A summary of "The m-step solvable Grothendieck conjecture for affine hyperbolic curves over finitely generated fields"

Naganori Yamaguchi

n anabelian geometry, the following conjecture, called the Grothendieck conjecture for hyperbolic curves, is a central problem: If the (tame) arithmetic fundamental groups of two hyperbolic curves over a field k are isomorphic as profinite groups (over the absolute Galois group G_{k}), are these hyperbolic curves are isomorphic (over k)? For this conjecture, the case where k is finitely generated over the rational number field \mathbb{Q} and the hyperbolic curves have genus 0 was settled by Hiroaki Nakamura, the case where k is either a finite field or finitely generated over \mathbb{Q} and the hyperbolic curves are affine was settled by Akio Tamagawa, and finally, this conjecture was completely proved by Shinichi Mochizuki when k is a sub- ℓ-adic field (i.e., a subfield of a field finitely generated over the ℓ-adic local field \mathbb{Q}_{ℓ} for a fixed prime ℓ). Thus, the Grothendieck conjecture has been proved. However, we can consider the following extension of this conjecture:
(Q) If certain quotients of the (tame) arithmetic fundamental groups of two hyperbolic curves over k are isomorphic as profinite groups (over G_{k}), are these hyperbolic curves isomorphic (over k)?

In particular, when the quotients are the maximal geometrically m-step solvable quotients of the (tame) arithmetic fundamental group, we call (Q) the m-step solvable Grothendieck conjecture, where m is a positive integer. This conjecture was proved in the case where " k is an algebraic number field satisfying certain conditions, $m \geq 2$, and the hyperbolic curves are 4-punctured projective lines over k " by Hiroaki Nakamura, where " k is a sub-ℓ-adic field and $m \geq 5$ " by Shinichi Mochizuki, and where " k is finitely generated over the prime field, $m \geq 3$, and the hyperbolic curves have genus 0 and satisfy a certain condition" by the author.

In this paper, we prove the m-step solvable Grothendieck conjecture for affine hyperbolic curves in most cases, as follows.
(Notation) Let m be a positive integer. For $i=1,2$, let k_{i} be a field of characteristic $p_{i} \geq 0$ and $G_{k_{i}}$ the absolute Galois group of k_{i}. Let X_{i} be a proper, smooth curve over k_{i} and E_{i} a closed subscheme of X_{i} which is finite, étale over k_{i}. Let g_{i} be the genus of X_{i} and r_{i} the degree of E_{i} over k_{i}. Set $U_{i}:=X_{i}-E_{i}$. If $p_{i}>0$, then, for $n \in \mathbb{Z}_{\geq 0}$, we write $U_{i}(n)$ for the n-th Frobenius twist of U_{i} over k_{i}. For any extension l over k_{i}, we write $U_{i, l}:=U_{i} \times_{k_{i}} l$. We write $\Pi_{U_{i}}$ for the tame arithmetic fundamental group $\pi_{1}^{\text {tame }}\left(U_{i}, *\right)$ of U_{i} and $\bar{\Pi}_{U_{i}}$ for the tame geometric fundamental group $\pi_{1}^{\text {tame }}\left(U_{i, k^{\text {sep }}}, *\right)$ of U_{i}. We define $\bar{\Pi}_{U_{i}}^{[m]}$ as the m-step derived subgroup of $\bar{\Pi}_{U_{i}}$ and set $\bar{\Pi}_{U_{i}}^{m}:=\bar{\Pi}_{U_{i}} / \bar{\Pi}_{U_{i}}^{[m]}$ and $\Pi_{U_{i}}^{(m)}:=\Pi_{U_{i}} / \bar{\Pi}_{U_{i}}^{[m]}$.

Finite field case

When k_{i} is finite, the m-step solvable Grothendieck conjecture has not been proved in any single case. Thus, the following theorem is a completely new result and even the first result on the conjecture over finite fields.

Theorem A (Theorem 2.16, Corollary 2.22). Assume that k_{1}, k_{2} are finite and that U_{1} is affine hyperbolic.
(1) Assume that m satisfies

$$
\begin{cases}m \geq 2 & \left(\text { if } r_{1} \geq 3 \text { and }\left(g_{1}, r_{1}\right) \neq(0,3),(0,4)\right) \\ m \geq 3 & \left(\text { if } r_{1}<3 \text { or }\left(g_{1}, r_{1}\right)=(0,3),(0,4)\right)\end{cases}
$$

Then $\Pi_{U_{1}}^{(m)}$ and $\Pi_{U_{2}}^{(m)}$ are isomorphic as profinite groups if and only if U_{1} and U_{2} are isomorphic as schemes.
(2) Assume that $m \geq 3$. Let n be an integer satisfying $m>n \geq 2$. Let Φ be an isomorphism $\Pi_{U_{1}}^{(m-n)} \xrightarrow{\sim} \Pi_{U_{2}}^{(m-n)}$ of profinite groups which is induced by an isomorphism $\Pi_{U_{1}}^{(m)} \xrightarrow{\sim} \Pi_{U_{2}}^{(m)}$ of profinite groups. Then Φ is induced (up to inner automorphisms of $\Pi_{U_{2}}^{(m-n)}$) by a unique isomorphism $U_{1} \xrightarrow{\sim} U_{2}$ of schemes.
(Sketch of Proof) First, we reconstruct the decomposition groups of $\Pi_{U_{i}}^{(1)}$ from $\Pi_{U_{i}}^{(m)}$ by using the (quasi-)sections of the natural projection $\Pi_{U_{i}}^{(m)} \rightarrow G_{k_{i}}$. In this step, we always face the difficulty that comes from the fact that we can only use data from $\Pi_{U_{i}}^{(m)}$, not the whole $\Pi_{U_{i}}$. (Just for example, we face this difficulty when proving the separatedness of decomposition groups of $\Pi_{U_{i}}^{(m)}$.) Next, we reconstruct the curve U_{i} from $\Pi_{U_{i}}^{(1)}$ and its decomposition groups. Then we reconstruct the multiplicative group and the addition of the function field of U_{i} by using class field theory and a lemma of Tamagawa. This settles (1), and, by applying (1) to coverings of U_{i}, we prove (2).

Finitely generated field case

Next, we consider the case that k_{i} is a field finitely generated over the prime field. In this case, we assume that $k_{1}=k_{2}$ and write k and p instead of k_{i} and p_{i}, respectively. The following theorem is the main result in this case.

Theorem B (Theorem 4.12, Corollary 4.18). Assume that k is a field finitely generated over the prime field and that U_{1} is affine hyperbolic. Assume that $U_{1, \bar{k}}$ does not descend to a curve over $\overline{\mathbb{F}}_{p}$ when $p>0$.
(1) Assume that m satisfies

$$
\begin{cases}m \geq 4 & \left(\text { if } r_{1} \geq 3 \text { and }\left(g_{1}, r_{1}\right) \neq(0,3),(0,4)\right) \\ m \geq 5 & \left(\text { if } r_{1}<3 \text { or }\left(g_{1}, r_{1}\right)=(0,3),(0,4)\right) .\end{cases}
$$

Then, when $p=0$ (resp. $p>0$), $\Pi_{U_{1}}^{(m)}$ and $\Pi_{U_{2}}^{(m)}$ are isomorphic over G_{k} as profinite groups if and only if U_{1} and U_{2} are isomorphic as k-schemes (resp. $U_{1}\left(n_{1}\right)$ and $U_{2}\left(n_{2}\right)$ are isomorphic as k-schemes for some pair n_{1}, n_{2} of non-negative integers).
(2) Assume that $m \geq 5$. Let n be an integer satisfying $m>n \geq 4$. Let Φ be an isomorphism $\Pi_{U_{1}}^{(m-n)} \xrightarrow{\sim} \Pi_{U_{2}}^{(m-n)}$ of profinite groups over G_{k} which is induced by an isomorphism $\Pi_{U_{1}}^{(m)} \xrightarrow{\sim} \Pi_{U_{2}}^{(m)}$ of profinite groups over G_{k}. Then, when $p=0$ (resp. $p>0$), Φ is induced (up to inner automorphisms of $\bar{\Pi}_{U_{2}}^{m-n}$) by a unique isomorphism $U_{1} \xrightarrow{\sim} U_{2}$ of k-schemes (resp. a unique isomorphism $U_{1}\left(n_{1}\right) \xrightarrow{\sim} U_{2}\left(n_{2}\right)$ of k-schemes for a unique pair n_{1}, n_{2} of non-negative integers satisfying $n_{1} n_{2}=0$).

When $p=0$, Theorem $\mathrm{B}(1)$ for $m=4, g_{1} \geq 1$ is a new result which is not covered by the three previous results (by Nakamura, Mochizuki, and the author). When $p>0$, Theorem B for $g_{1} \geq 1$ is a completely new result.
(Sketch of Proof) To show Theorem B, we need Theorem A(2) and the following theorem on the m-step solvable version of the Oda-Tamagawa good reduction criterion for affine hyperbolic curves.

Theorem C (Theorem 3.8) Assume that $m \geq 2$. Let R be a discrete valuation ring, s the closed point of $\operatorname{Spec}(R), p_{s}$ the characteristic of the residue field of s, and (X, E) a hyperbolic curve over the field of fractions $K(R)$. Set $U:=X-E$. Then (X, E) has good reduction at s if and only if the image of the inertia group of G_{K} in the outer automorphism group of the maximal prime-to- p_{s}^{\prime} quotient of $\bar{\Pi}_{U}^{m}$ is trivial.

By using Galois descent theory, we can reduce the proof of Theorem B to the case that the Jacobian variety of X_{1} has a level N structure for an integer $N \geq 3$ which is not divisible by p and E_{i} consists of k-rational points. We take an integral regular scheme S of finite type over $\operatorname{Spec}(\mathbb{Z})$ with function field k. By replacing S with a suitable open subscheme if necessary, we may assume that N is invertible on S and that there exists a smooth curve $\left(\mathcal{X}_{i}, \mathcal{E}_{i}\right)$ over S whose generic fiber is isomorphic to (and identified with) $\left(X_{i}, E_{i}\right)$. The main step of the proof is to show that the morphism $\zeta_{i}: S \rightarrow \mathcal{M}_{g, r}[N]$ classifying $\left(\mathcal{X}_{i}, \mathcal{E}_{i}\right)$ (with a suitable ordering of the sections in \mathcal{E}_{i} and a suitable level N structure) for $i=1,2$ coincide set-theoretically. By using this, Theorem A, and Theorem C, (1) follows. By applying (1) to coverings of U_{i}, we prove (2).

