τ2) x2i reflects a1 and how precise (i.e., τ1) a1 reflects r. Indeed,

the induced precision level τ ′2 = τ1τ2 of x′2i verifies this. It also highlights that the endogenous

information is generated by social learning, or from individuals’ private information, so the

more accurate information agents initially hold, the more accurate information their actions

convey. Noteworthy, the precision level τ ′2 is the same as that of endogenous signals obtained

from rational expectations equilibrium price (Grossman and Stiglitz (1976)), underscoring

that the specific learning rule Φ−1 provides results consistent with the literature.

We close this section by characterizing agent i’s cross-period beliefs about one another,

and show that a higher expectation of r leads to a higher expectation of â2. The results are

useful in the equilibrium characterization later.

Lemma 1. When agents follow a threshold strategy profile (x1,x2), for time t ̸= k ∈ {1,2}

and any signal realization x̂ki, x̂t j, we have, for i ̸= j,

x̂t j|x̂ki ∼ N

(
x̂ki,

τ̂k + τ̂t

τ̂kτ̂t

)
,

and for i = j

x̂2i|x1i ∼ N

(
x1i,

τ ′2
τ̂2τ1

)
. (1.5)

Moreover, E[â2|x̂ki] strictly increases in x̂ki.

Proof. For i ̸= j, since x̂ki(= r+ εki/
√

τ̂k), we have

x̂t j = r+
1√
τ̂t

εt j = x̂ki −
1√
τ̂k

εki +
1√
τ̂t

εt j.
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For i = j, since x′2i = x1i − ε1i/
√

τ1 + ε2i/
√

τ ′2, we have

x̂2i =
τ1x1i + τ ′2x′2i

τ1 + τ ′2
= x1i +

τ ′2
τ1 + τ ′2

(− 1
√

τ1
ε1i +

1√
τ ′2

ε2i),

so (1.5) holds.

For the second part, note that (E[a1|x̂ki])
′ = (P(x1 j > x1|x̂ki))

′ > 0, and that E[a2|x̂ki] =

P(x1 j < x1, x̂2 j > x2|x̂ki) = (1−E[a1|x̂ki])P(x̂2 j > x2|x̂ki), so

d
dx̂ki

E[â2|x̂ki] =
d

dx̂ki
E[(a1 +a2) | x̂ki]

= (E[a1 | x̂ki])
′(1−P(x̂2 j > x2|x̂ki))+(1−E[a1 | x̂ki])(P(x̂2 j > x2|x̂ki)︸ ︷︷ ︸

=Φ(
√
·(x̂ki−x2))

)′ > 0.

Q.E.D.

Note that, complying with our intuition, the point (iii) states that i makes more accurate

inferences about her own belief than about others’. In what follows, we abbreviate E[at |x̂ki]

and E[ât |x̂ki] to at(x̂ki) and ât(x̂ki), respectively.

1.2.3 Equilibrium Characterization

The Static Game

We first consider when the game only consists of the first period, namely a static game, to

illustrate how to solve for the unique monotone equilibrium; it also serves as a benchmark

for later comparative statics analysis. Since the one-shot game is a standard static global

game, the equilibrium can be easily characterized as in the following proposition.
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Proposition 1. In the static game with signal structure x1i = r+ε1i/
√

τ1 and payoff structure

r+a1, there exists a unique equilibrium which is a monotone equilibrium characterized by a

threshold strategy x∗st with x∗st =−1/2.

A detailed proof can be found in Morris and Shin (2000), and here we sketch it. Think of

a marginal agent with signal x1i such that she is indifferent between investing or not, namely,

E[r+ a1|x1i] = 0. It is straightforward to verify it has a unique solution, x1i = −1/2, and

we claim it is x∗st .
4 Indeed, following symmetric strategy −1/2 (investing iff x1i >−1/2) is

optimal, because E[r+a1|x1i]> 0 iff x1i >−1/2. The global uniqueness is obtained by the

standard iterated dominance argument so we omit its proof.

Note that in verifying the threshold strategy x∗st constitutes an equilibrium, it suffices to

consider the marginal agent who is indifferent between the two actions. This is due to payoff’s

monotonicity in r and a1: a higher signal realization indicates higher r and a1, resulting in

higher expected payoffs from investing, so an agent with signals higher than the cutoff signal

expects the payoff to investing exceeds 0 and thus invests. Since the monotonicity of the

payoff holds in the dynamic game, one can expect that an equilibrium shall be readily found

by identifying such a marginal agent. However, her role is more subtle there, since instead of

balancing whether to invest or not, the agent trades off between acting now versus delaying

and acting optimally later. A careful analysis is therefore required and conducted below.

The Two-Period Game

We now solve the two-period model. Let R1(x1i;(x1,x2)) denote the expected continuation

payoff for agent i who observes x1i and delays in period 1, given all other agents follow

some threshold strategy (x1,x2) in the game. To compute R1, agent i infers her to be received

4Formally, a1(x1i) = Φ(
√

τ1/2(x1i − x1)) given other agents follow some threshold strategy x1. Thus the
only symmetric solution to the equation is x1 =−1/2.
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signal x̂2i from x1i, since x̂2i determines whether she will invest later and if so, her expected

payoff. We claim

R1(x1i;(x1,x2)) = δE
[
E [r+ â2|x̂2i > x2]

∣∣x1i
]

= δ

∫
∞

x2

E[r+ â2 | x̂2i] f (x̂2i | x1i)dx̂2i,

where f (x̂2i|x1i) is the density of x̂2i given x1i and by (1.5) in Lemma 1, equals (P(· ⩽

x̂2i|x1i))
′ = (Φ(

√
τ1τ̂2/τ ′2(x̂2i − x1i)))

′; also see Lemma 1 for the formula of E[â2|x̂2i] given

thresholds (x1,x2). Let R2(x̂2i;(x1,x2))≡ 0 for any x̂2i and (x1,x2), meaning the continuation

payoff at the last stage is 0.

To better understand the formula of R1, suppose the agent who observes x̂2i has reached

period 2; then given others follow (x1,x2) in the game, her expected payoff to following x2,

denoted R̃1(x̂2i;(x1,x2)), is

R̃1(x̂2i;(x1,x2)) =


E[r+ â2 | x̂2i], if x̂2i > x2

0, otherwise.

In period 1, the agent forms an expectation of this value through her current signal x1i, which

is what she expects to obtain by delaying and thus is R1, so

R1(x1i;(x1,x2)) = δE[R̃1(x̂2i;(x1,x2)) | x1i] = δ

∫
∞

x2

E[r+ â2 | x̂2i] f (x̂2i | x1i)dx̂2i.

With this result, the following proposition establishes the existence and the uniqueness of a

monotone equilibrium.
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Proposition 2. A unique monotone equilibrium characterized by a threshold strategy profile

(x∗1,x
∗
2) exists in the two-period game, where x∗t uniquely solves

E[r+ â2|x∗t ] = Rt(x∗t ;(x∗1,x
∗
2)), for t = 1,2.

Proof. Let (x1,x2) denote an arbitrary threshold strategy. In period 2, given the others follow

(x1,x2) in the game, agent i with belief x̂2i expects her investment payoff to be

G2(x̂2i;(x1,x2))≡ E[r+ â2 | x̂2i;(x1,x2)], (1.6)

where we write (x1,x2) to emphasize it is used to compute E[â2|x̂2i], which by Lemma 1

increases in x̂2i, so (1.6) increases in x̂2i. If a threshold strategy x′2 ∈ R is an equilibrium

strategy in period 2, agent i should invest (i.e., G2(x̂2i;(x1,x′2))> 0) if x̂2i > x′2 and should not

if x̂2i < x′2; therefore by the continuity of (1.6) in x̂2i, i observing x̂2i = x′2 must be indifferent

between investing or not, namely,

G2(x′2;(x1,x′2)) = 0. (1.7)

We show in Appendix that G2(x′2;(x1,x′2)) is continuous, strictly increasing in x′2 and con-

verges to −∞ (resp. ∞) as x′2 →−∞ (resp. ∞). Hence a unique solution, given any x1, to

(1.7) exists, and we call it x∗2(x1). Note that x∗2(x1) is the only candidate for an equilibrium

threshold in period 2, given x1. The increasing monotonicity of (1.6) thus verifies x∗2(x1)

constitutes an equilibrium in period 2, since G2(x̂2i;(x1,x∗2(x1)))> 0 if x̂2i > x∗2(x1).

With the above result, we proceed to period 1. When all agents except i follow some

threshold strategy x1 in period 1 and all agents follow x∗2(x1) in period 2 (note that the

deviation of a measure-zero agent does not affect the optimal strategy in period 2), the
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investment payoff of agent i with x1i equals

G1(x1i;(x1,x∗2(x1)))≡ E[r+ â2 | x1i;(x1,x∗2(x1))],

which increases in x1i by Lemma 1. Let ∆(x1i;(x1,x∗2(x1))) denote the payoff difference of

agent i between investing and delaying in period 1, namely,

∆(x1i;(x1,x∗2(x1))) = G1(x1i;(x1,x∗2(x1)))−R1(x1i;(x1,x∗2(x1))).

A threshold strategy x′1 constitutes an equilibrium in period 1 only if agent i observing

x1i = x′1 is indifferent between investing and delaying, that is, the payoff difference is zero:

∆(x′1;(x′1,x
∗
2(x

′
1))) = 0. (1.8)

Likewise, we show in Appendix that ∆(x′1;(x′1,x
∗
2(x

′
1))) is continuous, strictly increasing in

x′1 and converges to −∞ (resp. ∞) as x′1 converges to −∞ (resp. ∞), so that a unique solution,

denoted by x∗1, to (1.8) exists such that ∆(x∗1;(x∗1,x
∗
2(x

∗
1))) = 0. And x∗1 is the only candidate

for equilibrium threshold strategies in period 1. Indeed, it is optimal because

∂

∂x1i
∆(x1i;(x∗1,x

∗
2(x

∗
1)))> 0, (1.9)

namely, investing in period 1 is optimal (∆(x1i;(x∗1,x
∗
2(x

∗
1)))> 0) if x1i > x∗1. And (1.9) can be

obtained by the same way in which we compute ∂∆(x′1;(x′1,x
∗
2(x

′
1)))/∂x′1 > 0 in Appendix.

Setting x∗2 = x∗2(x
∗
1), then (x∗1,x

∗
2) is the unique threshold equilibrium stated in the proposition.

Q.E.D.
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We have focused on symmetric strategies and this is without loss of generality, as Remark

1 shows; the essence is that every agent is infinitesimally small and faces the same decision

problem.

Remark 1 (Exclusion of Asymmetric Strategies). There can only be symmetric threshold

strategies in equilibrium. Suppose by contradiction that the unit agents are divided into

groups and each group in equilibrium follow threshold (x∗11,x
∗
12, · · · ,x∗1N) respectively in

period 1 and (x∗21,x
∗
22, · · · ,x∗2M) respectively in period 2, where N,M ∈ N. Then in period 2,

an agent in group i ∈ {1, · · · ,M} who observes x∗2i must be indifferent between investing or

not:

E[r+ â2|x∗2i;(x
∗
11, · · · ,x∗1N ,x

∗
21, · · · ,x∗2i, · · · ,x∗2M)] = 0. (1.10)

Since agents are infinitesimally small, the value of â2 only depends on the thresholds of the

population and is invariant of individuals’ actions. Hence we have by (1.10) that x∗2i equals

the negative â2. Similarly for a group j ̸= i agent, she solves

E[r+ â2|x∗2 j;(x
∗
11, · · · ,x∗1N ,x

∗
21, · · · ,x∗2M)] = 0,

and thus x∗2 j also equals the negative â2 and thus equals x∗2i. The similar argument applies to

period 1.

Remark 2 (Investment of Variable Size). If the action space is replaced by an interval [0,1]

with ∑
2
t=1 ati ∈ [0,1], the monotone equilibrium stays unchanged. That said, no agent will

split their endowment even if they can. This is so because the monotone equilibrium (x∗1,x
∗
2)

holds due to {0,1} ⊂ [0,1], and its uniqueness gives the result. Intuitively, when agents

expect positive returns and face delay costs, it is not wise for them to keep endowment unused,

whereas when they expect negative returns, being infinitesimal means that investing has

neither payoff nor information values.
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The proposition establishes the uniqueness in a monotone equilibrium, consistent with

the static global games literature. Yet the general uniqueness, namely the exclusion of other

strategy forms, does not obtain. Even though taking a threshold strategy is intuitively appeal-

ing because of payoff’s increasing monotonicity in the state. However, due to coordination

motives, if agents believe their opponents take some other specific strategy, they may follow

that form of the strategy. More technically speaking, when iteratively eliminating strictly

dominated strategies (which is the key to establish general uniqueness; see Proposition 1), we

will encounter an open interval of signal realizations in which all strategy forms are plausible

to constitute an equilibrium.

What is more severe here is that, with endogenous learning from past activity, since

arbitrary strategy forms in period 1 need to be taken into account in solving for general

equilibria, agents face arbitrary information structures about r from observing a1, thereby

leaving the room for other forms of equilibria.

Remark 3 (Complementarities in Action Timings). In the model, agents contemplate their

own action timing but not those of others, because the payoff depends on the activities

â2 throughout the game. If, instead, the payoff to investing at time t depends only on the

current investment size at , multiplicity also can occur. This is so because agents now have

coordination motives in action timing, and if an agent believes all others will act in one

particular period, so will her; see Dasgupta et al. (2012) for further discussion on this line

of reasoning.

1.2.4 Equilibrium Analysis

In this section, we contrast agents’ behaviors between the static and the dynamic games, and

investigate the values of learning and the delay option. The consequent welfare implications

are also discussed. All the conclusions apply to the general N-period model.
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Changes in Behavior

The two-period game can be perceived as (i) adding a stage before the static game or (ii)

adding a stage afterwards. We first consider case (i) and compare agents’ behavior in period

2 of the dynamic game to that in the static game. Results show that agents in period 2 tend

to invest more frequently than in the static game (x∗2 < x∗st). Intuitively, in period 2, there

is no delay option, which is the same as in the static game; meanwhile, agents know if

the game were static, the same fraction of agents would invest, and adding an additional

previous stage means weakly more agents invest. So the conclusion follows by the strategic

complementarity. For case (ii), agents in period 1 of the dynamic game are tempted by the

delay option and thus invest less frequently than in the static game (i.e., x∗st < x∗1), reflecting

the informational value from learning. The following proposition establishes these results.

Proposition 3. Comparing to in the static game, agents are more aggressive in period 2, and

less in period 1: x∗2 < x∗st < x∗1.

Proof. Note that â2(x∗2)= a1(x∗2)+(1−a1(x∗2))P(x̂2 j > x∗2|x∗2)> 1/2= a1(x∗st), so if x∗2 ⩾ x∗st ,

then E[r+ â2|x∗2]> E[r+a1|x∗st ] = 0, contradicting the equilibrium condition of period 2 in

the dynamic game.

For the second half, note that if δ = 0, then R1(x1i;(x∗1,x
∗
2)) = 0 and a2(x1i) = 0 (recall

that agents in period 2 being indifferent to invest or not choose action 0), for any x1i. Hence

x∗1 solves E[r+a1|x∗1] = 0 and thus equals x∗st . As δ increase, R1 also increases, so x∗1 must

increase to balance the equilibrium condition (1.8) of period 1. Therefore x∗1 > x∗st .

Q.E.D.

Noteworthy, within the two-period game, agents behave more aggressively in period

2 than in period 1 since x∗2 < x∗1. Contrasting this phenomenon with case (i) earlier, in

which that agents in period 2 invest more frequently than in the static game (x∗2 < x∗st) is due
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to coordination motives. Here for the dynamic game, coordination motives do not play a

role since agents enjoy the same payment â2 whichever period they invest. Instead, here is

because of the decreasing continuation payoff that changes from a strictly positive value R1

to 0 at the last stage. Following this line of logic, we obtain the effect of continuation payoffs

on agents’ behavior: the lower continuation payoffs to delaying to the next period, the more

aggressively agents behave in the current period. Its proof follows the proof of the second

half in Proposition 3.

The Value of Information and Welfare Analysis

Note that in equilibrium,

δE[r+ â2 | x1i] = R1(x1i)+δ

∫ x∗2

−∞

E[r+ â2 | x̂2i] f (x̂2i | x1i)dx̂2i︸ ︷︷ ︸
<0

< R1(x1i),

where the negativity of the second term is by the definition of x∗2. The term δE[r+ â2 | x1i]

is the expected payoff to delaying without learning (i.e., when agent i holds a constant

signal x1i), which is shown strictly lower than the continuation payoff with learning existed;

hence the value of information is positive. To see the intuition of why learning improves

agents’ expected payoffs, note that learning makes agents’ signals better aligned, alleviating

their strategic uncertainty and thereby making them better coordinate. In addition, learning

mitigates the payoff uncertainty, as is reflected in τ̂2 > τ1, namely, agents better infer the

state in the presence of learning.

We next compare the interim welfare of agents between the dynamic and the static games,

after agents’ signals are realized yet before the state is revealed. Results show that agent

i expects a higher payoff in the dynamic game when (i) she invests in the first stage in the

dynamic game (x1i > x∗1(> x∗st)), or (ii) she invests in period 2 (x1i ⩽ x∗1 and x̂2i > x∗2) and her
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belief is driven upward after learning (x̂2i > x1i). The increased welfare in case (i) originates

from the higher expected total investment in the dynamic game, and that in case (ii) is due to,

by x̂2i > x1i, both higher state and higher investment size.

Some computation gives the conclusion. For example, in period 1, the expected payoff

for agent i with x1i is 
x1i +a1(x1i), if x1i > x∗st

0, otherwise,

in the static game, and


x1i +a1(x1i)+a2(x1i), if x1i > x∗1

R1(x1i;(x∗1,x
∗
2)), if x1i < x∗1,

in the dynamic game. Therefore, i’s welfare increases if x1i > x∗1(> x∗st). Otherwise if

x1i < x∗1, the agent proceeds to period 2 and similar comparison can be made. Note that

there are inconclusive situations in which the direction of the welfare change depends on

cost parameter δ versus information precision τ1 and τ2. For example, when i invests in

both games but learning drives her belief down (x∗2 < x̂2i < x∗st < x1i < x∗1), then welfare

comparison depends on x1i +a1(x1i) versus x̂2i + â2(x̂2i).

The Value of Delay

This subsection explores the option value of delay in isolation from the learning effects. To

this end, we consider the game in which agent i cannot observe x2i; one can think of it as

τ2 → 0, so that x2i is completely noisy and ignored.

Proposition 4. When x2i is not observable, the dynamic game is essentially static: x∗2 ⩾ x∗1 =

x∗st .
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Proof. Suppose that agent i holds a constant belief x1i. Her expected payoff to investing in

period 2 is δE[r+ â2 | x1i], so that if she will invest, she will only invest in period 1 due to

δ < 1. That said, the agent in period 2 stays inactive for sure, so x∗2 can be any number larger

than x∗1. Since agents will not invest in period 2, the payoff to delaying to period 2 is 0 and

also â2 = a1, so x∗1 is such that E[r+a1|x∗1] = 0 and thus equals x∗st . Q.E.D.

Intuitively, with no learning benefit but only cost from delaying, agents act (if at all) as

soon as possible, as is indicated by that the continuation payoff to delaying to period 2 is

at most δE[r+ â2 | x1i], a mere discounted current payoff. Consequently â2 = a1, so that

threshold x∗1 = x∗st and the strategic stage ends there.

1.2.5 Learning Efficiency

In this subsection, we pay attention to the learning mechanism in our paper, and contrast

it with learning through directly observing the state r. That is, instead of observing an

endogenous signal about past activity as in (1.3), if agent i is directly endowed with an

exogenous signal x2i such that

x2i = r+
1

√
τ2

ε2i, (1.11)

will she infer the state r more accurately at t = 2? Surprisingly, the agent estimates r more

accurately when she learns though observing action, as long as her initially information

precision τ1 > 1. To see it, by Bayes’ rule, there exists a sufficient signal ˆ̂x2i for agent i that

summarizes her information about r contained in x1i and x2i, such that

ˆ̂x2i = r+
1√

τ1 + τ2
ε2i,
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when learning is through directly observing r as in (1.11). Recall that the precision level of

agent i’s information by indirect learning is τ̂2 = τ1 + τ1τ2 at t = 2. Therefore, as long as

τ1 > 1, learning through observation of actions reveals more accurate information about r.

Intuitively, learning efficiency of direct observation on r is fixed (=τ1 + τ2), while its

precision level depends on how accurate agents know about r (measured by τ1) and how

accurate the endogenous signal reflects their private information (measured by τ2), when

learning is through observing the past activity. The two channels are mutually reinforced, as

is reflected by that indirect learning precision in period 2 is τ ′2 = τ1τ2. Therefore, indirect

learning can be more accurate when one of the channels is accurate enough, and we confirm

the condition is τ1 > 1.

1.3. The N-Period Model

We now augment the game to N ∈ N periods and consider a general payoff structure. In

the game, the unit of agents decide the optimal timing of investment (if at all) between

t = 1,2, · · · ,N. The first two periods run identically as before, and notations ati, at , and ât

bear similar meanings. Agent i’s payoff in period t to action ati = 0 is 0, and her payoff

to ati = 1 is now summarized by an increasing and continuously differentiable function

U(r, âN), namely, the return of investment increases in state r and aggregate investment âN ,

indicating the coordination feature of the game. We assume that U(r, âN) is concave in each

component and that limr→∞U(r, âN) = ∞ and limr→−∞U(r, âN) = −∞, for any âN ∈ [0,1].

By implication, when the state is extremely good (or bad), investing strictly dominates (or is

strictly dominated) regardless of others’ actions.
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We now describe the endogenous signals that agents receive in periods t = 3, · · · ,N. To

maintain analyticity and similarity to Section 2, we let agent i observe, in t = 3, · · · ,N,

xti = Φ
−1(āt−1)+

1√
τ t

εti, τt > 0, (1.12)

where āt−1 =(ât−1− ât−2)/(1− ât−2) is average action in t−1 (note that ât−1− ât−2 denotes

the new investment at t − 1 and that 1− ât−2 the fraction of agents who reach t − 1), and

εti ∼ N (0,1) is independent of all other variables. By LLN, the average action equals the

likelihood of investment for an individual agent; therefore, when agents follow a threshold

strategy profile denoted by (x1,x2, · · · ,xN) in period 1,2, · · · ,N, āt(r) = P(x̂ti > xt |r), where

x̂ti is i’s expectation of r at time t. Note that the structure is consistent with x2i defined in

Section 2 since the average action ā1 = a1.

In each period t, agent i still chooses ati to maximize her conditional expected total payoff

E[∑N
t=1 atiδ

t−1U(r, âN)|x1i, · · · ,xti], where δ ∈ (0,1).

1.3.1 Learning Under a Threshold Strategy

As in the two-period setup, for t = 3, · · · ,N, xti can be transformed into an informationally

equivalent (with respect to r) signal x′ti centered around r, when agents follow a threshold

strategy profile before time t. The definition of a threshold strategy profile is similar to that

in Section 2 and thus omitted. Agent i’s updated belief about r in period t can be summarized

by a unidimensional statistic x̂ti(x1i,x2i, · · · ,xti) that is normally distributed given r. We still

let x̂1i = x′1i = x1i and τ̂1 = τ ′1 = τ1. It turns out that the precisions of x′ti and x̂ti, denoted

by τ ′t and τ̂t respectively, are such that τ ′t = τt τ̂t−1 and τ̂t = ∑
t
k=1 τ ′k, for all t ⩾ 2. Lemma 2

summarizes the results.
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Lemma 2. Suppose that agents follow a threshold strategy profile with respective thresholds

{x1,x2, · · · ,xN}.

(i) Let x′ti ≡ xti/
√

τ̂t−1 +xt−1 for any i and t ⩾ 2; then x′ti is sufficient for xti with respect to r

and

x′ti = r+
1√
τ ′t

εti.

(ii) x̂ti can be expressed by x̂ti(x′1i, · · · ,x′ti) = (∑t
k=1 τ ′k)

−1(∑t
k=1 τ ′kx′ki) and particularly,

x̂ti = r+
1√
τ̂t

εti.

(iii) For any t,k ∈ {1,2, · · · ,N}, x̂t j is normally distributed given x̂ki (when i = j, let t > k).

And moreover, E[âN |x̂ki] increases in x̂ki.

Proof. The proofs are by indication on t. For (i), it holds at t = 2 by Section 2. Assume

inductively that it holds until t = N −1. Then āN−1(r) = Φ(
√

τ̂N−1(r−xN−1)). So at t = N,

xNi =
√

τ̂N−1(r− xN−1)+
1

√
τN

εti.

Rearranging and comparing it with x′Ni and τ ′N give the conclusion. Then (ii) follows by

Bayes’ rule.

For (iii), when i ̸= j, the first part is similar to Lemma 1 (iii). When i = j and let t > k, it

follows

x̂ti|x̂ki =
τ̂kx̂ki + τ ′k+1x′(k+1)i + · · ·τ ′t x′ti

τ̂k + τ ′k+1 + · · ·τ ′t
|x̂ki,

and note that for n ∈ {k + 1, · · · , t}, x′ni|x̂ki = r + εni/
√

τ ′n = x̂ki − εki/
√

τ̂k + εni/
√

τ ′n is

normally distributed given x̂ki.
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The monotonicity of E[â2|x̂ki] holds by Lemma 1. Assume inductively that â′t−1(x̂ki)> 0

till t = N −1. Then at t = N,

d
dx̂ki

âN(x̂ki) =
d

dx̂ki
[âN−1 +(1− âN−1)āN ](x̂ki) = (1− āN)â′N−1 +(1− âN−1)ā′N > 0.

Q.E.D.

These results are extensions to those in Section 2 and follow the discussions there.

1.3.2 Equilibrium Characterization

We still restrict to a monotone equilibrium and now solve for it. Provided that agents

follow a threshold strategy profile denoted (x1,x2, · · · ,xN), the expected continuation payoff

Rt(x̂ti;{xt}N
t=1) of agent i with x̂ti at time t is

Rt(x̂ti;{xt}N
t=1) = δ

∫
∞

xt+1

E[U(r, âN) | x̂(t+1)i] f (x̂(t+1)i | x̂ti)dx̂(t+1)i

+δ

∫ xt+1

−∞

Rt+1(x̂(t+1)i;{xt}N
t=1) f (x̂(t+1)i | x̂ti)dx̂(t+1)i,

(1.13)

where f (x̂(t+1)i | x̂ti) is the conditional density of x̂(t+1)i on x̂ti, whose value can be deduced

by Lemma 2 (iii). Let RN(x̂Ni;{xt}N
t=1) ≡ 0 for any x̂Ni ∈ R. Note that we have let Rt(·)

represent the face value at time t, instead of being discounted to time 1. The following

proposition characterizes the unique monotone equilibrium.

Proposition 5. There exists a unique monotone equilibrium characterized by (x∗1,x
∗
2, · · · ,x∗N)

in the N-period game, where x∗t is the unique solution to

E[U(r, âN)|x∗t ] = Rt(x∗t ;{x∗t }N
t=1), t = 1,2, · · · ,N. (1.14)
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Similar to that in the two-period model, the proof starts from the last period N and

takes as given that all agents in all previous periods play some threshold strategy profile,

so as to characterize x∗N . Next proceeding the argument backward and in each period

1 ⩽ t ⩽ N −1, it is taken as given that agents play some threshold strategy profile before t

and act optimally after t, and sequentially obtains x∗N−1,x
∗
N−2, · · · ,x∗1. Recall that in checking

that no agent wants to deviate at time t, the key is that x∗t+1, · · · ,x∗N will not be disturbed by

an infinitesimally small agent’s deviation.

Proof. Fix an arbitrary threshold strategy profile (x1,x2, · · · ,xN) and an agent i. At t = N,

given that all agents expect i follow (x1,x2, · · · ,xN) in the game, the payoff of agent i with

belief x̂Ni to investing is

E[U(r, âN) | x̂Ni;(x1, · · · ,xN)], (1.15)

which increases in x̂Ni. An threshold strategy x′N constitutes an equilibrium threshold at t = N

only if observing it makes agent i indifferent between investing or not, that is, it is such that

E[U(r, âN) | x′N ;(x1, · · · ,xN−1,x′N)] = 0.

Similarly as in Proposition 2, the LHS is continuous, converges to infinity as x′N converges

to infinity, and strictly increases in x′N , so there exists a unique such x′N that solves the

above equation. And the increasing monotonicity of (1.15) verifies that the solution indeed

constitutes an equilibrium threshold at t = N. We denote it by x∗N(x1,x2, · · · ,xN−1) and

shorthand it by x∗N .

Proceeding to t = N − 1, taken as given that all agents expect some agent i follow

(x1,x2, · · · ,xN−1,x∗N), the payoff of investing immediately to agent i with x̂(N−1)i is

E[U(r, âN) | x̂(N−1)i;(x1, · · · ,xN−1,x∗N)],
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while delaying to the next period has an expectation value given by

RN−1(x̂(N−1)i;(x1, · · · ,xN−1,x∗N)).

Let ∆N−1(x̂(N−1)i;(x1, · · · ,xN−1,x∗N)) denote the payoff difference for i investing at N −1 or

delaying, that is,

∆N−1(x̂(N−1)i;(x1, · · · ,xN−1,xN∗))≡

E[U(r, âN) | x̂(N−1)i;(x1, · · · ,xN−1,x∗N)]−RN−1(x̂(N−1)i;(x1, · · · ,xN−1,x∗N)).

An threshold strategy x′N−1 that constitutes an equilibrium threshold at t = N −1 must be

such that

∆N−1(x′N−1;(x1, · · · ,xN−2,x′N−1,x
∗
N)) = 0. (1.16)

We demonstrate in Appendix the unique existence of such x′N−1 that solves (1.16), by showing

the LHS is strictly increasing in x′N−1 and converges to infinity as x′N−1 goes infinity. Also,

we confirm that the solution indeed constitutes an equilibrium at t = N −1 by showing in

Lemma 3 in Appendix that ∆N−1(x̂(N−1)i;(x1, · · · ,xN−1,xN∗)) increases in x̂(N−1)i. Let the

solution be denoted by x∗N−1(x1,x2, · · · ,xN−2), or for notational simplicity, by x∗N−1. By

backward induction and similarly, we can characterize x∗N−2,x
∗
N−3, · · · ,x∗1. Q.E.D.

It is noteworthy that ∆t ̸= ∆k so that x∗t ̸= x∗k for t ̸= k ∈ {1, · · · ,N}, indicating agents

respond to information changes continuously and that a positive fraction of them move from

not investing to investing every period. This observation is in contrast to the dynamic regime

change games (cf. Angeletos et al. (2007)) in whose model agents stay inertia for a series of

periods. The difference occurs because the payoff structure in this paper is continuous in r

and âN , while it is discrete in their regime change game.
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However, if learning precisions {τt}t⩾2 are moderate (so x̂ti ≈ x̂(t+1)i) and the delaying

cost is not too severe (e.g., δ → 1 so Rt ≈ Rt+1), the number of new active agents between

periods should be small, since the differences between the continuations payoffs evaluated at

t and t +1 are small. So x∗t and x∗t+1 are near. In this situation, agents’ behaviors experience

relative inertia in intermediate periods (also documented in Angeletos et al. (2007)), and the

dynamics of the game are now such that an active first stage followed by a relative tranquil

phase, till the last stage at which less optimistic agents also invest, because the continuation

value of delay in the last period drops discontinuously to 0 from some positive number RN−1.

1.3.3 Equilibrium Analysis

In this section, we confirm our two-period results. The positive information value is easy to

obtain, since

δE[U(r, âN) | x̂ti] = δ

∫
∞

x∗t+1

E[U(r, âN) | x̂(t+1)i)] f (x̂(t+1)i | x̂ti)dx̂(t+1)i

+δ

∫ x∗t+1

−∞

E[U(r, âN) | x̂(t+1)i)]︸ ︷︷ ︸
<Rt+1(x̂(t+1)i)

f (x̂(t+1)i | x̂ti)dx̂(t+1)i < Rt(x̂ti),

by the definition of Rt(x̂ti). Perceiving the first term δE[U(r, âN) | x̂ti] as the expected payoff

at time t + 1 in the absence of learning, the strict inequality then shows the information

is of positive value. Next, we verify (i) comparing to in the static game, agents are more

aggressive in the last stage (x∗N < x∗st) and less (x∗st < xt) in earlier periods t < N, and (ii) the

mere delay option has zero impact. The proofs are relegated to Appendix.

Proposition 6. (i) x∗N < x∗st < x∗t , for t = 1,2, · · · ,N −1.

(ii) When learning does not exist such that xti for any t ⩾ 2 is unobservable, the game is

essentially static: x∗1 = x∗st and agents stay inactive after period 1.
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1.4. Discussions

1.4.1 Learning Efficiency

We now investigate the learning efficiency of observing actions, by comparing it with learning

through directly observing the state r. That is, if the signal structures of xti, for t = 2,3, · · · ,N,

are such that

xti = r+
1

√
τt

εti, (1.17)

will it improve the accuracy with which agents infer the state r, relative to the signal structures

(1.12) in the paper?

Proposition 7. If the initial information is precise τ1 > 1, observing the actions as in (1.12)

reveals more accurate information about the state r than directly observing r as in (1.17),

for all periods t ⩾ 2.

Recall that the information precision through observing actions is τ̂t = ∑τ ′k. Let ˆ̂τt denote

the precision level of learning through observing r. We conclude by comparing them.

Proof. In period t ⩾ 2, when agents directly observe r as in (1.17), there exists a sufficient

statistic, denoted ˆ̂xti, of x1i,x2i, · · · ,xti with respect to r; by Bayes’ rule,

ˆ̂xti = r+ εti/

√
ˆ̂τt , with ˆ̂τt = τ1 + τ2 + · · ·+ τN .

Therefore, τ̂t > ˆ̂τt for all t ⩾ 2, whenever τ1 > 1. Q.E.D.

1.4.2 Infinite Periods

Now we augment the game into infinite periods by setting N → ∞, and demonstrate that the

equilibrium properties are similar as when N is finite. Also, we find that agents fully learn
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the true state in the limit. Defined analogously, a threshold strategy is denoted by {xt}∞
t=1

and continuation payoffs by {Rt}∞
t=1. We restrict to that agents follow a symmetric threshold

strategy {xt}∞
t=1 in the game, so we obtain the similar transformed endogenous signals x′ti

and cumulative signals x̂ti as in Section 3, since the learning processes only depend on that

agents play a threshold strategy.

The equilibrium concept we consider now is, however, an ε-symmetric monotone equi-

librium which consists of a symmetric threshold strategy, such that no agent can expect to

gain more than ε > 0 by deviating from the strategy, given others also follow it. This enables

us to implement the previous backward induction argument in characterizing the equilibrium.

In detail, for any ε > 0, due to δ ∈ (0,1), there exists N∗
ε ∈ N such that

Rt(x̂ti;{xt}t)< ε,

for every t ⩾ N∗
ε , signal x̂ti, and threshold strategy {xt}. Henceforth fix a random ε > 0 and

consequently an N∗
ε . We claim there exists an ε-monotone equilibrium with an identical

equilibrium threshold after period N∗
ε . In what follows, we assume that agents follow some

identical threshold after N∗
ε to solve for an equilibrium, and then verify it is indeed optimal

for agents to follow such a constant threshold strategy after period N∗
ε .

For any t ⩾ N∗
ε , a threshold strategy x∗N∗

ε
constitutes an equilibrium strategy in period t

only if it solves

E[U(r, â∞) | x∗N∗
ε
;(x1, · · · ,x∗N∗

ε
,x∗N∗

ε
, · · ·)] = 0,

where â∞ = ∑
∞
t at ∈ (0,1). Such x∗N∗

ε
exists; to see its monotonicity, as x∗N∗

ε
increases, the

state r increases and the expected fractions of investors in periods other than t increase while

the expected fraction of investors in period t remains constant (which is 1/2). To check x∗N∗
ε

indeed is an ε-equilibrium strategy in period t, note that when observing a signal higher than
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x∗N∗
ε
, deviating from investing (which gives a positive payoff) to delaying (which gives Rt < ε)

increases the expected payoff by at most ε ; when observing a signal lower than x∗N∗
ε
, deviating

from not investing to investing clearly lowers the expected payoff. Since t is arbitrary as

long as larger than N∗
ε , we have shown that for periods t = N∗

ε ,N
∗
ε +1, · · · , it is optimal for

agents to follow a constant threshold strategy x∗N∗
ε
. Next, proceed to period N∗

ε −1 and take

as given that all agents in periods t ⩾ N∗
ε follow x∗N∗

ε
; the argument goes exactly the same

as in Proposition 5, so we obtain its unique equilibrium threshold x∗N∗
ε −1, and proceeding

backward to obtain x∗N∗
ε −2,x∗N∗

ε −3 till x∗1.

Noteworthy, agents fully learn the actual state in the limit, because their information

precision ∑
∞
t=1 τt → ∞. Such a property holds even when the equilibrium thresholds are now

constant after some certain periods. To see the reason, recall that equilibrium thresholds

start to be constantly x∗N∗
ε

from period N∗
ε ; then at t = N∗

ε , a positive fraction of agents will

move to invest because x∗N∗
ε −1 ̸= x∗N∗

ε
. This movement changes the total investment size in

period N∗
ε (from that in N∗

ε −1) and thereby makes agents in period t = N∗
ε +1 learn new

information and consequently, a further fraction of agents will move to invest in period

N∗
ε +1, and so on. Essentially, the fully learning of the state stems from that (i) there is no

public learning and hence no crowding out effect as in the herding literature, and (ii) pooling

everyone’s information reveals the true state. Of course, that observational precisions τt

being exogenously given and bounded away from zero is also a reason.

1.4.3 Proper Priors and Public Learning

The analysis till now is conducted with agents holding an improper prior, and we claim it

is almost without loss of generality. Now we mention how to extend the model to a proper
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prior game. Let agents hold a common prior as follows:

r ∼ N (α,1/β ),

where α ∈ R and β > 0. Still restrict to agents taking a threshold strategy profile; agent

i’s belief about r at each stage is summarized by a unidimensional statistic x̂ti, by the same

Gaussian updating process as in Section 3.1. Consequently, the equilibrium characterization

is analogous, so is the analysis part when there exists a unique monotone equilibrium.

Moreover, consider the case where learning is from public observation of actions, so the

signal structure of period t ∈ {2,3, · · · ,N} becomes

xti = Φ
−1(āt−1)+

1
√

τt
εt ,

where εt ∼ N (0,1) represents the market-wise noise, independent of all other variables. Let

x1i still be private.

We now elaborate on the potential arise of multiple equilibria in the presence of public

learning. To this end, it suffices to consider period 2 and show there exist multiple optimal

strategies. Results from Section 2 state that the informativeness of the public signal about r

(assuming an improper prior) is τ ′2 = τ1τ2, which converges to infinity as τ1 → ∞. Therefore,

the ratio of the precision of the public information to the square root of that of private infor-

mation, namely τ ′2/
√

τ1, diverges to ∞ as τ1 → ∞. Hence with public learning, multiplicity

in monotone equilibria arises even if private information is infinitely diffused; see Morris

and Shin (2004) and Angeletos and Werning (2006) for proofs on why the ratio determines

multiplicity. Noteworthy, the proof shows that there are multiple optimal symmetric thresh-

old strategies, to say nothing of optimal strategies in other forms. Intuitively, it is known

that complete information coordination games admit multiple equilibria; when the ratio is
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large, indicating public information dominates private information, global games exhibit

similarity to the complete information environment and thus have multiple equilibria. Note

that adding a common prior only increases the ratio and thereby only contributes to the rise

of multiplicity.

How about the learning property in the limit when learning is public? We have shown that

full learning of the true state obtains in the limit with only private observation, and attributed

it to the absence of the crowding-out effect from the public information. However, even

with public learning as in this subsection, full learning is plausible when agents interact long

enough, as long as they play a threshold strategy. To see it, the learning mechanism stays the

same as Section 3.1 when agents follow a threshold strategy, so the information precision

about the state is always increasing and due to observational precisions τt are exogenous,

agents in the limit learn the true state. This result crucially depends on the continuous

signal structures in this paper, which, shown generally by Lee (1993), avoids the information

cascade.

1.5. Conclusions

This paper constructs a dynamic coordination game with learning and delay opportunities

factored in. It tractably analyzes agents’ optimal action timings, which are determined

though constantly trading off the information gain of delay against its opportunity costs. A

unique monotone equilibrium is characterized and in it, learning is shown to improve agents’

expected payoff, while the mere delay option impose no impact on agents’ behaviors, relative

to the one-shot game. Additionally, the dynamics of agents’ behaviors are characterized and

depending on the learning efficiency, the tranquil intermediate periods documented in the

literate obtain. Conditions of welfare enhancement, and the contrast to learning by directly
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observing the state, are also given. The analysis applies for all ranges of learning efficiencies,

generalizing the existing studies that usually focus on the limit accurate signals. We illustrate

the paper in an investment context; the applicability to other coordination scenarios including

currency crises or bank runs is straightforward.





Chapter 2

The Rate of Learning with Public and

Private Observations

2.1. Introduction

Aggregate market data accumulate and diffuse the dispersed information in the market and

market participants benefit from those data. The data can be publicly known to everyone like

the price system, or privately known like the information learned from local communications

or at different timings. We in this paper investigate, in the presence of both public and private

data, how efficient each of them is in collecting and revealing the market information. The

efficiency encompasses two meanings - (i) whether the data can aggregate all the market

information and (ii) how long does it take to achieve so, if ever. Vives (1993) demonstrates

in a pure public learning framework that the price system indeed completely assembles the

market information, but in a long run, due to the crowding-out effect of public data. The

market situation varies over time, however, so the information revealed slow can be of little

value at the time when agents learn and utilize it. As a result, we add a private learning
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channel to Vives’ model and explore whether this increases the learning efficiency and to

what extend.

To be more precise on why the inclusion of a private learning channel is conjectured

to increase the learning efficiency, note that the price system is endogenously determined

by the market demands versus supplies; therefore, over time, as price accumulates more

information, agents respond more to this public signal and less to their private information,

so price contains increasingly less private information. This is the well known negative

externality of public information on learning processes, or the crowding-out effect. Therefore,

adding a private learning channel in principle alleviates this crowding-out problem, as agents

now respond to private endogenous signals as well.

In fact, the inclusion of a private learning channel is more than an ex-post tool to

improve the learning efficiency, but rather a starting point to reflect the actual learning

processes, because local interactions and observing on neighbours’ behaviors are prevalent

and inevitable in practice. Furthermore, even for the same piece of information (like trade

data), market participants check t at different timings and thus obtain differently imperfect

information; such behavior also represents private learning.

Aside from the practical significance, as is mentioned that market situation varies in the

long run, it is also theoretically important to understand how much speed of the learning

process can be improved (if at all) with the incorporation of a private learning channel. We

will prove that allowing agents to observe private endogenous signals indeed improves the

learning efficiency and obtain the exact learning rate in the limit (which is linear).

In the detail of our model, we incorporate a private learning channel to the pure public

learning model of Vives (1993). A continuum of privately informed agents trade a risky asset

repeatedly, and the return of the asset depends on a deterministic yet ex-ante unknown state.

Our interest is on whether agents can learn this state by repeated interactions (i.e., without
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exogenous information expect the one endowed at the beginning of the game), how many

rounds of interactions are needed, and the features of the learning process. The price of

the asset varies among periods and in every period, it is endogenously determined by the

market force through the demand versus supply relation, and hence the price contains agents’

private information. To embed both private and public learning, we let agents observe, at

the beginning of every period, the realized prices publicly and the past aggregate activities

privately (i.e., observing is with idiosyncratic noise). After a certain period T ∈ N, the state

is revealed, and agents get paid. The game then ends.

We solve for bayesian equilibria of this model and obtain a unique equilibrium, in which

an agent’s action is a linear function of his private information and the public information.

Noteworthy, in decision-making, the weight that an agent puts on her private information

is positively correlated with the precision level of her private information, and negatively

with the public information’s precision. This result verifies the crowding out effect of public

information, and (informally) supports our earlier conjecture that private learning improves

the learning efficiency. In addition, note that, to make a decision, an agent must infer the

state, while the observation is about past prices and activities; therefore, to tract the updating

process of an agent’s information and for later equilibrium analysis, we must transform those

endogenous signals to some informationally equivalent statistics that are centered around the

state. A well-behaved transformation is achieved, and we further show such transformation,

or equivalently the way agents update their beliefs, is unique in equilibrium.

Since the equilibrium is unique and the equivalent signals are well-behaved, we obtain

clean and analytical results concerning the learning process. Primarily, we find that both

public and private information converges to limit accuracy when agents interact long enough,

and the asymptotic rates are linear (the rate of learning is t > 0 if τt/t converges to a positive,

less than infinity, constant, where τt is the information precision at time t). This finding states
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that both price and aggregate actions become precise with enough rounds of interactions,

consistent with the pure public learning literature. Moreover, Vives (1993) finds that the

learning rate in the limit is t1/3, when learning is purely public. Therefore, we confirm that a

private learning channel increases the learning efficiency. To be concrete, if it takes 1000

rounds for agents to reach some precision level when learning is through a public channel, it

takes around 10 rounds for agents to reach the same level of precision when a private learning

channel is incorporated.

Note that standard learning rate from observing i.i.d. exogenous signals that are centered

around θ is also linear. Hence we have demonstrated that the incorporation of a private

learning channel improves the learning efficiency to the extend that the learning rate is

restored to the standard one. The essential reason for the linear rate is because both private

and public signals become limit accurate, and consequently (i) agents equally respond to

each type of signal and (ii) the limit accuracy indicates the asymptotic precisions of agents’

private and public information are both constant (infinity), so that they are as if observe i.i.d.

signals in the limit, which is indeed the case and will be verified in the paper.

Though adding a private learning channel increases the learning rate, the learning is still

slow, by comparing to the rational expectations models of Grossman and Stiglitz (1976)

and Grossman and Stiglitz (1980). In their model, price finishes accumulating information

instantly or simultaneously when the agents act. In our model, the informativeness of either

private or public signals can increase at most a positive constant, which is bounded by the

observational errors of those endogenous signals. What private learning contributes in this

regard is that it increases the per-period increments in informativeness of agents’ information

(in inferring the state). However, such slowness should be regarded as a success of our

learning process, because as Grossman and Stiglitz argue, when information is reflected

too fast, it is better for everyone to wait an instant so as to have others act first, and then to



2.1 Introduction 43

respond with better information. However, if everyone thinks so, no one would actually act

first. Such situation is termed the paradox of efficient information markets by them, and is

resolved in our model.

Related Literature Our paper is closet to Vives (1993) who investigates the learning rate in

a pure public learning environment. Vives shows that agents ultimately learn the true state of

the world in the limit at a rate of t1/3. Our model introduces a private learning channel and

implements a different context (that agents as traders trade a homogenous asset repeatedly

and wants to infer its actual value, while Vives thinks of a firm uncertain about the demand

tries to learn it from price). Hence our work complements his.

Essentially, both of our models are a (dynamic) extension to the traditional rational

expectations models such as Feldman (1987) and Townsend (1978). While in their models,

price does not depend on agents’ private information but instead, directly depends on

the economy state. We endogenize price such that its realization results from the market

demand versus its supply, thereby containing agents’ private information. Another important

distinguish is that agents in rational expectations models make decisions using the information

about the state that contains in the spot, unrealized price, while agents in our models instead

can only use the information that contains in the past prices. Also, as discussed, Grossman

and Stiglitz (1976) and Grossman and Stiglitz (1980) are also classical in static rational

expectations models.

Another strand of literature that particularly focuses on the public learning process is

the herding literature (e.g., Banerjee (1992) and Bikhchandani et al. (1992)). These studies

document that public signals fail to gather all the information among agents, because agents

tend to rely too much on public signals and thus stop utilizing their private information. That

Vives’ model and ours obtain full learning is partly because agents form a continuum (so
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that the pool information reveals the true state) and action spaces are continuous. As proved

generally by Lee (1993), full learning can be achieved in such a situation.

The analysis concerning the learning process has also been extended to various directions.

Burguet and Vives (2000) consider that agents can costly acquire private information and

examine how the release of public information affects their information acquisition behaviors.

In our setup, information acquisition is free and agents automatically observe both types

of information in every period. This feature also ensures that agents in our model do not

have free rider problems or motivations, which are one of the central issues in the strategic

experimentation literature such as Bolton and Harris (1999) and Keller et al. (2005). Related

to the experimentation literate, researchers recently start exploring the effects of an outside

agency (such as a platform) in soliciting private information; see Kremer et al. (2014) and

Che and Hörner (2018). In these models, agents act sequentially and the platform can decide

which piece of information an agent can observe. The central question is to design the

optimal way for the platform to optimally disclose information to agents, given its goal.

Our analysis is in a discrete time framework; Amador and Weill (2012) examine a contin-

uous time environment with a focus on the welfare implications of public learning, with the

co-existence of both public and private learning. They implement the pure prediction frame-

work as in Vives (1997), and obtain their results by explicitly solving stochastic differential

questions. We obtain our conclusions by tracking the changes in agents’ information in each

period.

The remaining of the paper is structured as follows. Section 2 constructs the model and

Section 3 presents our core techniques and ideas by a careful analysis of period 1. The

general model is solved in Section 4.
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2.2. The Model

We introduce a private learning channel, in the form of private endogenous signals about past

activities, to the market-based learning model of Vives (1993).

Time is discrete and lasts T ∈ N periods, indexed by t ∈ {1, · · · ,T}, and a measure-one

continuum of agents, indexed by i ∈ [0,1], independently decide how much of a risky asset

to trade in a competitive market in every period. Think of the asset as a financial asset, and

let ati ∈ R denote agent i’s demand in period t; by construction, the action space is the entire

real line and a negative action means a supply or short behavior. Denote by At =
∫

i atidi the

aggregate action in period t. The payment of the asset is its liquidation value that is only

revealed at the end of the game. The value is contingent on economic situations, which are

summarized by a parameter θ ; we also call θ the state. Trading the asset incurs a quadratic

adjustment cost and of course, agents also pay for its spot price. Specifically, agent i pays

adjustment cost λa2
ti/2 for trading ati units in period t, with λ > 0 a known constant. The

price of the asset in period t, denoted pt , is endogenously determined by the market supply

versus its demand, with

pt = At +
1√
βε

εt , (2.1)

where εt ∼ N(0,1) is the standard normal, independent of all other parameters and represents

the independent periodical demand shock, and βε > 0 measures the scale of the shock. Note

that εt commonly affects all agents. One interpretation of εt is noise traders in the market

who are also sensitive to prices. Therefore, agent i who demands ati in period t obtains a net

payoff πt(ati) with

πt(ati) = (θ − pt)ati −
λ

2
a2

ti. (2.2)

The payoffs are paid only after the liquidation value θ is revealed at the end of the game.

Hence only ptati +
λ

2 a2
ti, instead of πt(ati), is known to agent i after period t.
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Several features are worth stressing before we describe agents’ information. First, the

quadratic adjustment cost indicates the increasing marginal cost of the asset, and this is

for avoiding the full revelation of the market information within one period. Since agents

form a continuum and are risk neutral, the one-shot game is enough to accumulate all the

market information if the cost is with a constant return (Palfrey (1985)). Likewise, the noise

traders measured by εt are also more than just reflecting the practical market situations; their

existence prevents the price from being fully informative after one period.

For the information in the game, the state parameter θ is drawn by nature from a normal

distribution with mean p0 and variance 1/β0, so θ ∼ N(p0,1/β1), where p0,β0 > 0. For

notational convenience, we without loss of generality assume that agents instead hold a

common improper prior over θ such that θ ∼Uni f (R), and that they observe a public signal

p0 about the realized θ in period 1, such that

p0 = θ +
1√
β0

ε0,

where ε0 ∼ N(0,1) is the standard normal. 1 Furthermore in period 1, agent i observes a

private signal x1i about the realized θ :

x1i = θ +
1

√
τ1

ε1i,

where τ1 > 0 is the signal precision and ε1i ∼ N(0,1) is i’s observational noise, independent

of all other parameters. That said, when agent i makes a decision in period 1, her information

set is {p0,x1}. This is the only information that i obtains from exogenous sources in the

model. In each of the subsequent periods t = 2,3, · · · ,T , agent i privately observes an

1Note that in the improper prior case, p0 is a random variable (instead of a constant) whose realization
depends on the realization of θ .
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endogenous signal xti about the market demand At−1 in the last period in the form of

xti = At−1 +
1

√
τε

εti, (2.3)

where τε > 0 is the observational precision and εti ∼ N(0,1) are i.i.d. standard normals,

representing the idiosyncratic observational noise that is independent of all other parameters

and periods. Of course, agent i also (publicly) knows the realized market price pt−1 in

the last period. Thus in period t, the information set for agent i is {xki, pk−1}t
k=1. The

objective of agent i is to select ati ∈ R, for every t, to maximize her expected sum of payoffs

∑
T
t=1 E[πt(ati)|{xki, pk−1}t

k=1]. Noteworthy, since the action space is R in every period and

an infinitesimally small agent cannot affect At and hence cannot affect payoffs or information

of other periods, the optimization problems to an agent are essentially static in the sense that

it is equivalent to consider agent i maximizes E[πt(ati)|{xki, pk−1}t
k=1] separately for every

t. This fact also suggests that the undiscounted environment we consider is without loss of

generality.

In the paper, we impose the Law of Large Numbers (LLN) convention, so that with

probability 1, the proportion of agents who receive signals higher than some number equals

the probability of an individual agent receiving such signals. Consequently, the idiosyncratic

noise in private signals cancels out:
∫

i εtidi = 0 for all t, and hence we have
∫

i x1idi = θ . That

is, pooling everyone’s information reveals the true state, which suggests it is potential that

agents can learn the true state after enough rounds of interactions, even though no other

external sources of information exist after period 1. We will verify this conjecture.

Also, it is worth stressing that agents rationally understand the information externality

of their aggregate activities, though individually they cannot change its contents. That said,

given agent i’s information set {xki, pk−1}t
k=1 in period t, she takes an action using all the
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information concerning θ in this set. But since the endogenous signals are about actions or

prices, we must, and will, transform the information structures to those centered around θ

for analysis. We will achieve a well-behaved, and unique transformation, which allows us to

analyze the model analytically.

We focus on agents playing a symmetric strategy in the game. With little abusing

notation, let at({xki, pk−1}t) ∈ R denote a symmetric strategy of an agent i with information

set {xki, pk−1}t in period t, which prescribes a trading quantity out of R from her information

set. The equilibrium concept is the Bayesian equilibria for the dynamic game defined below.

Definition 1 (Equilibrium). An equilibrium is a sequence of strategies {a∗t }T
t=1, the endoge-

nous signals {{xti}i, pt}T
t=1, and the aggregate actions {At}T

t=1 such that

(i) a∗t solves E[πt(·)|{xki, pk−1}t
k=1],

(ii) xti and pt are updated by Bayes’ rule and follow (2.3) and (2.1) respectively, and

(iii) At is the aggregate action at date t,

for any t = 1, · · · ,T , for any realization of {{x1i}i, p0}, and θ .

We will demonstrate the equilibrium is unique, which justifies the exclusion of asym-

metric strategies. As is discussed, solving the dynamic game is to solve for a sequence of

equilibria of the one-shot game; we thus implement an induction argument to solve the game,

and this is the key to the uniqueness - when the uniqueness in every period is proved induc-

tively, it also means that the way agents update their information about θ from observing the

unique equilibrium actions and prices is also unique.

2.3. Equilibrium Analysis

We illustrate how to solve the dynamic game by carefully analyzing period 1. Knowing how

agents will act in period 1, we can characterize the endogenous signals that agents observe
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in period 2; the updating way turns out to be unique in equilibrium. Then period 2 can be

solved in a similar way as solving period 1, and so on.

2.3.1 Period One

Suppose that agent i has observed signal realizations p0 and x1i at the beginning of period

1. She needs to infer θ to make a decision, and her estimation of θ is a weighted average

between his private signal and the common prior:

E[θ | p0,x1i] =
τ1x1i +β0 p0

τ1 +β0

≡ δ1x1i +(1−δ1)p0,

where δ1 = τ1/(τ1 +β0) is the common weight on the private information. Note that such a

convex-combination valuation for θ is common knowledge among agents, so we conjecture

(and will verify) that the aggregate action A1 is also linear and is function of θ and p0. In

turn, as the market price p1 is determined by A1 and the demand shock ε1, we conjecture that

there exists at least one equilibrium price in the form as a linear function of θ , p0, and ε1,

such that

p1(θ , p0) = m1θ +n1 p0 +
1√
β

ε

ε1, (2.4)

where m1,n1 are to be determined coefficients. In what follows, we assume that p1 is in such

a linear form and solve for the corresponding equilibrium; the successful characterization

pins down the unique m1 and n1 and furthermore justifies such p1. After that we show the

linear equilibrium is the only equilibrium.

Recall that agent i in period 1 chooses a1i ∈ R to maximize

E[(θ − p1)a1i −
λ

2
a2

1i | x1i, p0]. (2.5)
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Substituting p1 in the form of (2.4) in (2.5) gives

(1−m1)E[θ | x1i, p0]a1i − (n1 p0 +
1√
β

ε

E[ε1 | x1i, p0])a1i −
λ

2
a2

1i.

Solving by the first order condition, we obtain the optimal action a∗1(x1i, p0) such that

a∗1(x1i, p0) =
1
λ
{(1−m1)E[θ | x1i, p0]−n1 p0}

=
1
λ
{(1−m1)δ1x1i +[(1−m1)(1−δ1)−n1]p0}

Therefore, the aggregate action A1 is a function of θ and p0, and equals

A1(θ , p0) =
1
λ
{(1−m1)δ1θ +[(1−m1)(1−δ1)−n1]p0} (2.6)

Since the market clearing condition is such that p1(θ , p0) = A1(θ , p0)+ ε1/
√

βε = m1θ +

n1 p0 + ε1/
√

βε , by comparing coefficients, we obtain

m1 =
δ1

λ +δ1
, n1 =

λ

1+λ

1−δ1

λ +δ1
.

Till now, we have solved for an equilibrium with a linear price function. It is the only

equilibrium due to the concavity of the optimization problem (2.5) in a1i (note that p1 is not

affected by a small agent’s choice of a1i).

Knowing the forms of m1,n1 in equilibrium, we can simplify a∗1(x1i, p0) to

a∗1(x1i, p0) = m1x1i +n1 p0.

Recall that m1 = δ1/(λ + δ1) increases in δ1 and that δ1 increases in τ1, we confirm an

intuitive result that the more precise private signal is, the more weight agents puts on it in
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making a decision. Consequently, their actions reveal more private information to the market.

We can likewise obtain the crowding-out effect of the public information p0.

Learning from Period 1

We now investigate the learning process in period 2 from observing A1 and p1. We have

demonstrated that agent i makes a decision based on her estimation of θ , while the en-

dogenous signals x2i and p1 are centered around A1. Therefore, we first transform them,

respectively, into an informational equivalent statistic centered around θ . We achieve this

by demonstrating that, when agents follow the equilibrium strategy in period 1, there exist

two statistics, denoted x′2i and p′1, that are centered around θ from observing A1 and p1, re-

spectively, such that the information set {x1i,x′2i; p0, p′1} has the same informational contents

about θ as {x1i,x2i; p0, p1} does, for any xti and pt−1, for t = 1,2. After this, we show that

the transformation is unique in equilibrium, meaning that all agents in period 2 update their

information symmetrically and uniquely. The arguments below are on the equilibrium path.

In equilibrium, A1(θ , p0) = m1θ +n1 p0 by (2.6), so that

x2i = m1θ +n1 p0 +
1

√
τε

ε2i.

Rearranging it yields
1

m1
(x2i −n1 p0) = θ +

1
m1

√
τε

ε2i.

If we define x′2i(x2i, p0) by

x′2i(x2i, p0) =
1

m1
(x2i −n1 p0), (2.7)
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then

x′2i(x2i, p0) = θ +
1

√
τ2

ε2i, (2.8)

where τ2 = m2
1τε . Note that θ is normally distributed given x′2i(x2i, p0) and by construction,

x′2i represents agent i’s new private information (that is only started to be known in period

2 from observing x2i, and no one else knows this information) about θ . More precisely,

from observing x2i, agent i newly and privately learns that a normal distribution with mean

x′2i(x2i, p0) and variance 1/τ2 can represent θ , and this is exactly what observing x′2i(x2i, p0)

in the form of (2.8) reveals. Such information represents the new information learned through

the private learning channel. Likewise, there is new public information that agent i, and every

other agent, learns from observing p1. Since p1 = m1θ +n1 p0 + ε1/
√

βε in equilibrium, we

have
1

m1
(p1 −n1 p0) = θ +

1

m1
√

βε

ε1.

Therefore, by defining

p′1(p0, p1) =
1

m1
(p1 −n1 p0),

then θ is normally distributed given p′1(p0, p1) such that

p′1(p0, p1) = θ +
1√
β1

ε1,

where β1 = m2
1βε . Similarly, p′1(p0, p1) is a statistic that represents the new information

about θ to agent i from observing p1. To economize on notation, we abbreviate them by x′2i

and p′1, and also write x′1i = x1i and p′0 = p0. Till now, we have transformed the endogenous

signals centered around A1 into signals centered around θ , such that {x′ti, p′t−1}t=1,2 is

informationally equivalent to {xti, pt−1}t=1,2 with respect to θ .
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Next, we distinguish agent i’s private information (x1i,x2i) with the public information

(p0, p1), and show that each type of information can be respectively summarized by a

unidimensional statistic. This procedure allows us to track the private learning channel and

the public learning channel separately. To be specific, define

x̂2i =
τ1x1i + τ2x′2i

τ1 + τ2
; (2.9)

then x̂2i indicates i’s updated private information about θ in period 2 and by Bayes’ rule

θ |x̂2i ∼ N(x̂2i,
1
τ̂2
),

where τ̂2 = τ1 + τ2 is the precision level when i uses only her private information to estimate

θ . Likewise, by defining

p̂1 =
β0 p0 +β1 p′1

β0 +β1
, (2.10)

then p̂1 is the updated public information about θ in period 2 and moreover,

θ |p̂1 ∼ N(p̂1,
1

β̂1
),

where β̂1 = β0 +β1.

Till now, we have shown that, when agents follow the equilibrium in period 1, there exist

closed-form statistics x′2i and p′1 that are centered around θ and represent new information

about θ from observing A1 and p1, respectively. Consequently, agent i’s updated private

and public information about θ is summarized in x̂2i and p̂2, respectively, such that θ is

normally distributed given each of them. Note that such representations are unique because

activity A1 and price p1 are unique in equilibrium in period 1. We will show by induction
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that endogenous signals in later periods t = 3,4, · · · ,T also have a similar, unique Gaussian

transformation. Before that, we note several important features of the learning process.

First, the information equivalence between xti and x′ti is only for θ . For example, given

period-one information p0 and x1i, observing x2i (but not p1) does not reveal the same

information as observing x′2i; see the definition (2.7) of x′2i. Essentially, this is because A1 is

(at least partially) determined by p1 and thereby x2i contains the information about p1, but

x′2i is only about θ . While in the set meaning, the complete information equivalence holds:

{xti, pt−1}t=1,2 is information equivalent to {x′ti, p′t−1}t=1,2.

Limiting to information about θ , the equivalence between x2i and x′2i allows us to

characterize the increment in the informativeness of agent i’s private information, which is

τ2. Recall that τ2 = m2
1τε < τε , suggesting that the indirect learning about θ from observing

A1 is lower than the accuracy of learning A1 itself. And m1 = δ1/(λ +δ1) is increasing in

δ1, verifying our intuition that learning precision increases in agents’ private information

precision (and decreases in that of public information). How to interpret the role of λ in

determining the learning accuracy? Recall that λ is the quadratic adjustment cost that is

irrelevant to agents’ information, and hence the higher it is, the more weight agents put on it

and less on private information. For example, as mentioned, if we set λ = 0 (the constant

return case), agents only use their private information and complete learning achieves after

one period.

Also, since τ2 < τε and β2 < βε , informativeness of signals can increase at most τε or

βε regardless of whether agents are fully informed or not, and such maximum increments

happen only when agents solely respond to their private information (and the quadratic cost).

In this sense learning in our model is slow. Yet this slowness is also a success for the learning

mechanism since as is discussed in Introduction, if information is reflected too fast, the

paradox of efficient informational markets arises (Grossman and Stiglitz (1976)).
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2.3.2 Period t

With the understanding of the equilibrium in period 1 and the learning process in period

2, we are ready to solve the dynamic game. In period t = 2,3, · · · ,T, let x̂ti(x1i,x2i, · · · ,xti)

denote agent i’s private information about θ , i.e., her private estimation of θ that is only

known to herself, from observing x1i,x2i, · · · ,xti, and let p̂t−1(p0, p1, · · · , pt−1) denote the

public information about θ from observing p0, p1, · · · , pt−1; we respectively shorthand them

by x̂ti and p̂t−1. We state our results of the equilibrium in two parts. The first part concerning

(i) and (ii) in the proposition describes the updating rules of the learning processes, and the

second part concerning (iii) dictates the equilibrium strategies and prices.

Proposition 8. A unique equilibrium of the dynamic game exists such that the following

three statements hold.

(i) For any period t ∈ {2,3, · · · ,T} and information set {xki, pk−1}t
k=1, there exists a set

{x′ki, p′k−1}t
k=1 that shares the same information contents about θ , where x′1i = x1i, p′0 = p0,

and for other k,

x′ki =
1

mk−1
(xki −nk−1 p̂k−1), p′k =

1
mk

(pk −nk p̂k−1),

with mk,nk are coefficient defined in (iii). Moreover, x′ki and p′t are both centered around θ in

the sense that they can be expressed in the following forms:

x′ti = θ +
1

√
τt

εti, p′t = θ +
1√
βt

εt ,

where τt = m2
t−1τε , and βt = m2

t βε .

(ii) For any period t ∈ {1,2, · · · ,T}, agent i’s private and public information about θ ,
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namely x̂ti and p̂t−1, can be expressed in the forms of x̂1i = x1i, p̂0 = p0, and for other t,

x̂ti = θ +
1√
τ̂t

εti, p̂t = θ +
1√
β̂t

εt ,

where τ̂t = ∑
t
k=1 τk and β̂t = ∑

t
k=0 βk.

(iii) In any period t ∈ {1,2, · · · ,T}, equilibrium price pt is a linear function of θ , p̂t−1,

and εt such that

pt(θ , p̂t−1) = mtθ +nt p̂t−1 +
1√
βε

εt ,

where

mt =
δt

λ +δt
, nt =

λ

1+λ

1−δt

λ +δt
, with δt =

τ̂t

τ̂t + β̂t−1
.

And the unique optimal strategy a∗t (x̂ti, p̂t−1) in period t is a linear function of x̂ti and p̂t−1,

such that

a∗t (x̂ti, p̂t−1) =
1
λ
{(1−mt)δt x̂ti +[(1−mt)(1−δt)−nt ]p̂t−1}

= mt x̂ti +nt p̂t−1.

The proof is by induction and is similarly as we solve for period 1. For example in period

2, note that the maximization problem of agent i is the same as in period 1, and θ is still

normally distributed given her updated information x̂2i and p̂1 (see their definitions in (2.9)

and (2.10)), so the information structures are also the same between the two periods. What

changes is just the precision levels of an agent’s information. Therefore, an equilibrium in

period 2 can be solved in a similar way as solving period 1 (i.e., posit a linear price function

and solve for its corresponding equilibrium) and thereby in period 3, learning from period 2

is also similar as learning in period 2 from period 1. Hence we can solve period 3, and so on.

The equilibria for each period together constitute the equilibrium of the dynamic game. Due
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to the uniqueness in equilibria in every period and the induction argument, the way agents

update their information about θ upon observing actions and prices is also symmetric and

unique in equilibrium, establishing the general uniqueness of the game.

Note that all agents are rational, so that they make decisions in every period taken as

given that agents in all previous stages act optimally. Also they understand the impact of

their cumulative actions on the game, so the transformed endogenous signals they infer are

the equilibrium ones.

Proof. Consider an arbitrary period t ∈ {2,3, · · · ,T −1} and an agent i with information set

{xki, pk−1}t
k=1. By Section 3.1, the statements (i) and (ii) that concern the learning process

hold for period 2, and (iii) holds for period 1. Assume inductively that they hold for all

periods till t, t included. We in below prove that those statements are valid for period t +1,

so that the proposition is established since t is arbitrary.

For (i), since xti = At−1 +εti/
√

τε and in equilibrium, At−1(θ , p̂t−1) = mt−1θ +nt−1 p̂t−1 by

the induction assumption, we have

1
mt−1

(xti −nt−1 p̂t−1) = θ +
1

mt−1
√

τε

εti.

Thus it suffices to define

x′ti =
1

mt−1
(xti −nt−1 p̂t−1), and τt = m2

t−1τε .

Similarly, since pt(θ , p̂t−1) = mtθ +nt p̂t−1 + εt/
√

βε , let

p′t =
1

mt
(pt −nt p̂t−1), and βt = m2

t βε .
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Then {x′ki, p′k−1}t
k=1 is informationally equivalent to {xki, pk−1}t

k=1 with respect to θ . Conse-

quently (ii) holds by Bayes’ rule if we set

x̂ti =
τ1x′1i + τ2x′2i + · · ·+ τtx′ti

τ1 + τ2 + · · ·+ τt
, p̂t−1 =

β0 p′0 +β1 p′1 + · · ·+βt−1 p′t−1

β0 +β1 + · · ·+βt−1
,

and τ̂t = ∑
t
k=1 τk and τ̂t = ∑

t
k=1 βk. Noteworthy, the above argument also proves the unique-

ness in the updating rule of agents’ information, when agents follow the equilibrium strategy

in all earlier periods.

We now establish (iii) in three steps. First, suppose the price function pt is linear as

stipulated, i.e.,

pt(θ , p̂t−1) = mtθ +nt p̂t−1 +
εt√
βε

,

where mt , nt are coefficients to be determined.

Secondly, recall that the maximization problem of agent i in period t is

max
ati∈R

E[(θ − pt)ati −
λ

2
a2

ti | (x̂ti, p̂t−1)].

Substitute the linear pt into it and solve by the first order condition; the unique maximizer

a∗t (x̂ti, p̂t−1) is then such that

a∗t (x̂ti, p̂t−1) =
1
λ
((1−mt)E[θ | (x̂ti, p̂t−1)]−nt p̂t−1)

=
1
λ
{(1−mt)δt x̂ti +[(1−mt)(1−δt)−nt ]p̂t−1} ,

where δt = τ̂t/(τ̂t + β̂t). Therefore the aggregate action At is also a linear function of θ and

p̂t−1:

At(θ , p̂t−1) =
1
λ
((1−mt)δtθ +[(1−mt)(1−δt)−nt ]p̂t−1) .
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Thirdly, by the market clearing condition pt = At +εt/
√

βt , plug At as in the second step

in and compare the coefficients; we have

mt =
δt

λ +δt
, nt =

λ

1+λ

1−δt

λ +δt
.

Due to the concavity of the optimization problem and the induction argument, the obtained

equilibrium is the unique equilibrium in the game.

Q.E.D.

Remark 4. Note that At is a transformation from pt minus the demand shock. Therefore, the

signal xti can be written as

xti = pt − εt/
√

βt + εti/
√

τt ,

even off the equilibrium path. This reformulation leads to a new interpretation of endogenous

signal xti. Now xti can represent the different timings of agents checking the market price

within each period. To be clear, though price in literature is often regarded as a public signal,

it, as when represented by xti, bears private features since agents observe it with idiosyncratic

noise because of the fine timings in checking it (meanwhile, εt explains common components

like noise traders which affect the market, or simply the measurement error of a government

agency who complies the data.). This interpretation conveys the feature of modern markets

in which prices are constantly changing.

2.4. Evolvements of Precisions

We now characterize the asymptotic feature of the learning processes, which is decomposed

into two related properties:
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(i) Both private and public information fully reveals θ in the limit.

(ii) Both types of information converge at the same rate, and the rate is linear.

The first feature states that agents will learn the true state if they interact long enough,

and both x̂Ti and p̂T becomes limit accurate for large T . The similar conclusion is obtained

in the (static) rational expectations model of Grossman and Stiglitz (1980) who demonstrate

that the endogenous public signal, price, becomes fully informative, when agents are fully

informed exogenously or the noise is vanishingly small. Our approach is dynamic and thus

differs from them in the learning process, and additionally we can track the evolvements of

agents’ information precisions (i.e., due to closed-form τ̂t and β̂t , we know the changes of

information precision between periods).

The second property deals with the rate of learning. It has been proved by Vives (1993)

that the rate is T 1/3 if private learning is absent (e.g., τε → 0 so that agents completely ignore

her private endogenous signals xti). The rate is slower when there is only a public learning

channel, because public signals becomes increasingly informative over time and agents

consequently respond less to their private information. Hence the price system, which is

determined by agents’ actions, reflects less private information. We demonstrate that private

learning can accelerate learning, and that the rate increases to T in the limit, which is the

same as when agents receive exogenous i.i.d. signals centered around θ .

Now we prove the above arguments. Denoted by ∆τ̂t ≡ τ̂t+1 − τ̂t the change in the

informativeness of private information from time t to time t + 1, and analogously define

∆β̂t ≡ β̂t+1 − β̂t . Recall that by construction, x′(t+1)i and p′t respectively represent the new

private and public information that agent i learns in period t +1 about θ , so the changes in

informativeness of each type of information in period t +1 is the precision of x′(t+1)i and p′t ,

i.e., ∆τ̂t = τt+1 and ∆β̂t = βt . In turn, we have the following proportion. Now we prove the

above arguments. Denoted by ∆τ̂t ≡ τ̂t+1 − τ̂t the change in the informativeness of private
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information from time t to time t +1, and analogously define ∆β̂t ≡ β̂t+1 − β̂t . Recall that

by construction, x′(t+1)i and p′t respectively represent the new private and public information

that agent i learns in period t +1 about θ , so the changes in informativeness of each type of

information in period t +1 is the precision of x′(t+1)i and p′t , i.e., ∆τ̂t = τt+1 and ∆β̂t = βt . In

turn, we have the following proportion.

Proposition 9. (i) For all t = 1,2, · · ·T − 1, β̂t and τ̂t increase at the same rate in the

following sense:

β̂t = α +
βε

τε

τ̂t+1,

for some constant α .

(ii) τ̂T → ∞ and β̂T → ∞, as T → ∞.

(iii) The rate of convergence of both public and private signals is linear:

τ̂T/T → (
1

λ +1+λβε/τε

)2
τε , β̂T/T → (

1
λ +1+λβε/τε

)2
βε ,

as T → ∞, when βε > 0,τε > 0.

Proof. For (i), recall by (i) of Proposition 1 that τt+1 = m2
t τε and βt = m2

t βε , so the relative

increment of precision levels is constant in the sense that

∆β̂t

∆τ̂t
=

βt

τt+1
=

βε

τε

.

We thus have β̂t = τ̂t+1βt/εt for all t = 1,2, · · · ,T −1. Therefore,

β̂t −
βε

τε

τ̂t+1 = β0 −
βε

τε

τ1 ≡ α.
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And τ̂t+1 = τ̂t + τt+1, where τt+1 is finite and hence does not affect rates.

For (ii), note that if the precision of one type of information goes to ∞, so does the other type

because of (i). Now suppose by contradiction that none goes to ∞; then ∆τ̂t = τt+1 =m2
t τε > 0

for any t since now mt = δt/(λ + δt) > 0. In consequence, τ̂T = ∑
T
t=1 ∆τ̂t + τ1 diverges,

causing a contradiction.

For (iii), the proof is by inspecting τ̂t , which equals ∑
t−1
k=1 ∆τ̂k + τ1, and we show that

τ̂T/T converges to the stated constant. In below, we characterize the rate at which τ̂T → ∞,

and the rate for β̂T → ∞ equals that for [α +(τ̂T βε)/τε ]→ ∞. For any t = 1, · · · ,T ,

τ̂t =
t−1

∑
k=1

∆τ̂k + τ1 = τε

t−1

∑
k=1

m2
k + τ1 = τε

t−1

∑
k=1

(
δk

λ +δk

)2

+ τ1

= τε

t−1

∑
k=1

(
τ̂k

(λ +1)τ̂k +λβ̂k

)2

+ τ1 (∵ δk =
τ̂k

τ̂k + β̂k
)

= τε

t−1

∑
k=1

(
τ̂k

(λ +1)τ̂k +λ (α +βε τ̂k+1/τε)

)2

+ τ1

Then by (ii), there exists Tε ∈ N such that for all t ⩾ Tε , τ̂t → ∞. Therefore, divide τ̂T in the

above form by T, and let T → ∞; we obtain

τ̂T/T = τε

Tε−1

∑
k=1

(
τ̂k

(λ +1)τ̂k +λβ̂k

)2

/T︸ ︷︷ ︸
→0

+τε

T−1

∑
k=Tε

(
τ̂k

(λ +1)τ̂k +λ (α +βε τ̂k+1/τε)

)2

/T + τ1/T︸︷︷︸
→0

→
(

1
λ +1+λβε/τε

)2

τε ,

which is a non-zero constant, so τ̂T/T → ∞ at a linear rate. Q.E.D.

This statements (i) and (ii) confirm and extend the features of the learning processes

discussed in Section 3 to multiple periods. In detail, the increase in informativeness in each

period is bounded by τε and βε , verifying that learning is slow. Also, the increment of
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informativeness of agents’ information about θ , namely ∆τt and ∆βt , is positively correlated

with agents’ private information and negatively with their public information. Thirdly, it

states that each type of information becomes arbitrarily accurate after enough rounds of

interaction, indicating that all agents’ private information can be fully elicited by the market

force.

We present a heuristic informal proof for (iii) here. Recall that, for any t, ∆τ̂t = (δk/(λ +

δk))
2τε , and δk = τ̂k/(τ̂k + β̂k), and β̂t = α + τ̂t+1β̂ε/τ̂ε , so that

∆τ̂T =

(
τ̂k

(λ +1)τ̂k +λ (α +βε τ̂k+1/τε)

)2

τε →
(

1
λ +1+λβε/τε

)2

τε , as T → ∞,

since τ̂T → ∞. Therefore, it is as if agents receive i.i.d. signals centered around θ with

precision (λ +1+λβε/τε)
−2(τε +βε) in the limit in each period, so the asymptotic learning

rate is expected to be the same as observing i.i.d. signals and thus is linear. The defining

factor for the rate jumping back from t1/3 in pure public learning case to linearity is that

both τ̂t and β̂t converge to infinity at the same rate. Consequently, contrasting with the sole

public learning case in which τ̂T = τ1 while β̂T → ∞ (so that τ̂T/β̂T → 0 as T → ∞), private

information in our setting will not be crowded out.

It is noteworthy that the linear rate is guaranteed as long as private learning exists (τε > 0),

though a smaller τε decreases ∆τT and ∆βT and thus leads to a lower per-period increment in

informativeness. Also, a higher τε results in a higher asymptotic learning rate. Hence we

say that the inclusion of a private learning channel improves the learning efficiency. Note

that the initial precision level τ1 impacts little on the learning efficiency, since τ1 does not

affect ∆τ̂t or ∆β̂t , nor the asymptotic learning rate (see Proposition 2. (iii)). The impact of τ1

on the informativeness of agents’ beliefs is completely characterized by its absolute value

in this relationship: τ̂T = ∑
T−1
t=1 ∆τ̂t + τ1. Therefore, to improve the learning efficiency, the
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exogenous information precision is not of paramount importance, and one should think about

ways to improve the observational accuracy of the endogenous signals.

Remark 5 (No Initial Public Information). Suppose agents in prior believe that θ is randomly

drawn from the entire real line: θ ∼ Uni f (R) and that p0 is unobservable, that is, agent

i’s information set is only {x1i} in period 1. Then learning accelerates since we can show

that now p1 is a function of θ and ε1 only (not including p0 as before). The proof is similar -

start by positing a linear price function p1(θ) = m′
1θ +ε1/

√
β1 for some coefficient m′

1, and

solve agent i’s optimization problem by the first order condition, which gives m′
1 = 1/2 in

equilibrium. Note that p1 now is centered around θ , and hence there is no need to transform

it into some p′1. As is discussed, the direct observation on θ is faster than learning from

transformed signals; hence the learning efficiency improves. But the learning rate in the

limit is still linear since in periods t = 2,3, · · · ,N, agents’ actions start to contain public

information. One can envisage that from period 2, the structure of this new game is similar

to the original game in Section 2.



Chapter 3

Learning and Multiplicity in Global

Games

3.1. Introduction

Coordination problems are prevalent in the economy, and though partially informed agents

have aligned preferences in these games to coordinate on the same action, they often fail

to do so because of payoff uncertainty about the market conditions as well as strategic

uncertainty about their fellow agents’ beliefs. Learning, whether through public observation

of market price or private observation of nearby agents’ moves, in principle mitigates both

kinds of uncertainties and thus mitigates coordination failures. This article studies the impact

of learning on a dynamic coordination game - agents interact and learn repeatedly from

both public and private observation of past actions, and then they participate in a global

coordination game.

Specifically, we construct the coordination game as a global game of Carlsson and

Van Damme (1993) and Morris and Shin (2004). The advantage of the global game approach
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is its selection of a unique equilibrium, when agents’ information is dispersed enough. As a

result, it paves a safe way to conduct comparative statics analysis of the impact of learning

on coordination incidence and welfare. Later studies such as Angeletos and Werning (2006),

nonetheless, cast doubts on the uniqueness, remarking the rise of multiple equilibria when

endogenous public information is factored in, even when agents’ information is most diffused

(namely, when agents are endowed with limit accurate private signals). Their work, among

other existing studies, overlooks the role of private endogenous information, however. While

private learning is a significant component: practically agents extensively learn through local

observation and private talks, and theoretically uniqueness in global games is obtained by

introducing private information to agents so as to form informational heterogeneity among

them. Therefore, we are interested in, when private learning happens in tandem with public

learning, whether the unique equilibrium can be established.

At the same time, though global games are initially treated as an equilibrium selection

device as described above, it has gained popularity recently for modeling realistic coordi-

nation problems and delivering robust predictions, since it sustains the unique equilibrium.

Therefore, as discussed, we will also investigate practical issues such as the learning’s impact

on agents’ welfare.

In detail, we consider that a continuum of agents interact for T periods, in which the

learning stage, based on Vives (1993, 1997), consists of the first T − 1 periods, and the

coordination stage, modeled as a global game of regime change, happens in the Tth period.

In each of the first T − 1 periods, every agent takes an action to minimize the quadratic

distance to an unknown, payoff-relevant state parameter θ . Agents have private, partial

information about θ initially, and can further privately and publicly observe the realized

aggregate action of the previous period. After T-1 periods, they proceed to the coordination

stage in which each of them, instead of minimizing the distance, decides whether to invest in
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a risky project which has the regime change feature (namely, it either succeeds, if the mass

of agents investing exceeds some threshold depending on θ , or not). Then the game ends and

the payoffs are realized.

Note that an implication of the model is the abstraction of the direct payoff linkage

between periods by assuming agents’ action space is independent over time. This is for

a clean analysis of learning’s effects on the equilibrium selection and is also standard in

literature such that Angeletos and Werning (2006). Therefore, the two stages are only

connected through the information linkage, because they share the same state θ and thus past

actions reveal valuable information in inferring θ .

We now summarize our findings, which are two-folded. Theoretically, as for whether

the co-existence of public and private learning relieves multiplicity, the answer is negative -

multiplicity always arises after enough rounds of learning. Furthermore and notably, private

learning facilitates multiplicity in some situations because it accelerates the learning rate of

public signals. Consequently, agents quickly learn common information, and thus multiplicity

appears sooner, compared to the sole public learning case.

Practically, we take advantage of the existence of the unique equilibrium to present safe

comparative statics results. We show that, to the extent that uniqueness holds, the presence

of learning improves agents’ expected payoffs from the coordination game. The result is

hardly surprising, because with endogenous signals, agents estimate θ more accurately and

they know their opponents also better guess θ ; hence both payoff uncertainty and strategic

uncertainty are alleviated, so their payoffs increase.

Furthermore, since learning happens through both public and private channels, we attain

several novel and intuitive features of the learning process. Primarily, we demonstrate that

both types of endogenous information converge to limit accuracy about θ at a linear rate when
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agents interact long enough.1 The conclusion holds as long as private learning is available,

and it should be compared with Vives (1993) who demonstrates the convergence rate of

endogenous public information is t1/3 (t is the periods of learning) with only public learning

available. Our finding thus stresses that private learning facilitates overall learning efficiency

in the sense of a higher convergence rate. The result is conceivable because, as implied by

the herding literature, social learning becomes slow with only public observation (for agents

put increasing weights on public information along the time, lowering the informativeness of

endogenous signals), while private learning guarantees that private information will not be

crowded out en route. Noteworthy, since we show that learning fully reveals the state in the

limit, our model justifies the usual assumption in the global games literature in which agents

are assumed to be endowed with almost accurate exogenous information.

Related Literature This paper relates to two strands of literature: global games and learning.

We describe them in order. The global games model is initiated by Carlsson and Van Damme

(1993); see also Morris and Shin (2003) for a comprehensive survey. Both of them show

uniqueness holds for sufficiently dispersed information among agents. Morris and Shin (2004)

explicitly characterizes the necessary and sufficient condition, as a ratio of informativeness

of public information to the square root of that of private information, that determines

uniqueness. All information in these studies is exogenously given, however. Later studies

from various aspects examine whether endogenous public information leads to multiplicity,

and among them, Angeletos and Werning (2006) who explore that agents learn from rational

expectations equilibrium price prior to a global game, is most similar to our work. Several

aspects are distinct, though. First, we consider multi-period learning, while they examine a

one-spot rational expectations equilibrium model of Grossman and Stiglitz (1976). Therefore,

our work circumvents the paradox of the impossibility of efficient information markets.

1The rate is said to be tn if τt/tn converges to a positive constant, where t is time and τt is time-t’s information
precision. A linear rate is when n = 1.
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Secondly, we also scrutinize the role of private learning and show that it in some situations

makes multiplicity easier to occur. Actually, endogenous private learning is overlooked in

other existing literature as well; previous studies tend to vary precisions of private information

exogenously. Our work is thus novel in analyzing the role of private endogenous signals.

Thirdly, we investigate the impact of learning, which lacks in the framework of Angeletos

and Werning (2006). This point is also examined by Dasgupta (2007) in an almost completely

different environment, and Szkup (2020) gives a general analysis for static global games.

There are other researches that, though methodologically less relevant to this article,

examine the relationship between endogenous public information and multiplicity. Angeletos

et al. (2006), for example, document the occurrence of multiplicity when an omniscient

mechanism designer signals to agents before their decision-making, and Hellwig et al. (2006)

show multiplicity when the market force is factored in. Also, Angeletos et al. (2007) verify

the rise of multiplicity in dynamic games in which agents face a new global game repeatedly.

On the other hand, Szkup and Trevino (2015) confirms uniqueness for agents who costly

acquire precision levels of signals prior to a global game. Notably, we obtain a similar result

to the last one in the demonstration of the positive value of information, when we show

learning improves welfare.

For learning, we base our analysis on Vives (1993, 1997), both of which restrict to public

learning. We incorporate an analogous private learning channel into the models. For the

exclusive learning literature that does not consider anything about global games, Amador

and Weill (2012) examine the co-existence of both types of learning for exploring welfare

implications. Their work, however, distinguishes from ours in that it is a continuous-time

model that delivers results by explicitly solving stochastic differential equations. We, on

the other hand, consider a discrete-time model and derive our conclusions by tracking the

changes in agents’ information in each period.
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3.2. The Model: The Coordination Stage

Our model is based on Vives (1997) for the learning stage and Morris and Shin (2004) for the

coordination stage. We consider that agents interact repeatedly and observe past aggregate

activities publicly as well as privately prior to a global coordination game. To familiarize

readers who are new to the global games approach, we first investigate the coordination

stage with exogenous information, and then proceed to incorporate the learning stage into

the game.

The economy consists of a measure-one continuum of agents i ∈ [0,1] who independently

decide whether to invest or not in a risky investment project. Let ai ∈ {0,1} denote agent i’s

action, with ai = 1 indicates investing and ai = 0 means not investing, and A=
∫

i aidi the mass

of agents who choose to invest. The payoff to an agent who does not invest is normalized

to zero, and the payoff to an agent who invests depends on whether the investment project

succeeds or not. The success of the investment depends on an unknown state parameter θ as

well as on the number of agents who invest in the project. Specifically, The project succeeds

if and only if the mass of agents who invest exceeds some threshold: AT ⩾ 1−κθ , where

κ > 0 is a known constant that captures the dependence of success on the state; we for now

set κ ≡ 1. Therefore, agent i who takes action ai obtains payoff


ai(1− c), if A ⩾ 1−κθ

−aic, otherwise,

(3.1)

where c ∈ (0,1) represents the cost and is a known constant, and κ = 1. Note that only the

payoff difference between the two actions matters in an agent’s decision-making, so the

normalization of payoff to ai = 0 is innocuous.
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It is also worth remarking that an agent finds it dominant to invest if θ ⩾ 1, because the

project will succeed even without coordination, and on the opposite, one should never invest

if θ < 0. The interesting case is when θ ∈ (0,1) - it is optimal for an agent to invest if and

only if enough of her fellow agents invest. In this sense, the game exhibits a coordination

feature. Noteworthy that a higher θ means fewer investments are required for the project’s

success, so we say θ indicates the state of the economy or the project’s prospect. Furthermore,

each agent must infer θ as well as his opponents’ actions when making decisions, suggesting

that higher order inferences are involved in agents’ decision-making, but as we will show,

there exists a simple form of strategies that governs agents’ behaviors in equilibrium.

The state parameter θ is uniformly distributed over the entire real line, so agents hold an

improper prior about it: θ ∼ Unif(R). At the beginning of the game, each agent i observes

two signals, one private x1i and one public p1, about the realization of θ , such that

x1i = θ +
1

√
τ1

ε1i, p1 = θ +
1√
β1

ε1, (3.2)

where τ1,β1, measuring the precision of each signal, are positive constants, and ε1i,ε1 are

standard normals (ε1i,ε1 ∼ N(0,1)) independent of each other and all other parameters. 2

Throughout, the Law of Large Numbers (LLN) convention is imposed, so that the proportion

of agents who receive signals higher than some number is equal to the probability of an

individual agent receiving such signals. An immediate consequence is that the idiosyncratic

noise in private signals cancels out in the population:
∫

i ε1idi = 0, and hence no aggregate

uncertainty prevails in our model.

The Threshold Strategy and Equilibrium As in the literature, we restrict to agents playing

a symmetric threshold strategy; denoted by a(x1i, p1)∈ {0,1} a symmetric strategy, it assigns

2Note that, observing the public signal p1 is equivalent to assuming that θ ∼ N(p1,1/β ) in prior, but p1 is
then a constant, instead of a random variable, in the proper prior case. We write p1 as a public signal for later
notation simplicity.
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a probability to investment from one’s information set. A threshold strategy a(x1i, p1) of

agent i takes the following form; there exists a threshold number x(p1) ∈ R,

a(x1i, p1) =


1, if x1i > x(p1)

0, otherwise,

given any realizations of x1i and p1. A symmetric equilibrium is defined by a strategy profile

(which consists of a symmetric strategy), such that the action to agent i prescribed by that

strategy maximizes her expected payoff, given i’s information and others agents also follow

the strategy. An equilibrium in which agents play a threshold strategy is referred to as a

monotone equilibrium; we sometimes call a monotone equilibrium simply an equilibrium.

Note that in a monotone equilibrium, an agent’s strategy is completely characterized by the

threshold number x(p1); hence we in what follows focus on finding the equilibrium threshold

and denote it by x∗(p1).

We now solve this static global game as in the following proposition.

Proposition 10. A unique monotone equilibrium characterized by x∗(p1), for any realization

p1, exists, and the monotone equilibrium is the only equilibrium form if and only if β1/
√

τ1 ⩽
√

2π .

The proof is based on Morris and Shin (2004), and the idea is to show the existence of a

pair (x∗(p1),θ
∗(p1)), such that (i) it is optimal for agent i to invest iff x1i > x∗(p1) and that

(ii) the project succeeds iff θ ⩾ θ ∗(p1), given any realization of p1. The first condition is

also referred to as the payoff indifference condition and is characterized by the following

equation:

P(θ ⩾ θ
∗(p1)|x∗(p1)) = c,
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and the second is called the critical mass condition which states

P(x1i > x∗(p1) | θ
∗(p1)) = 1−θ

∗(p1).

Rewriting the payoff indifference condition, we obtain

x∗(p1) =
τ1 +β1

τ1
θ
∗(p1)−

β1

τ1
p1 +

√
τ1 +β1

τ1
Φ

−1(1− c).

Plugging x∗1(p1) of this form into the critical mass condition gives an equation only about

θ ∗(p1)

Φ

(
β1√
τ1

θ
∗(p1)−

β1√
τ1

p1 +

√
τ1 +β1√

τ1
Φ

−1(1− c)

)
−θ

∗(p1) = 0.

There exists a solution θ ∗(p1) since as θ ∗(p1)→−∞ (resp. ∞), the L.H.S converges to ∞

(resp. −∞). It is also standard to check that the solution θ ∗(p1) is unique if β1/
√

τ1 <
√

2π .

The implication of the equilibrium is straightforward - the better the state, agents on

average have higher posteriors about θ (and they know their opponents also think so) and thus

invest more frequently, and in turn the higher chance of success coordination (i.e., θ exceeds

θ ∗(p1) are states in which the investment succeeds). In addition, the proposition claims that

if the information is highly public among agents, measured by the ratio of informativeness of

the public signal to the square root of that of the private signals, multiple equilibria arise. This

is so because, with complete information, there exist two equilibria (all investing versus none

investing) at states θ ∈ (0,1), and as a result when public information becomes dominant,

the game is expected to behave similarly as in complete information environments and thus

has multiple equilibria.

Also, it becomes evident that the driving force of uniqueness in global games is the level

of heterogeneity in agents’ information and so, it is conceivable that public endogenous
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signals studied in the literature like Angeletos and Werning (2006) cause the uniqueness

result to fail, and also that private learning might rebuild it. We however will verify that

adding private endogenous information can sometimes prompt the rise of multiple equilibria.

3.3. The Two-period Model with a Learning Stage

We now add a learning stage before the coordination game. For illustration, we in this section

consider that the learning stage only lasts one period, so the game is a two-period dynamic

game. In the next section, we allow agents to interact and learn for multiple periods before

entering the coordination game stage. The two-period setting is enough to deliver our result

concerning the information’s impact on coordination.

3.3.1 The Setup

The state of the economy is still characterized by θ towards which the unit of agents hold

an improper prior, and in period 1, every agent i observes two signals x1i and p1 in the

structures of (3.2) about the realized θ . However now, before entering the coordination stage,

which happens in period 2, agents first have a learning stage in period 1 in a form of a pure

prediction game of Vives (1997).

Specifically, in period 1, the objective of every agent i is to minimize the quadratic

distance between her action to the state parameter θ , given her information set (x1i, p1). Let

a1i ∈ R denote her action in period 1 (we use subscripted ati to indicate an action in the

learning stage and ai for the coordination stage). That is, agent i after observing (x1i, p1)

chooses a1i ∈ R to minimize

E[(a1i −θ)2 | x1i, p1]. (3.3)
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Let A1 denote the aggregation action in period 1:

A1 ≡
∫

i
a1idi. (3.4)

After everyone makes a decision, A1 is determined and the game proceeds to period 2,

which essentially is the same as before, except that agents’ will observe the realized A1. In

detail, at the beginning of period 2, agent i observes a private signal x2i and a public signal

p2 about the aggregate activity in period 1, in the form of

x2i = A1 +
1

√
τε

ε2i, p2 = A1 +
1√
βε

ε2, (3.5)

where ε2i and ε2 are both standard normals, independent of all other parameters and represent

the individually specifical noise and the market wise noise, respectively; τε and βε are known

positive constants that capture observational errors. Therefore, the information set for agent i

in period 2 is {x1i,x2i, p1, p2}. Agent i decides whether to invest in the investment project

given this information set, the payoff of the project is still given by (3.1) (here, we still denote

ai and A =
∫

i aidi the i’s action and the aggregate action in the coordination stage). At the

end of period 2, the state is revealed and agents get paid for their payoffs from both period 1

and period 2. The game then ends.

We still focus on agents playing a symmetric strategy in each period, and a strategy of

an agent in period t = 1,2 is a function that maps from her information set {xki, pk}t
k=1 to

an action out of R in period 1, or out of {0,1} in period 2. Note that the game is essentially

static since there is no payoff linkage between the two periods, because the action space

is R in period 1 and all agents are infinitesimal. That said, the optimal myopic behavior is

the optimal behavior of the game. Still, we consider that agents play a threshold strategy in
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period 2. An equilibrium of the two-period game consists of equilibria of each stage game,

and agents in period 2 update their information by Bayes’ rule.

3.3.2 Solving the Learning Stage

We now solve for the equilibrium in period 1. It is easy to see that there exists a unique

optimal strategy for agent i with information (x1i, p1) to maximize (3.3), which is given by

a∗1(x1i, p1) = E[θ | x1i, p1] = δ1x1i +(1−δ1)p1.

where δ1 = τ1/(τ1 +β1) is the common weight on one’s private information. Consequently

A1(θ , p1) is a function of θ and p1 such that

A1(θ , p1) = δ1θ +(1−δ1)p1. (3.6)

Knowing the form of A1 in equilibrium, we are ready to characterize the endogenous signals

upon observing A1 in period 2. Note that agents rationally understand the information impact

of their aggregate actions on the game, so the structures of endogenous signals are on the

equilibrium path, that is, A1 equals A1(θ , p1) in the form of (3.6). Substituting A1(θ , p1) into

x2i = A1 + ε2i/
√

τε gives

x2i = δ1θ +(1−δ1)p1 +
1

√
τε

ε2i.

Rearranging it gives
1
δ1

(x2i − (1−δ1)p1) = θ +
1

δ1
√

τε

ε2i.
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Therefore, if we define

x′2i =
1
δ1

(x2i − (1−δ1)p1),

we have an informationally equivalent signal x′2i to x2i with respect to θ , such that

x′2i = θ +
1

√
τ2

ε2i,

where τ2 = δ 2
1 τε . 3 Likewise, by plugging A1(θ , p1) into p2 = A1+ε2/

√
βε and rearranging,

we obtain an informationally equivalent statistic p′2 to p2 in regard to θ , such that

p′2 ≡
1
δ1

(p2 − (1−δ1)p1) = θ +
1√
β2

ε2,

where β2 = δ 2
1 βε . Note that x′2i and p′2 are centered around θ , and thus θ is normally dis-

tributed given each of them. Therefore we can summarize every agent i’s private information

(that is only known to agent i), denoted by x̂2i(x1i,x2i), from observing x1i,x2i, and the public

information p̂2(p1, p2) from observing p0, p1, in period 2. By Bayes’ rule, they can be

expressed by

x̂2i(x1i,x2i) = x̂2i(x1i,x′2i) =
τ1x1i + τ2x′2i

τ1 + τ2
, p̂2(p1, p2) =

β1 p1 +β2 p′2
β1 +β2

.

Note that due to gaussian updating, θ is normally distributed given x̂2i and p̂2 such that

x̂2i(x1i,x2i) = θ +
1√
τ̂2

ε2i, p̂2 = θ +
1√
β̂2

ε2,

3Note that with little abusing notation, we still let ε2i, and later ε2, be standard normals that may have
different realizations to those in x2i and p2.
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where τ̂2 = τ1 + τ2 and β̂2 = β1 + β2. It is worth stressing the above characterization is

unique in equilibrium due to unique a∗1 and A1(θ , p1), indicating that agents update their

beliefs about θ upon observing A1 in a symmetric and unique way. This result is key to

establishing the uniqueness in equilibria of the whole dynamic game. In detail, the optimal

strategy of an agent, given her information, is unique; therefore, once we show the updating

rules of agents from learning are unique and symmetric, the equilibrium of the whole game

is unique.

3.3.3 Solving the Coordination Stage

Note that the information set for agent i in period 2 is thus {x̂2i, p̂2}, which share the same

structure as their information set {x1i, p1} in period 1 (i.e., an additive structure centered

around θ with a Gaussian noise), Therefore, we can readily solve the coordination stage as

similar to that in Proposition 1. That is, we characterize a pair of thresholds (x∗(p̂2),θ
∗(p̂2)),

for any realization of p̂2 by the following two equations:

P(θ ⩾ θ
∗ | x∗(p̂2)) = c, and P(x̂2i > x∗(p1) | θ

∗(p̂2)) = 1−θ
∗(p̂2).

The first equation is the payoff indifference condition and the second is the critical mass

condition. Solve them simultaneously as we do in Section 2 (i.e., obtain the expression

of x∗(p̂2) in terms of θ ∗(p̂2) from the first equation, substitute it into the second to get a

single equation that is only about θ ∗(p̂2)); we can conclude the existence of the pair, and

furthermore obtain that the pair is unique if and only if β̂2/
√

τ̂2 < 2
√

π .



3.3 The Two-period Model with a Learning Stage 79

Therefore, we know the uniqueness in global games is indeed determined by the ratio of

public informativeness to the square root of private informativeness, and since

β̂2√
τ̂2

<
β̂2√
τ1
,

the introduction of a private learning channel, or the increasing precision in private signals,

indeed increases the likelihood of a unique equilibrium in the global game. This is an intuitive

result that, however, does not hold in a general setting when learning lasting multiple periods,

as we will show later. The main reason is that though private learning initially disperses

information among agents, it in the long run improves the learning efficiency with which

agents learn from public signals, so that information conformity is actually easier to be

established among agents in the presence of a private learning channel.

Another impact of learning is certainly on coordination behavior and outcomes, as is easy

to notice that the equilibrium threshold pair has changed (from the one in Section 2). We now

demonstrate that learning improves coordination success, as long as the equilibrium is unique,

by varying the efficiency of the learning processes. Intuitively, with a higher τε , agents’

signals are better aligned with each other as well as with the state; hence both strategic and

payoff uncertainty is alleviated so that they make more accurate decisions on average and

expect higher payoffs. In below, let D(x1i, p1) be the payoff difference between investing

to not investing in the coordination stage, from the perspective of agent i with (x1i, p1) in

period 1. That is,

D(x1i, p1) = P(x̂2i > x∗,θ ⩾ θ
∗|x1i, p1)(1− c)−P(x̂2i > x∗,θ < θ

∗|x1i, p1)c.
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When there is no learning, then x̂2i = x1i so that this is the expected payoff of agent i

following the threshold strategy. Consequently, if a higher τε increases this value (i.e.,

∂D(x1i, p1)/∂τε > 0), we establish that learning improves agents’ welfare.

Proposition 11. The higher τε , the higher expected payoffs from the coordination stage.

Proof. Since τ1 is given, it is equivalent to examining the impact of τ̂2 on D(x1i, p1). We

compute that
∂

∂ τ̂2
D(x1i, p1)> 0.

The detailed computation is in Appendix. Q.E.D.

By implication, agents make more accurate decisions when better informed, and the

accuracy entails that agents invest more frequently when the actual state is high, and less

when the actual state is low. Public signals also align agents’ information and hence are

expected to have the same positive impact on agents’ behaviors. It is noteworthy that the

above analysis is conducted away from the limit precise environment, which is a focus

of the global games for the selection of a unique equilibrium. Since we treat the global

game methodology more than just the equilibrium selection device but also a useful model

producing practical insights, it is important to demonstrate that the approach applies to

situations away from the limit.

3.4. The T -Period Model

In this section, we augment the game into T ∈ N periods in which learning (i.e., the pure

prediction game) happens repeatedly in period 1 to T −1, and the coordination stage is in

period T.
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In detail, at the beginning of period 1, agents still hold an improper prior over θ such

that θ ∼ Unif(R), and observe two signals x1i and p1 about θ ′s realization in the forms of

(3.2). In period t = 1,2, · · · ,T −1, which together comprises the learning stage, agent i faces

a problem to select an action ati out of R to minimize the mean square error in predicting θ :

min
ati∈R

E[(θ −ati)
2],

given whatever information she has. Period T is the coordination stage and is essentially the

same as in section 2. That is, agent i chooses an action ai ∈ {0,1} to maximize (3.1), given

her information. Let At =
∫

i atidi denote the aggregate activity in period t = 1,2, · · · ,T −1,

and A =
∫

i aidi the total activity in period T .

Now we describe the information structures in the game. Agents in each period t =

2,3, · · · ,T observe the past activity At−1 through both a private and a public channel. Specif-

ically, agent i observes xti and pt about At−1 and we structure them by

xti = At−1 +
1

√
τε

εti, pt = At−1 +
1√
βε

εt ,

where εti and εt are respectively periodical private and public shocks that are standard

normals, independent of each other, periods and all other parameters; τε > 0 and βε > 0 are

observational precisions.

The agent i’s objective in the game is to maximize the (undiscounted) sum of expected

payoffs, and as before, this is equivalent to maximizing the expected payoff in each period

separately, due to action spaces being R and infinitesimal agents. We without loss of

generality focus on agents playing symmetric strategies, denoted by at({xki, pk}t
k=1) ∈ R for

period t, which prescribe a quantity (out of R or [0,1]) from an agent’s information set. And a

symmetric equilibrium consists of a symmetric strategy profile such that the action prescribed
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that the strategy maximizes the agent’s expected payoff of the game, given her information

and all other agents play that strategy, in every period; and agents update their information

by Bayes’ rule. We still restrict to agent play a threshold strategy at the coordination game

stage in period T .

It is straightforward to note that there exists a unique optimal strategy, denoted a∗t ({xki, pk}t
k=1),

for agent i in the learning stage in periods t = 1,2, · · · ,T −1. It is such that

a∗t ({xki, pk}t
k=1) = E[θ | {xki, pk}t

k=1].

We now show a well-behaved expression exists for this unique optimizer.

3.4.1 Solving the Game

We first solve for the equilibrium in the learning stage. Let x̂ti({xki}t
k=1) denote agent i’s

private estimation of θ in period t from her private signal observations {xki}t
k=1. Likewise,

let p̂t({pk}t
k=1) denote the public estimation of θ in period t from the public information

{pk}t
k=1, for all t. We shorthand the two statistics by x̂ti and p̂t , respectively, and will give an

analytical form for each of them.

Proposition 12. For any t = 1,2, · · · ,T −1, there exists a unique equilibrium characterized

by a∗t (x̂ti, p̂t) such that

a∗t (x̂ti, p̂t) = E[θ | (x̂ti, p̂t)].

Our proof consists of three steps. First we posit functional forms for x̂ti and p̂t , and

second we take as given that estimations are in these forms to solve for an equilibrium (if

such an equilibrium exists). Thirdly, we indeed successfully characterize such an equilibrium,

justifying the initial posit on the forms of x̂ti and p̂t .
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Proof. Step 1. We begin with positing the following assumption 1.

Assumption 1: For every t, agent i’s estimations x̂ti and p̂t about θ , respectively, can be

expressed in the following forms:

x̂ti = θ +
1√
τ̂t

εti, p̂t = θ +
1√
β̂t

εt ,

where τ̂t and β̂t are positive constants that will be given later. As a result, the state θ is

normally distributed given x̂ti and p̂t , respectively.

Step 2. Given Assumption 1, we obtain immediately that the unique optimizer a∗t (x̂ti, p̂t) for

agent i in period t = 1,2, · · · ,T −1 equals

a∗t (x̂ti, p̂t) = E[θ | x̂ti, p̂t ] =
τ̂t

τ̂t + β̂t
x̂ti +

β̂t

τ̂t + β̂t
p̂t

≡ δt x̂ti +(1−δt)p̂t ,

where δt = τ̂t/(τ̂t + β̂t) is the common weight on one’s private information.

Till now, we have obtained an equilibrium for the learning stage provided Assumption 1

holds. Since as discussed the learning stage admits only one equilibrium, if we can show that

Assumption 1 holds given agents follow strategy a∗t (x̂ti, p̂t) in the above form, we finish our

proof. Step 3 achieves this.

Step 3 Given a∗t , we know that the aggregate activity At in the proposed equilibrium is

a function of θ and p̂t , such that

At(θ , p̂t) = δtθ +(1−δt)p̂t . (3.7)
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Recall that xti = At−1 + εti/
√

τε so that

xti = δt−1θ +(1−δt−1)p̂t−1 +
1

√
τε

εti.

Rearranging it we obtain

1
δt−1

(xti − (1−δt−1)p̂t) = θ +
1

δt−1
√

τε

εti,

and consequently if we denote the L.H.S by x′ti, such that

x′ti ≡ δt−1(xti − (1−δt−1)p̂t) = θ +
1

√
τt

εti, (3.8)

where τt = δ 2
t−1τε , then x′ti is a sufficient statistic to xti with respect to information about θ .

As a result, agent i’s information (i.e., her estimation) of θ in period t is, by Bayes’ rule

t

∑
k=1

τ1x1i + τ2x′2i + · · ·+ τtx′ti
τ1 + τ2 + · · ·+ τt

, (3.9)

which is exactly what x̂ti represents and hence we obtain an analytical form of x̂ti (with

τ̂t = ∑
t
k=1 τk) that satisfies Assumption 1 (i.e., θ is normally distributed given a statistic

defined by (3.9) and the expectation of θ from private information is also given by (3.9); this

is exactly the definition of x̂ti in Assumption 1). Similarly, we can obtain p̂t (with precision

β̂t = ∑k βk, where βk = δ 2
t−1βε ) and thus complete our proof. Q.E.D.

Since agents’ updated information x̂ti and p̂t are both of an additive structure with Gaus-

sian noise, the coordination game stage can be solved similarly as we show in previous sec-

tions. That is, an equilibrium in period T characterized by a threshold pair (x∗(p̂T ),θ
∗(p̂T ))
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for any realization of p̂T , exists, and it is the only equilibrium if and only if

β̂T/
√

τ̂T ⩽
√

2π. (3.10)

Also because of the similarity in information structures, the (positive) impact of learning

precisions on agents’ expected payoffs can be similarly obtained to that in Proposition 3.

3.4.2 The Rise of Multiplicity

In this section, we show that, in the multi-period case, private learning, unlike definitely

dispersing agents’ information in the two-period setting, sometimes facilitates information

homogeneity and thus prompts multiplicity. To this end, we first tract the respective evolve-

ments of agents’ private information and public information, namely, how τ̂t and β̂t vary

among periods, so as to obtain their relative values at time T . This is because this determines

multiplicity due to condition (3.10). The following proposition summarizes our results

concerning the evolvements of τ̂t and β̂t .

Proposition 13. (i) Precisions τ̂T and β̂T both converge to ∞ as T → ∞.

(ii) The rates of convergence of both public and private information are the same and are

linear, in the sense that

τ̂T/T → 1
(1+βε/τε)2 τε , β̂T/T → 1

(1+βε/τε)2 βε ,

as T → ∞.

The first property states that both private and public information becomes fully revealing

of θ if learning lasts long enough, and the second characterizes their convergence rates.

Intuitively, with private signals incorporated, the crowding-out effect from public information
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diminishes, and Vives (1997) shows that pure public learning case successfully reveals the

true θ , so that information in our environment should also be fully revealing; hence (i) should

hold. Consequently, agents respond to both types of information equally since they are both

limit accurate and as a result, the convergence rate should be the same as if observing i.i.d.

signals (here, identically limit accurate signals), which is linear; hence we expect (ii). It is

noteworthy that the above results hold as long as private learning exists τε > 0, so our results

are expected to be applicable to a variety of sceneries.

The results and the arguments are essentially the same as those in Chapter 2, so we

only state what matters for later analysis and relegate other proofs to Appendix. Denote

by ∆τ̂t ≡ τ̂t+1 − τ̂t the change in the informativeness of private information from time t to

time t + 1, and analogously define ∆β̂t ≡ β̂t+1 − β̂t . By the constructions of x′ti and p′t in

Proposition 3, step 3, we know ∆τ̂t = τt+1 and ∆β̂t = βt+1. Therefore, for all t = 1,2, · · ·T ,

∆τ̂t = (
τ̂t

τ̂t + β̂t
)2

τε , ∆β̂t = (
τ̂t

τ̂t + β̂t
)2

βε ,

and consequently,

∆β̂t =
βε

τε

∆τ̂t .

The above equation indicates that the relative increment of precision levels is constant, and

hence ∆[β̂t −βε/τε τ̂t ] = 0, for all t; in turn we have

β̂t −
βε

τε

τ̂t = β1 −
βε

τε

τ1 ≡ α,

denoted the constant by α . Therefore, we have the relation

β̂t = α +
βε

τε

τ̂t , for all t.
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Hence the two types of information converge at the same rate.

Now we inspect the impact of private learning on multiplicity. First, by statement (ii) of

the proposition, we know that

β̂T√
τ̂T

=
α + τ̂T βε/τε√

τ̂T
→ ∞, as T → ∞. (3.11)

An immediate consequence of (3.11) and (3.10) is that multiplicity inevitably arises after

enough rounds of learning, regardless of whether private learning is introduced; hence

our hope that private learning sufficiently disperses agents’ information fails to bear fruit.

Noteworthy, since both τ̂T and β̂T become limit accurate, the first-order beliefs about state θ

are sure to be the same. We can at most hope that higher-order beliefs (e.g., how one agent

perceives the beliefs of others) are dispersed by private learning. However, since all signals

are essentially generated by θ , a higher first-order precision means more accurate inferences

about others’ beliefs as well, and thus agents’ higher-order beliefs are also better aligned.

Also noteworthy, the convergence rate of β̂t/
√

τ̂t in (3.11) is the same as
√

τ̂T → ∞,

or equivalently
√

β̂T → ∞. On the other hand, if there were no private observation, the

convergence rate of (3.11) would be the same as β̂T → ∞, seemingly suggesting that the

existence of private learning disperses agents’ information and slows down (from β̂T to
√

β̂T )

the rise of homogeneity in information. This implication, however, is not true because as

Proposition 4 (ii) shows, the presence of private learning accelerates the rate of β̂T → ∞ to T ,

from T 1/3 in the pure public learning case. Hence the convergence rate of (3.11) is actually

increased to T 1/2 (from T 1/3) with the incorporation of private learning. For a numeric

example, if it takes 1000 rounds for the common knowledge in the ratio form (3.11) to appear

with only public learning, it only requires 100 rounds when private learning is also available.
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As a result, judging by the convergence rate of β̂T/
√

τ̂T , the presence of private learning

may, contrary to our intuitions, contributes to the happening of multiple equilibria. However,

note that the rate is merely an indicator since it is asymptotic in the limit, while multiplicity

arises as soon as β̂T/
√

τ̂T >
√

2π (the ratio is a necessary and sufficient condition for

multiplicity). As a result, we need to take a closer look at the relationship between the

introduction of private learning and the value of β̂T/
√

τ̂T . We find that private learning does

facilitate multiplicity, in some situations.

In detail, multiplicity arises if and only if

β̂T√
τ̂T

=
α + τ̂T βε/τε√

τ̂T
>
√

2π,

rewriting which we obtain

(α
βε

τε

)2
τ̂

2
T +2(α

βε

τε

−π)τ̂T +α
2 > 0. (3.12)

Therefore, if its discriminant 4π(π −2αβε/τε)< 0, namely,

(β1 − τ1
βε

τε

)
βε

τε

> π/2, (∵ α = β1 −
βε

τε

τ1)

then (3.12) holds for all realizations of τ̂T , meaning multiplicity is certain to appear even

after one round of learning. Such scenarios happen, confirming our intuitions, when public

information dominates from the start: β1/τ1 is high. On the other hand, when the discriminant

is negative, suggesting uniqueness holds for some periods of interactions (that is, there exists

τ̂T that makes β̂T/
√

τ̂T ⩽
√

2π). Note that private learning first disperses agents’ information

and then assembles it, as we have seen in the two-period model (see Section 3.3). Therefore,

it is after some periods that the private learning starts to create publicity of information (i.e.,
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enlarging β̂T/
√

τ̂T ) and contributes to multiplicity. Therefore we claim the following.

Claim: Private learning facilitates multiplicity if it takes many periods for β̂T/
√

τ̂T to reach
√

2π .

Nevertheless, without further defining values of the parameters τ1,β1,τε , and βε , we can-

not conclude the exact number of periods needed for multiplicity. The following proposition

outlines two situations in which it takes long enough periods for β̂T/
√

τ̂T to pass
√

2π and

thus arises multiplicity.

Proposition 14. Private learning facilitates multiplicity if

(i) β1/τ1 and βε/τε are small enough, or

(ii) the investment succeeds iff AT ⩾ 1−κθ with large enough κ .

Situation (i) states that if publicity of information is initially small and public information

is very noisy, then it takes many rounds for agents to form information conformity. For

situation (ii), recall that we have set κ ≡ 1 in the successful coordination condition A⩾ 1−κθ

throughout (see (3.1)). If we relax it, an immediate result from Proposition 1 arises as in the

following remark.

Remark 6. Given that the investment succeeds whenever AT ⩾ 1−κθ with κ > 0, there is a

unique equilibrium iff β̂T/
√

τ̂T ⩽ κ
√

2π .

Therefore we conclude situation (ii). The intuition of the remark is straightforward -

a higher κ means the success of coordination depends more on states rather than agents’

behaviors, and hence beliefs about opponents’ actions matter less. Now we prove (i) in

Proposition 5.
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Proof. Note that β̂t/
√

τ̂t = (α + τ̂tβε/τε)/
√

τ̂t . Hence the increment of the ration in period

t +1 from period t is

∆
β̂t

τ̂t
≡ α + τ̂t+1βε/τε√

τ̂t+1
− α + τ̂tβε/τε√

τ̂t

=
∆τtβε/τε√

τ̂t+1τ̂t
.

And β̂T/
√

τ̂T = ∑
T
t=1 ∆(β̂t/

√
τ̂t)+β1/τ1, so the ratio is small when β1/τ1 and βε/τε are

small. Q.E.D.
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Appendix A

Appendix to Chapter 1

Computations in Proposition 2 The monotonicity of G2(x′2;(x1,x′2)) in x′2 follows from

that, given x1,

∂

∂x′2
G2(x′2;(x1,x′2)) =

∂

∂x′2
{E[r|x′2]+P(x1 j > x1|x′2)+(1−P(x1 j > x1|x′2))P(x̂2 j > x′2|x′2)︸ ︷︷ ︸

=1/2

}

=
∂

∂x′2

{
x′2 +

1
2

Φ(
√
·(x′2 − x1))+

1
2

}
> 0.

For the boundary value of G2(x′2;(x1,x′2)), since E[r|x̂2i] = x̂2i and â2 ∈ [0,1], when x′2 → ∞,

G2(x′2;(x1,x′2)) = E[r+ â2 | x′2;(x1,x′2)]→ ∞.

Now we prove the monotonicity of ∆(x′1;(x′1,x
∗
2(x

′
1))) in x′1. Note that

∂

∂x′1
G1(x′1;(x′1,x

∗
2(x

′
1))) =

∂

∂x′1

E[r | x′1]+P(x1 j > x′1|x′1)︸ ︷︷ ︸
=1/2

+(1−P(x1 j > x′1|x′1))P(x̂2 j > x∗2(x
′
1)|x′1)


=

∂

∂x′1

{
x′1 +

1
2
+

1
2

Φ(
√
·(x′1 − x∗2(x

′
1)))

}
> 0,



96 Appendix to Chapter 1

since dx∗2(x
′
1)/dx′1 ∈ [0,1] by taking the total derivative of (1.7) with respect to x′1. Also,

∂

∂x′1
R1(x′1;(x′1,x

∗
2(x

′
1))) =δ

d
dx′1

∫
∞

−∞

E[r+ â2 | x̂2i] f (x̂2i | x′1)1x̂2i>x∗2(x
′
1)

dx̂2i

⩽δ
d

dx′1

∫
∞

−∞

E[r+ â2 | x̂2i]︸ ︷︷ ︸
=E[r+â2|x̂2i,x′1]

f (x̂2i | x′1)dx̂2i

=δ
d

dx′1
E[r+ â2 | x′1],

(A.1)

where the first equation follows from R′
1s definition with 1 being the indicator function, the

inequality is due to 1 ∈ [0,1]. Therefore,

∂

∂x′1
∆(x′1;(x′1,x

∗
2(x

′
1)))⩾ (1−δ )

∂

∂x′1
G1(x′1;(x′1,x

∗
2(x

′
1)))> 0.

Next for the boundary value, since R1 ⩾ 0, we have ∆(x′1;(x′1,x
∗
2(x

′
1)))→−∞ as x′1 →−∞.

On the other hand, as x′1 → ∞, it is similar as in (A.1)) to obtain R1(x′1;(x′1,x
∗
2(x

′
1))) ⩽

δE[r+ â2 | x′1;(x′1;x∗2(x
′
1))], so we also have

∆(x′1;(x′1,x
∗
2(x

′
1)))⩾ (1−δ )E[r+ â2 | x′1;(x′1;x∗2(x

′
1))]→ ∞.

Existence of a Unique Solution to (1.16) For a pedagogical purpose, we verify the general

case by showing

∆t(x′t ;(x1, · · · ,x′t ,x∗t+1, · · · ,x∗N))≡

E[U(r, âN) | x′t ;(x1, · · · ,x′t , · · · ,x∗N)]−Rt(x′t ;(x1, · · · ,x′t , · · · ,x∗N)) = 0

admits a unique solution x′t . First recall by Lemma 2 we have E[U(r, âN)|x̂ti] strictly increas-

ing in x̂ti, given any threshold strategy profile the population plays. Hence in checking the

monotonicity of E[U(r, âN)|x′t ;(x1, · · · ,x′t , · · · ,x∗N)] in x′t , if we can show that the investment
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at time t will not decrease, then by the result of Lemma 2, the aggregate investment increases

in x′t . Indeed, at time t, the fraction of agents who invest (in the eyes of the agent observing

x′t) equals P(x̂t j > x′t |x′t) = 1/2, namely, it is invariant. So we have E[U(r, âN) | x′t ] is strictly

increasing in x′t . Next we show that ∂Rt(x′t)/∂x′t < δE[U(r, âN)|x′t ] by backward induction.

For t =N−1, it is the same as in the two-period model to obtain that ∂RN−1(x′N−1)/∂x′N−1 <

δE[r+ âN−1|x′N−1]. Assume backward inductively that ∂Rk(x′k)/∂x′k < δE[U(r, âN)|x′k] for

all k = N −2,N −3, · · · , t +1, so at time t,

∂

∂x′t

∫ x∗t+1

−∞

Rt+1(x̂(t+1)i;x1, · · · ,x′t ,x∗t+1, · · · ,x∗N) f (x̂(t+1)i | x′t)dx̂(t+1)i

⩽δ
∂

∂x′t

∫ x∗t+1

−∞

E[r+ ât | x̂(t+1)i] f (x̂(t+1)i | x′t)dx̂(t+1)i,

by noting that x∗t+1 increases in x′t due to strategic complementarity (a higher signal to an

individual does not affect x∗t+1, but a higher threshold means fewer agents invest, which

causes agents less willing to invest and thus x∗t+1 decreases). Therefore,

∂

∂x′1
Rt(x′t ;x1, · · · ,x′t ,x∗t+1, · · · ,x∗N)⩽δ

d
dx′t

∫
∞

x∗t+1

E[r+ ât | x̂(t+1)i] f (x̂(t+1)i | x′t)dx̂(t+1)i

+δ
∂

∂x′t

∫ x∗t+1

−∞

E[r+ ât | x̂(t+1)i] f (x̂(t+1)i | x′t)dx̂(t+1)i

=δ
∂

∂x′t

∫
∞

−∞

E[r+ ât | x̂(t+1)i] f (x̂(t+1)i | x′t)dx̂(t+1)i

=δ
∂

∂x′t
E[r+ ât | x′t ].

Hence we conclude that

∂

∂x′t
∆t(x′t ;(x1, · · · ,x′t ,x∗t+1, · · · ,x∗N))⩾ (1−δ )

∂

∂x′t
E[U(r, âN)|x′t ]> 0.
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Computation in Proposition 5 The following lemma establishes the monotonicity of

∆t(x̂ti;(x1, · · · ,xN)) in agent i’s current belief x̂ti, given any (x1, · · · ,xN) and t.

Lemma 3. Let (x1,x2, · · · ,xN) be an arbitrary threshold strategy profile. The expected

continuation payoff Rt(x̂ti;x1,x2, · · · ,xN) for agent i with x̂ti at time t satisfies

d
dx̂ti

Rt(x̂ti;x1,x2, · · · ,xN)< δt
d

dx̂ti
E[U(r, âN) | x̂ti],

for t = 1,2, · · · ,N −1 and any x̂ti.

Proof. Note that agents can at most invest once, so it suffices to show that the derivative of

each integrand in Rt(x̂ti;{xt}t) satisfies the property stated in the Lemma. For example for

its first term concerning t +1,

d
dx̂ti

δt+1

∫
∞

−∞

E[U(r, âN) | x̂(t+1)i] f (x̂(t+1)i | x̂ti)1x̂(t+1)i⩾xt+1dx̂(t+1)i

⩽
d

dx̂ti
δt+1

∫
∞

−∞

E[U(r, âN) | x̂(t+1)i] f (x̂(t+1)i | x̂ti)dx̂(t+1)i

=
d

dx̂ti
δt+1E[U(r, âN) | x̂ti].

Therefore, R′
t(x̂ti;x1, · · · ,xN) ⩽ max{δt+1(E[U(r, âN) | x̂ti])

′, · · · ,δN(E[U(r, âN) | x̂ti])
′} <

δt(E[U(r, âN) | x̂ti])
′. Q.E.D.

Proof of Proposition 6 For (i), recall

E[U(r, âN)|x∗N ] = 0,

E[U(r,a1)|x∗st ] = 0.

Since âN(x∗N)> a1(x∗N) and U(x, âN) increase in both elements, by contradiction it can be

proved that x∗N < x∗st and âN(x̂∗N) > a1(x∗st). The second half is as in the two-period game.
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That is, if δ = 0, then Rt = 0 and thus x∗t = x∗st for all t = 1,2, · · · ,N. Since Rt increases in δ ,

when δ > 0, we must have x∗t also increase to satisfy the equilibrium condition of period t.

For (ii), it suffices to confirm that Rt(x∗t ;{x∗t }t) = 0 at every t = 1,2, · · · ,N when learning

lacks. Fix an arbitrary t and x1i. Recall that

Rt(x1i;{x∗t }t) = δ

∫
∞

x∗t+1

E[U(r, âN) | x̂(t+1)i] f (x̂(t+1)i | x1i)dx̂(t+1)i

+δ
2
∫

∞

x∗t+2

∫ x∗t+1

−∞

E[U(r, âN) | x̂(t+2)i] f (x̂(t+2)i, x̂(t+1)i | x1i)dx̂(t+1)idx̂(t+2)i

+ · · ·

+δ
N−t

∫
∞

x∗N

∫ x∗N−1

−∞

· · ·
∫ x∗t+1

−∞

E[U(r, âN) | x̂Ni] f (x̂Ni, · · · , x̂(t+1)i | x1i)dx̂(t+1)i · · ·dx̂Ni.

Since agent i holds constant belief x1i, each integrant is mutually exclusive; therefore, only

one integrant remains, so

Rt(x1i;{x∗t }t) = δ
kE[U(r, âN) | x1i],

for some k ∈ {1,2, · · · ,N − t}. To pin down x∗t , it is required that

E[U(r, âN)|x∗t ] = Rt(x∗t ;{x∗t }t) = δ
kE[U(r, âN) | x∗t ].

If E[U(r, âN)|x∗t ] ̸= 0, the two sides can never be equal, so E[U(r, âN)|x∗t ] = 0.
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Computation in Proposition 2: Note that varying τε does not affect public signals, so we

in below fix an arbitrary p̂2 and write thresholds as (x∗,θ ∗). Note that, for agent i with

information set (x1i, p1) in period 1, her expected payoff at the coordination stage is

D(x1i, p1) = P(x̂2i > x∗,θ ⩾ θ
∗|x1i, p1)(1− c)−P(x̂2i > x∗,θ < θ

∗|x1i, p1)c

= (1− c)[
∫

∞

θ∗
g(θ |x1i, p1)dθ −

∫
∞

θ∗

∫ x∗

−∞

f (x̂2i|θ)g(θ |x1i, p1)dx̂2idθ︸ ︷︷ ︸
Type II error

]

− c
∫

θ∗

−∞

∫
∞

x∗
f (x̂2i|θ)g(θ |x1i, p1)dx̂2idθ︸ ︷︷ ︸

Type I error

,

where g(θ |x1i, p1)≡ (G(θ |x1i, p1))
′=
√

τ1 +β1φ

(√
τ1 +β1(θ − (τ1 +β1)

−1 (τ1x1i +β1 p1))
)

.

Similarly f (x̂1i|θ) ≡ (F(x̂1i|θ))′ =
√

τ̂2φ(
√

τ̂2(x∗− θ)). 1 Consider the Type I error; it

equals ∫
θ∗

−∞

∫
∞

x∗
g(θ |x1i, p1)[1−F(x∗|θ)]dθ .

1That is, we denote the CDFs and PDFs of nonstandard normals by (F,G) and ( f ,g), which can be obtained
by transforming the standard normal’s Φ or φ .



102 Appendix to Chapter 3

Differentiating Type I error w.r.t. τ̂2 yields

−
∫

θ∗

−∞

g(θ |x1i, p1)
(x∗−θ)

2τ̂2
f (x∗|θ)dθ =−

∫
θ∗

−∞

g̃(θ |x∗)(x
∗−θ)

2τ̂2
f̃ (x∗|x1i, p1)dθ

=−
∫

θ∗

−∞

g̃(θ |x∗)dθx∗ f̃ (x∗|x1i, p1)/(2τ̂2)+
∫

θ∗

−∞

g̃(θ |x∗)θdθ f̃ (x∗|x1i, p1)/(2τ̂2),

where we use the fact that g(θ |x1i, p1) f (x∗|θ) = g(θ |x1i, p1) f (x∗|θ ,x1i, p1) =

g̃(θ |x∗,x1i, p1) f̃ (x∗|x1i, p1)= g̃(θ |x∗) f̃ (x∗|x1i, p1) in the first equation. And g̃(θ |x∗), f̃ (x∗|x1i, p1)

are PDFs with corresponding CDF denoted G̃ and F̃ . Analogously, we differentiate Type II

error w.r.t τ̂2 and it equals

∫
∞

θ∗
g̃(θ |x∗)dθx∗ f̃ (x∗|x1i, p1)/(2τ̂2)−

∫
∞

θ∗
g̃(θ |x∗)θdθ f̃ (x∗|x1i, p1)/(2τ̂2).

Therefore,

∂D(x1i, p1)

∂ τ̂2
=

f̃ (x∗|x1i, p1)

2τ̂2

[
(1− c)

∫
∞

θ∗
g̃(θ |x∗)θdθ − c

∫
θ∗

−∞

g̃(θ |x∗)θdθ

]
. (B.1)

Here, we claim that the term within the square bracket can cancel out and equals g̃(θ ∗|x∗)/τ̂2.

To see this, note that

∫
∞

θ∗
g̃(θ |x∗)θdθ

=
∫

∞

θ∗

√
τ̂2√
2π

exp

(
− τ̂2 (θ − x∗)2

2

)
(θ − x∗)dθ +

∫
∞

θ∗

√
τ̂2√
2π

exp

(
− τ̂2 (θ − x∗)2

2

)
x∗dθ

=g̃(θ ∗|x∗)/τ̂2 + x∗[1− G̃(θ ∗|x∗)],
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where the first term is obtained by the change of variables and the second term is by the

definition of G̃(θ ∗|x∗). Similarly, we obtain

∫
θ∗

−∞

g̃(θ |x∗)θdθ =−g̃(θ ∗|x∗)/τ̂2 + x∗G̃(θ ∗|x∗).

Note that in equilibrium G̃(θ ∗|x∗) = 1− c by the payoff indifference condition. Therefore,

(B.1) equals
∂D(x1i, p1)

∂ τ̂2
=

1
2τ̂2

2
f̃ (x∗|x1i, p1)g̃(θ ∗|x∗)> 0

Proof of Proposition 4 Statement (i) First notice that if the precision of one type of infor-

mation goes to ∞, so does the other type because of the above argument (the informativeness

of both types of information increase at the same rate). And suppose none goes to ∞; then

∆τ̂t > 0 for any t, and thus τ̂T = ∑
T−1
k=1 ∆τ̂t + τ1 diverges, causing a contradiction.

Statement (ii) We characterize the rate for τ̂T → ∞, and the rate for β̂T follows from

β̂T = α + τ̂T βε/τε . From statement (i), there exists Tε ∈ N such that for all t > Tε , τ̂t → ∞.

Next note that, for any t = 1, · · · ,T ,

τ̂t =
t−1

∑
k=1

∆τ̂k + τ1 = τε

t−1

∑
k=1

(
τ̂k

τ̂k + β̂k

)2

+ τ1 = τε

t−1

∑
k=1

(
τ̂k

(1+βε/τε)τ̂k +α

)2

+ τ1

= τε

t−1

∑
k=1

(
τ̂k

(1+βε/τε)τ̂k +α

)2

+ τ1.

Divided both sides by T, and let T → ∞; we obtain

τ̂T/T = τε

Tε

∑
k=0

(
τ̂k

(1+βε/τε)τ̂k +α

)2

/T + τε

T−1

∑
k=Tε+1

(
τ̂k

(1+βε/τε)τ̂k +α

)2

/T + τ1/T

→ 1
(1+βε/τε)2 τε ,

which is a non-zero constant, so τ̂T/T → ∞ at a linear rate.




	Table of contents
	1 Learning and Strategic Delay in a Dynamic Coordination Game
	1.1 Introduction
	1.1.1 Related literature

	1.2 The Two-Period Model
	1.2.1 Setup
	1.2.2 Threshold Strategies and Monotone Equilibria
	1.2.3 Equilibrium Characterization
	1.2.4 Equilibrium Analysis
	1.2.5 Learning Efficiency

	1.3 The N-Period Model
	1.3.1 Learning Under a Threshold Strategy
	1.3.2 Equilibrium Characterization
	1.3.3 Equilibrium Analysis

	1.4 Discussions
	1.4.1 Learning Efficiency
	1.4.2 Infinite Periods
	1.4.3 Proper Priors and Public Learning

	1.5 Conclusions

	2 The Rate of Learning with Public and Private Observations
	2.1 Introduction
	2.2 The Model
	2.3 Equilibrium Analysis
	2.3.1 Period One
	2.3.2 Period t

	2.4 Evolvements of Precisions

	3 Learning and Multiplicity in Global Games
	3.1 Introduction
	3.2 The Model: The Coordination Stage
	3.3 The Two-period Model with a Learning Stage
	3.3.1 The Setup
	3.3.2 Solving the Learning Stage
	3.3.3 Solving the Coordination Stage

	3.4 The T-Period Model
	3.4.1 Solving the Game
	3.4.2 The Rise of Multiplicity


	References
	Appendix A Appendix to Chapter 1
	Appendix B Appendix to Chapter 3

