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Abstract

Many methods have been exploited to explain the mechanism of structure for-
mation in flows, including the linear stability analysis, the bifurcation theory,
and the explanation as a dynamical system. These standard approaches assume
that the system has a steady or time-periodic solution. If the system under
analysis does not have such a solution, one has to develop a different method.
To propose some solution to this problem, we treat a miscible two-layer thermal
convection system as an example.

We performed a numerical simulation of the system and observed two types
of convection patterns; one is viscous coupling, and the other is thermal cou-
pling. The viscous coupling pattern arises initially, while a thermal coupling
pattern does after a certain time. This transient feature should be originated
from the evolution of the transitional layer between two miscible fluids, which
becomes thicker and unclear as time goes on due to the continuous diffusion
of the concentration. In this system, therefore, we have no steady or time-
periodic state, and it is not straightforward to employ the standard stability
analyses, which often assume the existence of a steady or time-periodic state.
It is in contrast to the case of immiscible fluids, where there remains a definite
interface between the two fluids throughout time development, so the standard
approaches are available because the system has a steady state.

To cope with this problem, we introduce a model in which the width of the
transitional layer between the upper and lower layers (δ) is kept constant in
the horizontal average. The standard approaches can be applied to this model
because it has a steady state with two-layer structure. Both the linear stability
of a stationary state of the model and nonlinear time-periodic solutions implies
that viscous coupling is preferred when the width of the transitional layer δ
is small, and thermal coupling is preferred when δ is large. Furthermore the
transition from viscous coupling to thermal coupling is observed at δ ≈ 0.02
in all cases. These results are consistent with our numerical integration of the
original system because the width of the transitional layer is observed to extend
as time develops. We can also interpret the results as consistent with previous
studies on convection systems of immiscible fluids by considering that their
analyses were for infinitesimal transitional layer.

Our modeling approach presents a way to explain transient behavior of flow
patterns observed in the two-layer convection system. We discuss what might
be the key features of transient phenomena that enable similar approaches to
explain their mechanism.
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Chapter 1

Introduction

One of the central concerns in fluid physics is the elucidation of the formation
mechanisms of flow patterns. We humans living on the Earth are surrounded by
many fluids, including air and water. They often show characteristic structures,
such as cloud patterns, whirlpools, and convection currents in pots. In addition
to what we see in our daily lives, we can also see the layered temperature
distribution in the oceans, convective structures inside the Earth, and vortices
on Jupiter. It is natural in physics to try to explain how these various structures
appear in fluid phenomena. In particular, many theoretical physicists have
explained the mechanism behind the pattern formation by analyzing behaviors
of solutions of basic equations such as Navier-Stokes equations and those derived
from them.

1.1 Standard theoretical approaches to struc-
ture formation

The most basic and widely used method is linear stability analysis. In this
method, it is discussed whether the stationary solution of a system is stable
or unstable against infinitesimal disturbances. The case in which the ampli-
tude decays exponentially for any infinitesimal disturbances is called linearly
stable. In contrast, the case in which the amplitude grows for a specific in-
finitesimal disturbance is called linearly unstable. The equation of disturbance
is linear because the terms with or higher than the second order are neglected in
the derivation process. For this reason, this method is called “linear” stability
analysis. The most successful example of this method is the Rayleigh-Bénard
convection system. This fluid system has a temperature difference at the upper
and lower boundaries. The stationary solution of this system is linearly sta-
ble when the Rayleigh number (the nondimensionalized temperature difference
between the upper and lower boundaries) is smaller than a particular critical
value and becomes linearly unstable when it exceeds that value. The convection
structure observed in experiments corresponds well to that of the critical mode,
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8 CHAPTER 1. INTRODUCTION

the disturbance that becomes unstable at the critical value. The linear stability
provides one explanation for the mechanism of convection onset.

Several methods have been developed that consider the nonlinearity of fluid
equations. The bifurcation analysis is a theory that continuously traces the pro-
cess by which a steady or time-periodic solution becomes unstable, and a new
solution emerges. For example, in the Rayleigh-Bénard system, the steady con-
vective solution realized when the Rayleigh number is slightly higher than the
critical value continuously “connects” to the quiescent state when the Rayleigh
number is gradually decreased. In the opposite view, when the Rayleigh num-
ber is gradually increased from the region lower than the critical value, the
stationary solution “bifurcates” into two solutions, itself and convection. By
varying Rayleigh and Prandtl numbers, one observes similar bifurcations, e.g.,
a time-periodic solution bifurcates from stationary convection.

There are methods to explain the nonlinear dynamics of fluids in terms of
dynamical systems, especially time-periodic orbits. The structure formation
in sustaining turbulence is often discussed using this method. Typical time-
periodic solutions embedded in turbulent flows have saddle-like structures, i.e.,
in the functional space, they attract in some directions and repel in others. The
actual flow realized in experiments is not necessarily a time-periodic solution,
but the flow changes as it moves around between time-periodic solutions embed-
ded nearby because of the saddle-like structure of those time-periodic solutions.
The periodic solutions are, so to speak, “skeletons” of the flow. For example, it
has been reported that the characteristic structure and behavior of a sustained
turbulent flow appear in the time-periodic solution of the system [10].

1.2 Structure formation in two-layer thermal con-
vection system

The methods described in the previous section are powerful and effective in many
cases, but they are not universal. In particular, all methods require stationary
or time-periodic solutions to the system. Therefore, if such a solution does not
exist in the system under analysis, it is necessary to devise another method. This
thesis aims to propose a practical approach to the problem of structure formation
in systems without stationary or periodic solutions. We take a two-layer thermal
convection system with no stationary state (with a two-layered structure) and
introduce an analytical method to explain the transition mechanism of those
patterns.

The two-layer thermal convection system we deal with is one in which two
fluid layers overlap vertically. Gravity acts downward, and the upper and lower
boundary surfaces are kept at constant temperatures, with the lower surface
being hotter than the upper. It is a generalization of the Rayleigh-Bénard sys-
tem, a single-layer convection system. Since fluid systems in the real world do
not necessarily consist of fluids with uniform properties, thermal convection sys-
tems consisting of two or more layers are good models of phenomena in various
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fields. For example, a two-layer convection system is a model of fluid layers
of different salinities that form in the ocean. Also, the convective structure of
the Earth’s mantle is discussed using a two-layer convection system. Two-layer
and multi-layer convection systems are also used in engineering applications to
model plasmas in fusion reactors[24] and molten materials[15].

When investigating a two-layer convection system, the treatment differs de-
pending on whether the two fluids are miscible or immiscible. Immiscibility is
the nature of two fluids that do not mix, for instance, water and oil. The system
has a clear boundary between the two fluids. Therefore there is a stationary
solution where the two fluids exist across the interface. In contrast, miscibility
is the nature of two fluids that mix by diffusion effects, for instance, saline and
fresh water. The boundary of two-fluid gradually becomes blurred by diffusion.
Thus the system has a transitional layer with continuously changing properties,
not a definite interface. The state in which two layers exist is not steady because
such a state gradually approaches to single-layer state.

In this thesis, we treat a two-layer thermal convection problem with two
miscible fluids. Specifically, we treat the system with the following features:

• Two-dimensional system with upper and lower layers, each consisting of
solutions of the same type of solute at different concentrations.

• At the initial time, both layers have constant concentrations, where the
lower one is heavier. The temperature field is assumed to be the heat
conduction solution, i.e., a linear temperature distribution in the vertical
direction.

• Time evolution of the concentration field is governed by the advection-
diffusion equation. A well-defined interface exists only at the initial time,
after which there is only a transitional layer between the two fluids with
continuously changing concentration.

More detailed descriptions will be given at Sections 2.1 and 2.2.

(a)

1

(b)

2

Figure 1.1: Sketch of two typical patterns of convection in two-layer system: (a)
viscous coupling and (b) thermal coupling.
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10 CHAPTER 1. INTRODUCTION

We observed two types of convection patterns through numerical integra-
tion (Chapter 2) for specific parameters, viscous and thermal coupling, shown
in Figure 1.1. In viscous coupling, the convection in the upper layer rotates
opposite to that just below it. In contrast, in thermal coupling, the convection
in the upper layer rotates in the same direction as just below it. In our nu-
merical integration, we observed a viscous coupling pattern in the initial stage
and a thermal coupling pattern after a certain time. Study of this transition
phenomenon is the main objective of this thesis. In Section 2.3, we will describe
the behaviors in more detail.

Viscous and thermal coupling patterns have been investigated in studies
of immiscible two-layer thermal convection systems. Rasenat et al. (1989)
[16] performed laboratory experiments and linear stability analysis over a wide
range of parameters to investigate which convection structures are preferred.
The characteristics of the system they analyzed are as follows:

• The system consists of two fluids, an upper and a lower layer separated
by an interface, with gravity acting downward.

• The upper and lower boundary surfaces are kept at constant temperatures,
with the lower surface set to be hotter.

• In addition to the temperatures of the top and bottom surfaces, the system
has a lot of control parameters: the physical properties of the fluid in each
layer, the width of each layer, the gradient of the temperature field in each
layer, and the surface tension of the interface and thermal conductivity.

• At the interface, kinematic boundary conditions are assigned, such that
there is no material penetration through the interface.

This system has a stationary solution where the interface is horizontal and
steady. The authors performed its linear stability analysis and found the fol-
lowing unstable modes:

• Steady viscous coupling mode

• Steady thermal coupling mode

• Time-dependent mode, oscillating between viscous coupling and thermal
coupling

In particular, the neutral mode they found was viscous coupling mode under
equal widths of the upper and lower fluid layers and the same physical proper-
ties other than density. Davanille et al. (2002) [5] performed a linear stability
analysis in the same manner as Rasenat et al. in the high Prandtl number lim-
its and laboratory experiments to verify the results. They investigated how the
instability of the interface changes with Buoyancy number B, the ratio of the
material density difference between the upper and lower layers to the density
change due to the temperature difference between the upper and lower bound-
aries. Although they are mainly interested in the instability at the interface,
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they also investigated the convective structure in the layers and reported that
a stratified regime (corresponding to viscous coupling in this thesis) is selected
when the widths of the two layers are equal. Note that the word “miscible”
in the title of their paper means that they assumed no surface tension at the
interface. Their linear stability analysis was based on the assumption that the
effect of material diffusion near the interface was negligible. Nepomnyanscy [14]
also investigated the convective structure of the two-layer system. They studied
the conditions under which the most unstable mode is oscillatory, considering
thermocapillary effects and interfacial heat release.

On the other hand, publications of viscous and thermal coupling in miscible
two-layer fluids are somewhat limited in number. The report by Yanagisawa
and Kurita [25] is one of a few that investigated this phenomenon through lab-
oratory experiments. According to their report, the convection pattern evolved
as follows:

• Initially, the structure of thermal coupling was realized.

• After some time, it changed to viscous coupling.

• After thermal coupling was observed again for a short time, the interface
was destabilized, and the whole system was mixed.

They discussed the transition of the patterns using the width of the transitional
layer formed by material diffusion. Specifically, they discussed that thermal
coupling was selected in the early stage when the transition layer width was
thick because the temperature distribution was a more important factor in de-
termining the structure than horizontal shear, and viscous coupling was selected
in the middle stage when the transition layer width became thinner because the
horizontal shear became more dominant. They presented an idea to understand
the transition of the patterns but did not provide any theoretical or quantita-
tive analysis to verify this idea. If their argument is correct, the width of the
transition layer, which is a quantity coming from miscibility, plays an essential
role in selecting the coupling pattern. It means that physical phenomena are
occurring that cannot be captured by the analysis based on the assumption of
an infinitesimal interface, as described in the previous paragraph.

The only steady state of a miscible two-layer thermal convection system is
the well-mixed single-layer state that realizes after a sufficiently long time. The
analysis using a steady state with linearly varying temperature and concentra-
tion fields has been classically well performed. The structures called “finger-
salt” and “diffusive convection” can be obtained depending on temperature and
concentration profiles [22]. These analyses provide a good description of con-
vection structures near the interface. However, the patterns of convection that
occur throughout each of the two layers, such as viscous and thermal coupling
structures, cannot be obtained. In other words, the standard approaches to the
single-layer steady state are not appropriate to investigate the mechanism by
which the coupling pattern is realized. Thus we need a new analytical method
that is not based on a steady-state solution.
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12 CHAPTER 1. INTRODUCTION

1.3 The approach we propose in this thesis

Considering the results of previous studies on immiscible two-layer thermal con-
vection systems, it seems natural also in the case of miscible fluids to apply the
standard approaches to steady-state solutions with a two-layered structure to
explore the viscous and thermal coupling patterns. However, it is impossible
because the miscible two-layer thermal convection system does not have such a
steady solution. Suppose we can somehow “freeze” the ever-changing two-layer
state and define a model in which the two-layer state is the steady-state solution
(Ishikawa et al. (2022) [9]). In that case, we can apply standard approaches
to that model to analyze the unstable structure at that moment. The method
we propose in this thesis achieves exactly this goal by neglecting some of the
nonlinear terms in the original system’s basic equations so that the horizontal
mean of the concentration field is fixed.

In Chapter 2, we will review two-layer thermal convection system and present
numerical experiment of the original system to show transient behavior of its
solution. In Chapter 3, we will introduce our modeling approach and describe
the results. The derivation of the model will be given at Section 3.1. In this
model, the width of the transitional layer is “frozen” in the sense of the hori-
zontal mean, and the transient nature of “approaching a one-layer state as time
passes” is lost, so a stationary solution can be obtained in which the two-layer
state is maintained. We perform a linear stability analysis on this steady-state
solution and discuss the relationship between the width of the transition layer
and the structure of linear stability. The settings and results of the linear sta-
bility analysis will be described in Sections 3.2, 3.3, 3.4. We also numerically
obtain nonlinear solutions corresponding to viscous and thermal coupling pat-
terns and investigate the change of the state when the width of the transition
layer is varied. The results are given in Sections 3.5, 3.6 and 3.7. The results of
both analyses explain the transition from viscous coupling to thermal coupling
observed in the numerical experiments of the original system. Discussions and
conclusions of analyses will be given in Chapter 4.

12



Chapter 2

Numerical Experiments of
Convection in Two Miscible
Layers

2.1 Governing equations and boundary and ini-
tial conditions

We consider two-dimensional double diffusive thermal convection in two hori-
zontal layers of miscible fluids which initially have the same depth, one lying
on top of the other, under downward gravity (Fig. 2.1). We apply Boussinesq
approximation to the system. The physical properties of the fluids, such as
basic density, viscosity and thermal diffusivity, are assumed to be the same and
constant. We take the x and z axes in the horizontal and vertical directions,
respectively. Let z = 0 be the initial boundary between the two fluids, which
are definitely separated at t = 0.

To non-dimensionalize the equations, we take the initial depth of each fluid
layer h as the length scale, h2/DT as the time scale (where DT is a thermal
diffusion coefficient), the temperature difference between the top and bottom
boundaries ∆T as the temperature scale, and the initial concentration difference
between the upper and lower layers ∆S as the concentration scale. Then the
non-dimensional equations are,

∂tu+ (u · ∇)u = −∇p+RaPr(T −BS)k + Pr∇2u, (2.1)

∇ · u = 0, (2.2)

∂tT + (u · ∇)T = ∇2T,

∂tS + (u · ∇)S =
1

Le
∇2S,

where u = (ux, uz), T , S and p are non-dimensionalized velocity, temperature,
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lighter

heavier

hotter

colder

Figure 2.1: Initial configuration of a two-dimensional system of double diffusive
thermal convection in two horizontal layers of miscible fluids under downward
gravity. The fluid in the upper layer has lower concentration than the fluid in
the lower layer. No concentration fluxes are assumed at the boundaries z = ±1,
where the temperatures are held constant in a way that makes the bottom hotter
than the top.
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2.2. EXPERIMENTAL SETUP 15

concentration and pressure, respectively, and k is the unit vector in the z di-
rection. The operator ∇ is defined as (∂x, ∂z). The Rayleigh number Ra, the
Prandtl number Pr, the buoyancy number B and the Lewis number Le in the
equations are non-dimensional quantities defined by

Ra =
αT gh

3∆T

DT ν
, Pr =

ν

DT
, B =

αS∆S

αT∆T
, Le =

DT

DS
,

where ν is the kinematic viscosity, g is gravitational acceleration, αT and αS

are thermal and compositional expansion coefficients, respectively, and DS is
the compositional diffusion coefficient.

The horizontal boundary condition is periodic. The boundary conditions at
the top and bottom boundaries are non-slip with fixed temperatures and null
concentration fluxes as follows.

u(x,±1, t) = 0, (2.3)

T (x, 1, t) = 0, T (x,−1, t) = 1, (2.4)

∂zS(x, 1, t) = 0, ∂zS(x,−1, t) = 0. (2.5)

We introduce a stream function ψ(x, z, t) that satisfies

ux = ∂zψ, uz = −∂xψ,

because of the incompressibility condition (2.2). By assuming no net horizontal
flux and choosing a proper additive constant, we can rewrite the non-slip con-
dition (2.3) as the boundary condition of the stream function at the top and
bottom boundaries

ψ(x,±1, t) = ∂zψ(x,±1, t) = 0. (2.6)

Taking the curl of (2.1) and rewriting non-linear terms using the Jacobian
J(a, b) = (∂za)(∂xb)− (∂xa)(∂zb), we can deduce the evolution equations as

∂t∇2ψ + J(ψ,∇2ψ) = −RaPr∂x(T −BS) + Pr∇2∇2ψ, (2.7)

∂tT + J(ψ, T ) = ∇2T, (2.8)

∂tS + J(ψ, S) =
1

Le
∇2S. (2.9)

2.2 Experimental setup

The vorticity-streamfunction method was used for solving the problem numer-
ically. The stream function, temperature and concentration were spatially
discretized by Fourier pseudo-spectral method in the x direction, and by fi-
nite difference method in the z direction. The horizontal system size was
Lx = 4π/2.6 ≈ 4.83 while the vertical size of each layer was 1. We set the
equally spaced grid points as 192 × 101 in the x and z directions, respectively,
and the truncation number 64 in the x direction, eliminating aliasing errors by
the 1/3-rule. For the time stepping, we used the Crank-Nicolson scheme for
linear terms, and the modified Euler scheme for nonlinear terms.

15
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We explored a set of parameters that included the horizontal extent of the
domain in which we can clearly observe the viscous coupling and thermal cou-
pling patterns (Fig. 1.1) and the transition between these states. We chose the
non-dimensional physical parameters as

Ra = 3200, P r = 10, Le = 104, B = 10. (2.10)

The initial conditions for the temperature and concentration were

T (x, z, 0) =
1

2
(1− z), S(x, z, 0) =

{
0 (z > 0)

1 (z < 0)
. (2.11)

We took some non-zero initial conditions of ψ, one of which is in the following
form:

ψ(x, z) =

{
sin2

[
π(z − 1)

2

]
+ sin3 [π(z − 1)]

}
exp

{
sin

(
2πx

Lx

)}
, (2.12)

while the numerical results for other initial conditions did not affect our analysis
described below.

2.3 Results of numerical experiments

Figure 2.2 shows the stream function ψ and the temperature deviation Θ ≡ T −
T |t=0 in their early stage (t = 0.7). Here, we observe two streets of vortex arrays:
the upper vortices rotate in the direction opposite to the lower vortices just
below them (Fig. 2.2 (a)), and similarly the sign of the temperature deviation
Θ is also opposite in the upper and lower vortices (Fig. 2.2 (b)). We call the
state with this convection pattern viscous coupling.

Figure 2.2: Snapshots of (a) the stream function ψ and (b) the temperature
deviation Θ at t = 0.70. This convection pattern is identified as ’viscous cou-
pling’.

During 1.0 ≲ t ≲ 2.3, however, the viscous coupling pattern disappears and
a different convection pattern appears as seen in Fig. 2.3, which shows the

16



2.3. RESULTS OF NUMERICAL EXPERIMENTS 17

Figure 2.3: Snapshots of the stream function ψ at (a) t = 1.0, (b) 1.4, (c) 1.6
and (d) 2.3.

Figure 2.4: Temperature deviation Θ at t = 2.3. The sign is the same between
the upper and lower layers.

17
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stream function ψ during 1.0 ≤ t ≤ 2.3. In the lower layer, the convection
decays during 1.0 ≲ t ≲ 1.4, and a new convection in the opposite direction
grows during 1.4 ≲ t ≲ 2.3, while the convection in the upper layer does not
decay completely, and regrows for 1.6 ≲ t ≲ 2.3. Then two streets of vortex
array are formed at t = 2.3, in which the convection in the upper and lower
layers rotates in the same direction. The sign of the temperature deviation Θ
is also the same between the upper and lower vortices (Fig. 2.4). We call the
state of this convection pattern thermal coupling.

Figure 2.5: Snapshots of the stream function ψ at (a) t = 4.6, (b) 5.5 and (c)
6.0. The convection decays during 4.6 ≲ t ≲ 5.5, and convection in the opposite
direction grows during 5.5 ≲ t ≲ 6.0.

The convection continues for some time, gradually decreasing in amplitude,
and finally almost stops. Then the convection rotating in the opposite direction
grows. This process takes place in parallel in both layers. This periodic oscilla-
tion continues but is gradually damped, and after a long time integration, the
convection finally loses its clear pattern. The remnants of thermal coupling are
observed at t = 15.0 (Fig. 2.6), but the amplitude of the convection is lower
than that at t = 2.3 by two order of magnitude.

It can be seen from Fig. 2.2 (a), Fig. 2.3 (d), Fig. 2.5 (c) and Fig. 2.6 that, as
time develops, the vertical scales of the convection vortices gradually decreases
and the convection cells in the upper and lower layers become separated. This
causes a decrease of the effective Rayleigh number for the convection and a

18



2.3. RESULTS OF NUMERICAL EXPERIMENTS 19

Figure 2.6: Stream function ψ at t = 15.0. The remnants of thermal coupling
are observed. The amplitude of the convection is lower than that at t = 2.3
(Fig. 2.3 (d)) by two order of magnitude.

Figure 2.7: Horizontally averaged concentration ⟨S⟩x at t = 0.7, 2.3, 6.0 and 15.0
and z = −0.5 to 0.5. The horizontal average of the transitional layer gradually
increases with time.
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decline of its amplitude. The horizontal averages of the concentration field
⟨S⟩x at t = 0.7, 2.3, 6.0 and 15.0 are shown in Fig. 2.7, where ⟨·⟩x stands for
the horizontal average. The figure shows that the horizontal average of the
transitional layer of the concentration is not steady, but gradually expands. For
this reason, it is difficult to apply the standard techniques of dynamical systems
such as linear stability analysis of equilibrium points or periodic orbits.

20



Chapter 3

Model Analysis of the
Convection of the Miscible
Fluids

3.1 Model with a fixed transitional layer

Because the transitional layer of miscible fluids continues to expand, the phe-
nomena are transient through the time development. To apply standard proce-
dures based on stationary states, we introduce an artificial model whose transi-
tional layer has a constant width in the horizontal average through modification
of the evolution equation of the concentration.

We decompose S into two parts:

S(x, z, t) = Sδ(z) + Σ(x, z, t), (3.1)

where

Sδ(z) ≡
1

2
erfc

(z
δ

)
, δ ≡ 2

√
Le−1t, erfc(x) =

2√
π

∫ ∞

x

e−ξ2dξ

where Sδ corresponds to the time development of S when ψ = 0.
Here we devise a model system of equations to understand the transient be-

havior of the thermal convection of miscible fluids. A theoretical difficulty comes
from the non-stationary nature of the transient behavior where the width of the
transient layer becomes larger over the course of time development. Therefore
we propose a model system in which the width of the horizontally averaged
transient layer is kept constant.

For this purpose, a simple way may be to assume S = S(z) independent of
t. However this does not work because the effect of S(z) is then absorbed in
the pressure as seen in (2.1). Therefore, we need to retain the concentration
disturbance field Σ and instead choose to eliminate the eddy transport of con-
centration J(ψ,Σ) after substituting (3.1) into (2.9). This elimination would
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be justified if J(ψ,Σ) were a much smaller quantity than other terms. But this
does not necessarily hold in our numerical experiments in Section 2.3. Although
no asymptotic justification is yet available, the numerical results of this model
(given below) show qualitative similarity to those of the original system, and
we adopt

∂tΣ+ J(ψ, Sδ) =
1

Le
∇2Σ (3.2)

instead of (2.9), for the purpose of qualitative understanding the structure of
the change in the convection patterns observed in the original system. ⟨Σ⟩x = 0
always holds if it is satisfied at the initial time, and so we obtain ⟨S⟩x = Sδ

for any t. In the following, we treat δ as a time-independent fixed parameter,
and consider a model system of (2.7), (2.8), (3.1) and (3.2) under the boundary
conditions (2.4), (2.5) and (2.6). In this model, the width of the horizontally
averaged transitional layer is constant for several values of δ, and we have a
stationary state ψ = 0, T = T0(z) = (1/2)(1−z), Σ = 0 (S = Sδ(z)). Hereafter,
we employ the parameter values in (2.10) and also the initial conditions (2.11)
and (2.12) for the model study, unless otherwise specified.

3.2 Linear stability problem of the stationary
state

Because the coefficients appearing in the linearized equations (2.7), (2.8) and
(3.2) do not depend on x and t, we can seek solutions in the following form:

ψ(x, z, t) = 0 + Ψ̃(z)eikx+σt,

T (x, z, t) = T0(z) + Θ̃(z)eikx+σt,

Σ(x, z, t) = 0 + Σ̃(z)eikx+σt,

where σ = r − iω is a complex constant, in which r and ω are the growth rate
and the frequency, respectively. The linearized equations become

σ(D2 − k2)Ψ̃ = −RaPrik(Θ̃−BΣ̃) + Pr(D2 − k2)2Ψ̃, (3.3)

σΘ̃ = ik(DT0)Ψ̃ + (D2 − k2)Θ̃, (3.4)

σΣ̃ = ik(DSδ)Ψ̃ +
1

Le
(D2 − k2)Σ̃, (3.5)

where D = d
dz . The boundary conditions of Ψ̃, Θ̃ and Σ̃ derived from (2.4),

(2.5), and (2.6) are written as

Ψ̃(±1) = DΨ̃(±1) = Θ̃(±1) = DΣ̃(±1) = 0. (3.6)
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Let Θ̃′ ≡ iΘ̃ and Σ̃′ ≡ iΣ̃, then by substituting them into (3.3), (3.4), and (3.5)
we obtain

σ

D2 − k2 0 0
0 1 0
0 0 1

 Ψ̃

Θ̃′

Σ̃′

 =

Pr(D
2 − k2)2 −RaPrk RaPrBk

−k(DT0) D2 − k2 0

−k(DSδ) 0
1

Le
(D2 − k2)


 Ψ̃

Θ̃′

Σ̃′

 .
(3.7)

The boundary conditions (3.6) become

Ψ̃(±1) = DΨ̃(±1) = Θ̃′(±1) = DΣ̃′(±1) = 0. (3.8)

For the given Ra, Le, Pr, B, k and δ, (3.7) and (3.8) setup a generalized
eigenvalue problem of a linear operator with respect to an eigenvalue σ and an
eigenstate [Ψ̃, Θ̃′, Σ̃′]T . Note that the eigenvalues of (3.7) and (3.8) are real, or
pairs of complex conjugates with complex conjugate eigen functions, because
the coefficients of the equations are all real.

The variables Ψ̃(z), Θ̃′(z) and Σ̃′(z) are discretized by the finite difference
method, using 1001 equally spaced grid points. The generalized eigenvalue prob-
lem of (3.7) and (3.8) is solved by LAPACK (http://www.netlib.org/lapack/).
We adopt the same parameter values for Pr, Le, and B as in (2.10) in most of
this section, except in a part of Section 3.4, where B is varied over the range
1 ≤ B ≤ 10. We seek neutral curves by solving the equation r = 0 using the
binary search method, changing the wave number k from 1 to 4 in steps of 0.05.

3.3 Neutral modes
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Figure 3.1: Neutral curves and frequency at δ = 0.01 (red solid curve), 0.02
(green solid curve), 0.03 (blue solid curve), and 0.06 (magenta solid curve). The
critical wave number and Rayleigh number (kc, Rac) are (2.65, 2290.47) at δ =
0.01, (2.60, 2578.97) at δ = 0.02, (2.55, 2675.78) at δ = 0.03, and (2.50, 3102.34)
at δ = 0.06. The critical points are under the line of Ra = 3200 (cyan dashed
line), as adopted in Section 2.3, when δ ≲ 0.06.

Neutral curves at δ = 0.01, 0.02, 0.03, and 0.06 are shown in the left panel
of Fig. 3.1. The curves move upward and the critical wave number decreases as
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the width of the transient layer δ increases. All the neutral modes obtained here
are oscillatory (ω ̸= 0) as shown in the right panel of Fig. 3.1. Staircase-like
variations observed in the frequency graphs for δ = 0.01 and 0.02 are due to
interchange of the viscous and thermal coupling modes. The larger frequency
is for the viscous coupling mode. The line of the Rayleigh number (Ra =
3200) adopted in Section 2.3 is also drawn in the left panel of Fig. 3.1. The
critical Rayleigh numbers are lower than 3200 when δ ≲ 0.06. This implies that
the stationary state is unstable with respect to infinitesimal disturbances when
Ra = 3200 and δ ≲ 0.06.

Figure 3.2: Critical mode at δ = 0.02: (a) the stream function and (b) the
temperature deviation. This convection pattern is identified as viscous coupling.
The critical frequency ωc is −3.736, and the propagation velocity is ωc/kc =
−1.44.

Figure 3.2 shows the critical mode at δ = 0.02 with negative ω. Vortices at
the same horizontal position are observed to rotate in the direction opposite to
each other in Fig. 3.2 (a). The disturbance of the temperature shown in Fig.
3.2 (b) has opposite signs in the upper and lower layers, indicating that the
convection pattern is viscous coupling. The critical frequency ωc is −3.736, and
the propagation velocity is ωc/kc = −1.44. There exists another critical mode
with ωc = 3.736 arising from the reflectional symmetry (x ↔ −x). Note that
the horizontal propagation is an artifact not observed in the original system.

We can see from Fig. 3.2 that the critical mode satisfies the following sym-
metry: Ψ̃(−z)

Θ̃(−z)
Σ̃(−z)

 = −

Ψ̃(z)

Θ̃(z)

Σ̃(z)

 . (3.9)

This symmetric property is consistent with the linearized equations (3.3), (3.4),
and (3.5) and the boundary conditions (3.6). In this thesis, we call (3.9) the
“symmetry of viscous coupling”, and the mode accompanying it the “viscous
coupling mode.”

Figure 3.3 shows the critical mode at δ = 0.03 with negative ω. Vortices
at the same horizontal position are observed to rotate in the same direction in
Fig. 3.3 (a). The disturbance of the temperature displayed in Fig. 3.3 (b) has
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Figure 3.3: The critical mode at δ = 0.03: (a) the stream function and (b) the
temperature deviation. Vortices at the same horizontal position rotate in the
same direction. This convection pattern is identified as thermal coupling. The
critical frequency ωc is −0.529, and the propagation velocity is ωc/kc = −0.21,
which is much slower than that of the critical mode at δ = 0.02.

the same sign in the upper and lower layers. This convection pattern is thermal
coupling. The critical frequency of this mode ωc is −0.529, and the propagation
velocity is ωc/kc = −0.21, which is much lower than that of the critical mode
at δ = 0.02. In this case another critical mode arising from the reflectional
symmetry (x↔ −x) exists with ωc = 0.529.

We can see from Fig. 3.3 that the critical mode satisfies the following sym-
metry: Ψ̃(−z)

Θ̃(−z)
Σ̃(−z)

 =

Ψ̃(z)

Θ̃(z)

Σ̃(z)

 . (3.10)

This symmetric property is also consistent with the linearized equations (3.3),
(3.4), (3.5), and the boundary conditions (3.6). We call (3.10) the “symmetry
of thermal coupling,” and the mode accompanying it the “thermal coupling
mode.”

At other values of δ ≤ 0.1, the critical modes have the symmetry of viscous
coupling when δ ≲ 0.02, while the critical modes have the symmetry of thermal
coupling when δ ≳ 0.02. Therefore the symmetry of the critical mode changes
at δ ≈ 0.02.

Rasenat et al. [16] and Le Bars & Davaille [11] performed linear stability
analysis of the infinitesimal transition layer, and found only the viscous coupling
mode at criticality when the vertical lengths of the layers and the physical
properties of the fluids in the two layers were the same, except for the densities.
Our analysis found that the viscous coupling mode remains as a critical mode
when the transitional layer has a finite width less than about 0.02. This implies
that the width of the transitional layer is crucial for determining the structure
of convection in two layer miscible fluids.
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3.4 Unstable modes at Ra = 3200

Here, we investigate unstable modes at Ra = 3200, which is the value used in
Section 2.3, and discuss the behavior found in Section 2.3 using linear instability.
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Figure 3.4: Growth rate and frequency of unstable thermal coupling modes
(red solid curve) and of viscous coupling modes (blue dashed curve) for three
values of δ at Ra = 3200. The step width of the wave number k is 0.05.

The growth rate and frequency of unstable modes at several values of δ are
shown in Fig. 3.4, where the wave number k varies in steps of 0.05. When
δ = 0.015, the most unstable viscous coupling mode, whose wave number is
k = 2.85 and is non-oscillatory, has a higher growth rate than that of the most
unstable thermal coupling mode, whose wave number is k = 2.9 and is oscillatory
(top row of Fig. 3.4). At δ = 0.02, unstable oscillatory viscous coupling modes
and non-oscillatory thermal coupling modes exist, but the growth rate of the
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most unstable viscous coupling mode at k = 2.75 is less than that of the most
unstable thermal coupling mode at k = 2.85 (middle row of Fig. 3.4). Thus
the most unstable mode changes from viscous coupling to thermal coupling
when 0.015 < δ < 0.02. At δ = 0.03, all viscous coupling modes are stable,
while unstable thermal coupling modes exist (bottom row of Fig. 3.4). Both
viscous coupling modes and thermal coupling modes are found to be stable when
δ = 0.07 (not shown).
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Figure 3.5: Growth rate and frequency of unstable thermal coupling modes
(red solid curve) and viscous coupling modes (blue dashed curve) at k = 2.60
and Ra = 3200. The step width of δ is 0.0005.

Next, we consider the dependence of the growth rate and the frequency on
the width of the transition layer, δ, taking fixed values of k = 2.60, Ra = 3200,

and Lx =
4π

2.60
, which were adopted in Section 2.3. The growth rate and

frequency of unstable modes are shown in Fig. 3.5. Unstable thermal coupling
modes exist for δ < 0.064, and unstable viscous coupling modes exist for δ <
0.03. Thermal coupling modes have two branches of growth rates for δ < 0.044,
while only a single branch of growth rate is found for δ > 0.044. The thermal
coupling modes for δ < 0.044 are stationary modes, that is, ω = 0, while those
for δ > 0.044 are oscillatory modes, that is, ω ̸= 0. A similar behavior of
viscous coupling modes is found at δ = 0.016. The viscous coupling modes for
δ < 0.016 are stationary modes, while those for δ > 0.016 are oscillatory modes.
The most unstable mode exchanges at δ = 0.017: the most unstable mode is
the viscous coupling mode for δ < 0.017 while the most unstable mode is the
thermal coupling mode for δ > 0.017. The frequency values of the oscillations
before and after t = 2.0 in the numerical experiment shown in Section 2.3 are 4.6
and 2.5, respectively. These are comparable to the frequencies of the oscillatory
viscous and thermal coupling mode at δ > 0.02 and δ > 0.044, respectively.

Figure 3.6 shows the kind of the symmetry (viscous/thermal coupling) and
the time dependence (stationary/oscillatory) of the most unstable mode of the
buoyancy number, B (1 ≤ B ≤ 10), which expresses the density contrast,
and the transitional layer width δ (0.01 ≤ δ ≤ 0.1) with k = 2.60 and Ra =
3200. As δ increases from 0.01 to 0.10 for B > 2, the most unstable mode
changes from stationary viscous coupling mode to oscillatory viscous coupling
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Figure 3.6: Types of the most unstable modes for 0.01 ≤ δ ≤ 0.1 and
1 ≤ B ≤ 10: stable modes (black crosses), thermal coupling modes (red solid
and open squares) and viscous coupling modes (blue solid and open circles).
Filled symbols represent oscillatory modes, and hollow ones represent station-
ary convections.

mode, stationary thermal coupling mode, oscillatory thermal coupling mode,
and stable mode in that order.

In the nonlinear simulation described in Section 2.3, the convection starts in
the form of the viscous coupling pattern as long as the width of the transitional
layer δ is small. However, as time proceeds, the width of transitional layer δ
gradually increases while the mixing effect of convection is not strong enough
to appreciably change the density contrast between the upper and lower layers.
According to Fig. 3.6, the increase of δ corresponds to the transition of the
convection pattern from viscous coupling to thermal coupling. Actually, this
pattern transition is observed in the numerical experiment described in Section
2.3, consistent with Fig. 3.6.

3.5 Asymptotic behavior of nonlinear states af-
ter a long time integration

In all cases in our numerical study, the numerical solutions up to t = 100 are
observed to approach time periodic solutions asymptotically.

Figure 3.7 shows the stream function ψ, the temperature deviation Θ and
the concentration deviation Σ, numerically obtained in the nonlinear simulation
of the model at t = 100 for δ = 0.015. Two streets of vortex arrays are observed,
where the vortices in the upper street rotate in the direction opposite to that
of the lower vortices just below them. Similar to the numerical simulations
discussed in Section 2.3, the signs of the temperature deviation are opposite in
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Figure 3.7: Snapshots of a time periodic asymptotic state at t = 100 for δ =
0.015; (a) the stream function ψ, (b) the temperature deviation Θ and (c), (d)
the concentration deviation, where (d) is made by enlarging −0.1 ≤ z ≤ 0.1 of
(c). The convection is identified as viscous coupling.
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the upper and lower vortices. The convection is therefore viscous coupling. This
convection pattern moves in the negative x direction, with the two arrays of the
convection pattern remaining unchanged. This solution is thus a traveling wave
with a velocity of about −1.51. The model system as well as the original system
has a reflectional symmetry with respect to the vertical axis at x = 0, and
therefore the traveling wave solution in the positive x direction also exists. The
initial condition determines which traveling wave is actually observed. Over the
course of time development from the initial condition, the convection maintains
itself for some time, and decreases gradually to an almost quiescent state, and
again starts rotation in the direction opposite to the initial convection pattern.
This process continues in parallel in both layers. After the repeated reversal of
the convection direction, the convection finally converges to the traveling wave
moving in the negative x direction with a velocity of about −1.51.

From Fig. 3.7, we observe that the system is invariant to the transformation
Fvis defined by

Fvis

ψ(x, z)Θ(x, z)
Σ(x, z)

 =

−ψ(x,−z)−Θ(x,−z)
−Σ(x,−z)

 ,
which we call the “viscous coupling transformation”. Actually, this may give a
formal definition of the “viscous coupling” solution.

In contrast, Fig. 3.8 shows the asymptotic state for a slightly larger transi-
tional layer width δ = 0.02 where the upper and lower vortices are observed to
rotate in the same direction, and the signs of the temperature deviation and the
concentration deviation are observed to be the same in the upper and lower vor-
tices. Thus the convection is thermal coupling. As time proceeds, this thermal
coupling convection experiences a process similar to that of viscous coupling
convection, and finally converges to a traveling wave moving in the positive x
direction with a velocity of about 0.59.

Similar to Fig. 3.7, the solution of the thermal coupling state shown in Fig.
3.8 is observed to be invariant under the transformation Ftherm defined by

Ftherm

ψ(x, z)Θ(x, z)
Σ(x, z)

 =


−ψ

(
x− Lx

4
,−z

)
−Θ

(
x− Lx

4
,−z

)
−Σ

(
x− Lx

4
,−z

)

 ,

which we call the “thermal coupling transformation”. Note that, we have in-

cluded the horizontal translation of
Lx

4
because, in our simulation, four convec-

tion cells were observed in the computation domain, and that these symmetries
with respect to Fvis and Ftherm are conserved respectively in the time devel-
opment of (2.7), (2.8), and (3.2) and the boundary conditions (2.4), (2.5), and
(2.6). This transformation may provide a formal definition of the “thermal
coupling” solution, similar to the viscous coupling case.
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Figure 3.8: Snapshots of a time periodic asymptotic state at t = 100 for δ = 0.02:
(a) the stream function ψ, (b) the temperature deviation Θ and (c), (d) the
concentration deviation, where (d) is made by enlarging −0.1 ≤ z ≤ 0.1 of (c).
The convection is identified as thermal coupling.
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In each case of δ = 0.03, 0.04, 0.05, and 0.06, the asymptotic state is observed
to be a traveling wave with thermal coupling symmetry, while the flow decays
to the quiescent state for δ = 0.07.

In summary, the time periodic asymptotic state of viscous coupling is ob-
served for δ ≲ 0.015, and that of thermal coupling is observed for δ ≳ 0.02.

3.6 Projections to viscous coupling and thermal
coupling function spaces

We now define projection operators for viscous coupling and thermal coupling
function spaces. We introduce an inner product of [ψ1(x, z),Θ1(x, z),Σ1(x, z)]

T

and [ψ2(x, z),Θ2(x, z),Σ2(x, z)]
T asψ1

Θ1

Σ1

 ,
ψ2

Θ2

Σ2

 =

∫ Lx

0

∫ 1

−1

(ψ1ψ2 +Θ1Θ2 +Σ1Σ2)dzdx,

where we assume a real Hilbert space as ψ, Θ, and Σ are real variables. For a
thermal convection [ψ(x, z),Θ(x, z),Σ(x, z)]T , the orthogonal projection opera-
tor to the viscous coupling space is defined as

Pvis

ψ(x, z)Θ(x, z)
Σ(x, z)

 =


1

2
(ψ(x, z)− ψ(x,−z))

1

2
(Θ(x, z)−Θ(x,−z))

1

2
(Σ(x, z)− Σ(x,−z))

 ,
which clearly leaves the viscous coupling convection invariant. Also, the projec-
tion operator orthogonal to the thermal coupling space is given by

Ptherm

ψ(x, z)Θ(x, z)
Σ(x, z)



=



1

4

(
ψ(x, z)− ψ

(
x+

Lx

4
,−z

)
+ ψ

(
x+

2Lx

4
, z

)
− ψ

(
x+

3Lx

4
,−z

))
1

4

(
Θ(x, z)−Θ

(
x+

Lx

4
,−z

)
+Θ

(
x+

2Lx

4
, z

)
−Θ

(
x+

3Lx

4
,−z

))
1

4

(
Σ(x, z)− Σ

(
x+

Lx

4
,−z

)
+Σ

(
x+

2Lx

4
, z

)
− Σ

(
x+

3Lx

4
,−z

))

 ,

which also keeps the thermal coupling convection invariant. We call the ranges
of these operators, Pvis and Ptherm, the viscous coupling space and the ther-
mal coupling space, respectively. Note that these spaces are invariant under
nonlinear time development (see Appendix A.1). The viscous coupling and the
thermal coupling spaces are not orthogonal to each other, because their inter-
section includes a nontrivial linear space. However, if we take the orthogonal
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complements of the linear space respectively in the viscous coupling space and
the thermal coupling space, these orthogonal complements are mutually orthog-
onal (see Appendix A.2). This observation enables us to classify the solution
attractors into viscous coupling and thermal coupling attractors in the next
section.

3.7 Time integration of viscous coupling and ther-
mal coupling convections

When the convection field is in the viscous coupling or thermal coupling spaces,
it remains so as time passes. We found that these two types of convections are
realized in the numerical simulations shown in Section 2.3, and they are consid-
ered to be typical convection states that may exhibit attractor-like behavior in
the solution space. Therefore, we now search for the solutions in these spaces in
some detail. We stress that we should then suppress the instability that makes
the solution escape from these spaces. To do so, we project the solution to the
relevant space at each time step of the numerical integration.
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Figure 3.9: Time series of the kinetic energy ϵ per unit volume for the case of
viscous coupling for δ = 0.015, 0.02, and 0.03.

The kinetic energy ϵ per unit volume for the case of the viscous coupling for
δ = 0.015, 0.02 and 0.03 is shown in Fig. 3.9, where ϵ is defined by

ϵ(t) ≡ 1

2Lx

∫ Lx

0

∫ 1

−1

1

2
|u(x, z, t)|2 dzdx.

In all cases, the kinetic energy converges fairly well to a constant value. The
convection pattern is found to approach the traveling wave for δ = 0.015 and
0.02, and it decays to the quiescent state for δ = 0.03.

In the case of thermal coupling symmetry, the kinetic energies ϵ per unit
volume for 0.015 ≤ δ ≤ 0.06 are shown in Fig. 3.10 (a). We plot longer time
integrations until t = 200 for the cases of δ = 0.015 and 0.06 in Fig. 3.10 (b).
In all cases, the kinetic energy converges fairly well to a constant value, and we
see that the convections are found to converge to the traveling waves.
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Figure 3.10: Time series of the kinetic energy ϵ per volume for the case of
thermal coupling for (a) δ = 0.015, 0.02, 0.03, 0.04, 0.05 and 0.06 until t = 100,
and (b) δ = 0.015 and 0.06 until t = 200.

Therefore, the asymptotic states with the viscous coupling and thermal cou-
pling symmetries are found to coexist for δ = 0.015 and 0.02. However, as
discussed at the end of Section 3.6, the function spaces of viscous coupling and
thermal coupling have a nontrivial intersection. Now, we define subspaces of
these spaces that are orthogonal to each other, to confirm that the attracting
set (which may be attractors) of the viscous coupling solutions contain a subset
that is not in the attracting set of the thermal coupling solutions, and vice versa.

For a convection [ψ,Θ,Σ]T , we define ψvis, Θvis and Σvis byψvis

Θvis

Σvis

 = (Pvis − PvisPtherm)

ψΘ
Σ

 .
Similarly, we define ψtherm, Θtherm and Σtherm byψtherm

Θtherm

Σtherm

 = (Ptherm − PvisPtherm)

ψΘ
Σ

 .
Then, (ψvis,Θvis,Σvis) and (ψtherm,Θtherm,Σtherm) respectively belong to the
viscous coupling and thermal coupling spaces, and they are both orthogonal to
the intersection of the two spaces.

Now, we define two kinds of kinetic energy as

ϵvis(t) ≡
1

2Lx

∫ Lx

0

∫ 1

−1

1

2
|uvis(x, z, t)|2 dzdx,

ϵtherm(t) ≡
1

2Lx

∫ Lx

0

∫ 1

−1

1

2
|utherm(x, z, t)|2 dzdx,

where

uvis =

(
∂zψvis

−∂xψvis

)
, utherm =

(
∂zψtherm

−∂xψtherm

)
.
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Figure 3.11: Time series of the kinetic energy ϵvis and ϵtherm for δ = 0.02. (a)
and (b) are two realizations under different initial conditions: (a) corresponds
to the case shown in Fig. 3.8, and (b) is a case with an initial condition different
from that of (a).

Then ϵtherm = 0 holds if the convection pattern has the symmetry of the viscous
coupling, and ϵvis = 0 holds when the convection pattern has the symmetry of
the thermal coupling.

The time series of the kinetic energy ϵvis and ϵtherm for δ = 0.02 under two
different initial conditions are shown in Fig. 3.11, where (a) corresponds to the
flow shown in Fig. 3.8, and (b) is a case with an initial condition different from
that of (a). In the case of (a), ϵtherm ≫ ϵvis ≈ 0 holds and so the asymptotic
state is thermal coupling and has a non-viscous coupling component, which
is consistent with Fig. 3.8. Conversely, ϵvis ≫ ϵtherm ≈ 0 holds in the case
of (b) and so the asymptotic state is viscous coupling and has a non-thermal
coupling component. Therefore, an asymptotic state with either symmetry can
be realized depending on the initial conditions. In other words, attractors with
viscous coupling and thermal coupling convection patterns coexist at δ = 0.02.

In summary, the attractors behave as follows:
(a) For sufficiently small δ, 0 < δ ≲ 0.02, attractors exist with both viscous

coupling and thermal coupling convection patterns.
(b) For a larger δ, 0.03 ≲ δ ≲ 0.06, only attractors with the thermal coupling

convection pattern exist.
(c) For a sufficiently large δ, 0.07 ≲ δ, all the fluid motion decays to the

quiescent state.
Therefore, the change of convection patterns observed in numerical simulations
in Section 2.3 may correspond to the disappearance of the attractor of viscous
coupling in the model system.
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Chapter 4

Discussions and Conclusions

Many methods have been exploited to explain the mechanism of structure for-
mation in flows, including the linear stability analysis, the bifurcation theory,
and the explanation as a dynamical system. These standard approaches assume
that the system has a steady or time-periodic solution. If the system under anal-
ysis does not have such a solution, one has to develop a different method. To
propose some solution to this problem, we treated a miscible two-layer thermal
convection system as an example. We focused on the transition of convection
patterns from viscous coupling to thermal coupling, which we observed in nu-
merical simulations.

We first describe and discuss the results of analyses on the two-layer thermal
convection system in Section 4.1. After that, in Section 4.2, we discuss the
possibility of the modeling approach to transient phenomena in general.

4.1 Modeling convection system with two mis-
cible layers

In chapters 2 and 3, we reported our study of the transient behavior of double
diffusive convection where the upper and lower fluids are miscible with each
other. Numerical experiments showed two patterns of convection, namely vis-
cous coupling and thermal coupling. Viscous coupling took place in the initial
convection stage, and was replaced by thermal coupling as the width of the
transitional layer increased.

These two patterns have been investigated in immiscible two-layer thermal
convection systems. Because immiscible fluids have a definite interface between
them, the system has a stationary state with a fixed horizontal interface, which
enables us to apply the standard methods. In miscible fluids, however, even if
the interface between them exists initially, it becomes unclear by the diffusion
of concentration. Then the system has only a transitional layer in which the
concentration continuously changes. Therefore the thermal convection system of
two miscible layers does not have a stationary state with a two-layered structure,
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which prevents the standard methods from applying.
To cope with this problem and describe a possible mechanism of the change

in convection patterns, we introduced a model in which the width of the tran-
sitional layer between the upper and lower layers (δ) is kept constant in the
horizontal average. Both the linear stability of a stationary state of the model
and nonlinear time periodic solutions implied that viscous coupling is preferred
when the width of the transitional layer δ is small, and thermal coupling is
preferred when δ is large. Furthermore the transition from viscous coupling to
thermal coupling was observed at δ ≈ 0.02 in all cases.

First, we investigated the linear stability of a stationary state of the model.
In our calculation, the critical Rayleigh number Rac varied from 2290 (δ = 0.01)
to 3102 (δ = 0.06). The convection pattern of the critical mode was observed to
be viscous coupling when δ was small, and thermal coupling when δ was large.
The convection pattern of the most unstable mode at Ra = 3200 also changed
from viscous coupling for small δ to thermal coupling for large δ. This property
was also observed for different concentration contrasts between the two layers
except when the concentration difference was very small.

Rasenat et al. [16] performed linear stability analysis of the steady state
of a two-layer thermal convection system of immiscible fluids (thus with an
infinitesimal transitional layer), and showed that the viscous coupling mode
is preferred when fluid properties in both layers are nearly equal. Le Bars &
Davaille [11] experimentally and analytically studied the cases of immiscible
fluids with different density contrasts between the two layers. They studied the
linear stability of the stationary state under the assumption of an infinitesimal
transitional layer and found only the viscous coupling mode for the marginal
mode.

In our linear stability analysis, which focused on density contrast B > 1,
the viscous coupling mode is preferred when the width of the transitional layer
is small, while the thermal coupling mode is preferred in the large width case.
The model proposed in this thesis not only reproduces the emergence of the
viscous coupling convection for small transitional layer widths, but also shows
the transition from viscous coupling to thermal coupling convection when the
transitional layer width increases. This implies that the width of the transitional
layer crucially affects the convection structure in two layer miscible fluids. Note
that, to our knowledge, the previous theoretical studies treated only the case of
a transitional layer with infinitesimal thickness (e.g. [11, 13]).

Oscillatory modes were found by Rasenat et al. [16], but they were not the
critical modes. Nepomnyanshchy et al. [14] found oscillatory critical modes by
introducing the thermo-capillary effect of the interface. In the present model
study, oscillatory critical modes also arise when the transitional layer has a finite
width. Eventually, numerical simulations of the original system of equations
showed that the convection becomes oscillatory or time-dependent when the
transitional layer width gradually increases.

In the linear stability analysis in the model system, we found that viscous
coupling transitions to thermal coupling as the width of the transitional layer
increases at various density contrasts between the two layers.

38



4.2. MODELING APPROACH TO TRANSIENT PHENOMENA IN
GENERAL 39

In contrast, a transition from the thermal coupling state to the viscous cou-
pling state was observed in a laboratory experiment[25]. This may be explained
by the thickness of the transition layer around the interface between the upper
and lower layers. It has been reported that the observed boundary layer around
the interface is fairly thick in the thermal coupling state, while in the viscous
coupling state, the boundary layer becomes thinner than that in the thermal
coupling state. If we interpret the thickness of the boundary layer as the thick-
ness of the transition layer of the horizontally averaged density profile δ, these
characteristics are consistent with our linear stability analyses where viscous
(thermal) coupling becomes dominant at small (large) δ.

Next, in long time integration of the model we found that in the case of the
small width of the transitional layer the flow approaches a time periodic con-
vection whose pattern is viscous coupling, while in the case of the large width it
approaches the time periodic thermal coupling convection. These model results
are consistent with the numerical observation in the original system where the
viscous coupling convection is realized when the width of the transitional layer
is small, and the thermal coupling convection emerges when the width becomes
large. Furthermore, time periodic solutions whose convection patterns were vis-
cous coupling and thermal coupling were found to coexist when the width of
the transitional layer was neither very large nor zero.

4.2 Modeling approach to transient phenomena
in general

We discuss what kind of phenomena other than the convection in two-layer
fluids might be suitable for our modeling approach, after reviewing the features
of the method.

As described in the previous section, we proposed a method to construct
a model in which the width of the transitional layer is fixed in the horizontal
mean. The standard approaches were applicable to this system because it has a
stationary state with a two-layer structure. The results of them were consistent
with the behaviors of the original system.

We constructed the model by neglecting a part of the nonlinear terms of
the basic equation. However, justifying this operation is not obvious, even
though the resulting behavior resembled the original system. For example, if
the neglected term was smaller than the other terms, it could be justified. Un-
fortunately, this criterion did not necessarily hold in our numerical experiment
in 2.3. Another idea for justification is to compare the structures of the solution
spaces. Specifically, this idea is to evaluate whether a continuous connection
of the structures of the solution spaces of the model with different δ-s can well
approximate the structure of the solution space of the original system. First,
calculate the time development of the original system from the initial state on
the attracting set of the model system. Second, evaluate the distance between
the state and the attracting set of the model system. That is, measure the
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width of the transitional layer of the flow state δ, and compare the state with
the attracting set of the model system with the transitional layer width δ. If the
distances are evaluated to be small in some sense, the structures of the model
system can be considered as an approximation to the original system.

Finally, we discuss what kind of systems can be analyzed by similar meth-
ods to ours. Our method gave an error function as a “transient base field” of
concentration. We deformed the basic equations so that the horizontal mean
of the displacement from the “transient base field” at a fixed time is always
zero. A similar method may be applied if the system can be assumed to have a
“transient base field” concretely. The procedure is as follows:

(1) Fix a “transient base field” at a certain time and decompose the state into
the basic field and displacement.

(2) Substitute them into the basic equations and derive the time evolution
equations of the displacement.

(3) Deform or neglect some terms of the equations so that some spatial average
of the displacement is always zero.

In the model created by the above procedure, the trajectory of the solution is
bounded around a fixed “transient base field.” Step (3) is the most nontriv-
ial because one has to consider, depending on individual systems, what kind
of spacial average to employ and how to deform the basic equation. It may
be necessary to evaluate whether the modeling well approximates the original
system, e.g., by evaluating the similarity of the structure of the solution space,
as discussed in the previous paragraph.

We have proposed a model study for thermal convection of miscible flu-
ids, where in reality the width of the transitional layer grows in time and the
convection pattern drastically changes when the width reaches a certain value.
The model system inherits most of the time-dependent properties of the original
system, but discards the growth of the horizontally averaged width of the transi-
tional layer between the miscible fluids. This artificial model system permits us
to perform a systematic analysis of the pattern transition of the convection. We
expect similar modeling approaches to be useful for understanding non-steady
pattern transitions in complex systems.

40



Appendix A

Proofs of Some Claims

In this chapter, we prove some mathematical claims appearing in Section 3.6.

A.1 Invariance of symmetry of the model sys-
tem in time development

Theorem A.1.1. Let ϕ = [ψ,Θ,Σ]T be a convection. If ϕ is invariant under
Fvis at t = 0, then it is also invariant for all t ≥ 0. Similarly, if ϕ is invariant
under Ftherm at t = 0, then it is also invariant for all t ≥ 0.

Proof. Remember the governing equations of the model:

∂t∇2ψ + J(ψ,∇2ψ) = −RaPr∂x(Θ−BΣ) + Pr∇2∇2ψ,

∂tΘ+ J(ψ,Θ) +
1

2
(∂xψ) = ∇2Θ,

∂tΣ− (∂xψ)(∂zSδ) =
1

Le
∇2Σ,

where

J(a, b) = (∂za)(∂xb)− (∂xa)(∂zb),

Sδ(z) =
1

2
erfc

(z
δ

)
,

erfc(x) =
2√
π

∫ ∞

x

e−ξ2dξ.

First, we shall show that Fvis[ϕ] and Ftherm[ϕ] also satisfy the governing
equations and the boundary conditions. We denoteψvis

Θvis

Σvis

 = Fvis

ψΘ
Σ

 , i.e.,


ψvis(x, z, t) = −ψ(x,−z, t),
Θvis(x, z, t) = −Θ(x,−z, t),
Σvis(x, z, t) = −Σ(x,−z, t).
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By simple computations, we can show that all the terms in the governing equa-
tions change those signs when substituting ψvis, Θvis and Σvis into ψ, Θ and Σ.
The only coefficient that depends on z is

∂zSδ(z) = − 1√
πδ
e−z2/δ2 ,

which is invariant under z 7→ −z. Thus all coefficients in the governing equations
do not change when z is replaced by −z. Combining above observations and the
governing equations, we can see [ψvis,Θvis,Σvis]

T enjoys the governing equation.
Furthermore, these functions satisfy the boundary conditions:

ψvis(x,±1, t) = ∂zψvis(x,±1, t) = Θvis(x,±1, t) = Σvis(x,±1, t) = 0.

Similar arguments hold also in the case of Ftherm[ϕ].
Here we consider an orbit in the phase space ϕ(t) (t ≥ 0) that satisfy the

governing equations and boundary conditions. Suppose ϕ(0) has the symmetry
of viscous coupling, i.e., Fvis[ϕ(0)] = ϕ(0). If ϕ(t) violates the symmetry of
viscous coupling for some t > 0, then there exist two different orbits ϕ(t) and
Fvis[ϕ](t) that satisfy the governing equations and boundary conditions. It
contradicts with the uniqueness of solution because both of them start from
ϕ(0) at t = 0. Similar arguments hold when the thermal coupling symmetry is
supposed at t = 0.

A.2 Orthogonality of thermal and viscous cou-
pling functional spaces

Definition A.2.1. Let X be a function space defined by

X =

{
f : R/Lx × [−1, 1] → C3

∣∣∣∣∣
∫
R/Lx×[−1,1]

|f(x, z)|2dxdz <∞

}
,

where Lx > 0 and R/Lx is a quotient of R divided by the equivalence relation
∼ defined by x ∼ y ⇔ x− y ∈ LxZ. An inner product ⟨·, ·⟩ on X is defined by

⟨f, g⟩ =
∫
R/Lx×[−1,1]

f(x, z) · g(x, z)dxdz, (f, g ∈ X )

where · is the inner product in C3, i.e., u·v =
∑3

i=1 uivi for u = (u1, u2, u3), v =
(v1, v2, v3) ∈ C3.

We define subspaces Xvis,Xtherm ⊆ X by

Xvis = { f ∈ X | f(x,−z) = −f(x, z) } ,

Xtherm =

{
f ∈ X

∣∣∣∣ f (x+
Lx

4
,−z

)
= −f(x, z)

}
.
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We define Pvis : X → X and Ptherm : X → X by

Pvis[f ](x, z) =
1

2
(f(x, z)− f(x,−z)) ,

Ptherm[f ](x, z)

=
1

4

(
f(x, z)− f

(
x+

Lx

4
,−z

)
+ f

(
x+

2Lx

4
, z

)
− f

(
x+

3Lx

4
,−z

))
.

Theorem A.2.2. Pvis and Ptherm are commutative orthogonal projections to
Xvis and Xtherm, respectively.

Proof. It is obvious that Pvis and Ptherm are bounded linear operators.

For any f ∈ X , it holds that

Pvis[f ](x,−z) =
1

2
(f(x,−z)− f(x, z)) = −Pvis[f ](x, z)

and

Ptherm[f ]

(
x+

Lx

4
,−z

)
=

1

4

(
f

(
x+

Lz

4
,−z

)
− f

(
x+

2Lx

4
, z

)
+ f

(
x+

3Lx

4
,−z

)
− f (x, z)

)
= −Ptherm[f ](x, z).

Furthermore, Pvis[f ] = f holds for every f ∈ Xvis, and Ptherm[g] = g holds for
every g ∈ Xtherm. Thus PvisX = Xvis and PthermX = Xtherm hold.

For any f ∈ X , it holds that

Pvis [Pvis[f ]] (x, z) =
1

2
(Pvis[f ](x, z)− Pvis[f ](x,−z)) = Pvis[f ](x, z)

and

Ptherm [Ptherm[f ]] (x, z)

=
1

4

(
Ptherm[f ](x, z)− Ptherm[f ]

(
x+

Lx

4
,−z

)
+Ptherm[f ]

(
x+

2Lx

4
, z

)
− Ptherm[f ]

(
x+

3Lx

4
,−z

))
= Ptherm[f ](x, z).

Thus Pvis and Ptherm are projections.
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For any f ∈ X ,

Pvis[Ptherm[f ]](x, z)

=
1

2
(Ptherm[f ](x, z)− Ptherm[f ](x,−z))

=
1

8

(
f(x, z)− f

(
x+

Lx

4
,−z

)
+ f

(
x+

2Lx

4
, z

)
− f

(
x+

3Lx

4
,−z

)
−f(x,−z) + f

(
x+

Lx

4
, z

)
− f

(
x+

2Lx

4
,−z

)
+ f

(
x+

3Lx

4
, z

))
=

1

4

(
Pvis[f ](x, z)− Pvis[f ]

(
x+

Lx

4
,−z

)
+Pvis[f ]

(
x+

2Lx

4
, z

)
− Pvis[f ]

(
x+

3Lx

4
,−z

))
= Pvis[Ptherm[f ]](x, z).

Thus Pvis and Ptherm are commutative.
Finally, we shall show Pvis and Ptherm are orthogonal projections. It is

sufficient to prove that

⟨Pvis[f ], g⟩ = ⟨f,Pvis[g]⟩ (A.1)

and
⟨Ptherm[f ], g⟩ = ⟨f,Ptherm[g]⟩ (A.2)

for any f, g ∈ X . We can see easily

⟨f(x,−z), g(x, z)⟩ = ⟨f(x, z), g(x,−z)⟩

for any f, g ∈ X . It proves the identity (A.1). Furthermore, by simple compu-
tations, we have the following properties for any f, g ∈ X :⟨

f(x, z), g

(
x+

Lx

2
, z

)⟩
=

⟨
f

(
x+

Lx

2
, z

)
, g (x+ Lx, z)

⟩
=

⟨
f

(
x+

Lx

2
, z

)
, g (x, z)

⟩
,⟨

f (x, z) , g

(
x+

Lx

4
, z

)⟩
=

⟨
f

(
x+

3Lx

4
, z

)
, g (x+ Lx, z)

⟩
=

⟨
f

(
x+

3Lx

4
, z

)
, g (x, z)

⟩
,⟨

f (x, z) , g

(
x+

3Lx

4
, z

)⟩
=

⟨
f

(
x+

Lx

4
, z

)
, g (x+ Lx, z)

⟩
=

⟨
f

(
x+

Lx

4
, z

)
, g (x, z)

⟩
.

Then the identity (A.2) follows immediately.
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Theorem A.2.3. Let V be a metric space with an inner product ⟨·, ·⟩V : V ×
V → R. Let P,Q : V → V be commutative orthogonal projections. Then

WP ⊥WQ

holds, where WP and WQ are subspaces of V satisfying the orthogonal direct
sum decompositions

PV =WP ⊕ (PV ∩QV ), QV =WQ ⊕ (PV ∩QV ).

Proof. First, we prove that PQV = PV ∩QV . If u ∈ PQV = QPV , obviously
u ∈ PV and v ∈ QV , thus PQV ⊆ PV ∩ QV holds. If u ∈ PV ∩ QV , then
u = Pv = Qw for some v, w ∈ V . Since P and Q are projections, it follows that

PQu = PQQw = PQw = Pu = PPv = Pv = u ∈ PQV.

Thus PV ∩QV ⊆ PQV . Therefore PQV = PV ∩QV .
Since P and Q are orthogonal projections, we have orthogonal direct sum

decompositions

PV =WP ⊕QPV, QV =WQ ⊕ PQV,

where WP = PV ∩Ker Q and WQ = QV ∩Ker P . Take arbitrary u ∈WP and
v ∈WQ. There exists u0 ∈WP such that u = Pu0 since WP ⊆ PV . Then

⟨u, v⟩V = ⟨Pu0, v⟩V = ⟨u0, Pv⟩V = ⟨u0, 0⟩V = 0.

Therefore WP ⊥WQ.

From Theorem A.2.2 and A.2.3, the following is deduced.

Theorem A.2.4. Consider orthogonal direct sum decompositions

Xvis = X̂vis ⊕ (Xvis ∩ Xtherm), Xtherm = X̂therm ⊕ (Xvis ∩ Xtherm).

Then X̂vis ⊥ X̂therm holds.
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