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1. Introduction

Jacobi diagrams are uni-trivalent graphs, which graphically encode the algebraic struc-

tures of Lie algebras and their representations. Jacobi diagrams were introduced for the

Kontsevich integral, which is a universal finite type link invariant and unifies all quantum

link invariants [2, 18, 15, 19]. The associated graded vector space of finite type link

invariants is isomorphic to the space of weight systems, which is the dual to the space of

Jacobi diagrams.

Let k be a field of characteristic 0. We study the k-vector space A(n) of Jacobi diagrams

on n-component oriented arcs, which is the target space of the Kontsevich integral for

string links [8, 3] or bottom tangles [9]. We consider the degree d part Ad(n) of A(n),

where the degree of a Jacobi diagram is determined by half the number of its vertices.

The space Ad(n) encodes the universal enveloping algebra U(g) of any finite-dimensional

semisimple Lie algebra g. More precisely, the weight system maps Ad(n) to the g-invariant

part of U(g)⊗n.

We consider a filtration for Ad(n) defined by the number of trivalent vertices.

The associated graded vector space of Ad(n) is identified via the PBW (Poincaré–

Birkhoff–Witt) map [2, 3] with a graded vector space Bd(n) of open Jacobi diagrams

of degree d that are colored by elements of an n-dimensional k-vector space. For

a finite-dimensional semisimple Lie algebra g, the weight system maps Bd(n) to

the g-invariant part of the tensor product S(g)⊗n of the symmetric algebra S(g)

of g.

In a previous paper [16], we proved that the vector spaces Ad(n) define a functor

Ad : Fop→ fVect from the opposite category Fop of the category F of finitely generated

free groups to the category fVect of filtered vector spaces. By functoriality on Fop, Ad(n)

inherits an action of the automorphism group Aut(Fn) and of the endomorphism monoid

End(Fn) of the free group Fn of rank n. We proved in [16] that the action of Aut(Fn) on

Ad(n) induces an action of the outer automorphism group Out(Fn) of Fn on Ad(n) and

we observed that the Aut(Fn)-action on Ad(n) induces two actions on Bd(n): an action

of the general linear group GL(n;Z) and an action of the graded Lie algebra gr(IA(n))

of the IA-automorphism group IA(n) of Fn associated with the lower central series. We

used these two actions on Bd(n) to study the Aut(Fn)-module structure of Ad(n) for

d = 2. However, it is rather difficult to compute the gr(IA(n))-action on Bd(n) directly

for general d.

The aim of the present paper is to study the Aut(Fn)-module structure of Ad(n) for

general d and especially d = 3 in detail. We consider the Andreadakis filtration E∗(n) of

the endomorphism monoid End(Fn) of Fn. We extend the action of the graded Lie algebra

gr(IA(n)) to an action of the associated graded Lie algebra gr(E∗(n)) of the Andreadakis

filtration. On the other hand, we construct a graphical version of the gr(E∗(n))-action

on Bd(n). By using this graphical action, we study the Aut(Fn)-module structure of

Ad(n). We obtain an indecomposable decomposition of Ad(n) as Aut(Fn)-modules for

n ≥ 2d. Moreover, we obtain the radical filtration of Ad(n) for n ≥ 2d and the socle

of A3(n).
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1.1. Andreadakis filtration of End(Fn)

Let Γr := Γr(Fn) denote the r -th term of the lower central series of the free group Fn.

Let Lr(n) := Γr/Γr+1 for r ≥ 1, and set H :=L1(n). Note that Lr(n) is the degree r part

of the free Lie algebra L∗(n) on H.

Let IA(n) denote the IA-automorphism group of Fn, which is the kernel of the canonical

homomorphism Aut(Fn)→GL(n;Z).

The Andreadakis filtration A∗(n) of Aut(Fn) [1, 22]

Aut(Fn) =A0(n)⊃A1(n) = IA(n)⊃A2(n)⊃ ·· ·

is defined by

Ar(n) = ker(Aut(Fn)→Aut(Fn/Γr+1)).

For r ≥ 1, we have an injective homomorphism

τr : grr(A∗(n)) ↪→Hom(H,Lr+1(n)),

which is called the Johnson homomorphism. By Andreadakis [1] and Kawazumi [17], we

have gr1(IA(n))∼= gr1(A∗(n))∼= Hom(H,L2(n)).

We construct the Andreadakis filtration E∗(n) of End(Fn) in a similar way by

Er(n) = ker(End(Fn)→ End(Fn/Γr+1)).

We define an equivalence relation on the monoid Er(n) and consider the quotient group

grr(E∗(n)), which includes grr(A∗(n)) (see Section 3.3). We also construct the Johnson

homomorphism

τ̃r : grr(E∗(n))
∼=−→Hom(H,Lr+1(n))

of End(Fn), which turns out to be an abelian group isomorphism (see Proposition 3.8).

The target group Hom(H,Lr+1(n)) ∼= H∗⊗Lr+1(n) of the Johnson homomorphism is

identified with the degree r part Derr(L∗(n)) of the derivation Lie algebra Der(L∗(n))

of the free Lie algebra L∗(n) and with the tree module Tr(n), which we define in Section

3.2. From the above, we have abelian group isomorphisms

grr(E∗(n))∼=H∗⊗Lr+1(n)∼= Derr(L∗(n))∼= Tr(n).

Thus, we have

gr1(IA(n))∼= gr1(E∗(n))∼=H∗⊗L2(n)∼= Der1(L∗(n))∼= T1(n).

Moreover, we have isomorphisms of graded Lie algebras

gr(E∗(n)) =
⊕
r≥1

grr(E∗(n))∼= Der(L∗(n))∼=
⊕
r≥1

Tr(n) (1.1)

(see Section 3.5). In what follows, we identify these three graded Lie algebras.
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1.2. Actions of the derivation Lie algebra on Bd(n)

Let Ad(n) be the k-vector space spanned by Jacobi diagrams of degree d on n oriented

arcs. We consider a filtration for Ad(n)

Ad(n) =Ad,0(n)⊃Ad,1(n)⊃Ad,2(n)⊃ ·· · ,

where Ad,k(n) is the subspace of Ad(n) spanned by Jacobi diagrams with at least k

trivalent vertices. By restricting the functor Ad : Fop → fVect that we defined in [16]

to the endomorphisms, we obtain an action of End(Fn) on Ad(n). (See Section 2.3 and

Section 4.)

Let Vn be an n-dimensional k-vector space, which will be identified with the first

cohomology of a handlebody of genus n. The associated graded vector space of Ad(n)

is isomorphic via the PBW map [3] to a graded vector space Bd(n) =
⊕

k≥0Bd,k(n) of

Vn-colored open Jacobi diagrams of degree d, where Bd,k(n) is the subspace of Bd(n)

spanned by open Jacobi diagrams with exactly k trivalent vertices.

We defined in [16] a gr(IA(n))-action on Bd(n) by using the bracket map

[·,·] :Bd,k(n)⊗Z grr(IA(n))→Bd,k+r(n).

We extend the gr(IA(n))-action to an action of gr(E∗(n)) on Bd(n).

We define a k-linear map

[·,·] :Bd,k(n)⊗Z grr(E∗(n))→Bd,k+r(n)

by using the following theorem.

Theorem 1.1 (see Theorem 4.1). For any r ≥ 1, we have

[Ad,k(n),Er(n)]⊂Ad,k+r(n).

To prove this theorem, we introduce a category AL, which includes as full subcategories

the category A of Jacobi diagrams in handlebodies and the category isomorphic to the

PROP for Casimir Lie algebras [13]. (See Section 4 and Appendix A).

By using the bracket maps, we obtain k-linear maps

β̃rd,k : grr(E∗(n))→Hom(Bd,k(n),Bd,k+r(n)),

which form an action of the graded Lie algebra gr(E∗(n)) on the graded vector space

Bd(n).

We also define a k-linear map

c :Bd,k(n)⊗Z Tr(n)→Bd,k+r(n),

which is an analogue of the contraction map for a vector space and its dual vector space

(see Section 5). By using the map c, we obtain k-linear maps

γrd,k : Tr(n)→Hom(Bd,k(n),Bd,k+r(n)),

which form an action of the graded Lie algebra
⊕

r≥1Tr(n) on the graded vector space

Bd(n).
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Via the isomorphisms (1.1), these two actions of the derivation Lie algebra Der(L∗(n))

on Bd(n) coincide up to sign. (See Theorem 6.1.)

By using the linear map c for computation, we obtain the surjectivity of the bracket

map.

Proposition 1.2 (see Proposition 7.8). For n≥ 2d−k, the bracket map

[·,·] :Bd,k(n)⊗Z gr1(IA(n))→Bd,k+1(n)

is surjective.

1.3. The GL(n;Z)-module structure of Bd(n)

The GL(n;Z)-action on Bd(n) that is induced by the Aut(Fn)-action on Ad(n) naturally

extends to a polynomial GL(Vn)-action on Bd(n) [16]. Therefore, the GL(Vn)-module

Bd(n) can be decomposed into the direct sum of images of the Schur functors. In general,

however, it remains open to obtain an irreducible decomposition of Bd(n) as GL(Vn)-

modules. We can reduce this problem to the connected parts Bcd,k(n) ⊂ Bd,k(n) (see

Theorem 7.2).

For a partition λ ` N , let Vλ denote the image of Vn under the Schur functor Sλ. By

using the results by Bar-Natan [4], we have isomorphisms of GL(Vn)-modules

B3(n) =B3,0(n)⊕·· ·⊕B3,4(n),

where

B3,0(n)∼= V(6)⊕V(4,2)⊕V(23),

B3,1(n)∼= V(3,12)⊕V(2,13),

B3,2(n)∼= V(4)⊕V(3,1)⊕ (V(22))
⊕2,

B3,3(n) =Bc3,3
∼= V(13),

B3,4(n) =Bc3,4
∼= V(2)

(see Proposition 7.6 for the cases d= 3,4,5).

In general degrees, we obtain irreducible decompositions of Bd,k(n) as GL(Vn)-modules

for k = 0,1.

Proposition 1.3 (see Proposition 7.7). For any d≥ 1, we have

Bd,0(n)∼=
⊕
λ`d

V2λ,

where 2λ= (2λ1, · · · ,2λr) ` 2d for λ= (λ1, · · · ,λr) ` d. For any d≥ 2, we have

Bd,1(n)∼=
⊕

λ`2d−1 with exactly 3 odd parts

Vλ.
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1.4. The Aut(Fn)-module structure of Ad(n)

We consider the Aut(Fn)-module structure of Ad(n) and give an indecomposable

decomposition of Ad(n). We have

A0(n) = k (n≥ 0), Ad(0) = 0 (d≥ 1)

and we studied the cases where d= 1,2 in [16]. Thus, we mainly consider the cases where

d≥ 3,n≥ 1.

For X ∈Ad(2d), let

AdX : Fop→ fVect

denote the subfunctor of Ad generated by X. That is, for any n ∈ N, AdX(n) is the

Aut(Fn)-submodule of Ad(n) defined by

AdX(n) := Spank{Ad(f)(X) | f ∈ Fop(2d,n)}.
Set

P = sym2d , Q= alt2 ∈Ad(2d).

Then, we have the following direct decomposition of Ad(n) as Aut(Fn)-modules, which

is indecomposable for n≥ 2d.

Theorem 1.4 (see Theorems 8.2, 8.9). We have Ad(n) = AdP (n)⊕AdQ(n) for any

d,n≥ 1. This direct decomposition is indecomposable for n≥ 2d.

In degree 1, we have A1Q(n) = 0 and A1(n) ∼= Sym2(Vn) is simple for n ≥ 1. In [16],

we obtained that the direct decomposition of A2(n) is indecomposable for n ≥ 3 (see

Theorem 6.9 of [16]). We improve Theorem 1.4 for d= 3,4 (see Theorems 8.12 and 8.17).

In general degree d, we obtain the radical of Ad,k(n) for any k ≥ 0 if n≥ 2d.

Theorem 1.5 (see Theorem 8.6). Let n ≥ 2d. The filtration of Ad(n) by the number of

trivalent vertices coincides with the radical filtration of Ad(n).

In degree 3, we obtain the socle of A3(n) as well (see Proposition 8.15).

1.5. Direct decomposition of the functor Ad

Lastly, we give an indecomposable decomposition of the functor Ad.

By Theorem 1.4, we obtain an indecomposable decomposition of the functor Ad.

Theorem 1.6 (see Theorem 10.1). We have an indecomposable decomposition

Ad =AdP ⊕AdQ (1.2)

in the functor category fVectF
op

.

In degree 1, we have A1Q = 0 and A1 = A1P . In [16], we obtained the direct

decomposition (1.2) of the functor A2 and proved that equation (1.2) is indecomposable

(see Proposition 6.5 and Theorem 6.14 of [16]).
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1.6. Organization of the paper

In Section 2, we recall the category A of Jacobi diagrams in handlebodies, N-series and

graded Lie algebras, contents of the previous paper [16], Hopf algebras and Lie algebras in

a linear symmetric strict monoidal category. In Section 3, we construct the Andreadakis

filtration and the Johnson homomorphism of End(Fn). In Section 4, we construct an

action of the derivation Lie algebra Der(L∗(n)) on Bd(n), which is defined by the bracket

map. In preparation for the definition of the bracket map, we construct an extended

category AL of the category A, which includes a Lie algebra structure. In Section 5,

we define a contraction map, which forms another action of Der(L∗(n)) on Bd(n). In

Section 6, we prove that two actions of Der(L∗(n)) on Bd(n) defined in Sections 4 and 5

coincide up to sign. In Section 7, we compute the GL(n;Z)-module structure of Bd(n).

In Section 8, we study the Aut(Fn)-module structure of Ad(n) by using the GL(n;Z)-

module structure of Bd(n) and the action of Der(L∗(n)) on Bd(n). In Section 10, we

give an indecomposable decomposition of the functor Ad. In Appendix A, we study an

expected presentation of the category AL.

2. Preliminaries

In this section, we recall the contents of the previous paper [16] and definitions of the

category A of Jacobi diagrams in handlebodies, Hopf algebras and Lie algebras in a

symmetric strict monoidal category and an action of an N-series on a filtered vector

space and that of a graded Lie algebra on a graded vector space.

In what follows, we work over a fixed field k of characteristic 0. For a vector space V

and an abelian group G, we just write V ⊗G instead of V ⊗ZG. For vector spaces V and

W, we also write V ⊗W instead of V ⊗kW .

For n≥ 0, let [n] := {1, · · · ,n}.

2.1. The category A of Jacobi diagrams in handlebodies

Here, we briefly review the category A of Jacobi diagrams in handlebodies defined in [11].

We use the same notations as in [16].

For n ≥ 0, let Xn =
1 n

· · ·
2

be the oriented 1-manifold consisting of n arc

components.

Let I = [−1,1]. For n≥ 0, let Un⊂R3 denote the handlebody of genus n that is obtained

from the cube I3 by attaching n handles on the top square I2×{1} as depicted in Figure 1.

We call l := I×{0}×{−1} the bottom line of Un and l′ := I×{0}×{1} the upper line of

Un. We call S := I2×{−1} the bottom square of Un.

For i ∈ [n], let xi be a loop which goes through only the i -th handle of the handlebody

Un just once, and let xi denote its homotopy class as well. In what follows, for loops γ1

and γ2 with base points on l, let γ2γ1 denote the loop that goes through γ1 first and

then goes through γ2. That is, we write a product of elements of the fundamental group

of Un in the opposite order to the usual one. Let H = H1(Un;Z), and let x̄i ∈H be the
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S

1 n· · ·

l

x1 xn· · ·

l′

Figure 1. The handlebody Un.

homology class of xi. We have H =
⊕n

i=1Zx̄i and π1(Un) = 〈x1, · · · ,xn〉. Let

Vn =H1(Un;k) = Hom(H,k),

and let {v1, · · · ,vn} be the dual basis of {x̄1, · · · ,x̄n}.
The objects in A are nonnegative integers.

For m,n ≥ 0, the hom-set A(m,n) is the k-vector space spanned by (m,n)-Jacobi

diagrams modulo the STU relation. An (m,n)-Jacobi diagram is a Jacobi diagram on

Xn mapped into Um in such a way that the endpoints of Xn are uniformly distributed on

the bottom line l of Um (see [11, 16] for further details). We usually depict (m,n)-Jacobi

diagrams by drawing their images under the orthogonal projection of R3 onto R×{0}×R.

The degree of an (m,n)-Jacobi diagram is the degree of its Jacobi diagram. Let

Ad(m,n)⊂A(m,n) be the subspace spanned by (m,n)-Jacobi diagrams of degree d. We

have A(m,n) =
⊕

d≥0 Ad(m,n).

The category A has a structure of a linear symmetric strict monoidal category. The

tensor product on objects is addition. The monoidal unit is 0. The tensor product on

morphisms is juxtaposition followed by horizontal rescaling and relabelling of indices.

The symmetry is determined by

P1,1 = : 2→ 2.

2.2. N-series and graded Lie algebras

Here, we briefly review the definition of an action of an N-series on a filtered vector space

and the induced action of the graded Lie algebra on the graded vector space (see [16] for

details).

An N-series K∗ = (Kn)n≥1 of a group K is a descending series

K =K1 ⊃K2 ⊃ ·· ·

such that [Kn,Km]⊂Kn+m for all n,m≥ 1.
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A morphism f :G∗→K∗ between N-series is a group homomorphism f :G1→K1 such

that we have f(Gn)⊂Kn for all n≥ 1.

For a filtered vector space W∗, set

Autn(W∗) := {φ ∈AutfVect(W∗) | [φ,w] ∈Wk+n for all w ∈Wk,k ≥ 0} (n≥ 1),

where [φ,w] :=φ(w)−w for w∈Wk. We can easily check that Aut∗(W∗) := (Autn(W∗))n≥1

is an N-series.

Definition 2.1. (Action of N-series on filtered vector spaces) Let K∗ be an N-series and

W∗ be a filtered vector space. An action of K∗ on W∗ is a morphism f :K∗→Aut∗(W∗)
between N-series.

For an N-series K∗, we have a graded Lie algebra gr(K∗) =
⊕

n≥1Kn/Kn+1, where the

Lie bracket is defined by the commutator.

For a graded vector space W =
⊕

k≥0Wk, set

Endn(W ) := {φ ∈ End(W ) | φ(Wk)⊂Wk+n for k ≥ 0} (n≥ 1).

We can check that End+(W ) =
⊕

n≥1 Endn(W ) is a graded Lie algebra, where the Lie

bracket is defined by

[f,g] := f ◦g−g ◦f for f ∈ Endk(W ),g ∈ Endl(W ) (k,l ≥ 1).

Definition 2.2. (Action of graded Lie algebras on graded vector spaces) Let L+ =⊕
n≥1Ln be a graded Lie algebra and W =

⊕
k≥0Wk be a graded vector space. An

action of L+ on W is a morphism f : L+→ End+(W ) between graded Lie algebras.

Proposition 2.3. An action of an N-series K∗ on a filtered vector space W∗ induces an

action of the graded Lie algebra gr(K∗) on the graded vector space gr(W∗), which is a

morphism

ρ+ :
⊕
n≥1

grn(K∗)→
⊕
n≥1

Endn(gr(W∗))

defined by ρ+(gKn+1)([v]Wk+1
) = [[g,v]]Wk+n+1

for gKn+1 ∈ grn(K∗), [v]Wk+1
∈ grk(W∗).

The proof can be seen in Proposition 5.14 of [16].

2.3. Contents of the previous paper

Here, we briefly review the notations and contents of the previous paper [16]. Let Aut(Fn)

denote the automorphism group of the free group Fn of rank n and GL(n;Z) the general

linear group of degree n. Let IA(n) denote the IA-automorphism group of Fn, that is the

kernel of the canonical surjection

Aut(Fn)→Aut(H1(Fn;Z))∼= GL(n;Z).

Let Γ∗(IA(n)) = (Γr(IA(n)))r≥1 denote the lower central series of IA(n), and

gr(IA(n)) =
⊕

r≥1 grr(IA(n)) the associated graded Lie algebra, where grr(IA(n)) =

Γr(IA(n))/Γr+1(IA(n)).
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Let Ad(n) = Ad(0,n) denote the k-vector space of Jacobi diagrams of degree d on Xn.

We consider a filtration for Ad(n)

Ad(n) =Ad,0(n)⊃Ad,1(n)⊃ ·· · ⊃Ad,2d−2(n)⊃Ad,2d−1(n) = 0

such that Ad,k(n) ⊂ Ad(n) is the subspace spanned by Jacobi diagrams with at least k

trivalent vertices. Hence, Ad(n) is a filtered vector space.

Let F denote the category of finitely generated free groups and fVect the category of

filtered vector spaces over k.

We have a k-vector space isomorphism

Z : kFop(m,n)
∼=−→A0(m,n)

from the hom-set kFop(m,n) of the k-linearization of the opposite category of F to the

degree 0 part of the hom-set A(m,n) [11]. We define a functor

Ad : Fop→ fVect

by Ad(n) = Ad(0,n) for an object n∈N and Ad(f) =Z(f)∗ for a morphism f ∈Fop(m,n),

where Z(f)∗ denotes the post-composition with Z(f). The functor Ad is a polynomial

functor of degree 2d in the sense of [12, 20] (see Remark 3.1 of [16]). By restricting

this functor to the automorphism group, we obtain an action of the opposite group

Aut(Fn)op of Aut(Fn) on Ad(n) for each n≥ 0. We consider this action as a right action

of Aut(Fn) on Ad(n). The Aut(Fn)-action on Ad(n) induces an action on Ad(n) of the

outer automorphism group Out(Fn) of Fn (see Theorem 5.1 in [16]).

On the other hand, the associated graded vector space gr(Ad(n)) of Ad(n) is identified

via the PBW map [2, 3]

θd,n : gr(Ad(n))
∼=−→Bd(n) (2.1)

with the graded k-vector space Bd(n) =
⊕

k≥0Bd,k(n) =
⊕2d−2

k=0 Bd,k(n) of Vn-colored

open Jacobi diagrams of degree d, where the grading is determined by the number of

trivalent vertices. Note that we have θd,n =
⊕

k θd,n,k, where

θd,n,k : grk(Ad(n))
∼=−→Bd,k(n).

Let FAb denote the category of finitely generated free abelian groups and gVect the

category of graded vector spaces over k.

We define a functor

Bd : FAbop→ gVect

by sending an object n ∈ N to the graded vector space Bd(n) and a morphism f ∈
FAbop(m,n) = Mat(m,n;Z) to Bd(f), which is a right action on each coloring, where

we consider an element of Vn as a (1× n)-matrix. By restricting this functor to the

automorphism group, we obtain an action of the opposite group GL(n;Z)op of GL(n;Z)

on Bd(n) for each n≥ 0. We consider this action as a right action of GL(n;Z) on Bd(n).

Note that the GL(n;Z)-action on Bd(n) naturally extends to a GL(Vn)-action on Bd(n).
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Proposition 2.4 (see Proposition 3.2 of [16]). For d≥ 0, the PBW maps equation (2.1)

give a natural isomorphism

θd : gr◦Ad
∼=⇒Bd ◦abop,

where abop denotes the opposite functor of the abelianization functor and gr denote the

functor that sends a filtered vector space to its associated graded vector space.

By this proposition, it turns out that the Aut(Fn)-action on Ad(n), which is an action of

an extended N-series on a filtered vector space, induces two actions on Bd(n), which form

an action of an extended graded Lie algebra on a graded vector space (see Theorem 5.15 of

[16] and [10] for extended N-series and extended graded Lie algebras). One of them is the

GL(n;Z)-action, and the other of them is an action of the graded Lie algebra gr(IA(n))

on the graded vector space Bd(n), which consists of GL(n;Z)-module homomorphisms

[·,·] :Bd,k(n)⊗grr(IA(n))→Bd,k+r(n) (2.2)

for k≥ 0,r≥ 1 (see Proposition 5.10 and Theorem 5.15 of [16]). By using these two actions

on Bd(n), we obtained an indecomposable decomposition of A2(n) as Aut(Fn)-modules

(see Theorem 6.9 of [16]).

2.4. Hopf algebra in a symmetric strict monoidal category

We review the definition of a Hopf algebra in a symmetric strict monoidal category. Let

C = (C,⊗,I,P ) be a symmetric strict monoidal category. A Hopf algebra in C is an object

H in C equipped with morphisms

µ :H⊗H →H, η : I →H, ∆ :H →H⊗H, ε :H → I, S :H →H,

called the multiplication, unit, comultiplication, counit and antipode, respectively, satis-

fying

(1) µ(µ⊗ idH) = µ(idH⊗µ), µ(η⊗ idH) = idH = µ(idH⊗η),

(2) (∆⊗ idH)∆ = (idH⊗∆)∆, (ε⊗ idH)∆ = idH = (idH⊗ε)∆,
(3) εη = idI , εµ= ε⊗ ε, ∆η = η⊗η,
(4) ∆µ= (µ⊗µ)(idH⊗PH,H ⊗ idH)(∆⊗∆),

(5) µ(idH⊗S)∆ = µ(S⊗ idH)∆ = ηε.

A Hopf algebra H is said to be cocommutative if PH,H∆ = ∆.

Define µn :H⊗n⊗H⊗n→H⊗n and ∆m :H⊗m→H⊗m⊗H⊗m inductively by

µ0 = idI , µn+1 = (µn⊗µ)(idH⊗n⊗PH,H⊗n ⊗ idH)

for n≥ 0 and by

∆0 = idI , ∆m+1 = (idH⊗m⊗PH⊗m,H ⊗ idH)(∆m⊗∆)

for m≥ 0.
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For morphisms f, f ′ :H⊗m→H⊗n, m,n≥ 0, the convolution f ∗f ′ of f and f ′ is defined

by

f ∗f ′ := µn(f ⊗f ′)∆m.

The category A has a cocommutative Hopf algebra with the object 1, where

µ= , η = , ∆ = , ε= , S = .

2.5. Lie algebra in a linear symmetric strict monoidal category

We review the definition of a Lie algebra in a linear symmetric strict monoidal category.

Let C = (C,⊗ ,I,P ) be a linear symmetric strict monoidal category. A Lie algebra in C is

an object L in C equipped with a morphism

[·,·] : L⊗L→ L

satisfying

(1) [·,·](idL⊗L+PL,L) = 0,

(2) [·,·](idL⊗[·,·])(idL⊗3 +σ+σ2) = 0, where σ = (1,2,3) : L⊗3→ L⊗3.

3. Andreadakis filtration E∗(n) of End(Fn)

We briefly review the Andreadakis filtration and the Johnson homomorphism of Aut(Fn).

See [22] for further details. Then we consider its extension to the endomorphism monoid

End(Fn) of Fn.

3.1. Andreadakis filtration A∗(n) of Aut(Fn)

In what follows, we consider the left action of Aut(Fn) on Fn. Let Γr := Γr(Fn) denote the

r -th term of the lower central series of the free group Fn of rank n. Let Lr(n) := Γr/Γr+1

for r≥ 1. Note that H =L1(n) and that Lr(n) is the degree r part of the free Lie algebra

L∗(n) on H.

For r ≥ 0, the left action of Aut(Fn) on each nilpotent quotient Fn/Γr+1 induces a

group homomorphism

Aut(Fn)→Aut(Fn/Γr+1).

Set

Ar(n) := ker(Aut(Fn)→Aut(Fn/Γr+1))�Aut(Fn).

Then we have a filtration, which is called the Andreadakis filtration of Aut(Fn):

Aut(Fn) =A0(n)⊃A1(n) = IA(n)⊃A2(n)⊃ ·· · .
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For r ≥ 1, the Johnson homomorphism

τr : grr(A∗(n)) ↪→Hom(H,Lr+1(n))

is the injective homomorphism induced by the group homomorphism

τ ′r :Ar(n)→Hom(H,Lr+1(n))

defined by

τ ′r(f)(xΓ2) := f(x)x−1Γr+2 for f ∈ Ar(n),x ∈ Fn.

3.2. The target group of the Johnson homomorphism

The target group Hom(H,Lr+1(n)) ∼= H∗⊗Lr+1(n) of the Johnson homomorphism is

identified with the degree r part Derr(L∗(n)) of the derivation Lie algebra Der(L∗(n)) of

the free Lie algebra L∗(n) and with the tree module Tr(n) via abelian group isomorphisms

H∗⊗Lr+1(n)∼= Derr(L∗(n))∼= Tr(n). (3.1)

Here, we briefly review the derivation Lie algebra and the tree module. (See [22] for

details.)

A derivation f of L∗(n) is a Z-linear map f : L∗(n) → L∗(n) such that f([a,b]) =

[f(a),b] + [a,f(b)] for any a,b ∈ L∗(n). The derivation Lie algebra Der(L∗(n)) of the Lie

algebra L∗(n) is the set of all derivations of L∗(n). The degree r part Derr(L∗(n)) of the

derivation Lie algebra is defined to be

Derr(L∗(n)) = {f ∈Der(L∗(n)) | f(a) ∈ Lr+1(n) for any a ∈H}.

Then we have Der(L∗(n)) =
⊕

r≥0 Derr(L∗(n)) and abelian group isomorphisms

Derr(L∗(n))∼= Hom(H,Lr+1(n))∼=H∗⊗Lr+1(n).

We call a connected Jacobi diagram with no cycle a trivalent tree. For r≥ 0, a trivalent

tree is called a rooted trivalent tree of degree r if it has one univalent vertex (called the

root) that is colored by an element of H∗ and r+1 univalent vertices (called leaves) that

are colored by elements of H. Let Tr(n) denote the Z-module spanned by rooted trivalent

trees of degree r modulo the AS, IHX and multilinearity relations. We have an abelian

group isomorphism

Φ :H∗⊗Lr+1(n)
∼=−→ Tr(n)

defined by

Φ(vi⊗ [x̄i1, · · · ,[x̄ir,x̄ir+1
] · · · ]) =

x̄i1

vi

x̄irx̄ir+1

for vi ∈H∗, [x̄i1, · · · ,[x̄ir,x̄ir+1
] · · · ] ∈ Lr+1(n).
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3.3. Andreadakis filtration E∗(n) of End(Fn)

We extend the above construction to the endomorphism monoid End(Fn) of Fn. For r≥ 0,

consider the canonical map

ρr : End(Fn)→ End(Fn/Γr+1)

and set Er(n) := ker(ρr). Then we have a filtration of monoids

End(Fn) = E0(n)⊃ E1(n)⊃ ·· · ,
and we call E∗(n) = (Er(n))r≥0 the Andreadakis filtration of End(Fn).

For f ∈ End(Fn) and x,y ∈ Fn, set

[f,x] := f(x)x−1, yx= yxy−1,

and for a subset T ⊂ Fn, set

[f,T ] = {[f,x] ∈ Fn | x ∈ T}.
We can easily check the following lemma.

Lemma 3.1.

f ∈ Er(n) ⇔ [f,Fn]⊂ Γr+1 ⇔ [f,xi] ∈ Γr+1 (for any i ∈ [n]).

For subsets S ⊂ End(Fn) and T ⊂ Fn, let [S,T ] denote the subgroup of Fn generated

by the elements [f,x] for f ∈ S,x ∈ T .

Lemma 3.2. We have

[Er(n),Γk]⊂ Γk+r

for r ≥ 0,k ≥ 1.

Proof. It is well known that [Ar(n),Γk] ⊂ Γk+r by Andreadakis [1]. The same proof

can be applied to Er(n). We use induction on k. When k = 1, we have [Er(n),Fn] ⊂
Γr+1 by the definition of Er(n). Suppose that [Er(n),Γk−1]⊂ Γk−1+r. We will show that

[Er(n),Γk] ⊂ Γk+r. Let f ∈ Er(n). Recall that Γk is generated by the commutator [x,y]

with x ∈ Γk−1,y ∈ Fn. We can check that for x ∈ Γk−1,y ∈ Fn, we have

[f,[x,y]] = [f,y]([[f,y]−1,f(x)] · [[f,x],xy] · [[x,y],[f,y]−1]) ∈ Γk+r.

For z,w ∈ Γk, we have

[f,zw] = [f,z] · z[f,w]≡ [f,z][f,w] ( mod Γk+r+1),

and by letting w = z−1, we have

[f,z−1]≡ [f,z]−1 ( mod Γk+r+1).

Therefore, we have [f,z] ∈ Γk+r for any z ∈ Γk.

Define a map

σ : End(Fn)→ End(Fn)
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by σ(f) = f̃ for f ∈ End(Fn), where

f̃(xi) = [f,xi]
−1xi = xif(xi)

−1xi

for i ∈ [n].

Lemma 3.3. We have

σ2 = idEnd(Fn) (3.2)

f ∈ Er(n) ⇒ σ(f) ∈ Er(n) (3.3)

f ∈ Er(n) ⇒ fσ(f), σ(f)f ∈ E2r(n). (3.4)

Proof. We have equation (3.2) since for any f ∈ End(Fn) and i ∈ [n], we have

σ2(f)(xi) = xif̃(xi)
−1xi = xix

−1
i f(xi)x

−1
i xi = f(xi).

We have equation (3.3) since, for any f ∈ Er(n) and i ∈ [n], we have

[f̃,xi] = [f,xi]
−1 ∈ Γr+1.

We prove equation (3.4). Let f ∈ Er(n). We have

[ff̃,xi] = f([f̃,xi])[f,xi] = f([f,xi]
−1)[f,xi] = [f,[f,xi]

−1] ∈ Γ2r+1

for any i ∈ [n]. Thus, we have

ff̃ ∈ E2r(n). (3.5)

By equation (3.3), we have f̃ ∈ Er(n), and by equations (3.2) and (3.5),

f̃f = f̃
˜̃
f ∈ E2r(n).

For N ≥ r ≥ 0, we define an equivalence relation ∼N on the monoid Er(n) by

f ∼N g
def⇔ [f,x]≡ [g,x] ( mod ΓN+1) for any x ∈ Fn

for f,g ∈ Er(n). Thus, we have

f ∼N idFn ⇔ [f,x] ∈ ΓN+1 for any x ∈ Fn ⇔ f ∈ EN (n).

Lemma 3.4. Let r ≥ 1. For f ∈ Er(n), define fRN and fLN for N ≥ r+ 1 inductively by

fRN =

{
f̃ (N = r+ 1)

fRN−1f̃f
R
N−1 (N ≥ r+ 2),

fLN =

{
f̃ (N = r+ 1)

f̃LN−1ff
L
N−1 (N ≥ r+ 2).
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Then we have

fRN ∈ Er(n), ffRN ∈ EN (n), fRN ∼N−1 f
R
N−1,

fLN ∈ Er(n), fLNf ∈ EN (n), fLN ∼N−1 f
L
N−1.

Proof. We use induction on N ≥ r+ 1. When N = r+ 1, by Lemma 3.3, we have f̃ ∈
Er(n) and ff̃ ∈ E2r(n)⊂ Er+1(n). Suppose that fRN−1 ∈ Er(n) satisfies ffRN−1 ∈ EN−1(n).

By Lemma 3.3, we have f̃fRN−1 ∈ EN−1(n) and ffRN−1f̃f
R
N−1 ∈ E2N−2(n)⊂ EN (n). Then

we have fRN = fRN−1f̃f
R
N−1 ∈ Er(n) and ffRN ∈ EN (n). Since f̃fRN−1 ∈ EN−1(n), we have

fRN ∼N−1 f
R
N−1. The case for fLN is similar.

Proposition 3.5. For N ≥ 1, we have a filtration of groups

E1(n)/∼N ⊃ E2(n)/∼N ⊃ ·· · ⊃ EN−1(n)/∼N ⊃ EN (n)/∼N = 1.

Moreover, this is an N-series.

Proof. Firstly, we show that Er(n)/∼N is a group for each r≥ 1. For f,f ′,g ∈ Er(n) such

that f ∼N f ′, we can easily check that fg ∼N f ′g and gf ∼N gf ′. Thus, the composition

makes the set Er(n)/ ∼N a monoid. For [f ] ∈ Er(n)/ ∼N , by Lemma 3.4, it follows that

[f ][fRN ] = [fLN ][f ] = 1∈ Er(n)/∼N . Since Er(n)/∼N is a monoid, we have [fRN ] = [fLN ], and

this is the inverse of [f ]. Therefore, Er(n)/∼N is a group for each r ≥ 1.

Since Er(n)⊃ Er+1(n), we have Er(n)/∼N ⊃ Er+1(n)/∼N . Secondly, we show that the

descending series is an N-series. It suffices to show that, for f ∈ Er(n),g ∈ Es(n), we have

[[f ],[g]] = [f ][g][f ]−1[g]−1 = [fgfRNg
R
N ] ∈ Er+s(n)/∼N .

Note that, by Lemma 3.4, we can take fRN,g
R
N ∈ Er(n) such that ffRN,gg

R
N ∈ EN (n)∩

Er+s(n). By commutator calculus, for x ∈ Fn, we have

[fg,x] = [f,[g,x]] [g,x] [f,x]≡ [g,x] [f,x] ( mod Γr+s+1),

[g,[gRN,x] [fRN,x]] = [g,[gRN,x]] [gRN,x][g,[fRN,x]]≡ [g,[gRN,x]] ( mod Γr+s+1).

Similarly, we have

[fRNg
R
N,x]≡ [gRN,x] [fRN,x] ( mod Γr+s+1),

[f,[gRN,x] [fRN,x]]≡ [f,[fRN,x]] ( mod Γr+s+1).

Thus, we have

[fg,[fRNg
R
N,x]]≡ [g,[fRNg

R
N,x]] [f,[fRNg

R
N,x]]

≡ [g,[gRN,x] [fRN,x]] [f,[gRN,x] [fRN,x]]

≡ [g,[gRN,x]] [f,[fRN,x]] ( mod Γr+s+1).



Actions of automorphism groups of free groups on spaces of Jacobi diagrams. II 17

Therefore, we have

[fgfRNg
R
N,x] = [fg,[fRNg

R
N,x]] [fRNg

R
N,x] [fg,x]

≡ [g,[gRN,x]] [f,[fRN,x]] [gRN,x] [fRN,x] [g,x] [f,x]

≡ [g,[gRN,x]] [gRN,x] [g,x] [f,[fRN,x]] [fRN,x] [f,x]

= [ggRN,x] [ffRN,x]

≡ 1 ( mod Γr+s+1),

and the proof is complete.

For N ≥ r ≥ 1, we have a canonical projection

pN+1 : Er(n)/∼N+1� Er(n)/∼N .

Let Êr(n) denote the projective limit lim←−
N

(Er(n)/∼N ) and

πN : Êr(n)� Er(n)/∼N
denote the projection. By Proposition 3.5, we have a descending series of groups

Ê1(n)⊃ Ê2(n)⊃ ·· ·
satisfying ⋂

r≥1

Êr(n) = {id}.

Proposition 3.6. The descending series Ê∗(n) := (Êr(n))r≥1 is an N-series.

Proof. By Proposition 3.5, we have [Er(n)/ ∼N ,Es(n)/ ∼N ] ⊂ Er+s(n)/ ∼N for each

N > r,s. By taking the projective limits, we have [Êr(n),Ês(n)]⊂ Êr+s(n).

We have a graded Lie algebra gr(Ê∗(n)) associated to the N-series Ê∗(n). Let

grr(E∗(n)) := Er(n)/∼r+1 for r ≥ 1 and gr(E∗(n)) :=
⊕

r≥1 grr(E∗(n)).

Proposition 3.7. We have a group isomorphism

π̄r+1 : grr(Ê∗(n))
∼=−→ grr(E∗(n))

induced by the projection πr+1 : Êr(n)→ grr(E∗(n)). Therefore, gr(E∗(n)) is a graded Lie

algebra.

Proof. The projection πr+1 induces π̄r+1 since, for f ∈ Êr+1(n), we have πr+1(f) ∈
Er+1(n)/∼r+1= 1.

We will check that π̄r+1 is surjective. For any f ∈ Er(n), let Φ(f) ∈ Êr(n) satisfy

πN (Φ(f)) = [f ] ∈ Er(n)/∼N for each N > r. We have π̄r+1([Φ(f)]) = πr+1(Φ(f)) = [f ] ∈
Er(n)/∼r+1. Therefore, π̄r+1 is surjective.

Finally, we show that π̄r+1 is injective. Let f ∈ Êr(n) satisfy π̄r+1([f ]) = 1∈ Er(n)/∼r+1

and πN (f) = [fN ]∈ Er(n)/∼N for fN ∈ Er(n). Then, we have fr+1 ∈ Er+1(n) and fN ∼r+1

fr+1 for any N > r. Therefore, we have πN (f) = [fN ] ∈ Er+1(n)/∼N for each N > r and
thus [f ] = 1 ∈ grr(Ê∗(n)). The proof is complete.
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3.4. Johnson homomorphism of End(Fn)

For r ≥ 1, by using Lemma 3.2, we can define a monoid homomorphism

τ̃ ′r : Er(n)→Hom(H,Lr+1(n))

by τ̃ ′r(f)(xΓ2) := [f,x]Γr+2 for f ∈ Er(n),x ∈ Fn. It is easily checked that the monoid

homomorphism τ̃ ′r induces an injective group homomorphism

τ̃r : grr(E∗(n)) ↪→Hom(H,Lr+1(n)).

We call it the r-th Johnson homomorphism of End(Fn).

Proposition 3.8. The map τ̃r : grr(E∗(n)) ↪→ Hom(H,Lr+1(n)) is an abelian group

isomorphism.

Proof. It suffices to show that τ̃r is surjective. For any ϕ ∈ Hom(H,Lr+1(n)), we fix

a representative of ϕ(xiΓ2) ∈ Lr+1(n) and write it ϕ(xi) ∈ Γr+1, for i ∈ [n]. Define ψ ∈
End(Fn) by

ψ(xi) = ϕ(xi)xi for i ∈ [n].

It turns out that [ψ,x]Γr+2 = ϕ(xΓ2) ∈ Lr+1(n) for any x ∈ Fn by induction on the word

length of x ∈ Fn. Therefore, we have τ̃r(ψ) = ϕ, and thus the map τ̃r is surjective.

Then we obtain the following commutative diagram:

grr(A∗(n))� _

inclusion

��

τr

**
grr(E∗(n))

∼=
τ̃r

// Hom(H,Lr+1(n)).

Remark 3.9. It is well known that the Andreadakis filtration A∗(n) of Aut(Fn) includes

the lower central series of IA(n):

Γr(IA(n))⊂Ar(n).

We have A1(n) = IA(n) by definition. Andreadakis [1] conjectured that

Ar(n) = Γr(IA(n)) (3.6)

for all r ≥ 2,n ≥ 2. Andreadakis [1] (n = 3) and Kawazumi [17] (for any n) showed

that equation (3.6) holds for r = 2. Moreover, Andreadakis [1] showed that the first

Johnson homomorphism τ1 of Aut(Fn) is an isomorphism. Therefore, we have abelian

group isomorphisms

gr1(IA(n))∼= Hom(H,L2(n))∼= gr1(E∗(n)). (3.7)

Recently, Satoh [23] showed that equation (3.6) holds for r = 3. On the other hand,

Bartholdi [5] showed that

(A5(3)/Γ5(IA(3)))⊗Q∼= Q⊕3,
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which is a counterexample of the Andreadakis conjecture. Now, the Andreadakis

conjecture remains open for n� r.

3.5. The derivation Lie algebra

By equation (3.1) and Proposition 3.8, we have abelian group isomorphisms

grr(E∗(n))∼=H∗⊗Lr+1(n)∼= Derr(L∗(n))∼= Tr(n).

We write τ̃r : grr(E∗(n))
∼=−→Derr(L∗(n)) as well.

Proposition 3.10. The abelian group isomorphism

τ̃ =
⊕
r≥1

τ̃r : gr(E∗(n))
∼=−→Der(L∗(n))

is an isomorphism of graded Lie algebras.

Proof. We only need to check that the Lie bracket of gr(E∗(n)) is sent to the Lie bracket

of Der(L∗(n)). For f ∈ Êr(n),g ∈ Ês(n) and x ∈ Fn, we have

[τ̃r([f ]),τ̃s([g])](xΓ2) = τ̃r([f ])τ̃s([g])(xΓ2)− τ̃s([g])τ̃r([f ])(xΓ2)

= [f,[g,x]] [g,[f,x]]−1 = [[f,g],x] ∈ Lr+s+1(n).

On the other hand, we have

τ̃r+s([[f,g]])(xΓ2) = [[f,g],x] ∈ Lr+s+1(n).

Therefore, τ̃ is an isomorphism of graded Lie algebras.

Remark 3.11. The tree module
⊕

r≥1Tr(n) also has a graded Lie algebra structure

which is induced by the Lie algebra structure of Der(L∗(n)). The Lie bracket

[·,·] : Tr(n)×Ts(n)→ Tr+s(n)

is defined by the difference between two linear sums obtained by contracting the root of

one of the trees and the leaves of the other tree

 xi1

vi

xirxir+1

,

xj1

vj

xjsxjs+1
=

s+1∑
l=1

〈vi,xjl〉

xj1

vj

xjs
xjs+1

xi1
xir

xir+1

l
1

s

−
r+1∑
l=1

〈vj,xil〉

xi1

vi

xir
xir+1

xj1
xjs

xjs+1

l
1

r

.

4. Action of gr(E∗(n)) on Bd(n)

We defined the bracket maps (2.2) in [16]. In this section, we extend them to linear maps

[·,·] :Bd,k(n)⊗grr(E∗(n))→Bd,k+r(n).

In Section 4.1, we state Theorem 4.1, which we use to obtain the extended bracket

map. In Section 4.2, we extend the category A to a category AL, which includes a Lie

algebra structure besides the Hopf algebra structure in A. In Section 4.3, we observe
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some relations for morphisms of AL. By using these relations, we prove Theorem 4.1 in

Section 4.4.

4.1. Bracket map [·,·] :Bd,k(n)⊗grr(E∗(n))→Bd,k+r(n)

We have a right End(Fn)-action on Ad(n) by letting

u ·g :=Ad(g)(u)

for u ∈Ad(n),g ∈ End(Fn). We define

[·,·] :Ad(n)×End(Fn)→Ad(n) (4.1)

by [u,g] := u ·g−u for u ∈Ad(n),g ∈ End(Fn), which we call the bracket map.

Theorem 4.1. The N-series Ê∗(n) acts on the right on the filtered vector space Ad(n).

That is, we have

[Ad,k(n),Er(n)]⊂Ad,k+r(n)

for any r ≥ 1.

Note that we have [Ad,k(n),Γr(IA(n))] ⊂ Ad,k+r(n) (see Lemma 5.7 in [16]). We will

prove Theorem 4.1 in Section 4.4.

By using Theorem 4.1, we can extend the bracket map

[·,·] :Bd,k(n)⊗grr(IA(n))→Bd,k+r(n)

to grr(E∗(n)).

Corollary 4.2. Let r ≥ 1. The bracket map (4.1) induces a k-linear map

[·,·] :Bd,k(n)⊗grr(E∗(n))→Bd,k+r(n).

We can also extend the GL(n;Z)-module map

βrd,k : grr(IA(n))→Hom(Bd,k(n),Bd,k+r(n))

defined by βrd,k(g)(u) = [u,g] for g ∈ grr(IA(n)),u ∈Bd,k(n) to a group homomorphism

β̃rd,k : grr(E∗(n))→Hom(Bd,k(n),Bd,k+r(n)),

which βrd,k factors through. That is, we have βrd,k = β̃rd,ki, where the map i : grr(IA(n))→
grr(E∗(n)) is induced by the inclusion map Γr(IA(n)) ↪→Er(n).

Remark 4.3. The right action of the N-series Ê∗(n) on Ad(n) induces an action of the

graded Lie algebra gr(E∗(n)) on the graded vector space Bd(n):

gr(E∗(n))
∼=−→ gr(Ê∗(n))→

⊕
r≥1

Endr(Bd(n)),

which is given by the group homomorphisms β̃rd,k. This induced action can be regarded

as an action of the derivation Lie algebra Der(L∗(n)) on the graded vector space Bd(n)
by the identification in Section 3.5.
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H

,

L

Figure 2. Source of a morphism

4.2. The category AL of extended Jacobi diagrams in handlebodies

The category A has a cocommutative Hopf algebra with the underlying object 1, which we

recalled in Section 2.4. Moreover, the morphisms of the category A have Jacobi diagrams,

and the STU relations correspond to relations of Lie algebras. In a proof of Theorem 4.1,

we use graphical computations which deal with the Hopf algebra structure and the Lie

algebra structure. For this purpose, we extend the category A to another category AL

which includes the Hopf algebra structure and the Lie algebra structure. In Appendix A,

we give an expected presentation of the category AL.

Construct the category AL as follows. The set of objects of AL is the free monoid

generated by two objects H and L, where multiplication is denoted by ⊗. The category

AL includes the category A as a full subcategory with the free monoid generated by

H as the set of objects. (On the other hand, the full subcategory with the free monoid

generated by L is isomorphic to a category in [13]. See Remark A.4.) In the category

AL, we consider diagrams that are obtained from Jacobi diagrams in handlebodies by

attaching univalent vertices of the Jacobi diagrams to the bottom line l and the upper

line l′.

Example 4.4. Here is a morphism in AL(H⊗L⊗H⊗L⊗H,H⊗L⊗2⊗H):

H H H

H H

L L

L L

As depicted in Figure 2, the objects H and L in the source of a morphism of AL

correspond to a handle of the handlebody and a univalent vertex attached to the upper

line l′, respectively.

As depicted in Figure 3, the objects H and L in the target of a morphism of AL

correspond to an arc component mapped into the handlebody and a univalent vertex

attached to the bottom line l, respectively.

In the category AL, the object H is considered as a Hopf algebra and L is considered

as a Lie algebra. See Section 4.3 and Appendix A.

To define morphisms of the category AL precisely, we give the following definition.
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H , L

Figure 3. Target of a morphism

Definition 4.5. For a finite set T, an (Xm,T )-diagram is a quadruple (D,V ,f,g),

where

• D is a vertex-oriented uni-trivalent graph such that each connected component
has at least one univalent vertex,

• V is a subset of ∂D = {univalent vertices of D},
• f is an embedding of V into the interior of Xm,
• g is a bijection from T to ∂D \V .

Note that an (Xm,∅)-diagram is a Jacobi diagram on Xm.

For an object w = H⊗m1 ⊗L⊗n1 ⊗ ·· · ⊗H⊗mr ⊗L⊗nr ∈ AL, let m :=
∑r
i=1mi and

n :=
∑r
i=1ni. For p≥ 0, let [p]+ := {1+, · · · ,p+} and [p]− := {1−, · · · ,p−} be two copies of

[p].

Definition 4.6. For objects w = H⊗m1 ⊗L⊗n1 ⊗ ·· · ⊗H⊗mr ⊗L⊗nr ∈ AL and w′ =

H⊗m
′1⊗L⊗n′1⊗·· ·⊗H⊗m′s⊗L⊗n′s ∈AL, a (w,w′)-diagram consists of

• an (Xm′,[n]+t [n′]−)-diagram (D,V ,f,g) such that each connected component of
D has at least one univalent vertex in V ∪g([n′]−)

• a map ϕ :Xm′ ∪D→ Um such that
(1) the pair (the empty set ∅, the restriction ϕ |Xm′ ) is an (m,m′)-Jacobi

diagram; that is, ϕ maps X ′m into Um in such a way that endpoints of
X ′m are arranged in the bottom line l from left to right,

(2) g([n]+) is mapped into l′ so that the corresponding object in AL with respect
to Figure 2 will be w when we look at the top line l′ from left to right,

(3) g([n′]−) is mapped into l so that the corresponding object in AL with respect
to Figure 3 will be w′ when we look at the bottom line l from left to right.

We identify two (w,w′)-diagrams if they are homotopic in Um relative to the endpoints

of X ′m∪D. In what follows, we simply write D for a (w,w′)-diagram. For objects w and

w′, the hom-set AL(w,w′) is the k-vector space spanned by (w,w′)-diagrams modulo the

STU, AS and IHX relations.

The composition of AL is defined in a similar way to that of the category A. We can

define a square diagram for an (w,w′)-diagram similarly. Let D be a diagram in AL(w,w′)
and D′ a diagram in AL(w′,w′′). Deform D′ to have only the parallel copies of the handle

cores in each handle. Then the composition D′ ◦D is a diagram obtained by stacking the

cabling of D on top of the square presentation of D′.
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Example 4.7. For D= and D′= , the composition

D′ ◦D is , where the box notation represents a linear sum of

Jacobi diagrams. (See [11] and [16] for the definition of the box notation.)

The identity morphism idH⊗m1⊗L⊗n1⊗···⊗H⊗mr⊗L⊗nr is the following diagram:

m1 n1 nrmr
.

We can naturally extend the linear symmetric strict monoidal structure of A to

the category AL, where the tensor product is defined to be the juxtaposition of the

handlebodies.

Note that the symmetries in AL are determined by

PH,H = :H⊗H →H⊗H, PH,L = :H⊗L→ L⊗H,

PL,H = : L⊗H →H⊗L, PL,L = : L⊗L→ L⊗L.

The degree of a (w,w′)-diagram is defined by

1

2
#{vertices}−#{univalent vertices attached to the upper line l′}.

Let AL
d (w,w′)⊂AL(w,w′) be the subspace spanned by (w,w′)-diagrams of degree d. We

have AL(w,w′) =
⊕

d≥0 AL
d (w,w′). Since we have

AL
d′(w

′,w′′)◦AL
d (w,w′)⊂AL

d+d′(w,w
′′)
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and

AL
d′(w,w

′)⊗AL
d (z,z′)⊂AL

d+d′(w⊗z,w′⊗z′)

for any w,w′,w′′,z,z′ ∈ AL, this grading is an N-grading on AL. Note that we have

Ad(m,n) = AL
d (H⊗m,H⊗n) for m,n≥ 0.

4.3. Relations for morphisms in AL

Here, we observe some relations for morphisms of AL, which we use in the proof of

Theorem 4.1.

The cocommutative Hopf algebra (H,µ,η,∆,ε,S) in A naturally induces a cocommuta-

tive Hopf algebra in AL such that

µ= := , η = := , ∆ = = ,

ε= := , S = := .

Additionally, the triple (L,[·,·],cL) is a Lie algebra with a symmetric invariant 2-tensor in

AL (see Appendix A.2), where

[·,·] = := : L⊗2→ L, cL = =: : I → L⊗2.

Moreover, AL has two morphisms

i= i := : L→H, adL = adL := :H⊗L→ L.

The degree of the morphism cL is 1 and that of the others of the above morphisms is 0.

The iterated multiplications

µ[q] = :H⊗q→H
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and the iterated comultiplications

∆[q] = :H →H⊗q

for q ≥ 0 are inductively defined by

µ[0] = η, µ[1] = idH , µ[q+1] = µ(µ[q]⊗ idH) (q ≥ 1),

∆[0] = ε, ∆[1] = idH , ∆[q+1] = (∆[q]⊗ idH)∆ (q ≥ 1).

Let

adH = adH := = ,

which denotes the adjoint action, and

comm= := = , (4.2)

which denotes the commutator.

Lemma 4.8. We have

(1) S ◦ i=−i
(2) ∆◦ i= i⊗η+η⊗ i
(3) ε◦ i= 0

(4) adH(i⊗ i) =−i◦ [·,·].

Proof. They can be checked by diagrammatic computation.

Let g be a Lie algebra and U = U(g) be the universal enveloping algebra. We have a

filtration F∗(U) of U induced by the usual filtration of the tensor algebra T (g) of g. Since

U has a cocommutative Hopf algebra structure, we can define the commutator operator

comm : U⊗2→ U
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in a similar way as equation (4.2). For x1, · · · ,xm,y1, · · · ,yn ∈ g, we have

comm(x1 · · ·xm,y1 · · ·yn) ∈ Fmin(m,n)(U).

The following lemma is a diagrammatic version of this fact.

Lemma 4.9.

(1) Let m,n≥ 1. We have

i i

µ[m] µ[n]

=
∑
α

cα

Dα

i i

µ[n]

m+n

=
∑
β

cβ

Dβ

i i

µ[m]

m+n

,

where cα,cβ ∈ Z, and where Dα (resp. Dβ) is a union of trees with m (resp. n)

trivalent vertices. Moreover, for m= n= 1, we have

i i

=− i .

(2) Let m≥ 1. We have

i i

µ[m] η
=

i i

µ[m]η
= 0.

(3) We have

ηη

= .



Actions of automorphism groups of free groups on spaces of Jacobi diagrams. II 27

For example, we have

i ii

=− i ,

i ii

= i ,

i i

= i i − i i − i i .

Proof of Lemma 4.9. By using Lemma 4.8 (2) and µ[n]

∆

n

=
µ

∆

n

, we

have

i i

µ[m] µ[n]

=
∑

σ:(p,q)−shuffle,p+q=n

i i

µ[m]

S

S

σ
p q

.

By Lemma 4.8 (1), it suffices to consider D =

i i

µ[m]

S

p qm

. By Lemma 4.8

(3), we have

i i
µ

∆
S
µ

=

i i
µε

η =

i i
ε
η

ε = 0. Thus, when p= 0, we have D= 0.
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When p≥ 1, by Lemma 4.8 (4), we have

D =

i i

p qm

adH
=

i i

p qm

adH

adH =

i i

p qm

adH

adH

adH

=

i i

p qm

adH

adH = · · ·= i

p q

i

m

.

Note that the last term is a Z-linear sum of unions of tree diagrams with m trivalent

vertices. Therefore, the first equality of (1) follows. If m= n= 1, then the equality follows

from the case where m= p= 1,q = 0. The second equality of (1) follows similarly.

The first equality of (2) follows from

i i

µ[m] η
=

i i
µ

∆
S
µ

= 0. The second

equality follows similarly.

We have (3) because

ηη

=

η

= .

4.4. Proof of Theorem 4.1

In this subsection, we prove Theorem 4.1.

For any y1, · · · ,yr ∈ Fn, we call [y1, · · · ,[yr−1,yr]] ∈ Γr an r-fold commutator.

For i ∈ [n], define di ∈ End(Fn) = Fop(n,n) by

di(xi) = [y1, · · · ,[yr,yr+1]]ε, di(xj) = 1 (j 6= i)

for y1, · · · ,yr+1 ∈ Fn,ε ∈ {±1}, which we call an (r+ 1)-fold commutator at i. Via the

isomorphism kFop(n,n) ∼= A0(n,n), we identify di ∈ Fop(n,n) with a morphism of the
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following form

η η

i

r

permutation

1 n

∆[q1] ∆[qn]

µ[p1] µ[pr+1]

∈A0(n,n),

which we also call an (r+1)-fold commutator at i, where each depicts S or idH , and

qk,pl ≥ 0 satisfy
∑n
k=1 qk =

∑r+1
l=1 pl.

Claim 1. An element g ∈ Er(n) can be written as a convolution product

g = d1,1 ∗ · · · ∗d1,l1 ∗ · · · ∗dn,1 ∗ · · · ∗dn,ln ∗ idH⊗n ,

where di,j is an (r+ 1)-fold commutator at i for i ∈ [n] (li ≥ 0,1≤ j ≤ li).

Proof. Let g ∈ Er(n). Since Γr+1 is generated by (r+ 1)-fold commutators, g(xi)x
−1
i

is a product of (r+ 1)-fold commutators or their inverses for any i ∈ [n]. Thus, we can

decompose g into a convolution product of (r+ 1)-fold commutators and idH⊗n .

Proof of Theorem 4.1. We show that [Ad,k(n),Er(n)] ⊂ Ad,k+r(n). We can write an

element of Ad,k(n)⊂AL(I,H⊗n) as a linear sum of the following diagrams:

u=

D

n1

=

D

n1

i i ,

where D is a Jacobi diagram with at least k trivalent vertices. Let g ∈ Er(n). By Claim

1, we can write g as a convolution product

g = d1,1 ∗ · · · ∗d1,l1 ∗ · · · ∗dn,1 ∗ · · · ∗dn,ln ∗ idH⊗n ,

where di,j ∈A0(n,n) is an (r+ 1)-fold commutator at i. Let l = 1 +
∑n
i=1 li.



30 M. Katada

By using ∆[l]

l

µ[m]

m

= µ[l]

∆[m]

l

m

, we have

u ·g =

D

1 n

1 1
1

n n
n

n1

d1,1 dn,ln

u

g

=

D

1 n

1 1
1

n n
n

n1

d1,1 dn,ln

∆[l]

.

Here, each i is once connected to all of the diagrams d1,1, · · · ,dn,ln and idH⊗n . Since

we have
i

∆[l]

1 l

=
∑l
j=1

i

1 lj

η η
by Lemma 4.8 (2), the element u ·g is a linear

sum of diagrams of shape

1 n

n1

d1,1 dn,ln

1 n 1 n

, where denotes i or

. If all that are connected to idH⊗n are
i

, then it is easily checked that the

corresponding summand is just u by using Lemma 4.9 (3). Otherwise, at least one of

that are connected to diagrams d1,1, · · · ,dn,ln are i . By using Lemma 4.9, it follows

that each summand is a linear sum of diagrams with at least k+ r trivalent vertices.

Therefore, we have [u,g] = u ·g−u ∈Ad,k+r(n).
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5. Contraction map

Recall that H = L1(n) =
⊕n

i=1Zx̄i and H∗ =
⊕n

i=1Zvi. In what follows, we identify

H∗⊗Lr+1(n) with Tr(n) as we remarked in Section 3.2.

5.1. Preliminaries to computation

Let N ≥ 1. We briefly review the construction of the irreducible representations of the

symmetric group SN . See Fulton–Harris [6] and Sagan [21] for basic facts of representation

theory of SN . Let λ= (λ1, · · · ,λl) be a partition of N, and write λ `N . A Young diagram

of λ consists of λi boxes in the i -th row for i ∈ [l] such that the rows of boxes are lined

up on the left. A λ-tableau is a numbering of the boxes by the integers in [N ]. We call

a λ-tableau standard if the numbering increases in each row and in each column. The

canonical λ-tableau is a standard tableau whose numbering starts from the first row from

left to right and then the second row from left to right and so on.

Let t0 be the canonical λ-tableau. Define Rt0 (resp. Ct0) to be the subgroup of SN that

preserves each row (resp. column) of t0. We define

aλ :=
∑
σ∈Rt0

σ, bλ :=
∑
σ∈Ct0

sgn(σ)σ ∈ kSN .

For each λ `N , the Young symmetrizer cλ is defined by

cλ = bλaλ ∈ kSN . (5.1)

The Specht module Sλ, which is an irreducible representation of SN corresponding to λ,

can be constructed as

Sλ = kSN · cλ.

Lemma 5.1. We have the following decomposition of kSN -bimodules

kSN =
⊕
λ`N

kSN · cλ ·kSN .

Proof. This follows from basic facts of representation theory. The reader is referred to

[6] and [21].

For N ′,N ′′ ≥ 0, let N = N ′+N ′′. For µ `N ′,ν `N ′′, let Sµ �Sν denote the represen-

tation of SN induced from the tensor product representation Sµ�Sν of SN ′ ×SN ′′ by

the inclusion of SN ′ ×SN ′′ in SN . By the Littlewood–Richardson rule, we have

Sµ �Sν =
⊕
λ`N

(Sλ)LR
λ
µ,ν ,

where LRλµ,ν denotes the Littlewood–Richardson coefficient. We have the following lemma

by using basic facts of representation theory of SN .

Lemma 5.2. Let N = N ′+N ′′ for N ′,N ′′ ≥ 0. Let λ ` N,µ ` N ′,ν ` N ′′, respectively.

We have

dimk((cµ � cν) ·kSN · cλ) = LRλµ,ν .
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In particular, if the Littlewood–Richardson coefficient LRλµ,ν = 0, then we have

(cµ � cν) ·kSN · cλ = 0.

5.2. Contraction map

We have an isomorphism of GL(Vn)-modules

Bd,k(n)∼= V ⊗2d−k
n ⊗kS2d−kDd,k, (5.2)

where Dd,k is the k-vector space spanned by [2d− k]-colored open Jacobi diagrams of

degree d such that the map {univalent vertices of D} → [2d−k] that gives the coloring

of D is a bijection. Thus, any element of Bd,k(n) can be written in the form

u(w1, · · · ,w2d−k) := (w1⊗·· ·⊗w2d−k)⊗u

for u ∈Dd,k and w1, · · · ,w2d−k ∈ Vn.

For λ ` 2d−k, let Bd,k(n)λ be the isotypic component of Bd,k(n) corresponding to λ;

that is,

Bd,k(n)λ ∼= V ⊗2d−k
n ⊗kS2d−k kS2d−kcλDd,k.

We have Bd,k(n) =
⊕

λ`2d−kBd,k(n)λ.

We define a contraction map

c :Bd,k(n)⊗Tr(n)→Bd,k+r(n),

which is an analogue of the contraction map defined in Appendix B of [6].

Let p ≥ q. For I = (i1, · · · ,iq) such that i1, · · · ,iq are distinct elements of [p], define a

contraction map

cI : V ⊗pn ⊗ (V ∗n )⊗q→ V ⊗(p−q)
n

by

cI((w1⊗·· ·⊗wp)⊗ (y1⊗·· ·⊗yq)) =

 q∏
j=1

〈wij,yj〉

w1⊗·· · ŵi1 · · · ŵiq · · ·⊗wp,

where ŵi1 · · · ŵiq denotes the omission of wi1, · · · ,wiq and where 〈−,−〉 : Vn ⊗ V ∗n → k
denotes the dual pairing. (See [6] for details.)

We next consider a diagrammatic version of the above contraction map cI . Let 2d−k≥
r+ 1. For I = (i1, · · · ,ir+1) ∈ [2d− k]r+1 such that i1, · · · ,ir+1 are distinct, we define a

linear map

cI :Bd,k(n)⊗Tr(n)→Bd,k+r(n)
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by contracting colorings of a Jacobi diagram and leaves of a rooted trivalent tree; that is,

cI

 u

w1 w2d−k
⊗

y1

w

yr yr+1 

=

r+1∏
j=1

〈wij,yj〉


u

w1 w2d−kw ŵi1 · · · ŵir+1

σ
,

where σ−1 =

(
1 · · · r+ 1 r+ 2 . . . . . . . . . . . . . . . . . . . . . . 2d−k
i1 · · · ir+1 1 · · · î1 · · · îr+1 · · · 2d−k

)
. We define a con-

traction map

c :Bd,k(n)⊗Tr(n)→Bd,k+r(n)

by c=
∑
I=(i1,···,ir+1)∈[2d−k]r+1:distinct c

I . By using the contraction map c, we define a map

γrd,k : Tr(n)→Hom(Bd,k(n),Bd,k+r(n))

by γrd,k(g)(u′) := c(u′⊗g) for g ∈ Tr(n),u′ = u(w1, · · · ,w2d−k) ∈Bd,k(n).

5.3. Vanishing conditions for the contraction map

Here, we observe that the contraction map vanishes under certain specific conditions.

For r ≥ 0, a trivalent tree is called a based trivalent tree of degree r if it has one

distinguished univalent vertex with no coloring (called a base) and r+1 univalent vertices

(called leaves) that are colored by distinct elements of [r+1]. (Note that a based trivalent

tree is different from a rooted trivalent tree.) Let Lr denote the Z-module spanned by

based trivalent trees of degree r modulo the AS and IHX relations. The symmetric group

Sr+1 acts on the Z-module Lr by the action on colorings of based trivalent trees. Then

we have

Lr+1(n)∼=H⊗(r+1)⊗ZSr+1 Lr.

On the other hand, Lr+1(n) has a GL(n;Z)-module structure by the standard action

on each factor. (See [7] for representation theory of GL(n;Z).) For µ ` r+1, let Lr+1(n)µ
denote the isotypic component of Lr+1(n) corresponding to µ; that is,

Lr+1(n)µ ∼=H⊗(r+1)⊗ZSr+1 ZSr+1cµLr.

We have Lr+1(n) =
⊕

µ`r+1Lr+1(n)µ.

For partitions λ and µ, we write λ+ µ if the Young diagram of λ does not contain that

of µ.
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Proposition 5.3. For 2d−k ≥ r+ 1, let λ ` 2d−k and µ ` r+ 1. We have

c(Bd,k(n)λ⊗ (H∗⊗Lr+1(n)µ))⊂
⊕

ρ:LRλµ,νLR
ρ
ν,(1)
6=0 for some ν

Bd,k+r(n)ρ.

In particular, if λ+ µ, then we have

c(Bd,k(n)λ⊗ (H∗⊗Lr+1(n)µ)) = 0.

Proof. Any element of Bd,k(n)λ is a linear sum of (cλ · u)(w1, · · · ,w2d−k), where

u(w1, · · · ,w2d−k) ∈Bd,k(n). Any element of Lr is a linear sum of

L= π−1 ·
1 r r+ 1

for π ∈ Sr+1. Thus, any element of H∗⊗Lr+1(n)µ is a linear sum of w⊗ ((y1⊗ ·· · ⊗
yr+1)⊗ cµ ·L) for w ∈H∗,y1, · · · ,yr+1 ∈H.

For any I = (i1, · · · ,ir+1) ∈ [2d−k]r+1 such that i1, · · · ,ir+1 are distinct, we have

cI((cλ ·u)(w1, · · · ,w2d−k)⊗ (w⊗ ((y1⊗·· ·⊗yr+1)⊗ cµ ·L))) =

r+1∏
j=1

〈wij,yj〉D,

where

D =

u

cλ

σ

aµbµ

w w1 ŵi1
· · · ŵir+1

w2d−k

π

,

σ−1 =

(
1 · · · r+ 1 r+ 2 . . . . . . . . . . . . . . . . . . . . . . 2d−k
i1 · · · ir+1 1 · · · î1 · · · îr+1 · · · 2d−k

)
.

Let l = 2d−k− r−1. By Lemma 5.1, we have

idl =
∑

ν`l,1≤i≤dimSν

τi,1cντi,2,
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where τi,1,τi,2 ∈ kSl. Thus, we have

D =
∑

ν`l,1≤i≤dimSν

u

cλ

σ

aµbµ

w w1 ŵi1
· · · ŵir+1

w2d−k

τi,2
cν
τi,1

π

.

If LRλµ,ν = 0 for any ν ` l, then we have D= 0 by Lemma 5.2. Otherwise, since we have

id1⊗cν ∈
⊕
ρ`l+1

(Sρ)
LRρ

ν,(1),

by the Littlewood–Richardson rule, it follows that

D ∈
⊕

ρ:LRλµ,νLR
ρ
ν,(1)
6=0 for some ν

(Bd,k+r(n))ρ .

If λ+ µ, then LRλµ,ν = 0 for any ν ` l. Thus, we have

c(Bd,k(n)λ⊗ (H∗⊗Lr+1(n)µ)) = 0.

Remark 5.4. Note that we have L2(n) = L2(n)(12). Thus, the restriction

c :Bd,k(n)λ⊗ (H∗⊗L2(n)(12))→Bd,k+1(n)ρ

of the contraction map vanishes unless ρ can be obtained from λ by taking away one box

from each of two different rows of λ and then by adding one box.

6. Correspondence between the map β̃rd,k and the map γrd,k

In this section, we prove that the map β̃rd,k defined in Section 4 can be identified with

the map γrd,k defined in Section 5 via the Johnson homomorphism of End(Fn) defined in

Section 3.

Theorem 6.1. We have β̃rd,k = (−1)r ·γrd,k ◦ τ̃r. That is, we have the following commu-

tative diagram (up to sign):

grr(E∗(n))

∼= τ̃r

��

β̃rd,k // Hom(Bd,k(n),Bd,k+r(n))

H∗⊗Lr+1(n).

γrd,k

33
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Proof. The Z-module H∗ ⊗ Lr+1(n) is spanned by vi ⊗ [x̄i1, · · · ,[x̄ir,x̄ir+1
] · · · ] for

i,i1, · · · ,ir+1 ∈ [n]. Define φ ∈ End(Fn) by

φ(xi) = [xi1, · · · ,[xir,xir+1
] · · · ] ·xi, φ(xj) = xj (j 6= i).

It is easily checked that φ ∈ Er(n) and that τ̃r([φ]r) = vi⊗ [x̄i1, · · · ,[x̄ir,x̄ir+1
] · · · ], where

[φ]r ∈ grr(E∗(n)) denotes the image of φ under the projection.

Any element of Bd,k(n) can be written as a linear sum of u=

D

vj1 vj2d−k

, where

1 ≤ j1 ≤ ·· · ≤ j2d−k ≤ n, by arranging the univalent vertices according to the order of

indices of the colorings from left to right. We have

γrd,k ◦ τ̃r([φ]r)(u)

= c(u⊗ (vi⊗ [x̄i1, · · · ,[x̄ir,x̄ir+1
] · · · ]))

=
∑

(αl)∈[2d−k]r+1: distinct

(
r+1∏
l=1

〈vjαl ,x̄il〉
)

vj1vi vj2d−k

τ

σ

v̂jα1
· · · v̂jαr+1

D

,

where τ−1 ∈S2d−k is the (r+1,2d−k−r−1)-shuffle that maps [r+1]⊂ [2d−k] to {αl},
and σ ∈Sr+1 satisfies σ−1(l) = τ(αl) for any l ∈ [r+ 1].

Let ũ =

D

n1

i i ∈ Ad,k(n), which can be obtained from u by replacing

univalent vertices with i and combining solid lines whose corresponding colorings

of u are the same. Then ũ is a lift of u; that is, we have θd,n,k(ũ) = u. By the definition

of β̃rd,k, we have

β̃rd,k([φ]r)(u) = [u,[φ]r] = θd,n,k+r([ũ,φ]).
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We have

[ũ,φ] = ũ ·φ− ũ

= ũ ·


r

ρ

π
ε

1 i n

ηη

∗ id


− ũ

=

D

n1

r

i

1 n

ρ

π

i

ε

∆

µ

−

D

n1

i i ∈Ad,k+r(n),

where ρ−1 ∈Sn is the (r+1,n−r−1)-shuffle that maps [r+1]⊂ [n] to {i1, · · · ,ir+1} and

π ∈ Sr+1 satisfies π−1(j) = ρ(ij) for any j ∈ [r+ 1]. By using Lemma 4.9, we have for

β1, · · · ,βr+1 ≥ 0,

r

i i

β1 βr+1βr

=



(βj = 0 for all j ∈ [r+ 1])

(−1)r
r

i
(βj = 1 for all j ∈ [r+ 1])

a linear sum of diagrams

with at least r+ 1 trivalent vertices (otherwise).

(6.1)

In the last case, the corresponding term of [ũ,φ] is included in Ad,k+r+1(n).
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Thus, by equation (6.1) and Lemma 4.8 (2), we have

β̃rd,k([φ]r)(u)

=
∑

(αl)∈[2d−k]r+1

(−1)r

r+1∏
j=1

〈vjαl ,x̄il〉

θd,n,k+r



D

n1 i

τ

σ

r



= (−1)r
∑

(αl)∈[2d−k]r+1

(
r+1∏
l=1

〈vjαl ,x̄il〉
)

vj1vi vj2d−k

τ

σ

v̂jα1
· · · v̂jαr+1

D

= (−1)rγrd,k · τ̃r([φ]r)(u).

7. The GL(Vn)-module structure of Bd(n)

In this section, we consider the GL(Vn)-module structure of Bd(n) and give a decompo-

sition of Bd(n) with respect to connected parts. Moreover, we compute the irreducible

decomposition of Bd(n) for d = 3,4,5 and that of Bd,0(n),Bd,1(n) for any d. Lastly, we

show the surjectivity of the bracket map which we defined in Section 4.

Let Bcd,k(n) ⊂ Bd,k(n) denote the connected part of Bd,k(n), which is spanned by

connected Vn-colored open Jacobi diagrams. Let Dc
d,k ⊂Dd,k denote the connected part

of Dd,k, which is spanned by connected [2d−k]-colored open Jacobi diagrams. We have

an isomorphism of GL(Vn)-modules

Bcd,k(n)∼= V ⊗2d−k
n ⊗kS2d−kD

c
d,k,

which is the connected version of equation (5.2).

The direct sum
⊕

d≥0Bd(n) has the following coalgebra structure. This is an analogue

of the coalgebra structure of the space of open Jacobi diagrams colored by one element

[2]. Let C =
⋃
i∈I Ci be a presentation of a diagram C ∈⊕d≥0Bd(n) as the disjoint union



Actions of automorphism groups of free groups on spaces of Jacobi diagrams. II 39

of its connected components. The comultiplication ∆ is defined by

∆(C) =
∑
J⊂I

(⋃
i∈J

Ci

)
⊗

 ⋃
i∈I\J

Ci

 .
Note that the connected part

⊕
d,k≥0B

c
d,k(n) coincides with the primitive part of the

coalgebra
⊕

d≥0Bd(n).

7.1. Decomposition of Bd(n) with respect to connected parts

Note that Dc
d,k 6= 0 if and only if d−1≤ k ≤ 2d−2 because each element of Dc

d,k has at

least two univalent vertices and is connected. For d ≥ 1,k ≥ 0, the pair (d,k) is called a

good pair if d−1≤ k ≤ 2d−2. We consider the following decomposition of a pair (d,k) to

consider the decomposition of an element of Dd,k into the connected parts.

Definition 7.1. Let d, k ≥ 0. A decomposition of (d,k) into good pairs is a sequence of

triples of integers

π = ((a1,d1,k1), · · · ,(al,dl,kl))

such that (di,ki) are good pairs, ai ≥ 1,

l∑
i=1

aidi = d,

l∑
i=1

aiki = k,

and

(d1,k1)> (d2,k2)> · · ·> (dl,kl)

in the lexicographical order.

Let Π(d,k) be the set of all decompositions of (d,k) into good pairs.

For example, we have

Π(4,2) = {((1,3,2),(1,1,0)),((1,2,2),(2,1,0)),((2,2,1))}. (7.1)

For any diagram K ∈ Dd,k, we can assign a decomposition of (d,k) into good pairs

such that di and ki correspond to the degree and the number of trivalent vertices of each

connected component of K, respectively, and ai corresponds to the multiplicity of (di,ki).

We call a coloring of K =
⊔

1≤i≤l,1≤j≤aiK
(j)
i ∈ Dd,k standard if the set of colorings of

K
(j)
i ∈Dc

di,ki
is{

i−1∑
p=1

(2dp−kp)ap+ (j−1)(2di−ki) + 1, · · · ,
i−1∑
p=1

(2dp−kp)ap+ j(2di−ki)
}

for each i ∈ [l],j ∈ [ai].
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Theorem 7.2. For d,k,n≥ 0, we have an isomorphism of GL(Vn)-modules

Bd,k(n)∼=
⊕

π=((a1,d1,k1),···,(al,dl,kl))∈Π(d,k)

(
l⊗
i=1

Symai(Bcdi,ki(n))

)
. (7.2)

To prove this, we need the following proposition.

Proposition 7.3. Let d,k ≥ 0. We have an isomorphism of S2d−k-modules

Dd,k
∼=

⊕
π=((a1,d1,k1),···,(al,dl,kl))∈Π(d,k)

Ind
S2d−k∏l
i=1(S2di−ki oSai )

(

l⊗
i=1

(Dc
di,ki)

⊗ai), (7.3)

where S2di−ki oSai = S2di−ki
ai oSai ⊂S(2di−ki)ai is the wreath product.

For example, we have an isomorphism of S6-modules for (d,k) = (4,2), which corre-

sponds to equation (7.1),

D4,2
∼= IndS6

S4×S2
(Dc

3,2⊗Dc
1,0)⊕ IndS6

S2×(S2oS2)(D
c
2,2⊗ (Dc

1,0)⊗2)⊕ IndS6

S3oS2
(Dc

2,1)⊗2.

For example,

1 3 2 4
⊗ 1 2 ∈ IndS6

S4×S2
(Dc

3,2⊗Dc
1,0),

1 2 ⊗ 1 2 ⊗ 1 2 ∈ IndS6

S2×(S2oS2)(D
c
2,2⊗ (Dc

1,0)⊗2)

and

1 32
⊗

1 32
∈ IndS6

S3oS2
(Dc

2,1)⊗2.

Via the above isomorphism, the element

(2,3)(4,5) · ( 1 2 ⊗ 1 2 ⊗ 1 2 ) ∈ IndS6

S2×(S2oS2)(D
c
2,2⊗ (Dc

1,0)⊗2)

corresponds to the element

1 3 2 5 4 6 = (2,3)(4,5) · ( 1 2 3 4 5 6 ) ∈D4,2.

Proof of Proposition 7.3. Let D′d,k denote the right-hand side of equation (7.3).

For any coset σ ∈S2d−k/
∏l
i=1(S2di−ki oSai), we fix a representative σ̃ ∈S2d−k of σ.

Any element of D′d,k can be written uniquely as a linear sum of

K = σ̃ ·
⊗

1≤i≤l,1≤j≤ai
K

(j)
i ,

where K
(j)
i ∈ Dc

di,ki
. We assign

⊔
1≤i≤l,1≤j≤aiK

(j)
i a standard coloring in [2d − k]

according to the order of the colorings in
⊔l
i=1[2di− ki]ai of

⊗
1≤i≤l,1≤j≤aiK

(j)
i . For
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example, if

⊗
1≤i≤l,1≤j≤ai

K
(j)
i =

1

2 3

⊗

1

2 3

⊗
1 3 4 2

⊗ 1 2 ,

then the corresponding coloring of
⊔

1≤i≤l,1≤j≤aiK
(j)
i is

1

2 3
4

5 6

7 9 10 8

11 12 .

Define a map Ψ :D′d,k→Dd,k by

Ψ(K) = σ̃ ·
⊔

1≤i≤l,1≤j≤ai
K

(j)
i ,

where σ̃ ∈ S2d−k acts on the colorings in [2d− k]. We can check that the map Ψ is an

S2d−k-module map.

We need to check that Ψ is bijective. If we have Ψ(K) = Ψ(L) for K = σ̃ ·⊗
1≤i≤l,1≤j≤aiK

(j)
i , L = τ̃ ·⊗1≤i≤l,1≤j≤ai L

(j)
i , then we have σ = τ by looking at the

set of colorings of each connected component. Since we fix the representatives of cosets of

S2d−k/
∏l
i=1(S2di−ki oSai), we have σ̃ = τ̃ . Thus, we have K = L and Ψ is injective.

For any element K ∈ Dd,k, we can take σ ∈ S2d−k/
∏l
i=1(S2di−ki oSai) such that

K = σ̃ ·⊔1≤i≤l,1≤j≤aiK
(j)
i , where K

(j)
i ∈Dc

(di,ki)
and

⊔
1≤i≤l,1≤j≤aiK

(j)
i has a standard

coloring. Therefore, Ψ is surjective.

Proof of Theorem 7.2. By Proposition 7.3, we have

Bd,k(n)∼= V ⊗2d−k
n ⊗kS2d−kDd,k

∼=
⊕

π∈Π(d,k)

(
V ⊗2d−k
n ⊗kS2d−k Ind

S2d−k∏l
i=1(S2di−ki oSai )

(
l⊗
i=1

(Dc
di,ki)

⊗ai

))
.
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Moreover, we can check equation (7.2) as follows.

V ⊗2d−k
n ⊗kS2d−k Ind

S2d−k∏l
i=1(S2di−ki oSai )

(
l⊗
i=1

(Dc
di,ki)

⊗ai

)

∼= V ⊗2d−k
n ⊗kS2d−k Ind

S2d−k∏l
i=1 Sai(2di−ki)

(
Ind

∏l
i=1 Sai(2di−ki)∏l
i=1(S2di−ki oSai )

(
l⊗
i=1

(Dc
di,ki)

⊗ai

))

∼= V ⊗2d−k
n ⊗kS2d−k Ind

S2d−k∏l
i=1 Sai(2di−ki)

(
l⊗
i=1

Ind
Sai(2di−ki)
S2di−ki oSai

(
(Dc

di,ki)
⊗ai))

∼= V ⊗2d−k
n ⊗k(

∏l
i=1 Sai(2di−ki))

(
l⊗
i=1

Ind
Sai(2di−ki)
S2di−ki oSai

(
(Dc

di,ki)
⊗ai))

∼=
l⊗
i=1

(
V ⊗ai(2di−ki)n ⊗kSai(2di−ki)

(
Ind

Sai(2di−ki)
S2di−ki oSai

(
(Dc

di,ki)
⊗ai)))

∼=
l⊗
i=1

(
V ⊗ai(2di−ki)n ⊗k(S2di−ki oSai )

(
(Dc

di,ki)
⊗ai))

∼=
l⊗
i=1

Symai
(
V ⊗(2di−ki)
n ⊗kS2di−ki

Dc
di,ki

)
∼=

l⊗
i=1

Symai
(
Bcdi,ki(n)

)
.

7.2. Irreducible decomposition of Bd(n) as GL(Vn)-modules

In this subsection, for simplicity, we write V = Vn, Bd,k =Bd,k(n) and Bcd,k =Bcd,k(n).

Let N be a nonnegative integer and λ ` N . Recall from Section 5.1 that Sλ denotes

the Specht module, which is an irreducible representation of SN corresponding to λ. Let

Vλ = SλV denote the image of V under the Schur functor Sλ. Note that Vλ is a simple

GL(V )-module if n≥ r(λ) and that Vλ = 0 if n < r(λ), where r(λ) is the number of rows

of λ.

We use the Littlewood–Richardson rule, plethysms and results by Bar-Natan [4] to

compute the irreducible decompositions of the GL(V )-modules Bd.

Proposition 7.4 (Bar-Natan [4]). As S2d−k-modules, we have isomorphisms

Dc
1,0
∼= S(2),

Dc
2,1
∼= S(13), Dc

2,2
∼= S(2),

Dc
3,2
∼= S(22), Dc

3,3
∼= S(13), Dc

3,4
∼= S(2),

Dc
4,3
∼= S(3,12), Dc

4,4
∼= S(4)⊕S(22), Dc

4,5
∼= S(13), Dc

4,6
∼= S(2),
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Dc
5,4
∼= S(4,2)⊕S(23)⊕S(3,13), Dc

5,5
∼= (S(3,12))⊕2,

Dc
5,6
∼= S(4)⊕ (S(22))⊕2, Dc

5,7
∼= (S(13))⊕2, Dc

5,8
∼= (S(2))⊕2.

Lemma 7.5. We have the following isomorphisms of the GL(V )-modules:

Bc1,0
∼= V(2),

Bc2,1
∼= V(13), Bc2,2

∼= V(2),

Bc3,2
∼= V(22), Bc3,3

∼= V(13), Bc3,4
∼= V(2),

Bc4,3
∼= V(3,12), Bc4,4

∼= V(4)⊕V(22), Bc4,5
∼= V(13), Bc4,6

∼= V(2),

Bc5,4
∼= V(4,2)⊕V(23)⊕V(3,13), Bc5,5

∼= (V(3,12))
⊕2,

Bc5,6
∼= V(4)⊕ (V(22))

⊕2, Bc5,7
∼= (V(13))

⊕2, Bc5,8
∼= (V(2))

⊕2.

Proof. These follow from Proposition 7.4.

Proposition 7.6. For d= 3,4,5, we have the following irreducible decompositions of the

GL(V )-modules Bd.

(1) We have B3 =B3,0⊕·· ·⊕B3,4, where

B3,0
∼= V(6)⊕V(4,2)⊕V(23),

B3,1
∼= V(3,12)⊕V(2,13),

B3,2
∼= V(4)⊕V(3,1)⊕ (V(22))

⊕2,

B3,3 =Bc3,3
∼= V(13),

B3,4 =Bc3,4
∼= V(2).

(2) We have B4 =B4,0⊕·· ·⊕B4,6, where

B4,0
∼= V(8)⊕V(6,2)⊕V(42)⊕V(4,22)⊕V(24),

B4,1
∼= V(5,12)⊕V(4,13)⊕V(32,1)⊕V(3,2,12)⊕V(22,13),

B4,2
∼= V(6)⊕V(5,1)⊕ (V(4,2))

⊕3⊕ (V(3,2,1))
⊕2⊕ (V(23))

⊕3⊕V(2,14),

B4,3
∼= (V(3,12))

⊕3⊕ (V(2,13))
⊕2,

B4,4
∼= (V(4))

⊕3⊕V(3,1)⊕ (V(22))
⊕3,

B4,5
∼= V(13),

B4,6
∼= V(2).
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(3) We have B5 =B5,0⊕·· ·⊕B5,8, where

B5,0
∼= V(10)⊕V(8,2)⊕V(6,4)⊕V(6,22)⊕V(42,2)⊕V(4,23)⊕V(25),

B5,1
∼= V(7,12)⊕V(6,13)⊕V(5,3,1)⊕V(5,2,12)⊕V(4,3,12)⊕V(4,2,13)

⊕V(33)⊕V(32,2,1)⊕V(3,22,12)⊕V(23,13),

B5,2
∼= V(8)⊕V(7,1)⊕ (V(6,2))

⊕3⊕V(5,3)⊕ (V(5,2,1))
⊕2⊕ (V(42))

⊕2

⊕ (V(4,3,1))
⊕2⊕ (V(4,22))

⊕5⊕V(4,14)⊕V(32,12)⊕ (V(3,22,1))
⊕3

⊕V(3,2,13)⊕V(3,15)⊕ (V(24))
⊕3⊕V(22,14),

B5,3
∼= (V(5,12))

⊕3⊕ (V(4,2,1))
⊕2⊕ (V(4,13))

⊕4⊕ (V(32,1))
⊕4⊕ (V(3,2,12))

⊕5

⊕V(3,14)⊕ (V(22,13))
⊕3,

B5,4
∼= (V(6))

⊕3⊕ (V(5,1))
⊕3⊕ (V(4,2))

⊕8⊕ (V(3,2,1))
⊕4⊕V(3,13)⊕ (V(23))

⊕6

⊕V(22,12)⊕V(2,14)⊕V(16),

B5,5
∼= (V(3,12))

⊕5⊕ (V(2,13))
⊕3,

B5,6
∼= (V(4))

⊕3⊕ (V(3,1))
⊕2⊕ (V(22))

⊕4,

B5,7
∼= (V(13))

⊕2,

B5,8
∼= (V(2))

⊕2.

Proof. By using Theorem 7.2, Lemma 7.5 and plethysm, we have

B3,0
∼= Sym3(Bc1,0)∼= S(3)(S(2)V )∼= V(6)⊕V(4,2)⊕V(23).

By using Theorem 7.2, Lemma 7.5 and the Littlewood–Richardson rule, we have

B3,1
∼=Bc2,1⊗Bc1,0 ∼= V(13)⊗V(2)

∼= V(3,12)⊕V(2,13),

and

B3,2
∼=Bc3,2⊕ (Bc2,2⊗Bc1,0)∼= V(22)⊕ (V(4)⊕V(3,1)⊕V(22)).

The other isomorphisms of (1) follow from Lemma 7.5.

The irreducible decompositions (2) and (3) follow in a similar way.

We need the irreducible decompositions of Bd,0 and Bd,1 to study the Aut(Fn)-module

structure of Ad(n). For λ= (λ1, · · · ,λr) `N , let 2λ denote the partition (2λ1, · · · ,2λr) of

2N .

Proposition 7.7. For any d≥ 0, we have

Bd,0 ∼=
⊕
λ`d

V2λ.

For any d≥ 2, we have

Bd,1 ∼=
⊕

λ`2d−1 with exactly 3 odd parts

Vλ.



Actions of automorphism groups of free groups on spaces of Jacobi diagrams. II 45

Proof. By Theorem 5.4.23 in [14], we have

S(d)(S(2)V )∼=
⊕
λ`d

V2λ.

Therefore, by Theorem 7.2 and Lemma 7.5, we have

Bd,0 ∼= Symd(Bc1,0)∼= S(d)(S(2)V )∼=
⊕
λ`d

V2λ.

By Theorem 7.2, Lemma 7.5, plethysm and the Littlewood–Richardson rule, we have

Bd,1 ∼=Bc2,1⊗Symd−2(Bc1,0)∼= V(13)⊗
⊕
µ`d−2

V2µ
∼=

⊕
λ`2d−1 with exactly 3 odd parts

Vλ.

7.3. Surjectivity of the bracket map [·,·] :Bd,k(n)⊗gr1(IA(n))→Bd,k+1(n)

Here, we show that the bracket map [·,·] :Bd,k(n)⊗gr1(IA(n))→Bd,k+1(n) is surjective

for n≥ 2d. Since we have abelian group isomorphisms (3.7), the bracket map of gr1(IA(n))

coincides with that of gr1(E∗(n)). Thus, we can compute the bracket map by using the

contraction map c defined in Section 5.

Define Ki,j,Ki,j,k ∈ IA(n) by

Ki,j(xi) = xjxix
−1
j , Ki,j(xl) = xl (l 6= i),

Ki,j,k(xi) = xi[xj,xk], Ki,j,k(xl) = xl (l 6= i). (7.4)

Proposition 7.8. For n≥ 2d−k, the bracket map

[·,·] :Bd,k(n)⊗gr1(IA(n))→Bd,k+1(n)

is surjective.

Proof. Any element of Bd,k+1(n) is a linear sum of u =

D

vi1 vi2 vi2d−k−1

, where

i1, · · · ,i2d−k−1 ∈ [n]. Since n ≥ 2d− k, we can take ũ =

D

vi vi2 vi2d−k−1
vj

∈ Bd,k(n), where

i,j ∈ [n]\{i2, · · · ,i2d−k−1} are distinct. We have [ũ,Ki1,j,i] = u, and therefore, the bracket

map is surjective.

As in Section 5.3, for λ` 2d−k, let Bd,k(n)λ denote the isotypic component of GL(n;Z)-

module Bd,k(n) corresponding to λ.

In Proposition 7.7, we computed a decomposition of Bd,0(n). Since the Young diagram

of (2d) does not contain that of (12), by Remark 5.4, we have the following corollary.
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Corollary 7.9. The restriction of the bracket map

[·,·] :
⊕

λ`d,λ6=(d)

Bd,0(n)2λ⊗gr1(IA(n))→Bd,1(n)

is surjective for n≥ 2d.

Lastly, we consider the condition for λ ` 2d−k that the isotypic component Bd,k(n)λ
of Bd,k(n) does not vanish. Let o(λ) be the number of odd parts of λ. We have

o(λ)≡ 2d−k ≡ k ( mod 2).

In Proposition 7.7, we observed that o(λ) = 0 (k = 0) and o(λ) = 3 (k = 1). Moreover, by

Proposition 7.8 and Remark 5.4, we have o(λ)≤ 3k if Bd,k(n)λ 6= 0.

8. The Aut(Fn)-module structure of Ad(n)

In this section, we study the Aut(Fn)-module structure of Ad(n). We have A0(n) = k for

any n≥ 0, and we studied the cases where d= 1,2 in [16]. Note that we have Ad(0) = 0 for

d ≥ 1. Thus, we have only to consider n ≥ 1. Here, we construct a direct decomposition

of Ad(n) as Aut(Fn)-modules for any d ≥ 3,n ≥ 1, which is indecomposable for n ≥ 2d.

Moreover, we study the degree 3 case in detail.

8.1. A direct decomposition of Ad(n)

Here, we give a direct decomposition of the Aut(Fn)-module Ad(n).

Let c =
1 2

∈ A1(2) = A1(0,2), and depict it as . Here, we use the same

graphical notation of morphisms µ,η,∆,ε,S in the category A as in the category AL.

As in Section 4.3, we can define the iterated multiplications µ[q] ∈A(q,1) for q ≥ 0. For

m≥ 0, there is a group homomorphism

Sm→A(m,m), σ 7→ Pσ,

where Pσ is the symmetry in A corresponding to σ. Set

symm :=
∑
σ∈Sm

Pσ, altm :=
∑
σ∈Sm

sgn(σ)Pσ ∈A(m,m).

By Habiro–Massuyeau [11, Lemma 5.16], every element of Ad(n) is a linear combination

of morphisms of the form

(µ[q1]⊗·· ·⊗µ[qn])◦Pσ ◦ c⊗d = Pσ

µ[q1] µ[qn]

for σ ∈ S2d and q1, · · · ,qn ≥ 0 such that q1 + · · ·+ qn = 2d. The following lemma easily

follows.
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Lemma 8.1. For n≥ 0, we have

Ad(n) = Spank{Ad(f)(c⊗d) | f ∈ Fop(2d,n)}.

For X ∈Ad(m), let

AdX : Fop→ fVect

denote the subfunctor of Ad generated by X. That is, for any n ∈ N, AdX(n) is the

Aut(Fn)-submodule of Ad(n) defined by

AdX(n) := Spank{Ad(f)(X) | f ∈ Fop(m,n)}.

Set

P = sym2d , Q= alt2 ∈Ad(2d).

Note that we have A1Q= 0.

Theorem 8.2. We have

Ad(n) =AdP (n)⊕AdQ(n). (8.1)

Proof. By Lemma 8.1, any element of Ad(n) is a linear sum of Ad(f)(c⊗d) for f ∈
Fop(2d,n). Define an Aut(Fn)-module map

en :Ad(n)→Ad(n)

by en(Ad(f)(c⊗d)) = 1
(2d)!Ad(f)(P ) for f ∈Fop(2d,n). This is well defined because the 4T

relation is sent to 0. Since AdP is generated by P, we have im(en) =AdP (n).

Since we have en(Ad(f)(P )) = Ad(f)(P ) for any f ∈ Fop(2d,n), the Aut(Fn)-

endomorphism en is an idempotent in End(Ad(n)), where we consider Ad(n) as a right

Aut(Fn)-module. Therefore, we have

Ad(n) = im(en)⊕ker(en), ker(en) = im(1−en).

Since
sym2d

alt2
= 0, we have AdQ(n) ⊂ ker(en). Finally, we need to check that

im(1−en)⊂AdQ(n). Since we have for f ∈ Fop(2d,n),

(1−en)(Ad(f)(c⊗d)) =Ad(f)(c⊗d)− 1

(2d)!
Ad(f)(P )

=
1

(2d)!

∑
σ∈S2d

Ad(f)(c⊗d−σc⊗d),

we need to show that, for any σ ∈S2d, there exists τ ∈ kS2d such that

c⊗d−σc⊗d = τQ ∈AdQ(2d). (8.2)
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It suffices to show the existence of τ satisfying equation (8.2) when σ is an adjacent

transposition because any permutation is generated by adjacent transpositions, and we

have such τ by inductively using

c⊗d−σρc⊗d = c⊗d−σc⊗d+σ(c⊗d−ρc⊗d).

If σ is an adjacent transposition (2i,2i+ 1) for i ∈ [n−1], then we set

τ =

(
1 2 3 4 5 · · · 2d

2i−1 2i+ 2 2i+ 1 2i 1 · · · 2̂i−1 · · · 2̂i+ 2 · · · 2d

)
.

If σ is an adjacent transposition (2i− 1,2i) for i ∈ [n], then we set τ = 0. The proof is

complete.

Lemma 8.3. The Aut(Fn)-module AdP (n) is irreducible and thus indecomposable.

Proof. Since
sym2d

= 0, we have θd,n(AdP (n)) =Bd,0(n)(2d) by the PBW map.

Therefore, AdP (n) is an irreducible Aut(Fn)-module.

For λ ` d, set Qλ = c2λ , where c2λ ∈ kS2d is the Young symmetrizer. Note

that we have Q(d) = P .

Lemma 8.4. For λ ` d,λ 6= (d), we have Qλ ∈AdQ(2d).

Proof. For λ= (λ1, · · · ,λr) 6= (d), we have r ≥ 2. By expanding aλ and bλ except for the

first column, we can write Qλ as a linear sum of

σ

altr

=
1

2 σ

altr

alt2 Q

,

where σ ∈S2d−r. The latter diagram is obtained from Q by composing a morphism of

kFop(2d,2d), so is included in AdQ(2d).

By Lemma 8.4, we have AdQ(n) ⊃ ∑λ`d,λ 6=(d)AdQλ(n). Moreover, we have the

following corollary.

Corollary 8.5. The Aut(Fn)-module AdQ(n) is generated by {Qλ | λ ` d,λ 6= (d)} for

n≥ 2d. That is, we have AdQ(n) =
∑
λ`d,λ 6=(d)AdQλ(n).
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Proof. For simplicity, let A denote
∑
λ`d,λ 6=(d)AdQλ(n). By Lemma 8.3, we have

θd,n(AdP (n)) =Bd,0(n)(2d). Thus, by Theorem 8.2, we have

θd,n(AdQ(n)) =

 ⊕
λ`d,λ 6=(d)

Bd,0(n)2λ

⊕
⊕
k≥1

Bd,k(n)

 .
On the other hand, by the PBW theorem, we have

θd,n(A)⊃

 ⊕
λ`d,λ6=(d)

Bd,0(n)2λ

 .
By Corollary 7.9 and Proposition 7.8, we have

θd,n(A)⊃

 ⊕
λ`d,λ 6=(d)

Bd,0(n)2λ

⊕
⊕
k≥1

Bd,k(n)

 .
Therefore, we have AdQ(n)⊂A. Hence, we have AdQ(n) =A.

8.2. Radical filtration of Ad(n)

For an Aut(Fn)-module M, let Rad(M) denote the radical of M ; that is,

Rad(M) =
⋂
{K ⊂M |K is maximal in M}.

We have a radical filtration of Ad(n)

Ad(n)⊃ Rad(Ad(n))⊃ Rad2(Ad(n)) = Rad(Rad(Ad(n)))⊃ ·· · .
Theorem 8.6. Let n ≥ 2d. Then, the filtration of Ad(n) by the number of trivalent

vertices coincides with the radical filtration. That is, we have Rad(Ad,k(n)) = Ad,k+1(n)

for any k ≥ 0.

Proof. For λ ` 2d − k, we have Bd,k(n)λ ∼=
⊕rλ

i=1(Vλ)i as GL(n;Z)-modules. Let

Bd,k(n)λ,i ⊂Bd,k(n)λ be a GL(n;Z)-submodule corresponding to (Vλ)i. Let Ad,k(n)λ,i ⊂
Ad,k(n) be the Aut(Fn)-submodule generated by θ−1

d,n(Bd,k(n)λ,i). For each λ ` 2d−k,i ∈
[rλ], we have a maximal submodule

Rλ,i =

 ∑
(µ,j) 6=(λ,i)

Ad,k(n)µ,j

+Ad,k+1(n).

Since we have
⋂

(λ,i)Rλ,i =Ad,k+1(n), it follows that Rad(Ad,k(n))⊂Ad,k+1(n).

For any maximal submodule K of Ad,k(n), the quotient Ad,k(n)/K is an irreducible

Aut(Fn)-module, which factors through an irreducible polynomial GL(n;Z)-module. It

follows that θd,n(Ad,k(n))/θd,n(K) is isomorphic to one of the irreducible components of

the GL(n;Z)-module
⊕

i≥kBd,i(n). If Bd,k(n)⊂ θd,n(K), then by Proposition 7.8, we have

K =Ad,k(n), which contradicts to the maximality of K. Therefore, θd,n(Ad,k(n))/θd,n(K)

is isomorphic to one of the irreducible components of Bd,k(n), and we have K ⊃Ad,k+1(n).

This implies that Rad(Ad,k(n))⊃Ad,k+1(n), and the proof is complete.
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It is possible that Theorem 8.6 holds for some n < 2d. However, it does not hold for all

n. (See Remark 8.13.)

8.3. Indecomposability of the decomposition of Ad(n)

Here, we consider the indecomposability of the decomposition (8.1) of Ad(n).

In Proposition 7.7, we observed that

Bd,0(n)∼=
⊕
λ`d

Bd,0(n)2λ, Bd,1(n)∼=
⊕

µ`2d−1 with exactly 3 odd parts

Bd,1(n)µ.

In order to study the indecomposability of equation (8.1), we observe certain connectivity

at the level of partitions.

Let Xd = {2λ | λ ` d,λ 6= (d)} and Yd = {µ ` 2d− 1 | µ has exactly 3 odd parts}. We

consider the bipartite graph Gd with vertex sets Xd and Yd and with an edge between

each pair of vertices 2λ and µ if µ is obtained from 2λ by taking away one box from each

of two different rows of 2λ and then by adding one box to another row. For example, G2

is

(22) (13),

G3 is

(4,2) (3,12)

(23) (2,13)

and G4 is

(6,2) (5,12)

(42) (4,13)

(4,22) (32,1)

(24) (3,2,12)

(22,13).

Proposition 8.7. The graph Gd is path-connected.

Proof. For λ ` d,λ 6= (d), let r(λ) be the number of rows of λ. We write λ =

(λa1
1 ,λ

a2
2 , · · · ,λall ), where λ1 > λ2 > · · ·> λl,

∑l
i=1 ai = r(λ), ai ≥ 1.

We show that for λ` d such that r(λ)<d, there is a path between 2λ and some 2λ′ ∈Xd

such that r(λ′) = r(λ)+1. Then, since (2d) is the only partition that has d rows, it follows

by induction on k = r(λ) that all vertices in Xd are path-connected.

If a1 = k, then we have 2λ= ((2λ1)k) and 2λ1 ≥ 4 because we assume that k < d. Thus,

we have

2λ−−−−−µ′,
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where µ′ = ((2λ1)k−2,(2λ1−1)2,1) is obtained from 2λ by taking away a box from each

of the (k−1)-st and k -th row and adding one box to the (k+ 1)-st row, and

µ′−−−−−2λ′,

where 2λ′ = ((2λ1)k−1,2λ1−2,2) is obtained from µ′ by taking away a box from the k -th

row and adding a box to each of the (k−1)-st and (k+ 1)-st row. Therefore, we have a

path between 2λ and 2λ′ such that r(λ′) = k+ 1.

If a1 < k, then we have

2λ−−−−−µ′′,

where µ′′ is obtained from 2λ by taking away a box from each of the a1-th and (a1 +a2)-th

row, and adding a box to the (k+ 1)-st row, and

µ′′−−−−−2λ′′,

where 2λ′′ is obtained from µ′′ by taking away a box from the a1-th row and adding a

box to each of the (a1 +a2)-th and (k+1)-st row. Therefore, we have a path between 2λ

and 2λ′′ such that r(λ′′) = k+ 1.

Lastly, we will show that each vertex of Yd is connected to a vertex of Xd. Any element

µ ∈ Yd is a partition of 2d− 1 and has three odd parts. Therefore, by taking away a

box from the last odd row and then adding one box to each of the other two odd rows,

we obtain a partition of 2d with only even parts, which is a vertex of Xd. The proof is

complete.

If n ≥ d, then for any 2λ ∈Xd, Bd,0(n)2λ is a nonzero GL(n;Z)-submodule of Bd(n).

If n ≥ d, then for any µ ∈ Yd (except µ = (2d−2,13) if n = d), Bd,1(n)µ is a nonzero

GL(n;Z)-submodule of Bd(n).

Let πµ :Bd,1(n)�Bd,1(n)µ be the projection.

Proposition 8.8. Let n ≥ 2d. Let 2λ ∈ Xd, µ ∈ Yd be two endpoints of an edge of the

bipartite graph Gd. Then the composition of the bracket map and the projection πµ

Bd,0(n)2λ⊗gr1(IA(n))
[·,·]−−→Bd,1(n)

πµ−−→Bd,1(n)µ (8.3)

does not vanish.

Note that this proposition holds for d = 1,2 because we have X1 = Y1 = ∅,X2 =

{(22)},Y2 = {(13)} and by Lemma 6.7 in [16].

Recall that we have

Bd,0(n) =
Spank{ w2w1 w2dw2d−1

| w1, · · · ,w2d ∈ Vn}
multilinearity
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and

Bd,1(n) =

Spank{
w2 w2d−2w2d−3w1 w2d−4w2d−5

w2d−1

| w1, · · · ,w2d−1 ∈ Vn}

AS relation and multilinearity
.

What the bracket map does is to contract two of the univalent vertices of a diagram of

an element of Bd,0(n) with two leaves of a trivalent tree in gr1(IA(n)), which corresponds

to the operation on partitions of taking away two boxes from different rows and then

adding a box. Here, we introduce an intermediate vector space B′d(n) between Bd,0(n)

and Bd,1(n), whose elements correspond to partitions which are obtained by the operation

of taking away two boxes from different rows. Define B′d(n) by

Spank{
w2 w2d−2w2d−3w1

∗1

w2d−4w2d−5

| w1, · · · ,w2d−2 ∈ Vn}

AS relation and multilinearity
,

where

w2d−2w2d−3

∗1
is a based trivalent tree of degree 1. Then,B′d(n) is a GL(n;Z)-module,

and we have an irreducible decomposition

B′d(n)∼= S(d−2)(S(2)Vn)⊗S(12)Vn ∼=
⊕

ν`2d−2 with exactly 2 odd parts

Vν

in a way similar to Proposition 7.7. Let B′d(n)ν be the isotypic component of B′d(n)

corresponding to ν.

Recall that aλ,bλ and � are defined in Section 5.1. In the proof of Proposition 8.8, we

use the following notation
λ1 λi λj λr

sym2λ1
sym2λi

sym2λr
sym2λj

,

which represents the linear sum of permutations a2λ.

Proof of Proposition 8.8. Let 2λ = (2λ1, · · · ,2λr) ` 2d ∈Xd. Any vertex µ ∈ Yd that

is connected to 2λ by an edge of Gd is obtained from 2λ by taking away a box from

each of the i -th and j -th row of 2λ and adding a box to the k -th row of 2λ for some

i,j ∈ [r],i < j,k ∈ [r+1],k 6= i,j. We write µ= (µ1, · · · ,µs). Then we have µi = 2λi−1,µj =

2λj−1,µk = 2λk + 1 and µl = 2λl for l ∈ [s],l 6= i,j,k.

Since we have gr1(IA(n))∼=H∗⊗L2(n), we can write equation (8.3) by

hλ,µ :Bd,0(n)2λ⊗H∗⊗L2(n)→Bd,1(n)
πµ−−→Bd,1(n)µ.

We will show that hλ,µ does not vanish.
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Let ν ` 2d−2 be the partition that is obtained from 2λ by taking away a box from each

of the i -th and j -th row of 2λ. We decompose hλ,µ into the composition

hλ,µ = hν,µhλ,ν,

where hν,µ and hλ,ν are GL(n;Z)-module maps defined as follows.

Let

h′λ :Bd,0(n)2λ⊗L2(n)→B′d(n)

be a GL(n;Z)-module map defined in a way similar to the contraction map in Section

5.2. Define

hλ :Bd,0(n)2λ⊗H∗⊗L2(n)→B′d(n)⊗H∗

by hλ(x⊗ y⊗ z) = h′λ(x⊗ z)⊗ y for x ∈ Bd,0(n)2λ,y ∈ H∗,z ∈ L2(n). We also define a

GL(n;Z)-module map

h :B′d(n)⊗H∗→Bd,1(n)

by connecting two bases ∗1,∗2, that is, for w1, · · · ,w2d−2 ∈ Vn,v ∈H∗,

h(

w2 w2d−2w2d−3w1

∗1

w2d−4w2d−5

⊗
v

∗2
) =

w2 w2d−2w2d−3w1

v

w2d−4w2d−5

.

Let πν : B′d(n)⊗H∗ → B′d(n)ν ⊗H∗ be the tensor product of the projection and idH∗ .

Then we have two GL(n;Z)-module maps

hλ,ν :Bd,0(n)2λ⊗H∗⊗L2(n)
hλ−−→B′d(n)⊗H∗ πν−→B′d(n)ν ⊗H∗

and

hν,µ :B′d(n)ν ⊗H∗ h−→Bd,1(n)
πµ−−→Bd,1(n)µ.

Since hλ,ν and hν,µ are GL(n;Z)-module maps and since Bd,0(n)2λ and B′d(n)ν are

irreducible, it suffices to prove that hλ,ν 6= 0 and hν,µ 6= 0.

We will prove that hλ,ν does not vanish. Let

u=

v1 v2 v2d−2 v2d−1v2d

bν b
(12)

λ1 λi λj λr

vī
vj̄

sym2λ1
sym2λi

sym2λr
sym2λj

∈Bd,0(n),

where ī=
∑i
l=1 2λl−1,j̄ =

∑j
l=1 2λl−2. Since we have

cν � c(12) ∈ Sν �S(12) =
⊕
ρ`2d

(Sρ)
LRρ

ν,(12)

and

{ρ ` 2d | LRρν,(12) 6= 0}∩Xd = {2λ},
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we have u ∈Bd,0(n)2λ. Moreover, we have

hλ

u⊗
v1

∗2
⊗

x̄2dx̄2d−1

∗1 =
bν b

(12)

∗1
v1 v2 v2d−2vī

vj̄

λ1 λi λj λr

sym2λ1
sym2λi

sym2λr
sym2λj

⊗
v1

∗2
.

(8.4)

By the relation b(12) = id−(1,2) and the AS relation, the right-hand side of equation (8.4)

is

u′ = (−2)
bν

∗1
v1 v2 v2d−2vī

vj̄

λ1 λi λj λr

sym2λ1
sym2λi

sym2λr
sym2λj

⊗
v1

∗2
.

Since we have sym2l

l

= 2l sym2l−1

l− 1

locally, by pulling ∗1 to the top, we

have

u′ = (−2)(2λi)(2λj)

bν

λ1 λr

∗1

v1 v2 v2d−2vī
vj̄

sym2λ1
sym2λi−1 sym2λr

sym2λj−1 ⊗
v1

∗2
∈B′d(n)ν ⊗H∗.

We will look at the coefficient in u′ of u0 =

v2 vj̄vīv1

∗1

v2d−2v2d−3

to show

that u′ does not vanish. Note that the upper box corresponds to aν and that bνaν =∑
τ∈Ct0,ρ∈Rt0

sgn(τ)τρ, where t0 is the canonical ν-tableau. If λi 6= λj , then there is no

τ ∈ Ct0 such that τ (̄i) = j̄,τ(j̄) = ī. Thus, the diagram u0 appears only when τ is an

even permutation which fixes ī and j̄. Then, the coefficient of u0 in u′ is negative. If

λi = λj , then the diagram u0 appears when τ preserves the subset {̄i,j̄} and the parity

of τ coincides with that of the restriction of τ to {̄i,j̄}. Hence, by the AS relation, the

coefficient of u0 in u′ is negative. Therefore, hλ,ν does not vanish.

We will prove that hν,µ does not vanish. Let N ∈ N. Set c′ρ = aρbρ ∈ kSN for ρ ` N .

From basic facts of representation theory, we have an isomorphism of kSN -modules

kSNcρ ∼= kSNc
′
ρ.
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In what follows, we use c′ρ instead of cρ as the Young symmetrizer. Let

Zµ =

c′µσ ·
2 2d− 22d− 31

∗1 ∗2

2d− 1

(v⊗µ1

1 ⊗·· ·⊗v⊗µss )

=

v1

∗1 ∗2

vs

σ

c′µ
∈B′d(n)⊗H∗,

where σ ∈S2d−1 is defined by

σ =

(
1 · · · 2d−3 2d−2 2d−1

1 · · · i′ j′ k′

)
for i′ =

i∑
l=1

µl, j
′ =

j∑
l=1

µl, k
′ =

k∑
l=1

µl.

We will show that h(πν(Zµ)) ∈Bd,1(n)µ and that h(πν(Zµ)) 6= 0.

If the diagram that is obtained from µ by taking away a box from the i -th (resp. j -th)

row of µ is a partition of 2d−2, then write it νi (resp. νj). Since any partition ρ ` 2d−2

with exactly two odd parts other than ν,νi,νj is not included in µ, it follows that

Zµ ∈ (B′d(n)ν ⊗H∗)⊕ (B′d(n)νi ⊗H∗)⊕ (B′d(n)νj ⊗H∗).
By using an argument similar to Proposition 5.3, we have

h(B′d(n)ν ⊗H∗)⊂
⊕

α=νt�
Bd,1(n)α, h(B′d(n)νi ⊗H∗)⊂

⊕
α=νit�

Bd,1(n)α,

h(B′d(n)νj ⊗H∗)⊂
⊕

α=νjt�
Bd,1(n)α.

Since {νt�}∩{νit�}∩{νjt�}= {µ} and since h(Zµ)∈Bd,1(n)µ, we have h(πν(Zµ))∈
Bd,1(n)µ.

In order to prove that h(πν(Zµ)) 6= 0, we will look at the coefficient in h(πν(Zµ)) of

z = h

σ ·
2 2d− 22d− 31

∗1 ∗2

2d− 1

(v⊗µ1

1 ⊗·· ·⊗v⊗µss )



=

v1 vs

σ .

Note that c′µ =
∑
ρ∈Rs0,τ∈Cs0

sgn(τ)ρτ , where s0 is the canonical µ-tableau.

Firstly, we consider the case where µi,µj,µk are distinct. Then z appears only when τ

is an even permutation which fixes i′, j′ and k′. Therefore, the coefficient of z in h(Zµ)

is positive. Moreover, the linear sum of terms in Zµ such that ∗2 is connected to vk lies
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in πν(Zµ), so the coefficient of z in h(πν(Zµ)) is equal to that of z in h(Zµ), which is

nonzero.

The other cases, where at least two of µi,µj and µk are equal, follow in a similar

argument. The only thing that differs from the above case is that z appears when τ

preserves the subset {i′,j′,k′} ⊂ [2d− 1], and the parity of τ coincides with that of the

restriction of τ to {i′,j′,k′}. Since we have the AS relation, the sign due to the permutation

of {i′,j′,k′} is cancelled. Therefore, the coefficient of z in h(Zµ) is positive in any case.

The proof is complete.

Theorem 8.9. Let d≥ 2. The direct decomposition

Ad(n) =AdP (n)⊕AdQ(n)

of Aut(Fn)-modules is indecomposable for n≥ 2d.

Proof. By Lemma 8.3, it suffices to show that AdQ(n) is indecomposable. Since the

radical preserves the direct sum, we have only to show that AdQ(n)/Rad2(AdQ(n)) is

indecomposable. Suppose that we have a nontrivial decomposition of Aut(Fn)-modules

AdQ(n)/Rad2(AdQ(n)) =AdQ(n)/Ad,2(n)

= (M1 +Ad,2(n))/Ad,2(n)⊕ (M2 +Ad,2(n))/Ad,2(n),

where Mi is an Aut(Fn)-submodule of AdQ(n) for i= 1,2. Let

Ni = θd,n(Mi+Ad,2(n))/θd,n(Ad,2(n))

for i= 1,2. We have

N1⊕N2 = θd,n(AdQ(n))/θd,n(Ad,2(n)) =

 ⊕
λ`d,λ 6=(d)

Bd,0(n)2λ

⊕Bd,1(n).

For any 2λ ∈ Xd, there uniquely exists i ∈ {1,2} such that Ni includes a GL(n;Z)-

submodule (Ni)2λ
∼= V2λ. Let x∈ (Ni)2λ be a generator of the irreducible GL(n;Z)-module

(Ni)2λ. Then, the image x′ of x under the composition of GL(n;Z)-module maps

(Ni)2λ ↪→Ni ↪→Bd,0(n)⊕Bd,1(n)�Bd,0(n)

is an element of Bd,0(n)2λ. For any µ ∈ Yd that is connected to 2λ by an edge of Gd, by

Proposition 8.8, there exists g ∈ gr1(IA(n)) such that [x′,g] 6= 0 ∈Bd,1(n)µ. Therefore, we

have

[x,g] = [x′,g] + [x−x′,g] = [x′,g] 6= 0 ∈Bd,1(n)µ.

It follows that Ni includes a GL(n;Z)-submodule (Ni)µ that is isomorphic to Vµ for any

µ ∈ Yd that is connected to 2λ by an edge of Gd. Hence, by Proposition 8.7, we have

N1∩N2 6= {0}, a contradiction. Therefore, AdQ(n) is indecomposable.

Note that the assumption n ≥ 2d is needed for the surjectivity of the bracket map

and the nontriviality of the bracket map for each pair of nonzero irreducible GL(n;Z)-

submodules. Thus, if we have the surjectivity and the nontriviality of the bracket map

for some n < 2d, we can loose the assumption.
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8.4. The Aut(Fn)-module structure of A3(n)

Here, we consider the Aut(Fn)-module structure of A3(n) in detail.

In degree 3, the restrictions of the bracket map to each isotypic component induce

GL(n;Z)-module homomorphisms

ρ1 :B3,0(n)(4,2)→Hom(gr1(IA(n)),B3,1(n)(3,12)),

ρ2 :B3,0(n)(23)→Hom(gr1(IA(n)),B3,1(n)(3,12)),

ρ3 :B3,0(n)(23)→Hom(gr1(IA(n)),B3,1(n)(2,13)).

Proposition 8.10. The GL(n;Z)-module homomorphisms ρ1 and ρ2 are injective for

n≥ 3 and ρ3 for n≥ 4.

Proof. Recall that cλ denotes the Young symmetrizer defined in equation (5.1) and that

Ki,j,k ∈ IA(n) is defined by equation (7.4). For n≥ 3, we have

ρ1(u)(K3,2,1) = [u,K3,2,1] =−10w 6= 0 ∈B3,1(n)(3,12),

where

u=
1

64
c(4,2)

v1v1v1v1v2v2

= v1v1 v2v1 v2v1
− v1v1 v2v1 v1v2

∈B3,0(n)(4,2)

and

w =
1

20
c(3,12)

v1v1v1 v2 v3

=
v1v3v1 v1v2
6= 0 ∈B3,1(n)(3,12).

Thus, we have ρ1 6= 0 for n≥ 3. Since B3,0(n)(4,2) is irreducible, ρ1 is injective.

Let

x=
1

48
c(23)

v1v1v2v2v3v3

=

v3v1 v2 v3v1 v2

alt3 ∈B3,0(n)(23).

We have

ρ2(x)(K1,3,2) = [x,K1,3,2] =−6w 6= 0 ∈B3,1(n)(3,12).

Thus, we have ρ2 6= 0 for n≥ 3. Since B3,0(n)(23) is irreducible, ρ2 is injective.

For n≥ 4, we have

[x,K4,3,2] =−6

5
y− 24

5
z,

and thus,

ρ3(x)(K4,3,2) =−24

5
z 6= 0 ∈B3,1(n)(2,13),
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where

y =
1

4
c(3,12)

v1v1v4 v2 v3

=
v1v4v2 v1v3
−

v2v4v1 v1v3
+

v3v4v1 v1v2

+ 4
v4v3v1 v1v2
∈B3,1(n)(3,12)

and

z =
1

12
c(2,13)

v1v1v2 v3 v4

=
v1v4v2 v1v3
−

v2v4v1 v1v3
+

v3v4v1 v1v2

−
v4v3v1 v1v2
6= 0 ∈B3,1(n)(2,13).

Therefore, we have ρ3 6= 0 for n≥ 4. Since B3,0(n)(23) is irreducible, ρ3 is injective.

Remark 8.11. We consider a restriction of the bracket map

[·,·] : Vλ⊗gr1(IA(n))→ Vµ (8.5)

for each irreducible GL(n;Z)-submodule Vλ (resp. Vµ) of Bd,k(n) (resp. Bd,k+1(n)). We

write a wavy arrow

Vλ Vµ

if the restriction map (8.5) does not vanish. Then, we have the following diagram for

n≥ 4:

B3(n) =B3,0(n) ⊕ B3,1(n) ⊕ B3,2(n) ⊕ B3,3(n) ⊕ B3,4(n),

∼ = ∼ = ∼ = ∼ = ∼ =

B3,0(n)(6)

⊕
B3,0(n)(4,2)

// B3,1(n)(3,12)
//

''

  

B
(1)
3,2(n)(22)

// B3,3(n)(13)
// B3,4(n)(2)

⊕ ⊕
B3,0(n)(23)

((

66

⊕ B3,2(n)(4)

⊕
B3,1(n)(2,13)

''

// B3,2(n)(3,1)

⊕
B

(2)
3,2(n)(22)
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where B
(i)
3,2(n)(22) is the irreducible component of B3,2(n)(22) generated by

c(2,2)

v1v1v2v2

−24 v1v2v1v2
(i= 1),

c(2,2)

v1v1v2v2

+ 16 v1v2v1v2
(i= 2),

respectively. Note that, for n = 3, B3(3) includes all of the above irreducible subrepre-

sentations but B3,1(3)(2,13) = 0, and there are all of the wavy arrows but the three wavy

arrows that are directed to or coming from B3,1(3)(2,13). For n= 2, we have

B3(2) = (B3,0(2)(6)⊕B3,0(2)(4,2))⊕B3,2(2)⊕B3,4(2).

For n= 1, we have

B3(1) =B3,0(1)(6)⊕B3,2(1)(4)⊕B3,4(1)(2).

For n= 1,2, there are no wavy arrows because B3,1(n) =B3,3(n) = 0.

By Proposition 8.10 and Remark 8.11, we have the surjectivity and the nontriviality of

the bracket map for n≥ 3. Thus, by Theorem 8.9, one can obtain the following theorem,

which improves Theorem 8.9 for d= 3.

Theorem 8.12. We have an indecomposable decomposition

A3(n) =A3P (n)⊕A3Q(n)

of Aut(Fn)-modules for n≥ 3.

For λ ` 4, let Rλ = cλ ∈ A3(4), where cλ is the Young symmetrizer. Let S =

R(2,2) + 16 ∈A3(4) and T = ∈A3(2).

For n= 2, we can check that A3,2(2) is semisimple as Aut(F2)-modules, that is,

A3,2(2) =A3R(4)(2)⊕A3R(3,1)(2)⊕A3S(2)⊕A3U(2)⊕A3T (2),

where U = − 1
8 − 1

8 − 1
8 ∈ A3(2). We do

not know whether or not the Aut(F2)-module A3(2) is semisimple.

Remark 8.13. SinceA3,2(2) is semisimple, we have Rad(A3,2(2)) = 0. On the other hand,

we have A3,3(2) =A3,4(2)∼=B3,4(2) 6= 0. Therefore, we have Rad(A3,2(2)) 6=A3,3(2).
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For n= 1, we have Aut(F1) = Z/2Z. We can easily check the following proposition.

Proposition 8.14. The Aut(F1)-action on A3(1) is trivial. Therefore, we have A3(1) =

A3P (1)⊕A3R(4)(1)⊕A3T (1).

8.5. The socle of Ad(n) for small d

For an Aut(Fn)-module M, let Soc(M) denote the socle of M ; that is,

Soc(M) =
∑
{K ⊂M |K is simple}.

Let us consider the cases for small d. Since A1(n)∼= Sym2(Vn) is simple, we have

Soc(A1(n)) =A1(n) (n≥ 1).

By Theorem 6.9 of [16], we have

Soc(A2(n)) =A2P (n)⊕A2T̃ (n) (n≥ 3,n= 1),

Soc(A2(n)) =A2(n) =A2P (n)⊕A2W (n)⊕A2T̃ (n) (n= 2),

where

T̃ = , W = 2 − − − 1

2
− 1

2
∈A2(2).

Note that A2T̃ (n) =A2,2(n)

By Proposition 8.14, we have Soc(A3(1)) =A3(1).

Proposition 8.15. For n≥ 3, we have

Soc(A3(n)) =A3P (n)⊕A3R(4)(n)⊕A3R(3,1)(n)⊕A3S(n)⊕A3T (n).

Proof. A simple Aut(Fn)-submodule K ⊂A3(n) corresponds to an irreducible component

of B3(n) via the PBW map. Therefore, by Remark 8.11, we have

Soc(A3(n))⊂A3P (n)⊕A3R(4)(n)⊕A3R(3,1)(n)⊕A3S(n)⊕A3T (n).

Moreover, we can check that

A3P (n)∼= V(6), A3R(4)(n)∼= V(4), A3R(3,1)(n)∼= V(3,1),

A3S(n)∼= V(2,2), A3T (n)∼= V(2).

Hence, we have

Soc(A3(n))⊃A3P (n)⊕A3R(4)(n)⊕A3R(3,1)(n)⊕A3S(n)⊕A3T (n),

and the proof is complete.
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8.6. The indecomposable decomposition of A4(n)

Here, we consider the indecomposable decomposition of A4(n).

Similarly, in degree 4, we have GL(n;Z)-module homomorphisms

ρ1 :B4,0(n)(6,2)→Hom(gr1(IA(n)),B4,1(n)(5,12)),

ρ2 :B4,0(n)(42)→Hom(gr1(IA(n)),B4,1(n)(32,1)),

ρ3 :B4,0(n)(4,22)→Hom(gr1(IA(n)),B4,1(n)(5,12)),

ρ4 :B4,0(n)(4,22)→Hom(gr1(IA(n)),B4,1(n)(4,13)),

ρ5 :B4,0(n)(4,22)→Hom(gr1(IA(n)),B4,1(n)(32,1)),

ρ6 :B4,0(n)(4,22)→Hom(gr1(IA(n)),B4,1(n)(3,2,12)),

ρ7 :B4,0(n)(24)→Hom(gr1(IA(n)),B4,1(n)(3,2,12)),

ρ8 :B4,0(n)(24)→Hom(gr1(IA(n)),B4,1(n)(22,13)).

Proposition 8.16. The GL(n;Z)-module homomorphisms ρ1,ρ2,ρ3 and ρ5 are injective

for n≥ 3, ρ4,ρ6 and ρ7 for n≥ 4 and ρ8 for n≥ 5.

Proof. As in the proof of Proposition 8.10 in degree 3, we will check that ρ1 is injective

for n≥ 3, ρ7 for n≥ 4 and ρ8 for n≥ 5. The others can be obtained in a similar way.

For n≥ 3, we have

[u,K3,1,2] = 14w 6= 0 ∈B4,1(n)(5,12),

where

u=
1

1728
c(6,2)

v1v1v1v1v1v1v2v2

= v1 v1 v2v1 v2v1 v1 v1

− v1 v1 v2v1 v1v1 v1 v2
∈B4,0(n)(6,2)

and

w =
1

336
c(5,12)

v1v1v1 v2 v3v1v1

= v1v3v1 v1v2 v1v1
6= 0 ∈B4,1(n)(5,12).

Thus, we have ρ1 6= 0 for n≥ 3. Since B4,0(n)(6,2) is irreducible, ρ1 is injective.

For n≥ 4, we have

[x,K1,4,3] =−48y 6= 0 ∈B4,1(n)(3,2,12),

where

x= c(24)

v1v1v2v2v3v3v4v4

∈B4,0(n)(24)
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and

y = c(3,2,12)

v1v2v2 v3 v4v1v1

∈B4,1(n)(3,2,12).

Thus, ρ7 is injective for n≥ 4.

For n≥ 5, we have

[x,K5,4,3] =−48y′−32z,

where

y′ = c(3,2,12)

v5v2v2 v3 v4v1v1

∈B4,1(n)(3,2,12)

and

z = c(22,13)

v2v2v3 v4 v5v1v1

6= 0 ∈B4,1(n)(22,13).

Therefore, we have

ρ8(x)(K5,4,3) =−32z 6= 0 ∈B4,1(n)(22,13),

and thus, ρ8 is injective for n≥ 5.

By using Theorem 8.9 and Proposition 8.16 carefully, one can obtain the following

theorem, which improves Theorem 8.9 for d= 4.

Theorem 8.17. We have an indecomposable decomposition

A4(n) =A4P (n)⊕A4Q(n)

of Aut(Fn)-modules for n≥ 7.

We expect that Theorem 8.17 holds for n≥ 3.

9. The Out(Fn)-module structure of Ad(n)

In [16], we observed that the Aut(Fn)-action on Ad(n) induces an action of Out(Fn) on

Ad(n). In this section, we obtain some results for Ad(n) as Out(Fn)-modules, which is

induced by the results in Section 8.

Since the Aut(Fn)-action on Ad(n) factors through Out(Fn), any submodule of Ad(n)

as Aut(Fn)-modules is a submodule of Ad(n) as Out(Fn)-modules, and vice versa. By

Theorem 8.6, we obtain the radical filtration of Ad(n) as Out(Fn)-modules.

Theorem 9.1. Let n ≥ 2d. Then, the filtration of Ad(n) by the number of trivalent
vertices coincides with the radical filtration of Ad(n) as Out(Fn)-modules.
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By Theorem 8.9, we obtain an indecomposable decomposition of Ad(n) as Out(Fn)-

modules.

Theorem 9.2. Let d≥ 2. We have a direct decomposition

Ad(n) =AdP (n)⊕AdQ(n)

of Out(Fn)-modules, which is indecomposable for n≥ 2d.

Theorems 8.12, 8.17 also hold as Out(Fn)-modules. Other results for Ad(n) as Aut(Fn)-

modules such as Proposition 8.15 also hold.

10. Indecomposable decomposition of the functor Ad

In this section, we obtain an indecomposable decomposition of the functor Ad by using

results in Section 8.

By Theorem 8.2, we obtain the following direct decomposition of the functor Ad.

Theorem 10.1. We have a direct decomposition

Ad =AdP ⊕AdQ

in the functor category fVectF
op

.

For d= 1, we have A1Q= 0 and the functor A1 =A1P is simple. For d= 2, we obtained

this direct decomposition in Theorem 6.5 of [16]. Moreover, we proved that this direct

decomposition of the functor A2 is indecomposable (see Theorem 6.14 of [16]).

By Theorem 8.9, we obtain the indecomposability of the direct decomposition of the

functor Ad.

Proposition 10.2. Let d≥ 2. The decomposition

Ad =AdP ⊕AdQ

of the functor Ad is indecomposable in the functor category fVectF
op

.

Proof. Suppose that we have a decomposition

AdQ=G⊕G′ ∈ fVectF
op

.

Then we have AdQ(2d) = G(2d)⊕G′(2d) as Aut(F2d)-modules. By Theorem 8.9, the

Aut(F2d)-module AdQ(2d) is indecomposable. Therefore, we can assume that G′(2d) = 0

and AdQ(2d) =G(2d). Since the subfunctor AdQ is generated by Q ∈AdQ(2d), we have

AdQ = G. Hence, the subfunctor AdQ is also indecomposable. By Lemma 8.3, AdP (2d)

is also indecomposable. Therefore, by the similar argument, the subfunctor AdP is also

indecomposable.

Appendix A. Presentation of the category AL

In this section, we construct a category ÃL and a full functor F : ÃL→AL to study a

presentation of the category AL, which we construct in Section 4.2.
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A.1. The category ÃL

In this section, we construct a category ÃL, which has a generating set and some relations

of the category AL.

In a linear symmetric strict monoidal category C, let H be a Hopf algebra and L a Lie

algebra. Define the adjoint action adH :H⊗H →H by

adH = µ[3](idH⊗2⊗S)(idH⊗PH,H)(∆⊗ idH).

We call a morphism c : I → L⊗2 a symmetric invariant 2-tensor if c satisfies

PL,Lc= c

and

([·,·]⊗ idL)(idL⊗c) = (idL⊗[·,·])(c⊗ idL).

Define ÃL to be the category which is as a linear symmetric strict monoidal category,

generated by

• a cocommutative Hopf algebra (H,µ,η,∆,ε,S)
• a Lie algebra with a symmetric invariant 2-tensor (L,[·,·],c)
• morphisms i : L→H and adL :H⊗L→ L

with the following nine relations:

(ÃL.1) i [·,·] =−µ(i⊗ i) +µPH,H(i⊗ i),
(ÃL.2) ∆i= i⊗η+η⊗ i,
(ÃL.3) εi= 0,

(ÃL.4) adL(µ⊗ idL) = adL(idH⊗adL),

(ÃL.5) adL(η⊗ idL) = idL ,

(ÃL.6) (adL⊗adL)(idH⊗PH,L⊗ idL)(∆⊗ c) = cε,

(ÃL.7) adL(idH⊗[·,·]) = [·,·](adL⊗adL)(idH⊗PH,L⊗ idL)(∆⊗ idL⊗2),

(ÃL.8) i adL = adH i,

(ÃL.9) adL(i⊗ idL) =−[·,·].

Lemma A.1. In the category ÃL, the following relations hold.

(1) Si=−i.
(2) adH(i⊗ i) =−i [·,·].

Proof. By (ÃL.2) and (ÃL.3) of the category ÃL and relations of Hopf algebras, we

have

i+Si= µ(i⊗Sη) +µ(η⊗Si) = µ(idH⊗S)∆i= ηεi= 0.
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Thus, we have equation (1). By (ÃL.8),(ÃL.9), we have equation (2) as follows:

adH(i⊗ i) = i adL(i idL) =−i [·,·].

We review the definition of a Casimir Hopf algebra. Let C be a linear symmetric strict

monoidal category and H be a cocommutative Hopf algebra in C. A Casimir 2-tensor for

H is a morphism c : I →H⊗2 which is primitive, symmetric and invariant:

(∆⊗ idH)c= c13 + c23, (A.1)

PH,Hc= c, (A.2)

(adH ⊗adH)(idH⊗PH,H ⊗ idH)(∆⊗ c) = cε, (A.3)

where c13 := (id⊗η ⊗ id)c and c23 := η ⊗ c. By a Casimir Hopf algebra, we mean a

cocommutative Hopf algebra H equipped with a Casimir 2-tensor.

Lemma A.2. (H,µ,η,∆,ε,S,c̃ := (i⊗ i)c) is a Casimir Hopf algebra in ÃL.

Proof. Since H is a cocommutative Hopf algebra in ÃL, it suffices to check that c̃ is a

Casimir 2-tensor. By (ÃL. 2), we have equation (A.1) because

(∆⊗ idH)c̃= ((i⊗η+η⊗ i)⊗ i)c= c̃13 + c̃23.

By the symmetricity of c, we have equation (A.2) because

PH,H c̃= PH,H(i⊗ i)c= (i⊗ i)PL,Lc= (i⊗ i)c= c̃.

By (ÃL. 6) and (ÃL. 8), we have equation (A.3) because

(adH ⊗adH)(idH⊗PH,H ⊗ idH)(∆⊗ c̃)
= (adH ⊗adH)(idH⊗PH,H ⊗ idH)(∆⊗ (i⊗ i))(idH⊗c)
= (i⊗ i)(adL⊗adL)(idH⊗PH,L⊗ idL)(∆⊗ c)
= (i⊗ i)cε
= c̃ε.

The category A has a Casimir Hopf algebra (H,c) = (1,µ,η,∆,ε,S,c), where

c =
1 2

. Moreover, Theorem 5.11 in [11] implies that as a linear symmetric strict

monoidal category, the category A is free on the Casimir Hopf algebra (H,c). Therefore,

we have a unique linear symmetric monoidal functor F(H,c̃) : A→ ÃL.

A.2. Structure of the category AL

In Section 4.3, we observed that the category AL has a cocommutative Hopf algebra

(H,µ,η,∆,ε,S) and morphisms

[·,·] : L⊗L→ L, cL : I → L⊗L, i : L→H, adL :H⊗L→ L.
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Lemma A.3. In the category AL, (L,[·,·],cL) is a Lie algebra with a symmetric invariant

2-tensor.

Proof. By the AS and IHX relations, it follows that (L,[·,·]) is a Lie algebra. Since we

have

PL,LcL = = = cL

and

([·,·]⊗ idL)(idL⊗cL) = = = (idL⊗[·,·])(cL⊗ idL),

it follows that cL is a symmetric invariant 2-tensor.

Remark A.4. The full subcategory of AL with the free monoid generated by L as the

set of objects is isomorphic to the PROP LIEc for Casimir Lie algebras (see [13] for

details).

For each m≥ 1,n ∈N, the degree 0 part AL
0 (L⊗m,H⊗n) of the hom-set AL(L⊗m,H⊗n)

has an Aut(Fn)-module structure which is defined in a way similar to that of Ad(n). For

general m,n, the Aut(Fn)-action on AL
0 (L⊗m,H⊗n) does not factors through the outer

automorphism group Out(Fn).

Proposition A.5. There exists a unique linear symmetric monoidal functor F : ÃL→
AL which maps (L,[·,·],cL,i,adL) in ÃL to (L,[·,·],c,i,adL) in AL and which makes the

following diagram commutative

A

inclu.   

F(H,c̃) // ÃL

F}}
AL .

Proof. We can check that morphisms of AL satisfy the relations (ÃL.1), · · · ,(ÃL.9) by

diagrammatic computation. Since ÃL is the linear symmetric strict monoidal category

generated by H, L and morphisms i,adL with relations (ÃL.1), · · · ,(ÃL.9), we can

construct a unique linear symmetric monoidal functor F : ÃL → AL which maps

(H,L,c,i,adL) in ÃL to (H,L,cL,i,adL) in AL.

A.3. The full functor F : ÃL→AL

We prove that the functor F in Proposition A.5 is full.
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Lemma A.6. A morphism in AL can be written as a linear sum of the following

diagrams:

a diagram generated by PH,L,PL,H

a diagram generated by PH,H

a diagram generated by cL,c
∗,PL,L,[·,·]

a diagram generated by PH,H

a diagram generated by PH,L,PL,H

i i

, (A.4)

where denotes S or idH and c∗ = .

Note that c∗ is not a morphism in AL but just a diagram.

Proof. By using symmetries PH,L,PL,H , we can deform any diagram f ∈ AL into a

morphism in AL(H⊗m⊗L⊗n,H⊗m′ ⊗L⊗n′), so it suffices to consider a diagram f in

AL(H⊗m⊗L⊗n,H⊗m′ ⊗L⊗n′).
We can decompose f as follows: f = f ′ ◦ ((P ◦∆[c1,···,cm])⊗ idL⊗n), where P is a tensor

product of copies of PH,H and idH , c1, · · · ,cm ≥ 0, and f ′ is a diagram such that each

handle has only one solid or dashed line. We can assume that handles of Um which include

a dashed line are arranged right-hand side of Um.

By pulling univalent vertices that are attached to the solid lines toward the upper

right-hand side of Um, we can decompose f ′ as

PH,H

i i

uni-trivalent graph

(see Lemma 5.16

[11]).

Furthermore, any uni-trivalent graph can be obtained from morphisms cL, PL,L, [·,·],
idL ∈AL and c∗ by the tensor product and the composition, so the proof is complete.

Proposition A.7. The linear symmetric monoidal functor F : ÃL→AL in Proposition

A.5 is full.
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Proof. It suffices to show that morphisms of AL are generated by µ,η,∆,ε,S, [·,·],cL, i,

adL and symmetries. By Lemma A.6, we need to prove that we can eliminate c∗ from the

diagram (A.4) by using the above morphisms in AL.

By the definition of the category AL, for any c∗ in the diagram (A.4), if exists, either

of the endpoints of c∗ is finally attached to one of the lower dashed lines. Therefore, there

is cL between c∗ and the lower dashed line. If there are more than one such cL, then we

choose one such that there are the least trivalent vertices between c∗ and itself. By the

AS relation, we have only to consider the case where the neighborhood of the cL and the

c∗ is either

adL

= adL

S

or adL = adL
.

Hence, we can eliminate c∗ from the diagram (A.4) and the proof is complete.
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