
YUKAWA INSTITUTE FOR THEORETICAL PHYSICS

DOCTORAL THESIS

Lattice QCD studies on baryon resonances
and pentaquarks from meson-baryon

scatterings

Author: Kotaro Murakami
A thesis submitted in fulfillment of the requirements for the degree of Doctor of

Science

in the

Department of Physics
Kyoto University

December 21, 2022

https://www.yukawa.kyoto-u.ac.jp/
https://inspirehep.net/authors/2141256
http://www.scphys.kyoto-u.ac.jp/
https://www.kyoto-u.ac.jp/ja


ii

Abstract
In this thesis, motivated by the advantage of the HAL QCD method among the approaches using
lattice QCD for systems involving baryons, we attempt to study baryon resonances and pen-
taquarks in the HAL QCD method. To this end, we analyze meson-baryon scatterings that have
quark pair creation and annihilation processes, where we need to calculate all-to-all propaga-
tors. We utilize the calculation technique that combines the stochastic approximation with the
covariant-approximation averaging (CAA), which has been suggested to be efficient in the HAL
QCD method. We calculate the leading-order (LO) potentials in the derivative expansion us-
ing the time-dependent HAL QCD method and then extract physical observables by solving the
Schrödinger equations with the potentials.

We first investigate the S-wave nucleon-kaon (NK) scatterings, which allow no quark pair
creation and annihilation, as a test of the efficiency of the technique for meson-baryon systems.
We employ all-to-all propagators to put the zero momentum hadron operators both at source and
sink and then use the one-end trick and the CAA. In this study, the pion mass mπ ≈ 570 MeV.
We have observed that the I = 1 potential is more repulsive than the I = 0. The scattering phase
shifts are qualitatively consistent with both the experimental data and the previous theoretical
results, which suggests that the calculation technique in this work is useful for meson-baryon
scatterings in the HAL QCD method. Furthermore, we have found no signals of resonances or
bound states corresponding to Θ+(1540) in the phase shifts at mπ ≈ 570 MeV.

We next study ∆ and Ω baryons from I = 3/2 nucleon-pion (Nπ) and I = 0 Ξ baryon-
antikaon (ΞK̄) scatterings, respectively. This is the first study on meson-baryon scatterings
having the quark pair creation and annihilation in the HAL QCD method. We use a 3-quark-
type source operator with zero momentum at mπ ≈ 410 MeV and mK ≈ 635 MeV, where ∆
as well as Ω baryons are stable. We use the conventional stochastic technique combined with
the CAA for the calculation of all-to-all propagators. We have found that the ΞK̄ system has a
weaker attraction than theNπ system while the binding energy from the threshold is larger for Ω
than for ∆. In addition, the root-mean-square distance of ΞK̄ bound state is smaller than that of
Nπ. These suggest that an inequality mN +mπ −m∆ < mΞ +mK̄ −mΩ comes mainly from a
smaller spatial size of a ΞK̄ bound state due to a larger reduced mass, rather than its interaction.
Results of binding energies agree with those obtained from temporal 2-point functions within
large systematic errors, which are mainly caused by the lattice artifact at short distances.

We finally show the preliminary analysis of S-wave meson-baryon scatterings in the two
octet representations and one singlet representation in the flavor SU(3) limit, which have been
suggested to couple to Λ(1405) in the previous studies using the chiral unitary model. We
calculate an all-to-all propagator to employ a 3-quark-type source operator with zero momen-
tum, using the conventional stochastic technique together with the CAA. The octet meson mass
mM ≈ 670 MeV in our setup. We have found that the 3-point correlation functions have a zero
point in a short distance, which leads to a singular behavior of the LO potentials. The ground
state in every channel seems to be unphysical and may be raised by the singular potential. One
possible reason for such problematic behavior is that the NBS wave function has a 1/r3 behav-
ior in a very short distance together with analytic behavior in a middle and a long distance with
opposite signs to each other. To overcome this problem, we should calculate the 4-point correla-
tion function in addition to the 3-point to suppress the 1/r3 behavior, which is left for our future
works.
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Chapter 1

Introduction

A number of hadrons, which are composed of quarks and gluons, have been discovered until
today. Since the quarks and gluons are described by Quantum chromodynamics (QCD), which
is the Yang-Mills theory [1] with SU(3) gauge symmetry, it is supposed to predict the existence
and properties of all hadrons. However, understanding QCD in a low-energy region, where the
confinement of quarks occurs and hadrons are constructed, is difficult because QCD is asymp-
totically free [2, 3] and the perturbation technique cannot be applied.

Instead, hadrons have been studied by effective models of QCD such as the quark model [4–
6], which describes hadrons as bound states of constituent quarks, and the chiral perturbation
theory (ChPT) [7], which is the low-energy effective field theory that has the same degree of free-
doms as those of hadrons. The quark model characterizes most hadrons as mesons or baryons,
which are composite particles of a quark and an antiquark (qq̄) and three quarks (qqq), respec-
tively, although QCD itself also allows n-quark hadrons with n ≥ 4. Several recent experiments
have discovered hadrons that cannot be predicted by the ordinary quark model, called exotic
hadrons [8]. They are the candidates of 4-quark hadrons (qqq̄q̄) called tetraquarks or 5-quark
hadrons (qqqq̄q̄), called pentaquarks. There are various approaches both on the theoretical and
experimental sides to studying exotic hadrons, but they are still controversial. With this situation,
exploring exotic hadrons is one of the biggest issues in hadron physics.

Lattice QCD [9] is one of the possible non-perturbative calculations of QCD and has success-
fully predicted the dynamics of hadrons. For example, it provides the spectrum of light hadrons
consistent with the experimental results [10, 11]. The lattice QCD studies of exotic hadrons as
well as hadron resonances from the corresponding hadron scatterings play a very important role
in understanding their properties and predicting other exotic hadrons that have never been found
in experiments.

There are two available methods to analyze hadron scatterings in lattice QCD; one is the
finite-volume method [12, 13], which relates energies on finite volume(s) to scattering ampli-
tudes on the infinite volume, and the other is the HAL QCD method [14–16], which extracts in-
teraction potentials directly in lattice QCD and then obtain scattering amplitudes from potentials
by solving the Schorödinger equations in the infinite volume. Many studies in the finite-volume
method have been conducted on meson-meson scatterings such as ππ scattering which couples
to ρ resonance [17], while its application to systems including baryons is quite challenging due
to the difficulty of isolating a specific eigenstate of the system [18]. On the other hand, the time-
dependent HAL QCD method [16] can reduce this difficulty. For this reason, various kinds of
studies on baryon-baryon scatterings in the HAL QCD method have been performed so far (for
a recent review, see Ref. [19]).

In nature, hadron resonances and part of exotic hadrons are often observed in the scatterings
which allow quark pair creation and annihilation processes. Studying such scatterings in lattice
QCD requires all-to-all propagators, which are too time-consuming to calculate exactly, and
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therefore are evaluated approximately. The first attempt at the study of resonances in the HAL
QCD method is the investigation of the ρ resonance from P-wave I = 1 ππ scatterings using the
LapH method [20], which has found that the technique is not applicable because it worsens the
truncation approximation of the derivative expansion of the non-local potential. There is also
work for the same scattering system which employs the hybrid method [21], concluding that this
is not useful in the HAL QCD method due to its large fluctuation coming from the noise vectors.
Recently, Akahoshi et al. proposed an improved calculation technique for all-to-all propagators
to avoid these difficulties as much as possible, in which they use the one-end trick combined
with the covariant-approximation averaging (CAA). The authors also applied it to the P-wave
I = 1 ππ scatterings [22], and then extracted the signal of the ρ resonance successfully. This
work plays a role in opening a new frontier of the studies on meson resonances and tetraquarks
using the HAL QCD method, which, together with the studies in the finite-volume method, will
develop the understanding of their properties.

In our studies, towards the researches of baryon resonances and pentaquarks, we try to
analyze meson-baryon scatterings having quark pair creation and annihilation using a similar
technique to Ref. [22]. Since the HAL QCD method is advantageous compared with the finite-
volume method in that it can avoid the problem due to the existence of a baryon, it is worth
analyzing such scattering systems from the approach of the HAL QCD method. As a first step,
we investigate the S = +1 S-wave nucleon-kaon (NK) scatterings, which allow no quark pair
creation and annihilation. This study has the aspect of a test of the efficiency of the technique
for the meson-baryon systems. We employ all-to-all propagators together with the one-end trick
and the CAA as a calculation technique for the propagators. Thanks to the all-to-all propagators,
we can use the hadron operators with zero momenta at both source and sink together with the
smeared quark operators at the source in this study.

The next study in this thesis is the analysis of P-wave I = 3/2 nucleon-pion (Nπ) and I = 0
Ξ baryon-antikaon (ΞK̄) scatterings, which couple to ∆ and Ω baryons, respectively. This is
the first study on meson-baryon scatterings having the quark pair creation and annihilation in
the HAL QCD method. In order to reduce computational costs, we employ the heavy quark
masses, where u, d quark masses are close to the s quark mass. In this case, ∆ baryon exists as
a stable particle as well as Ω, which is more or less far from the situation in nature. We use a
3-quark-type source operator with zero momentum, which requires an all-to-all propagator, and
then employ the conventional stochastic technique together with CAA.

Furthermore, in this thesis, we show the preliminary study on Λ(1405), one of the exotic
hadrons, in the flavor SU(3) limit. As is the case of the analysis of the Nπ and ΞK̄ scatterings,
we introduce an all-to-all propagator to use a 3-quark-type source operator with zero momentum,
and then we employ the conventional stochastic technique together with CAA.

This thesis is organized as follows. In Chapter 2, we define the lattice QCD theory and
review how to calculate the correlation functions in lattice QCD. Then in Chapter 3, we derive an
asymptotic behavior of the Nambu-Bethe-Salpeter wave function and introduce the HAL QCD
method. In Chapter 4, we express the all-to-all propagator techniques that we use in our studies:
the stochastic estimation and the one-end trick, and then explain the covariant approximation
averaging, which is an efficient method to increase statistics. We show our studies of S-wave
NK scatterings in Chapter 5, and P-wave Nπ and ΞK̄ scatterings in Chapter 6. In Chapter 7,
we present our preliminary study on meson-baryon scatterings to study Λ(1405) in flavor SU(3)
limit. Chatper 8 is devoted to the summary and discussion.
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Chapter 2

Lattice QCD

In this chapter, we review the general aspects of lattice QCD. We first define QCD theory in
continuous spacetime, and then we construct the discretized action of the gauge fields followed
by that of the fermion fields. After that, we introduce the path-integral formula of general
correlation functions in lattice QCD and their calculations and then explain several variations of
fermion operators. For the notation and derivation in this chapter, we refer to Ref. [23].

2.1 QCD in continuum
In this thesis, we consider the QCD theory of Euclidean spacetime.

QCD is a quantum field theory describing quarks and gluons. The quark field is repre-
sented by the Dirac fermions ψ(f)

a,α(x), ψ̄
(f)
a,α(x), the gluon field is represented by the gauge field

(Aµ)ab(x). Here, we represent the subscripts as follows.

• α = 1, 2, 3, 4: spinor index,

• a, b = 1, 2, 3: color index,

• f = 1, 2, 3 · · ·Nf : index for the quark flavor,

• µ = 1, 2, 3, 4: index for the spacetime direction.

In this thesis, we take summation over the same subscript appearing in the equation. Although
we take Nf = 6 in the Standard Model, it is sufficient to consider only light quarks (Nf = 2 or
Nf = 3, etc.) in low-energy regions. Furthermore, we show the fermion fields with the specific
flavor instead of ψ(f)

a,α(x) as, for example, ua,α(x) for the up quark, da,α(x) for the down quark,
sa,α(x) for the strange quark.

The QCD action in continuous spacetime is defined by

S = SF [ψ, ψ̄, A] + SG[A],

SF [ψ, ψ̄, A] =

Nf∑︂
f=1

∫︂
d4x ψ̄

(f)
(x)(γµDµ(x) +m(f))ψ(f)(x),

SG[A] =
1

2g2

∫︂
d4x tr[Fµν(x)Fµν(x)].

(2.1)
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Here,m(f) is the quark mass, g is the coupling constant of the gauge field, andDµ(x) and Fµν(x)
are given by

Dµ(x) = ∂µ + iAµ(x),

Fµν(x) = −i[Dµ(x), Dν(x)] = ∂µAν(x)− ∂νAµ(x) + i[Aµ(x), Aν(x)].
(2.2)

Also, tr[·] in SG[A] denotes the trace in the color space. γµ is the gamma matrix in the Euclidean
spacetime satisfying the following equation:

{γµ, γν} = 2δµν1. (2.3)

The action Eq. (2.1) is invariant under the gauge transformation given by

ψ(x)→ ψ′ = Ω(x)ψ(x),

ψ̄(x)→ ψ̄
′
= ψ̄(x)Ω(x)†,

Aµ(x)→ A′
µ(x) = Ω(x)Aµ(x)Ω(x)

† + i(∂µΩ(x))Ω(x)
†,

(2.4)

where Ω(x) is the SU(3) gauge transformation matrix.

2.2 QCD action on lattice
We formulate the QCD action on the discretized spacetime which satisfies the following criteria.

• In the continuous limit (a → 0 for the lattice spacing), the lattice action becomes the
continuous one.

• The lattice action is Hermitian.

• The lattice action has the same symmetry as that in continuum. If it cannot, it is instead
supposed to have an approximate symmetry which becomes the continuous one in the
continuum limit.

The first two are obviously necessary. For the third one, the gauge symmetry can be requested
on a lattice while the rotation symmetry of spacetime cannot be defined. Thus the symmetry
of swapping the two axes is instead requested. We note that the lattice QCD action is not
determined uniquely by the above request.

2.2.1 Gauge action on lattice
Gauge field on lattice

First, we note that we cannot introduce a gauge field on a lattice in the same way as that in
continuous spacetime. This is because the gauge fields in continuous spacetime are associated
with the transformation of the internal degrees of freedom for the Dirac fermions ψ(f)

a,α(x) under
the infinitesimal translations in spacetime, which cannot be defined on a lattice. Instead, we
define gauge fields on the lattice as transformation matrices under the translation by the smallest
unit a. That is, we define (Uµ)cb(x) such that (U †

µ)ab(x)ψ
(f)
b,α(x) transforms in the same way
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FIGURE 2.1: Graphical representation of the link variables.

as that of ψ(f)
a,α(x + aµ̂) under gauge transformation. Thus the gauge transformation of such

variables is given by

Uµ(x)→ Ω(x)Uµ(x)Ω
†(x+ aµ). (2.5)

The field Uµ(x) is called a linked variable. On the lattice embedded in continuous spacetime, it
can be represented as a Wilson line along a straight line from x to x+ aµ̂ as

Uµ(x) = P exp

(︃
i

∫︂ x+aµ̂

x

A · ds
)︃
, (2.6)

where P denotes the path-order product. When a is sufficiently small, we have the behavior of
the link variable in the continuum limit a→ 0 as

Uµ(x) ≈ exp(iaAµ(x)) +O
(︁
a2
)︁
. (2.7)

For convenience, we introduce the link variable in the negative direction U−µ(x) as

U−µ(x) = Uµ(x− aµ̂)†, (2.8)

which transforms under the gauge transformation as

U−µ(x)→ Ω(x)U−µ(x)Ω
†(x− aµ). (2.9)

We represent the link variables graphically in Figure 2.1.

Wilson gauge action

We construct the lattice gauge action using the link variableUµ(x). First, we define the following
variable:

Uµν(x) = Uµ(x)Uν(x+ aµ̂)U−µ(x+ aµ̂+ aν̂)U−ν(x+ aν̂), (2.10)

called the plaquette variable. This is shown graphically in Fig. 2.2. The Wilson gauge action [9]
is defined as

SG[U ] =
2

g2

∑︂
x

∑︂
µ<ν

Re(tr[1− Uµν(x)]). (2.11)

This is invariant under the gauge transformation because the trace of the plaquette variable is
invariant. The Wilson gauge action is also Hermitian and symmetric with respect to the swapping
of the axes in the spacetime. Furthermore, when a is small enough, using Eq. (2.7), the action
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FIGURE 2.2: Diagrammatic picture of the plaquette.

reads

SG[U ] =
a4

2g2

∑︂
x

∑︂
µ,ν

tr[(Fµν(x))
2] + o(a5)

→
a→0

1

2g2

∫︂
d4x tr[Fµν(x)Fµν(x)],

(2.12)

which is the same as that in continuous spacetime.

2.2.2 Fermion action on lattice
Naive fermion action

We first consider a naive discretization of the fermion action in continuous spacetime. Here, we
assume Nf = 1 for simplicity.

Changing the integral to the summation and the derivatives to the difference, we get the free
fermion action. We then obtain the action with the interaction by inserting a link variable Uµ(x)
between the two fermions so that the action is gauge invariant. The explicit form is described as

SF [ψ, ψ̄, U ] = a4
∑︂
x

ψ̄(x)
(︂∑︂

µ

γµ
Uµ(x)ψ(x+ aµ̂)− U−µ(x)ψ(x− aµ̂)

2a
+mψ(x)

)︂
. (2.13)

This satisfies the requirements that we impose for the QCD action as well as the gauge action.
However, as seen later, a “prescription” for this action is necessary to describe physics in con-
tinuous spacetime properly.

Fermion doubler problem

From the following, we describe the fermion action as

SF [ψ, ψ̄, U ] = a4
∑︂
x,y

ψ̄a,α(x)D(x|y)αβ
ab
ψb,β(y), (2.14)
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where D(x|y)αβ
ab

is called the Dirac operator. For the naive fermion action, it is given by

D(x|y)αβ
ab

=
∑︂
µ

(γµ)αβ
(Uµ)ab(x)δx+aµ,ŷ − (U−µ)ab(x)δx−aµ,ŷ

2a
+mδabδαβδx,y. (2.15)

For simplicity, we consider the free fermion (Uµ(x) = 1). The discrete Fourier transforma-
tion for the Dirac operator gives

D̃(p|q) = 1

|Λ|4
∑︂
x,y

e−ip·xD(x|y)eiq·y

=
1

|Λ|4
∑︂
x

e−i(p−q)·x
(︂∑︂

µ

γµ
eiqµa − e−iqµa

2a
+m1

)︂
= δp,qD̃(p),

(2.16)

where

D̃(p) = m1+
i

a

∑︂
µ

γµ sin(pµa). (2.17)

Thus the inverse of the Dirac operator is given by

D̃
−1
(p) =

m1− i
a

∑︁
µ γµ sin(pµa)

m2 + 1
a2

∑︁
µ sin

2(pµa)
(2.18)

The poles of this matrix are associated with the physical particles. In the massless case m = 0,
we have

D̃
−1
(p) = −ia

∑︁
µ γµ sin(pµa)∑︁
µ sin

2(pµa)
, (2.19)

which has not only a pole at pµ = (0, 0, 0, 0), corresponding to a physical particle in the contin-
uum QCD theory, but also other 15 poles such as pµ = (π/a, 0, 0, 0) and pµ = (π/a, π/a, 0, 0).
These 15 poles correspond to the particles that do not exist in the continuum QCD theory, which
are called doublers. Therefore, lattice QCD theory with such action describes physics in the
continuum limit that is different from QCD in continuous spacetime due to the presence of
doublers.

Wilson fermion action

Wilson proposed a fermionic action without the doubler in the continuum limit, called the Wilson
fermion action. The Fourier-transformed Dirac operator of the Wilson fermion action without
the interaction is defined by

D̃(p) = m1+
i

a

∑︂
µ

γµ sin(pµa) +
1

a

∑︂
µ

(1− cos(pµa))1. (2.20)
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The last term is the new term called the Wilson term. Its inverse matrix is given by

D̃
−1
(p) =

(m+ 1
a

∑︁
µ(1− cos(pµa)))1− i

a

∑︁
µ γµ sin(pµa)

(m+ 1
a

∑︁
µ(1− cos(pµa)))2 +

1
a2

∑︁
µ sin

2(pµa)
, (2.21)

which has 16 poles as well. However, each pole has a mass of

m+
2l

a
, (2.22)

where l is the number of the components of π/a in the pole position for m = 0. Therefore, for
the Wilson fermion action, there are one physical particle and doublers with the mass ofO(1/a),
and only the physical one survives in the continuum limit.

The Dirac operator of the Wilson fermion action in the real space with the interaction is
expressed as

D(x|y)αβ
ab

=
(︂
m+

4

a

)︂
δαβδabδx,y −

1

2a

±4∑︂
µ=±1

(1− γµ)αβUµ(x)abδx+aµ̂,y, (2.23)

where γ−µ = −γµ. For the general number of flavors Nf , the Wilson fermion action is given by

SF [ψ, ψ̄, U ] = a4
∑︂
f

∑︂
x,y

ψ̄
(f)
a,α(x)D

(f)(x|y)αβ
ab
ψ

(f)
b,β (y), (2.24)

where D(f) is the Wilson operator Eq. (2.23) with the mass parameter m(f).
The Wilson fermion satisfies the following:

D† = γ5Dγ5. (2.25)

This property is called γ5-hermiticity.

Chiral symmetry on lattice and Ginsparg-Wilson relation

The chiral transformation (U(1)×SU(Nf )) in continuous spacetime is given by

ψ → ψ′ = eiαiTiγ5ψ

ψ̄ → ψ̄
′
= ψ̄eiαiTiγ5 ,

(2.26)

where Ti is a generator of SU(Nf ) or U(1). We consider this transformation on the lattice
spacetime as well. Here, we consider the massless case.

For the action which has the chiral symmetry, the Dirac operator satisfies

Dγ5 + γ5D = 0. (2.27)

This holds for the naive fermion action, while it does not for the Wilson fermion action be-
cause of the Wilson term, which is proportional to 1 in the spinor space. In other words, the
Wilson fermion action does not have the chiral symmetry. Nielsen and Ninomiya showed that
there are always doublers for the actions on the lattice that satisfy the following requirements
simultaneously [24–26]:
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• translation symmetry,

• chiral symmetry,

• hermiticity,

• locality.

This indicates no fermion action that removes doublers and satisfies chiral symmetry.
Ginsparg and Wilson introduced an “approximate chiral symmetry” [27] by proposing the

equation for the Dirac operator as

Dγ5 + γ5D = aDγ5D (2.28)

instead of Eq. (2.27). This is called the Ginsparg-Wilson relation and is obtained from the
renormalization transformation in the continuum limit. Of course, the equation coincides with
Eq. (2.27) in the continuum limit.

We define the transformation of the “approximate chiral symmetry” as

ψ′ = exp
(︂
iαiTiγ5(1−

a

2
D)
)︂
ψ

ψ̄
′
= ψ̄ exp

(︂
iαiTi(1−

a

2
D)γ5

)︂
.

(2.29)

Fermion actions satisfying the Ginsperg-Wilson relation are invariant under this transformation.
The projection operator for the “chirality” is described as

P̂R =
1 + γ̂5

2
, P̂L =

1− γ̂5
2

, (2.30)

where γ̂5 = γ5(1−aD). Since γ̂25 = 1, P̂R and P̂L satisfy the properties of projection operators;

P̂
2

R = P̂R, P̂
2

L = P̂L, P̂LP̂R = P̂RP̂L = 0. (2.31)

We define fermions of right-handed and left-handed “chirality” on a lattice as

ψR = P̂Rψ, ψL = P̂Lψ ψ̄R = ψ̄P̂L, ψ̄L = ψ̄P̂R. (2.32)

When the Ginsparg-Wilson relation is satisfied, the mixing of the “chirality” does not appear in
the action, which is the same argument as for the chiral symmetry on continuous space-time.

The mass term for the Wilson fermion is given by

m(ψ̄LψR + ψ̄RψL) = mψ̄
(︂
1− a

2
D
)︂
ψ, (2.33)

and then we get the Dirac operator with the mass term Dm as

Dm = D +m
(︂
1− a

2
D
)︂
= ωD +m1

(︂
ω = 1− a

2
m
)︂
. (2.34)

One of the Dirac operators satisfying the Ginsparg-Wilson relation is the overlap fermion [28].
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2.2.3 Improvement of the action
In this section, we explain the method called the improvement [29, 30], which deforms the lattice
action so that it becomes closer to the continuous one. We first explain the improvement of the
difference as a simple example, and we then show the improvement of the lattice QCD action.

Improvement of differences

We improve the difference so that the discretization error cancels out. For a continuous function
f(x) and for a small number a (corresponding to the lattice spacing), we consider the following
difference:

f(x+ a)− f(x− a)
2a

= f ′(x) + a2
1

6
f ′′′(x) +O

(︁
a4
)︁
. (2.35)

Then we can treat the above difference as the approximation of the first-order derivative f ′(x).
As shown above, the discretization error is O(a2).

Here we add other terms to cancel the third-order derivative term as

f(x+ a)− f(x− a)
2a

+ a2D(3)[f ](x) = f ′(x) +O
(︁
a4
)︁
, (2.36)

where D(3)[f ](x) is linear combinations of {f(x+na)}n∈Z that satisfies D(3)[f ](x) = f ′′′(x) +
O(a2). This equation no longer has the O(a2) error.

In the above case,

D(3)[f ](x) = −1

6

f(x+ 2a)− 2f(x+ a)− 2f(x− a)− f(x− 2a)

2a3
. (2.37)

We note that this is not uniquely determined.

Improvement of the lattice QCD action

Here we consider the Wilson gauge action SG[U ] and the Wilson fermion action SF [U, ψ, ψ̄],
which have errors of O(a2) and O(a), respectively. In order to perform the improvement, we
first consider the Lagrangian density of the lattice action embedded in the continuous spacetime
and its expansion with respect to a as

L(x) = L(0)(x) + aL(1)(x) + a2L(2)(x) +O
(︁
a3
)︁
. (2.38)

Here, L(0)(x) is the Lagrangian density of QCD theory in continuum, and L(n)(x) corresponds
to the discretization error ofO(an). The mass dimension of L(n)(x) is n+4. We can restrict the
form of the error L(n)(x) by considering the invariance under the symmetry of the lattice action.
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For example, L(1)(x) is the linear combination of the following five terms;

L(1)
1 (x) = ψ̄(x)σµνFµν(x)ψ(x)

L(1)
2 (x) = ψ̄(x)

−→
D µ

−→
D µψ(x) + ψ̄(x)

←−
D µ

←−
D µψ(x)

L(1)
3 (x) = m tr[Fµν(x)Fµν(x)]

L(1)
4 (x) = m(ψ̄(x)γµ

−→
D µψ(x)− ψ̄(x)γµ

←−
D µψ(x))

L(1)
5 (x) = m2ψ̄(x)ψ(x),

(2.39)

where σµν = [γµ, γν ]/2i and the arrow on the Dirac operator represents the direction in which
the derivative acts (left or right). Since they are related to each other from the Dirac equation
(γ ·D +m)ψ(x) = 0 as

L(1)
1 − L

(1)
2 + 2L(1)

5 = 0

L(1)
4 + 2L(1)

5 = 0,
(2.40)

three of the five terms L(1)
1 , L(1)

3 , and L(1)
5 are independent. Also, since L(1)

3 and L(1)
5 are propor-

tional to L(0)(x), we can absorb the two terms by redefining the bare parameters g and m, and
then only L(1)

1 survives. Therefore, the lattice improved action up to O(a) is obtained as

Simp = SG + SF + cswa
5
∑︂
x

∑︂
µ<ν

ψ̄(x)
1

2
σµνF̂ µν(x)ψ(x), (2.41)

where F̂ µν(x) is the quantity which is defined on the lattice and satisfies F̂ µν(x) = Fµν(x) +
O(a). This is not uniquely determined, but the following form is often used [31]:

F̂ µν(x) =
−i
8a2

(Qµν(x)−Qνµ(x)), (2.42)

where Qµν(x) is represented as

Qµν(x) = Uµν(x) + Uν−µ(x) + U−µν(x) + U−νµ(x). (2.43)

The new term in Eq. (2.41) is represented in Fig. 2.3 and is called the clover term.
The coefficient csw, called the Sheikholeslami-Wohlert coefficient, has been determined non-

perturbatively using the PCAC relation on the lattice1.
As seen above, the O(a) improvement changes only the Wilson fermion action since the

Wilson gauge action has the error of O(a2). We improve the Wilson gauge action up to O(a2)
by adding the rectangular plaquette variables. Refs. [32, 33] determines the coefficients of each
term in the improved gauge action from the real-space block-spin renormalization group. The
action with the coefficients is called the Iwasaki gauge action.

1The Wilson fermion action provides physical quantities with large discretization error coming from the break-
ing of the chiral symmetry, which makes it difficult to perform the extrapolation a → 0 in practice. The improve-
ment of the fermion action plays a role in reducing such errors (and the operator). From this point of view, the
action satisfying the Ginsparg-Wilson relation has already been improved up to O(a).
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FIGURE 2.3: Diagrammatic picture of the clover term.

2.3 Path-integral formula of Correlation functions in lattice
QCD

2.3.1 General correlation functions
The general correlation function is given by

⟨O1(t1)O2(t2) · · ·On(tn)⟩ =
1

Z
tr[e−(T−t1)ĤÔ1e

−(t1−t2)ĤÔ2 · · · e−(tn−1−tn)ĤÔne
−tnĤ ], (2.44)

where Z is the partition function defined as

Z = tr[e−TĤ ]. (2.45)

Here, Ôi (i = 1, · · · , n) are (composite) operators acting on the Hilbert space. These operators
play roles in the observables or the creations and annihilations of particles. The operator Ĥ
denotes the Hamiltonian of QCD, and ti are Euclidean times of the operator. The time T is the
size of the extension in the time direction and corresponds to the inverse of the temperature.

We can describe Eq. (2.44) in the path integral formula as

⟨O1(t1)O2(t2) · · ·On(tn)⟩ =
1

Z

∫︂
D[U ]D[ψ, ψ̄] e−SG[U ]−SF [ψ,ψ̄,U ]

×O1[Φ(:, t1)]O2[Φ(:, t2)] · · ·On[Φ(:, tn)],

(2.46)

with

Z =

∫︂
D[U ]D[ψ, ψ̄] e−SG[U ]−SF [ψ,ψ̄,U ]. (2.47)

Here, D[Φ] with Φ = {ψ, ψ̄, U} represents the measure for the integral over each field: the
measure for the Grassmann integral for the fermion field and Haar measure for the gauge field.
Also, Oi[Φ(:, ti)] (i = 1, · · · , n) is the functional of the fields at time ti corresponding to Ôi,
where “:” denotes the arbitrary spatial dependence.
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2.3.2 Calculation of the correlation functions
Integration over fermion fields

Since the fermion action is expressed in the bilinear form of the fermion fields, the path integral
for the fermion is the Gaussian integral of the Grassmann variables.

Here we consider Nf = 1 for simplicity. The path-integral for the fermion fields whose
integrand is a product of n ψs and ψ̄s is represented as∫︂

D[ψ, ψ̄] e−a
4
∑︁

i,j ψ̄iDijψj ψi1ψ̄j1ψi2ψ̄j2 · · ·ψinψ̄jn

=
∂

∂θj1

∂

∂θ̄i1
· · · ∂

∂θjn

∂

∂θ̄in

∫︂
D[ψ, ψ̄] e−a

4
∑︁

i,j ψ̄iDijψj+
∑︁

i(θ̄iψi+ψ̄iθi)

=
∂

∂θj1

∂

∂θ̄i1
· · · ∂

∂θjn

∂

∂θ̄in
det
[︁
−a4D

]︁
e
∑︁

i,j θ̄i(a
4D)−1

ij θj

= det
[︁
−a4D

]︁ n∑︂
P1,···,Pn=1

ϵP1···Pn(a−4D−1
i1jP1

) · · · (a−4D−1
injPn

),

(2.48)

where ϵP1···Pn is an antisymmetric tensor which holds ϵ123···n = 1, the index i = (x, c, α) with
spacetime x, color index c, and spinor index α, and “det” denotes the determinant in the space
spanned by i. From this equation, we can get the rule to perform the path integral for the fermion
fields, called the Wick contraction law, as follows.

• For the integrand ψi1ψ̄j1ψi2ψ̄j2 · · ·ψinψ̄jn , we make pairs of ψ and ψ̄. One example is as
follows:

ψi1ψ̄j1ψi2ψ̄j2 · · ·ψinψ̄jn . (2.49)

• Each neighboring pair gives the inverse of the Dirac operator with the indices which the
pair has. That is,

ψiψ̄j = a−4D−1
ij . (2.50)

If the pair is not neighboring, we move either side to be next to the other side by swap-
ping other fermion fields. Then a negative sign is generated for each swap due to the
anticommutation relation of Grassmann numbers.

• The integration results in det[−a4D] multiplying by a summation over n! combinations to
make pairs as

ψi1ψ̄j1ψi2ψ̄j2 · · ·ψinψ̄jn + ψi1ψ̄j1ψi2ψ̄j2 · · ·ψinψ̄jn + · · · , (2.51)

which is equal to Eq. (2.48).

The inverse of the Dirac operator D−1 is called the fermion propagator.
Therefore, the path integral for the fermion in Eq. (2.44) can be performed as

⟨O1(t1)O2(t2) · · ·On(tn)⟩ =
∫︁
D[U ] e−SG[U ] det[D[U ]] O[D−1[U ], U ]∫︁

D[U ] e−SG[U ] det[D[U ]]
(2.52)
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where O[D−1[U ], U ] is the result of the integration with the integrand

O1[ψ(:, t1), ψ̄(:, t1), U(:, t1)]O2[ψ(:, t2), ψ̄(:, t2), U(:, t2)] · · ·ON [ψ(:, tN), ψ̄(:, tN), U(:, tN)],

which depends on the gauge field U explicitly or through the fermion propagator.
Similarly the correlation function for general Nf is represented as

⟨O1(t1)O2(t2) · · ·On(tn)⟩ =
∫︁
D[U ] e−SG[U ](

∏︁
f det

[︁
D(f)[U ]

]︁
) O[D−1[U ], U ]∫︁

D[U ] e−SG[U ](
∏︁

f det[D
(f)[U ]])

, (2.53)

whereD(f)[U ] is the Dirac operator of the flavor f . The Wick contraction law in the multi-flavor
case is the same as for the single-flavor except for one additional rule that only the fermion fields
with the same flavor take contractions.

Integration over gauge fields

We calculate the path-integral for the gauge field numerically. Since the dimension of the integral
is quite huge, the Monte Carlo method is used in its calculation.

In this method, the operator-independent part in Eq. (2.53) described as

e−SG[U ](
∏︁

f det[Df [U ]])∫︁
D[U ] e−SG[U ](

∏︁
f det[Df [U ]])

(2.54)

is regarded as a probability distribution. The integration is performed as follows. First, we gen-
erate samples of link variables {Ui} that follow the probability, called the gauge configurations.
We then calculate the operator O[D−1[Ui], Ui] for each configuration Ui. Finally, we obtain the
correlation function by calculating the average of the operator O[D−1[Ui], Ui] as

⟨O1(t1)O2(t2) · · ·On(tn)⟩ ≈
1

N

N∑︂
i=1

O[D−1[Ui], Ui]. (2.55)

The Monte Carlo method can be applied only if Eq. (2.54) is real and non-negative for any
link variable. The Boltzmann weight e−SG[U ] is positive by definition. For det[Df [U ]], we can
prove that it is real by using the γ5-hermiticity. However, it is not necessarily non-negative.
When the number of quark flavors Nf is even and the quark masses degenerate, the determinant
part det[Df [U ]]

2 is non-negative and the above method can be applied. As an algorithm for
generating the gauge configurations, the hybrid Monte Carlo (HMC) method [34, 35] is used.

For odd Nf , we cannot use the Monte Carlo method in general. However, in the case where
Nf = 3, and the up and down quarks degenerate, we can use an alternative Monte Carlo method
where the strange quark part of the fermion propagator (Ds[U ])−1 is expanded in terms of poly-
nomials [36–38] or rational functions [39–42] of Ds[U ].

2.3.3 Error estimation and jack-knife method
For a physical quantity X , we representXi as the value calculated using the gauge configuration
Ui (i = 1, · · · , N ), and ⟨X⟩ as its true expectation value. The unbiased estimator of ⟨X⟩ is the
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mean value of Xi:

X̂ =
1

N

N∑︂
i=1

Xi. (2.56)

The variance of ⟨X⟩ is given by

σ2
X = ⟨(X − ⟨X⟩)2⟩ = ⟨X2⟩ − ⟨X⟩2, (2.57)

and its unbiased estimator is represented as

σ̂2
X =

1

N − 1

[︂(︂ 1

N

N∑︂
i=1

X2
i

)︂
− X̂

2
]︂
. (2.58)

Thus the estimate of ⟨X⟩ and its error are given by

X̂ ± σ̂X̂ . (2.59)

For the function f({X(a)}) of multiple physical quantities {X(a)}, the error σ̂f is evaluated as

σ̂f =
∑︂
a

⃓⃓⃓⃓
⃓(︂ 1

N

N∑︂
i=1

∂f

∂X(a)

)︂
σ̂X̂

⃓⃓⃓⃓
⃓ , (2.60)

which is called the error-propagation formula. However, if the correlations among {X(a)} are
large, the error evaluated in this equation becomes smaller than the true value, that is, the error
is underestimated. This problem often occurs in lattice QCD calculations. For example, the
mass is calculated by fitting the 2-point correlation function C(t) at several t, which have large
correlations to each other.

There are several ways to evaluate the error more properly for such quantities. One is to
use the fitting that involves the correlation, where we minimize the following quantity for the fit
function f(t):

tmax∑︂
t,t′=tmin

(C(t)− f(t))A(t, t′)(C(t′)− f(t′)). (2.61)

Here, A(t, t′) is the covariance matrix defined as

A(t, t′) =
1

N − 1

N∑︂
i=1

[(C[Ui, t]− C(t))(C[Ui, t′]− C(t′))] , (2.62)

where C[Ui, t] denotes the 2-point correlation function calculated for a gauge configuration Ui
and C(t) = 1

N

∑︁N
i=1C[Ui, t]. However, it is difficult to use this estimation in practice because

the covariance matrix often has so small eigenvalues that the fitting is unstable.
The other is the jackknife method, where we evaluate the error as follows. Let N be the total

number of samples. First, for each physical quantity, we pick up N − 1 samples out of N and
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take an average of them. The average without X(a)
i is denoted by X̂

(a)

i :

X̂
(a)

i =
1

N − 1

∑︂
k ̸=i

X
(a)
k , (2.63)

and they are called jackknife samples. We calculate the function f({X(a)}) for each jackknife

sample (described as f({X̂
(a)

i })). Then the mean value and the error of f({X(a)}) are calculated
as follows.

f̂({X̂
(a)
}) = 1

N

N∑︂
i=1

f({X̂
(a)

i })

σ̂f =

⌜⃓⃓⎷(N − 1)
[︂(︂ 1

N

N∑︂
i=1

(f({X̂
(a)

i }))
2
)︂
−
(︂ 1

N

N∑︂
i=1

f({X̂
(a)

i })
)︂2]︂ (2.64)

By removing multiple original samples for one jackknife sample, we can further reduce the
contributions from the correlations. The correlations decrease and the value of the error increase
as the number of removed samples increases. Then the error saturates to some value, which is
regarded as the actual value of the error without correlations. We use the jackknife method to
estimate the statistical error in our studies.

2.3.4 Two-point correlation functions and its Euclidean-time dependence
Here we consider Eq. (2.44) for n = 2 and set t1 = t and t2 = 0 for simplicity. We also assume
that the vacuum state |0⟩ is unique in this subsection.

The partition function and the correlation function can be expressed in terms of the eigen-
states |n⟩ of the Hamiltonian as

Z =
∑︂
n

⟨n| e−TĤ |n⟩ =
∑︂
n

e−TEn ,

⟨O1(t)O2(0)⟩ =
1

Z

∑︂
m,n

⟨m| e−(T−t)Ĥ Ô1 |n⟩ ⟨n| e−tĤ Ô2 |m⟩

=
1

Z

∑︂
m,n

e−(T−t)Em ⟨m| Ô1 |n⟩ e−tEn ⟨n| Ô2 |m⟩ ,

(2.65)

where En are the energy eigenvalues of the state |n⟩ with the order E0 ≤ E1 ≤ E2 ≤ · · ·. From
now on, we set the vacuum energy E0 = 0. Thus we obtain

⟨O1(t)O2(0)⟩ =
∑︁

m,n ⟨m| Ô1 |n⟩ ⟨n| Ô2 |m⟩ e−tEne−(T−t)Em

1 +
∑︁

m>0 e
−TEm

. (2.66)

Here we assume ⟨0| Ô1 |0⟩ = ⟨0| Ô2 |0⟩ = 0. If T is sufficiently large, all the terms are sup-
pressed by the exponential function except for the vacuum state m = 0, and then the correlation
function reads

⟨O1(t)O2(0)⟩ →
T→∞

∑︂
n

⟨0| Ô1 |n⟩ ⟨n| Ô2 |0⟩ e−tEn . (2.67)
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Therefore, by choosing the proper operators, we can extract the energy of the states from the
Euclidean-time dependence of the correlation function. From now on we call an operator Ô
with nonzero value of ⟨n| Ô |0⟩ (or ⟨0| Ô |n⟩) “an operator Ô having an overlap with the state
|n⟩”. Equation (2.67) has only the contributions from the states which both operators Ô1 and
Ô2 have an overlap with. When t is sufficiently large, the term for the lowest energy state is
dominant, and then the energy of the ground state can be extracted from the t dependence.

From the observation above, hadron masses, for example, can be obtained as follows.

• We set Ô1 and Ô2 to the operators having an overlap with a single hadron in static. We
represent such operators as Ô

†
H and ÔH , respectively.

• Then the correlation function is expressed as

⟨OH(t)O
†
H(0)⟩ →

T→∞
|⟨H| Ô

†
H |0⟩ |2e−tmH + |⟨H ′| Ô

†
H |0⟩ |2e−tEH′ + · · · . (2.68)

Here, |H⟩ is the lightest single-hadron state in static which Ô
†
H can create from the vac-

uum. On the other hand, |H ′⟩ is the 2nd lightest single-hadron state or the multiple-hadron
state, and · · · denotes the contribution from the higher energy states.

• Taking a sufficiently large t, only the term for |H⟩ survives. The hadron mass mH can be
obtained by the fitting using a function f(t) = Ce−mt.

2.3.5 Variations of fermion and hadron operators
In this section, we express the fermion and hadron operators to have a strong overlap with the
states of interest, which provides observables with high accuracy. After that, we explain the
method to increase statistics using the symmetry of the theory.

Point, smeared, and wall source

In order to compute the correlation functions in lattice QCD, we compute the inverse matrix of
the Dirac operator. Since the Dirac operator itself is a large matrix with indices of spacetime,
spinor, and color, it has a high computational cost to calculate the inversion. Instead, we compute
the propagator multiplied by a constant vector s;

D−1(x, y)αβ
ab
sb,β(y) ≡ ga,α(x). (2.69)

This is equivalent to the linear equationDg = s. Since the Dirac operator is a sparse matrix, it is
possible to solve this equation using the algorithm with reasonable computational costs, for ex-
ample, the conjugate gradient (CG) method. For fermion operators, this calculation corresponds
to substituting ψ̄a,α(x) to

∑︁
x,a,α sa,α(x)ψ̄a,α(x). The function s(y)

[x0,α0,a0]
b,β = δy,x0δb,a0δβ,α0

with fixed indices (x0, a0, α0) is called point source, and Eq. (2.69) with this source is called the
point-to-all propagators. In order to compute the propagators for fermion operator ψ̄a0,α0

(x0)
with arbitrary a0 and α0, and fixed x0, we only need to calculate the solution g for each of the
12 point sources with different color a0 and spinor α0 indices.
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As a variation of the source operators, we consider the following source called the smeared
source:

s(y)
[x0,α0,a0]
b,β = δty ,tx0δb,a0δβ,α0

∑︂
z

S(y − z)δz,x0 , (2.70)

where S(y − z) is an arbitrary function called the smearing function. One example of the
smearing function which we often use is the following [43]:

SA,B(x) =

⎧⎪⎨⎪⎩
Ae−B|x| (|x|< L−1

2
)

1 (|x|= 0)

0 (|x|≥ L−1
2
),

(2.71)

where A and B are tunable parameters. The smeared source is associated with the following
fermion operator ∑︂

z

SA,B(x0 − z) ψ̄a0,α0
(z, tx0), (2.72)

which represents a fermion operator with a broad spatial size of about 1/B. Qualitatively, such
fermion operators represent more realistic quarks rather than point operators. In practice, the
2-point correlation functions using the smeared source with tuned parameters A and B isolate
the contribution from the ground state at an earlier timeslice than that for the point source.

Furthermore, the function

s(y)
[tx0 ,α0,a0]

b,β = δty ,tx0δb,a0δβ,α0 (2.73)

with Euclidean time ty and tx0 is called the wall source. As is the case for the point source, we
only have to solve g for the 12 sources with arbitrary a0 and α0. The wall source corresponds
to the fermion operator

∑︁
x0
ψ̄a0,α0

(x0) with spatial coordinate x0. In other words, using such
source can be regarded as using a fermion operator extended uniformly in the spatial volume.
Since the hadron operators composed of

∑︁
x0
ψ̄a0,α0

(x0) have rotation invariance, they seem to
have a large overlap with the lowest hadron states. However, in practice, the 2-point correlation
functions for the wall source do not pick up the contribution from the ground state earlier than
those for the smeared source.

The hadron operator with smeared or wall source includes the term where the original local
quark operators are separated from each other. For example, there is the following term in the
pion operator with the wall source:

∑︂
x ̸=y

ψ̄(x, t)γ5ψ(y, t) ⊂

(︄∑︂
x

ψ̄(x, t)

)︄
γ5

(︄∑︂
y

ψ(y, t)

)︄
. (2.74)

Therefore, in order to keep the gauge invariance of the operators, we have to insert link variables
into the separations. Instead, we perform the gauge fixing to avoid the problem of the breaking
of the gauge invariance of the operators.
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Momentum projection of hadron operators

Let OH(x, tx) be a hadron operator at spacetime (x, tx). Then the Fourier transform of the
operator described as

ÕH(p, tx) =
1

L3

∑︂
x

OH(x, tx)e
−ip·x, (2.75)

has an overlap with hadron states with the same momentum. Therefore, using the operator
ÕH(p = 0) for 2-point correlation functions, the corresponding hadron masses can be extracted
at early timeslice. Thanks to the total momentum conservation, once the source or sink operator
with specific momentum is used, the correlation function gives identical results regardless of the
momentum projection of the other operators.

Symmetry of operators

When the theory has symmetry, the correlation function is invariant under the symmetry trans-
formation as

⟨O1(x1)O2(x2) · · ·On(xn)⟩ = ⟨O′
1(x1)O

′
2(x2) · · ·O′

n(xn)⟩. (2.76)

However, this does not hold in general at the level of one gauge configuration:

O1[U, x1]O2[U, x2] · · ·On[U, xn] ̸= O′
1[U, x1]O

′
2[U, x2] · · ·O′

n[U, xn], (2.77)

due to its fluctuation. Using this fact, we can increase statistics using the transformed operators
added to the original one as

⟨O1(x1)O2(x2) · · ·On(xn)⟩ ≈
1

N

N∑︂
i=1

1

2
(O1[Ui, x1]O2[Ui, x2] · · ·On[Ui, xn]

+O′
1[Ui, x1]O

′
2[Ui, x2] · · ·O′

n[Ui, xn]).

(2.78)

One example of the symmetries in which we can easily apply the technique is the translation
in the time direction. We can increase statistics of the 2-point correlation functions by using the
average of the observables over timeslices as

1

T

∑︂
t0

⟨O1(t+ t0)O2(t0)⟩. (2.79)

We note that the computational cost, whose main contribution is the one from the calculation of
the inverse of the Dirac operator, enhances as well by the total number of timeslices.
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Chapter 3

HAL QCD method

In this chapter, we explain the HAL QCD method, which is one of the methods to extract infor-
mation on hadron scatterings. In order to obtain it in QCD, we consider the following quantity
called the Nambu-Bethe-Salpeter (NBS) wave function:

ΨW (r) = ⟨0| Ô1(r, 0)Ô2(0, 0) |H1, H2;W ⟩ , (3.1)

where |H1, H2;W ⟩ is the two-body hadron state with the total energy W . The detail of the
definition will be explained later. In the limit of |r|→ ∞, the NBS wave function asymptotically
takes the following form:

ΨW (r) ∝
|r|→∞

sin
(︁
kr − l

2
π + δl(k)

)︁
kr

eiδ
l(k)Y l

m(Ω), (3.2)

where δl(k) is the scattering phase shift of hadron two-body scattering defined by the S-matrix.
From this fact, the NBS wave function can be regarded as a wave function in the scattering theory
in quantum mechanics. Aoki, Ishii, and Hatsuda proposed a method to obtain the scattering
phase shifts by extracting the interaction potential from the NBS wave function and then solving
the Schrödinger equation using the interaction potential [14–16], called the HAL QCD method.

In this chapter, we first derive the asymptotic behavior of the NBS wave function, and then
we introduce the HAL QCD method. Finally, we describe how to obtain the potentials in the
HAL QCD method from the actual lattice QCD calculations.

3.1 Asymptotic behavior of Nambu-Bethe-Salpeter wave func-
tion

In this section, we first define the scattering states and then introduce the off-shell T-matrix,
which is a key quantity in the derivation. Then we prove that the S-matrix can be represented by
one variable, called the scattering phase shift, using its unitarity. Finally, we define the Nambu-
Bethe-Salpeter wave function and derive its asymptotic form by using the Lippmann-Schwinger
equation. For the convention and derivation in this section, we follow Refs. [44, 45].

3.1.1 Scattering states
We define a free one-particle or multiparticle state |α0⟩ as a state which satisfies the following
conditions:
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• |α0⟩ is an eigenstate of the Hamiltonian without the interaction Ĥ0:

Ĥ0 |α0⟩ = Eα |α0⟩ . (3.3)

• They are normalized as

⟨α0|α′
0⟩ = δ(α0 − α′

0). (3.4)

Here, δ(α0 − α′
0) denotes a product of the Kronecker deltas or delta functions for all

quantum numbers that |α0⟩ has.

• The Hilbert space is spanned by all the free states. That is, any state |ψ⟩ can be expanded
as

|ψ⟩ =
∫︂
dα0 |α0⟩ ⟨α0|ψ⟩ . (3.5)

We also consider the states |αin⟩ and |αout⟩ that satisfy the following conditions.

• They are normalized:

⟨αin|α′
in⟩ = δ(αin − α′

in),

⟨αout|α′
out⟩ = δ(αout − α′

out).
(3.6)

• |αin⟩ and |αout⟩ are energy eigenstates of the full Hamiltonian with the same eigenvalues
as those of |α0⟩:

Ĥ |αin⟩ = Eα |αin⟩ ,
Ĥ |αout⟩ = Eα |αout⟩ .

(3.7)

• For any state |ψ⟩, there exists a state e−iĤt |ψ±⟩ such that in the limit t→ ∓∞,

e−iĤt |ψ+⟩ →
t→−∞

e−iĤ0t |ψ⟩ ,

e−iĤt |ψ−⟩ →
t→∞

e−iĤ0t |ψ⟩ ,
(3.8)

and they can be expanded in terms of |αin⟩ and |αout⟩, respectively, as

|ψ+⟩ =
∫︂
dαin g(αin) |αin⟩ ,

|ψ−⟩ =
∫︂
dαout g(αout) |αout⟩ ,

(3.9)

where g(αin) = g(αout) = ⟨α0|ψ⟩ is the expansion coefficient of |ψ⟩ in terms of |α0⟩.

The states satisfying these conditions are called scattering states or asymptotic states. In par-
ticular, |αin⟩ (|αout⟩) is called in (out) states. From the above definitions, we obtain the relation
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between in and out states and |α0⟩ as∫︂
dαin g(αin)e

−iEαt |αin⟩ →
t→−∞

∫︂
dα0 g(α0)e

−iEαt |α0⟩ ,∫︂
dαout g(αout)e

−iEαt |αout⟩ →
t→∞

∫︂
dα0 g(α0)e

−iEαt |α0⟩ ,
(3.10)

which indicates that the scattering state becomes the free state in the limit t→ ±∞ at the level
of the wave packet, which represents the realistic particles.

3.1.2 Off-shell T-matrix and S-matrix
The off-shell T-matrix T (β, α) is defined by

T (β, α) = ⟨β0| V̂ |αin⟩ , (3.11)

where V̂ is the interaction term of the Hamiltonian. The S-matrix is given by

S(β ← α) = ⟨βout|αin⟩ , (3.12)

and the S-matrix operator Ŝ is defined by S(β ← α) = ⟨β0| Ŝ |α0⟩. Furthermore, we introduce
an operator T̂ as Ŝ = 1− iT̂ called the on-shell T-matrix operator.

The off-shell T-matrix and S-matrix have the following relation:

S(β ← α) = δ(β − α)− 2πiδ(Eβ − Eα)T (β, α). (3.13)

Therefore, we obtain

⟨β0| T̂ |α0⟩ = 2πδ(Eβ − Eα)T (β, α). (3.14)

As seen in this equation, the on-shell T-matrix has zero value at Eα ̸= Eβ , while the off-shell
T-matrix T (β, α) is not necessarily zero even at Eα ̸= Eβ . For this reason, T (β, α) is called
“off-shell”.

3.1.3 Unitarity of S-matrices and phase shifts
For simplicity, we consider the elastic scattering of two particles with the same mass. We rep-
resent the free particle state as |α0⟩ = |p1,p2, s, sz⟩, where s and sz are the total spin of the
system and its z-component, respectively. The complete set is then described as

1 =

∫︂
dβ0 |β0⟩⟨β0| =

∑︂
s

∑︂
sz

∫︂
d3q1d

3q2 |q1,q2, s, sz⟩⟨q1,q2, s, sz| . (3.15)

Since the scattering process conserves the total momentum and the total energy of the system,
the T-matrix becomes

⟨k, s′, s′z| T̂ |p, s, sz⟩ = δ(E tot
k − E tot

p )δ(3)(K−P)t(k, s′, s′z ← p, s, sz), (3.16)
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where E tot
K and E tot

P are the total energy, and K and P are the total momentum, p = (p1 −
p2)/2 and k = (k1 − k2)/2 are the relative momentum, and s(′) and sz(′) is the spin and its
z component, respectively. Using this equation, the following relation holds for t(k, s′, s′z ←
p, s, sz) and the off-shell T-matrix:

T (k, s′, s′z,p, s, sz) =
1

2π
δ(3)(K−P)t(k, s′, s′z ← p, s, sz). (3.17)

Since the S-matrix operator is unitary, ŜŜ
†
= Ŝ

†
Ŝ = 1, the T-matrix satisfies

T̂
†
− T̂ = iT̂

†
T̂ . (3.18)

Using Eq. (3.15) and Eq. (3.16), the above equation becomes

t∗(p, s, sz ← k, s′, s′z)− t(k, s′, s′z ← p, s, sz)

= i
∑︂
s′′

∑︂
s′′z

∫︂
d3q δ(E tot

k − E tot
q )t∗(q, s′′, s′′z ← k, s′, s′z)t(q, s

′′, s′′z ← p, s, sz).
(3.19)

From the following, we consider the center-of-mass frame, where the energy conservation law
gives |k|= |p| with the momentum of in and out states k and p, respectively. Then t(k, s′, s′z ←
p, s, sz) can be described as

t(k, s′, s′z ← p, s, sz) =
∑︂
l′,l

∑︂
j,jz

tj(p)l′s′,lsY l
′s′

jjz (Ωk̂)s′zY
ls∗
jjz (Ωp̂)sz , (3.20)

where l is the orbital angular momentum, j and jz are the total angular momentum and its z
component, respectively. The quantity Y lsjjz(Ωp̂)sz is given by

Y lsjjz(Ωp̂)sz =
∑︂
sz

Y l
lz(Ωp) ⟨l, lz, s, sz|l, s, j, jz⟩ , (3.21)

where ⟨l, lz, s, sz|l, s, j, jz⟩ is the Clebsch-Gordan coefficients, which behaves as the ordinary
spherical harmonics. For example, it follows the orthogonal relation∑︂

sz

∫︂
dΩp Y l

′s∗
j′j′z

(Ωp̂)szY lsjjz(Ωp̂)sz = δl′lδj′jδj′zjz (3.22)

for any spin s. Thus Eq. (3.19) reads

t∗j(p, p)ls,l′s′ − tj(p, p)l′s′,ls =
ipE tot

p

4

∑︂
l′′.s′′

t∗j(p, p)l′′s′′,l′s′ tj(p, p)l′′s′′,ls. (3.23)

The meson-baryon system corresponds to a system with spin-1/2 and spin-0. In this case,
s = s′ = s′′ = s′′ = 1/2 and the orbital angular momentum is taken l = j + 1/2 or l = j − 1/2
for specific j. Since the parity in the two cases is opposite, the orbital angular momentum does
not change during the scattering process as long as the theory has the parity symmetry. In other
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words, tj(p)l′1/2,l1/2 is diagonal. Thus Eq. (3.23) becomes

tj∗l (p)− t
j
l (p) =

ipE tot
p

4
tj∗l (p) t

j
l (p), (3.24)

where we abbreviate tjl (p) = tj(p)l1/2,l1/2. This constraint indicates that tjl (p) can be described
in terms of one real variable δjl (p) as

tjl (p) = −
8

pE tot
p

eiδ
j
l (p) sin δjl (p). (3.25)

The variable δjl (p) is called the scattering phase shift.

3.1.4 NBS wave function and its asymptotic behavior
For simplicity, here we consider a system of two scalar particles with the same mass. Let pi
(i = 1, 2) be the momentum of i-th particle and α = (p1,p2) be a set of the quantum numbers
of the two-body system. The NBS wave function is defined as

Ψα(x1,x2) = ⟨0in|ϕ1(x1, 0)ϕ2(x2, 0) |αin⟩ , (3.26)

where ϕi(x, t) (i = 1, 2) are the Heisenberg operators corresponding to i-th particles, |0in⟩ is the
vacuum state of the theory with the interaction (not the free theory).

Any scattering state satisfies the Lippmann-Schwinger equation:

|αin⟩ = |α0⟩+
∫︂
dβ0

T (β, α)

Eα − Eβ + iϵ
|β0⟩ . (3.27)

Thus Eq. (3.26) reads

Ψα(x1,x2) =
1

Zα
⟨0in|ϕ1(x1, 0)ϕ2(x2, 0) |α0⟩

+

∫︂
dβ0

1

Zβ

⟨0in|ϕ1(x1, 0)ϕ2(x2, 0) |β0⟩T (β, α)
Eα − Eβ + iϵ

.
(3.28)

Also, the Lippmann-Schwinger equation for |0in⟩ is given by

|0in⟩ = |00⟩+
∫︂
dγ0

T (γ, 0)

E0 − Eγ + iϵ
|γ0⟩ , (3.29)

where |00⟩ is the vacuum state in the free theory. In the limit |x1 − x2|→ ∞, the following
relation holds:

⟨0in|ϕ1(x1, 0)ϕ2(x2, 0) |α0⟩ ≃
1

Zα
⟨00|ϕ1(x1, 0)ϕ2(x2, 0) |α0⟩ , (3.30)
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where the Zα is a factor which depends on the states |αin⟩ and T (γ, 0). For the derivation, see
Appendix.A in [45]. Using the above equation, Eq. (3.28) becomes

Ψα(x1,x2) ≃
1

Zα
⟨00|ϕ1(x1, 0)ϕ2(x2, 0) |α0⟩

+

∫︂
dβ0

1

Zβ

⟨00|ϕ1(x1, 0)ϕ2(x2, 0) |β0⟩T (β, α)
Eα − Eβ + iϵ

.
(3.31)

Heisenberg fields at t = 0 and free particle states are expanded in terms of the creation and
annihilation operators as

ϕ1(x, 0) =

∫︂
d3k1√︁
(2π)3Ek1

[a1(k1)e
ik1·x + b†1(k1)e

−ik1·x],

ϕ2(x, 0) =

∫︂
d3k2√︁
(2π)3Ek2

[a2(k2)e
ik2·x + b†2(k2)e

−ik2·x],

|α0⟩ = |p1,p2⟩ = a†1(p1)a
†
2(p2) |0⟩ .

(3.32)

Using the commutation relation [ai(p), a
†
j(k)] = δi,jδ

(3)(p− k), we can rewrite the first term in
Eq. (3.31) in terms of the plane waves:

1

Zα
⟨0|ϕ1(x1, 0)ϕ2(x2, 0) |α0⟩ =

1

Zα

1

(2π)3
√︁
2Ep12Ep2

eip1·x1+ip2·x2 . (3.33)

Furthermore, since the integrand of the second term survives only in the case where |β0⟩ is the
two-particle state, the second term reads∫︂

dβ0
1

Zβ

⟨0|ϕ1(x1, 0)ϕ2(x2, 0) |β0⟩T (β, α)
Eα − Eβ + iϵ

=

∫︂
d3k1d

3k2

(2π)3
√︁

2Ek12Ek2

1

Zβ

T (β, α)eik1·x1+ik2·x2

Ep1 + Ep2 − Ek1 − Ek2 + iϵ
.

(3.34)

Since the off-shell T-matrix can be expressed in terms of t(k ← p) as seen in Eq. (3.17), the
above equation becomes∫︂

d3Kd3k

(2π)3
√︁

2Ek12Ek2

1

Zβ

1

2π
δ(3)(K−P)

t(k← p)eik·r+iK·X

Ep1 + Ep2 − Ek1 − Ek2 + iϵ

= eiP·X
∫︂

d3k

(2π)3
√︁

2Ek12Ek2

1

Zβ

1

2π

t(k← p)eik·r

Ep1 + Ep2 − Ek1 − Ek2 + iϵ
,

(3.35)

where X (P) and x (p) is the total and relative coordinates (momentum), respectively.
In the center-of-mass frame P = 0, the NBS wave function in the limit |r|→ ∞ becomes

Ψα(r;p) ≃
1

Zα

eip·r

(2π)32Ep
+

1

4π

∫︂
d3k

(2π)32Ek

1

Zβ

t(k← p)eik·r

Ep − Ek + iϵ
. (3.36)
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Expanding the plane waves in terms of the spherical harmonics represented as

eip·r = 4π
∑︂
l,m

iljl(pr)Y
l
m(Ωr)Y

l∗
m (Ωp), (3.37)

where jl(z) is the spherical Bessel function, we obtain

Ψl
α(r; p) ≃

1

(2π)32EpZα

[︂
jl(pr) +

1

4π

∫︂ ∞

0

k2dk
ZαEp
ZβEk

tl(k, p)jl(kr)

Ep − Ek + iϵ

]︂
. (3.38)

In the energy region of the elastic scattering, tl(k, p) has no poles or branches on the real axis.
Thus in this region, the integral in Eq. (3.38) can be performed as

1

4π

∫︂ ∞

0

k2dk
ZαEp
ZβEk

tl(k, p)jl(kr)

Ep − Ek + iϵ
= − 1

4π

∫︂ ∞

0

k2dk
ZαEp
ZβEk

(Ep + Ek)t
l(k, p)

jl(kr)

k2 − p2 − iϵ

= − i

4π

πp

2

ZαEp
ZαEp

(Ep + Ep)t
l(p, p)h(1)(pr)

= −ipEp
4

tl(p, p)h
(1)
l (pr),

(3.39)

where h(1)l (z) is the spherical Hankel function of the first kind:

h
(1)
l (z) = jl(z) + inl(z),

h
(2)
l (z) = jl(z)− inl(z),

(3.40)

with the spherical Neumann function nl(z). Using Eq. (3.39) and Eq. (3.25), Eq. (3.38) becomes

Ψl
α(r; p) ≃

r→∞

1

(2π)3Zα2Ep

[︂
jl(pr) + ieiδ

l(p) sin δl(p)h
(1)
l (pr)

]︂
=

1

(2π)3Zα2Ep
eiδ

l(p)
[︂
cos δl(p)jl(pr) + sin δl(p)nl(pr)

]︂
.

(3.41)

Since the solutions of the radial part of the Schrödinger equation in the free particles are the
spherical Bessel function and Neumann function, the equation above implies that the NBS wave
function satisfies the Helmholtz equation in the limit r →∞. Furthermore, using the asymptotic
behavior of the spherical Bessel function and the spherical Neumann function:

jl(z) →
z→∞

cos
(︁
z − l+1

2
π
)︁

z
=

sin
(︁
z − l

2
π
)︁

z

nl(z) →
z→∞

sin
(︁
z − l+1

2
π
)︁

z
= −

cos
(︁
z − l

2
π
)︁

z
,

(3.42)

we consequently obtain

Ψl
α(r; p) ≃

r→∞

1

(2π)3Zα2Ep

sin
(︁
pr − l

2
π + δl(p)

)︁
pr

eiδ
l(p), (3.43)

which is the asymptotic behavior of the wave function in the scattering theory in quantum me-
chanics. The phase shift in this equation is the same as the one defined by the S-matrix of the
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hadron scattering of interest.

3.2 HAL QCD method
We saw that we could obtain the scattering phase shift from the asymptotic behavior of the
NBS wave functions. However, it is difficult to calculate the function directly in lattice QCD.
There are two main methods to extract the phase shift indirectly in lattice QCD. One is the finite
volume method, in which we use the boundary conditions in the finite volume. The other is the
HAL QCD method, which we will explain in this subsection.

In this section, we first explain the HAL QCD method and show one example to derive the
next-leading order term of the potential in the derivative expansion. Then we present the naive
application of the HAL QCD method in lattice QCD using the n-point correlation functions and
its difficulties for systems including baryons. Finally, we express the alternative one, called the
time-dependent HAL QCD method, which uses not only the ground state but also the excited
elastic states and enables us to simulate in systems including baryons.

3.2.1 Interaction potentials in the HAL QCD method
The NBS wave function at Euclidean time t is written as

ΨW (r, t) = ΨW (r) e−Wt = ⟨0| Ô1(x+ r, t)Ô2(x, t) |H1, H2,W ⟩ , (3.44)

where Ôi(x, t) (i = 1, 2) are the Heisenberg operators of the hadrons at (x, t), and |H1, H2,W ⟩
is a two-body hadron state with energy W =

√︁
k2 +m2

1 +
√︁
k2 +m2

2. As seen in Sec. 3.1,
in the energy region W < Wth where only elastic scattering occurs, the NBS wave function
satisfies the Helmholtz equation at |r|→ ∞.

(k2 +∇2)ΨW (r) ≃ 0. (3.45)

This equation can be regarded as the Schrödinger equation for a free particle;

H0Ψ
W (r) ≡ −∇

2

2µ
ΨW (r) ≃ k2

2µ
ΨW (r), (3.46)

where µ is the reduced mass.
In the HAL QCD method, we define the potential U(r, r′) as∫︂

d3r′ U(r, r′)ΨW (r′) =
(︂ k2
2µ
−H0

)︂
ΨW (r). (3.47)

The potential is non-local but independent of energy. Also, it becomes zero at |r|→ ∞ by
definition. We note that the potential is defined only in the elastic region W < Wth, and the
definition is not unique, which implies that it is not observable and determined in a certain
scheme. For example, different hadron operators Oi(x, t) give different forms of the potentials,
but provide the same observable such as the scattering phase shifts in principle.
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In practice, we perform the derivative expansion of the non-local potential as

U(r, r′) =
∞∑︂
n=0

V (n)(r)(∇2)nδ(3)(r− r′). (3.48)

The leading-order (LO) term is derived from the NBS wave function ΨW0(r) for a certain energy
as

V (0)(r) =

(︂
k20
2µ
−H0

)︂
ΨW (r)

ΨW (r)
. (3.49)

In order to derive the higher-order terms, we need the NBS wave functions with different
energies. For example, we obtain the LO and next-leading-order (NLO) term from the two
NBS wave functions ΨW0(r) and ΨW1(r) with different energy W0 and W1. They satisfy the
Schrödinger equation as

(V (0)(r) + V (1)(r)∇2)ΨW0(r) =
(︂ k20
2µ
−H0

)︂
ΨW0(r),

(V (0)(r) + V (1)(r)∇2)ΨW1(r) =
(︂ k21
2µ
−H0

)︂
ΨW1(r).

(3.50)

The above two equations can then be expressed using matrices:

(︃
ΨW0(r) ∇2ΨW0(r)
ΨW1(r) ∇2ΨW1(r)

)︃(︃
V (0)(r)
V (1)(r)

)︃
=

⎛⎝(︂ k202µ −H0

)︂
ΨW0(r)(︂

k21
2µ
−H0

)︂
ΨW1(r)

⎞⎠ (3.51)

Thus, the leading-order term V (0)(r) and the next-leading-order term V (1)(r) reads

(︃
V (0)(r)
V (1)(r)

)︃
=

(︃
ΨW0(r) ∇2ΨW0(r)
ΨW1(r) ∇2ΨW1(r)

)︃−1
⎛⎝(︂ k202µ −H0

)︂
ΨW0(r)(︂

k21
2µ
−H0

)︂
ΨW1(r)

⎞⎠
= [ΨW0(r)(∇2ΨW1(r))−ΨW1(r)(∇2ΨW0(r))]−1

×

⎛⎝(∇2ΨW1(r))
(︂
k20
2µ
−H0

)︂
ΨW0(r)− (∇2ΨW0(r))

(︂
k21
2µ
−H0

)︂
ΨW1(r)

−ΨW1(r)
(︂
k20
2µ
−H0

)︂
ΨW0(r) + ΨW0(r)

(︂
k21
2µ
−H0

)︂
ΨW1(r).

⎞⎠
(3.52)

3.2.2 HAL QCD method in lattice QCD
In order to apply the HAL QCD method to the lattice calculation, we consider the following
quantity:

F (r, t) = ⟨O1(x+ r, t+ t0)O2(x, t+ t0) J̄ (t0)⟩, (3.53)

where J̄ (t0) is the operator creating the two-body hadron state, called the source operator, while
O1(x+ r, t + t0)O2(x, t + t0) is called the sink operator. We call Eq. (3.53) the n-point corre-
lation function, where n (n ≥ 3) represents the total number of the single hadron operators at
the source and sink together. Inserting the complete set, the n-point correlation function has the
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following form at T →∞:

F (r, t) →
T→∞

∑︂
n

⟨0| Ô1(x+ r, t+ t0)Ô2(x, t+ t0) |H1, H2,Wn⟩ ⟨H1, H2,Wn| J̄̂J (t0) |0⟩+ · · ·

=
∑︂
n

⟨H1, H2,Wn| J̄̂J (0) |0⟩ΨWn(r) e−Wnt + · · · ,
(3.54)

where the term shown by · · · is the contributions from the inelastic states such as multi-particle
states. Taking t sufficiently large, this reads

F (r, t) ≃
t→∞
⟨H1, H2,W0| J̄̂J (0) |0⟩ΨW0(r) e−W0t, (3.55)

where W0 is the energy of the ground state. This equation gives the NBS wave function for the
ground state.

However, this technique is not useful for systems that include baryons. Here we note that in
the lattice calculation, we always consider a finite-volume system; as seen from Sec. 3.1, we can
get the potential correctly only if it is contained within the finite volume of the system, in other
words, the potential converges to zero at the boundary. In order to get the correct results, we
have to use a sufficiently large volume. In this case, however, we must be careful about another
systematic uncertainty. In a finite volume with a spatial extension L, the difference of the energy
between the ground state and the first excited state behaves as O(1/L2). Therefore, in a large
spatial volume, we have to take quite large t to extract the ground-state term as in Eq.(3.55).
It is difficult, however, to do so for systems including baryons, where the signal-to-noise ratio
for the gauge configurations decreases exponentially when t increases. Therefore, the technique
explained above is not efficient for such systems.

3.2.3 Time-dependent HAL QCD method
We introduce the time-dependent HAL QCD method, which is a method to avoid the problem
discussed above.

First, we define the following quantity called R-correlator:

R(r, t) =
F (r, t)

CH1(t)CH2(t)
, (3.56)

where CH1(t) and CH2(t) are two-point correlation functions for hadrons H1 and H2, respec-
tively. Here we decompose the R-correlator into contributions from elastic and inelastic states
as

R(r, t) =
∑︂
n

AnΨ
Wn(r) e−∆Wnt + (inelastic contributions), (3.57)

where Wn is the energy of the n-th eigen states, An is a coefficient independent of r and t, and
∆Wn = Wn −m1 −m2 is an energy difference from the threshold. From Eq. (3.47), each term
in the elastic part, AnΨWn(r)e−∆Wnt, satisfies∫︂

d3r′ U(r, r′)AnΨ
Wn(r′)e−∆Wnt =

(︃
k2n
2µ
−H0

)︃
AnΨ

Wn(r)e−∆Wnt. (3.58)
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We express k2n/2µ in terms of ∆Wn as

k2n
2µ

=
P(∆Wn)

(∆Wn/M + 1)2
, (3.59)

with M = m1 +m2 and

P(∆Wn) = ∆Wn +
µ+M

2µM
(∆Wn)

2 +
1

2µM
(∆Wn)

3 +
1

8µM2
(∆Wn)

4. (3.60)

In our studies, we expand k2n in terms of ∆Wn as

k2n
2µ

= ∆Wn +
1 + 3δ2

8µ
(∆Wn)

2 +
M2δ2

8µ

∞∑︂
k=3

(k + 1)

(︃
−∆Wn

M

)︃k
≡

∞∑︂
k=1

C(k)
m1,m2

(∆Wn)
k,

(3.61)

where δ = (m1 − m2)/M . In Eq. (3.58), ∆Wn can be rewritten in terms of time derivatives.
Summing over n, therefore, we obtain∫︂

d3r′ U(r, r′)R(r′, t) ≃

[︄
∞∑︂
k=1

C(k)
m1,m2

(︃
− ∂

∂t

)︃k
−H0

]︄
R(r, t). (3.62)

for a large enough t to suppress the inelastic contributions. Since the above equation is valid as
long as the contribution of inelastic scattering is suppressed, the problem occurring for systems
including baryons does not appear.

For meson-baryon systems, we substitute R(r, t) and U(r, r′) in Eq. (3.62) with the ones
having the index for upper spin components of the baryon as Rα(r, t) and Uαβ(r, r′). Applying
the Okubo-Marshak expansion [46] to meson-baryon systems, the LO term of the potential in
the derivative expansion is given by

Uαβ(r, r
′) ≃ V LO(r)δαβδ

(3)(r− r′), (3.63)

where V LO(r) can be extracted from Rα(r, t) for any α as

V LO(r) ≃ 1

Rα(r, t)

[︄
∞∑︂
k=1

C(k)
mM ,mB

(︃
− ∂

∂t

)︃k
−H0

]︄
Rα(r, t). (3.64)

Therefore, calculating the R-correlator from the n-point correlation function and the two-point
correlation function for each hadron, we can obtain the LO potential from Eq. (3.64).

In practice, we truncate an infinite summation over k in Eq. (3.64)1. In this case, we have to
be careful about whether the remaining higher-order contributions are negligibly small.

1There is an alternative method to derive potentials without the expansion in ∆W by using at most the 3rd time
derivatives, which is explained in Appendix A. For the P-wave Nπ and ΞK̄ systems, we have confirmed that this
exact one gives no significant differences from our potential results, showing that the higher-order contributions are
indeed small.
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Chapter 4

Calcualtion of all-to-all propagators and
efficient method to increase statistics

Since the propagators for the point or wall source are computationally inexpensive, a wide va-
riety of correlation functions can be computed using such propagators. However, there are sys-
tems where the correlation functions require propagators from arbitrary space-time points x0,
called the all-to-all propagators. Calculating the all-to-all propagator is equivalent to computing
the inverse matrix of the Dirac operator itself, which has quite expensive computational costs.
Although whether we need the all-to-all propagators depends on the details of the correlation
functions we calculate, there are two typical cases where they are necessary. One is that we
want to pick up hadron states with specific momentum. The other is that we want to see hadron
resonances from the corresponding multi-hadron scatterings, where there are the contractions of
quarks in the same hadron operator or quarks in different hadron operators at the same timeslice.
Such contractions are called quark pair creation and annihilation.

Since it is difficult to calculate the exact all-to-all propagator by the current typical super-
computers, we approximate it. This chapter is organized as follows. First, we describe the
stochastic technique to use noise vectors and the dilution. Then we describe the efficient method
using noise vectors that can be applied to meson operators, called the one-end trick [47, 48].
Finally, we present the covariant-approximation averaging (CAA) combined with the truncated
solver method, which is used together with the all-to-all calculations to increase statistics for
reasonable computational cost.

4.1 Stochastic technique and dilution

4.1.1 Stochastic technique
We define the noise vector ηa,α(x) with the same degrees of freedom as that of the fermion field,
such that the following properties are satisfied

⟨⟨ηa,α(x)η∗b,β(y)⟩⟩ = δx,yδa,bδα,β,

ηa,α(x)η
∗
a,α(x) = 1 (for all x, a, α).

(4.1)
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Note that the indices in the lower equation are not summed over. Then the fermion propagator
D−1(x|y)αβ

ab
can be described as

D−1(x|y)αβ
ab

=
∑︂
c,γ,z

D−1(x|z)αγ
ac
δz,yδc,bδγ,β

=
∑︂
c,γ,z

D−1(x|z)αγ
ac
⟨⟨ηc,γ(z)η∗b,β(y)⟩⟩

= ⟨⟨(D−1η⏞ ⏟⏟ ⏞
≡ψ

)a,α(x)η
∗
b,β(y)⟩⟩

= ⟨⟨(ψa,α(x)η∗b,β(y)⟩⟩.

(4.2)

Here, ψa,α(x) is the solution of the following linear equation

D(x|y)αβ
ab
ψb,β(y) = ηa,α(x). (4.3)

Thus, by sampling the noise vectors in accordance with the distribution Eq. (4.1) and calculating
Eq. (4.3) for each sample, we obtain D−1 as

D−1(x|y)αβ
ab

= lim
Nr→∞

1

Nr

Nr∑︂
r=1

ψ[r]
a,α(x)η

[r]∗
b,β (y), (4.4)

where [r] denotes the label of the samples. In practice, we truncate the number of the samples
and then get the approximated all-to-all propagatorD−1. Since this method only requires solving
Nr linear equations, it has a much low computational cost.

4.1.2 Dilution technique
The dilution technique [49] is a method to suppress errors from the noise vectors. As an example
here, we show the dilution for the discrete time coordinate t, but the same can be applied to other
indices.

We decompose the noise vector as follows

ηa,α(x) =
∑︂
j

η(j)a,α(x), (4.5)

where η(j) is a vector that satisfies the following equation:

η(j)a,α(x) =

{︄
ηa,α(x) (for j = t)

0 (for j ̸= t)
, (4.6)
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which is called a diluted vector. In other words, a diluted vector is a vector such that the value
of j is zero when it differs from time;⎛⎜⎜⎜⎜⎜⎜⎝

ηa,α(x, 0)
ηa,α(x, 1)
ηa,α(x, 2)
·
·
·

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
ηa,α(x, 0)

0
0
0
·
·

⎞⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

=η
(0)
a,α(x,t)

+

⎛⎜⎜⎜⎜⎜⎜⎝
0

ηa,α(x, 1)
0
0
·
·

⎞⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

=η
(1)
a,α(x,t)

+

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

ηa,α(x, 2)
0
·
·

⎞⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

=η
(2)
a,α(x,t)

+ · · · .
(4.7)

Thus Eq. (4.1) reads ∑︂
j,k

⟨⟨η(j)a,α(x)η
(j)∗
b,β (y)⟩⟩ = δx,yδa,bδα,β (4.8)

and then Eq. (4.2) becomes

D−1(x|y)αβ
ab

=
∑︂
j,k

⟨⟨(ψ(j)
a,α(x)η

(k)∗
b,β (y)⟩⟩, (4.9)

where ψ(j)
a,α(x) is the solution of Eq. (4.3) with the right-hand side replaced by η(j)a,α(x). However,

the terms for j ̸= k in Eq. (4.8) and Eq. (4.9) has zero expectation value by definition and
includes only the fluctuations of the noise vector. Therefore, by dropping such terms in Eq. (4.9)
by hand, we can reduce the error coming from the noise vector. That is, we evaluate

D−1(x|y)αβ
ab

=
∑︂
j

⟨⟨(ψ(j)
a,α(x)η

(j)∗
b,β (y)⟩⟩ (4.10)

instead of Eq. (4.9).
The dilution technique can be applied to any indices of the Dirac operator, although perform-

ing the dilution for all indices eventually leads to solving D−1 exactly. In practice, it is likely to
be more efficient to increase the number of indices for the dilution than to increase the number
of samples of the noise vectors. We use the dilution technique in this thesis.

4.2 One-end trick
The one-end trick [47, 48] is an efficient method to calculate the all-to-all propagators using
noise vectors. This can be applied to the correlation functions which include meson operators.

At first, we introduce the noise vector at a time slice defined as

η(t0)a,α (x, tx) = δtx,t0Ξa,α(x), (4.11)

where Ξa,α(x) is the time-independent noise vector which satisfies the following equation

⟨⟨Ξa,α(x)Ξ†
b,β(y)⟩⟩ = δa,bδα,βδx,y. (4.12)

η
(t0)
a,α (x, tx) is equal to the original noise vector with the dilution for the time index.
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FIGURE 4.1: Quark contraction which corresponds to Eq. (4.13).

We consider the following equation:∑︂
y,t0

D−1(x2|y, t0)αγ1
ab
(Γ)γ1γ2D

−1(y, t0|x1)γ2β
bc
, (4.13)

where x1 = (x1, t1), x2 = (x2, t2), and y = (y, t0), Γ is the gamma matrix including the meson
operator. This is shown diagrammatically in Fig. 4.1. Here we insert the Kronecker deltas and
approximate them by the noise vector at t0 as∑︂

y,t0,z,tz ,ty

D−1(x2|z, tz)αδ
ad
δδγ1
db
δz,yδtz ,t0δty ,t0(Γ)γ1γ2D

−1(y, ty|x1)γ2β
bc

≃
∑︂

y,t0,z,tz ,ty

D−1(x2|z, tz)αδ
ad

(︂
η
(t0)
d,δ (z, tz)η

(t0)∗
b,γ1

(y, ty)
)︂
(Γ)γ1γ2D

−1(y, ty|x1)γ2β
bc

=
∑︂
t0

(D−1η(t0))a,α(x2) (η
(t0)†ΓD−1)c,β(x1).

(4.14)

Using the γ5-hermiticity, this reads∑︂
t0

(D−1η(t0))(x2)α
a
(η(t0)†Γγ5D

−1†)c,δ(x1)(γ5)δβ

=
∑︂
t0

(D−1η(t0))(x2)α
a
(D−1γ5Γ

†η(t0))∗c,δ(x1) (γ5)δβ
(4.15)

From the above, Eq. (4.13) can be approximately calculated as follows.

• Create a noise vector η(t0) at the timeslice t0.
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• Solve the following two linear equations:

Dψ(t0) = η(t0),

Dχ(t0) = γ5Γ
†η(t0).

(4.16)

• Eq. (4.13) can be expressed as∑︂
y,t0

D−1(x2|y, t0)αγ1
ab
(Γ)γ1γ2D

−1(y, t0|x1)γ2β
bc
≃
∑︂
t0

ψ(t0)
a,α (x2)χ

(t0)†
c,δ (x1)(γ5)δβ (4.17)

Since this method uses only one noise vector for two all-to-all propagators, it reduces fluctua-
tions due to the noise vectors. Also, for Γ = γ5, the lower equation in Eq. (4.16) is equivalent to
the upper one. Thus we solve only one linear equation for one noise vector.

From the calculation for the I = 1 ππ system [22], the one-end trick has turned out to be
efficient for the HAL QCD method together with all-to-all propagator calculations.

4.3 Covariant approximation averaging
The covariant approximation averaging (CAA) [50] is a method that uses the correlation func-
tions both with and without the approximation to increase statistics with a low computational
cost.

In this section, we first explain the covariant approximation averaging, and then present
the combined method with the truncation solver method [51], namely the all-mode averaging
without low modes, which is employed in this thesis.

4.3.1 General idea
First, we consider the operator O[U ] with the gauge configuration U , and the discrete symmetry
transformation g ∈ G that satisfies the following two requests:

• There exists a operator Og[U ] which holds

O[U g] = Og[U ], (4.18)

where U g is the gauge configuration transformed under g. That is, O[U ] is covariant under
g.

• The operator O satisfies

⟨O[U ]⟩ = ⟨O[U g]⟩. (4.19)

That is, the theory has the symmetry G.

For example, a hadron operator and the discrete translation which keeps the lattice invariant
satisfy both conditions.

We define OG[U ] as

OG[U ] =
1

NG

∑︂
g∈G

O[U g] =
1

NG

∑︂
g∈G

Og[U ], (4.20)
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where NG denotes the rank of G. For the discrete translation, the above equation corresponds
to taking an average of the correlation functions with the hadron operators at different spatial
positions.

Using the condition introduced above, we obtain

⟨OG[U ]⟩ =
⟨︂ 1

NG

∑︂
g∈G

Og[U ]
⟩︂
= ⟨O[U ]⟩. (4.21)

In the lattice calculation, the expectation value is obtained by taking an average over the gauge
configurations;

⟨O[U ]⟩ ≈ 1

NU

∑︂
U

O[U ], (4.22)⟨︂ 1

NG

∑︂
g∈G

Og[U ]
⟩︂
≈ 1

NU

∑︂
U

1

NG

∑︂
g∈G

Og[U ]. (4.23)

From Eq. (4.21), we can use Eq. (4.23) as an estimator of ⟨O[U ]⟩ instead of Eq. (4.22). In
this method, many data are used, as seen in Eq. (4.23), which leads to increasing the statistics.
However, calculating Eq. (4.23) is not efficient because it simply enhances the computation cost
by a factor of NG.

Here we define O(appx) as an approximation of O, and define O(appx)
G as

O
(appx)
G =

1

NG

∑︂
g∈G

O(appx)g. (4.24)

We assume that O(appx) and O(appx)g also satisfy the assumptions Eq. (4.18) and Eq. (4.19), and
have lower computational cost than for O. In the covariant approximation averaging, we calcu-
late the expectation value of the following quantity as an estimator of ⟨O[U ]⟩:

O(imp) = O −O(appx) +O
(appx)
G . (4.25)

Indeed, applying Eq. (4.21) to O(appx)
G , the expectation value of the above equation reads

⟨O(imp)⟩ = ⟨O⟩ − ⟨O(appx)⟩+ ⟨O(appx)
G ⟩

= ⟨O⟩ − ⟨O(appx)⟩+ ⟨O(appx)⟩
= ⟨O⟩,

(4.26)

indicating thatO(imp) is the correct estimator. Since the computational cost forO(appx) andO(appx)
G

is low, this method can increase statistics for the reasonable computational cost.

4.3.2 The CAA combined with the truncation solver method
Here we explain the CAA combined with the truncation solver method, namely all-mode aver-
aging (AMA) without low modes. In this method, we employ O(appx) as

O(appx) = O[D−1
appx[U ]], (4.27)
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where D−1
appx is the fermion propagator approximated by relaxing the condition to terminate the

iteration algorithms to calculate Eq. (2.69) such as the CG method. Thus it is obvious that the
computational cost of D−1

appx is lower than that of the original propagator, while the calculation
of D−1

appx is less accurate than the original one.
There are two choices for the condition to terminate the iterations: one is the number of

iterations Niter itself, and the other is the convergence condition that the iteration terminates
when g satisfies |Dg − s|/|s|< ϵ for a certain value ϵ. In the actual calculation, we relax these
conditions by setting smaller Niter or larger ϵ.

We can apply the method to the bi-conjugate gradient (Bi-CG) method. However, when we
relax the convergence condition of the Bi-CG method, we have to be careful about the possibility
of breaking the covariance of O(appx). Since the Bi-CG method does not reduce the residual
vector monotonically to zero, the magnitude of the approximation may differ among the gauge
configurations. Thus the covariance of O(appx) may be broken and O(imp) may not be the correct
estimator. In practice, it is shown that such an effect is not significant. In addition, there is an
alternative method to avoid the problem even in the Bi-CG method (see Appendix C in Ref. [50]
for more details). In this study, we use the alternative method for all analyses in this thesis.
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Chapter 5

S-wave kaon–nucleon potentials with
all-to-all propagators in the HAL QCD
method

In this chapter, we show the analysis of the S-wave nucleon-kaon (NK) interactions, where
there exists no quark pair creation and annihilation. We use the all-to-all propagators to employ
the hadron operators with zero momenta at both source and sink. As a calculation technique for
such propagators, the one-end trick combined with the CAA is used. In this study, we focus on
the efficiency of the technique of the all-to-all propagator calculation.

There are several previous calculations in the finite volume method for NK systems [52–
56], while a few previous studies have been done in the HAL QCD method [57, 58].

The existence of the pentaquark called Θ+(1540) in S-waveNK systems (I(JP ) = 0(1/2−)
and 1(1/2−)) is also of interest. The first discovery of Θ+(1540) was reported by LEPS Collabo-
ration at SPring-8 [59]. Although the current Particle Data Group shows the negative conclusion
for its existence and does not list it in the table [60], it is important to see Θ+(1540) from the
first-principle calculation of QCD, that is, the lattice QCD. In this study, we search for signals
corresponding to Θ+(1540) from our results of the phase shifts.

5.1 Hadron operators and 4-point correlation functions for
S-wave NK systems

We use the hadron operators defined as

K+(x) = is̄(x)γ5u(x), K−(x) = iū(x)γ5s(x),

K0(x) = is̄(x)γ5d(x), K̄
0
(x) = id̄(x)γ5s(x),

Nα(x) = ϵabcqa,α(x)(u
T
b (x)Cγ5dc(x)),

(5.1)

where N = (p, n) and q = (u, d). We take only the upper components of the spinor indices
(α, β = 1, 2) in the Dirac representation, which corresponds to the even parity.

The 4-point correlation function for the S-wave NK system with the isospin I = 1 is given
by

F I=1
αβ (r, t; z0, t0) = ⟨J I=1

α (r, t+ t0)J̄
I=1
β (z0, t0)⟩, (5.2)



5.1. Hadron operators and 4-point correlation functions for S-wave NK systems 39

FIGURE 5.1: Quark contraction diagrams for the I = 1 NK system. Operators on the left-hand and
right-hand sides are sink and source operators, respectively. All-to-all propagators are represented as red
lines while point-to-all propagators are shown as black lines.

where J I=1 is the sink operator given by

J I=1
α (r, t+ t0) =

∑︂
x

K+(x1) pα(x2)

= i
∑︂
x

(s̄(x1)γ5u(x1)) (ϵabcua,α(x2)(u
T
b (x2)Cγ5dc(x2))

(5.3)

and J̄ I=1 is the source operator by

J̄
I=1
β (z0, t0) =

∑︂
y

K−(y)p̄β(z0)

= −i
∑︂
y

(ū(y)γ5s(y)) (ϵa′b′c′ūa′,β(z0)(ūb′(z0)Cγ5d̄
T
c′(z0)).

(5.4)

Here, x1 = (r+ x, t + t0), x2 = (x, t + t0), y = (y, t0), and z0 = (z0, t0). We take summa-
tion over y for K− to have zero momentum, and choose K+pα with zero total momentum by
summing over x in Eq. (5.3). In this case, thanks to the conservation of the total momentum, p̄
automatically has zero momentum even if z0 is fixed.

We show in Fig. 5.1 the quark contraction diagrams for the I = 1 NK, where there is no
quark pair creation and annihilation. Nevertheless, the all-to-all propagators are needed for red
lines in Fig. 5.1 due to the summation over the spatial coordinate of the K− operator (red circles
in Fig. 5.1).
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For the I = 0 channel, the 4-point correlation function is given by

F I=0
αβ (r, t; z0, t0) = ⟨J I=0

α (r, t+ t0)J̄
I=0
β (z0, t0)⟩, (5.5)

where

J I=0
α (r, t+ t0) =

∑︂
x

(K0(x1) pα(x2)−K+(x1) nα(x2))

= i
∑︂
x

[(s̄(x1)γ5d(x1)) (ϵabcua,α(x2)(u
T
b (x2)Cγ5dc(x2))

−(s̄(x1)γ5u(x1)) (ϵabcda,α(x2)(uT
b (x2)Cγ5dc(x2))]

(5.6)

and

J̄
I=0
β (z0, t0) =

∑︂
y

(K̄
0
(y) p̄β(z0)−K−(y) n̄β(z0))

= −i
∑︂
y

[(d̄(y)γ5s(y)) (ϵa′b′c′ūa′,β(z0)(ūb′(z0)Cγ5d̄
T
c′(z0))

− (ū(y)γ5s(y)) (ϵa′b′c′ d̄a′,β(z0)(ūb′(z0)Cγ5d̄
T
c′(z0))]

(5.7)

Thanks to the isospin symmetry in our setup, quark contraction diagrams for F I=0 include the
same ones as those in F I=1 with different coefficients. However, F I=0 has additional diagrams
which are shown in Fig. 5.2. As is the case for F I=1, the kaon source operators represented
as red circles in Fig. 5.2 have spatial coordinates which are summed over, giving the all-to-all
propagators shown by red lines.

As the all-to-all propagator calculations shown in Fig. 5.1 and Fig. 5.2, the one-end trick is
used.

5.2 Simulation details
In our calculation of the NK 4-point correlation functions, we use (2+1)-flavor gauge con-
figurations generated by PACS-CS Collaboration with the improved Iwasaki gauge action and
the O(a)-improved Wilson quark action at β = 1.90 on 323 × 64 lattice volume [11], which
corresponds to a = 0.0907(13) fm for the lattice spacing. The hopping parameters are κu =
κd = 0.13727 and κs = 0.13640. We impose the periodic boundary condition in all spacetime
directions. We used 400 configurations with 4 sources at different time slices on each configu-
ration, and average forward and backward propagations to increase statistics. Statistical errors
are estimated by the jackknife method with a binsize of 40 configurations.

To the noise vector η(x) for the one-end trick, we apply the dilution for color and spinor
components and the s2 dilution [61] defined by

η(sdil)(x) =

{︄
η(x) (x+ y + z ≡ sdil (mod 2))

0 (x+ y + z ≡ sdil + 1 (mod 2))
, sdil = 0, 1. (5.8)

We employ the smeared quark source Eq. (2.71) with the parameter (A,B) = (1.2, 0.19) for up
and down quarks and (A,B) = (1.2, 0.25) for strange quarks in lattice unit.
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FIGURE 5.2: Quark contraction diagrams of the I = 0 NK 4-point correlation function. Red lines
represent all-to-all propagators and black lines show point-to-all propagators.

According to the conservation law of the total angular momentum, only the diagonal part
of the 4-point correlation functions F I=1(0)

αα (r, t; z0, t0) is the signal while others are noise. We
project each spin component of F I=1(0)

αα (r, t; z0, t0) onto the A+
1 representation of the cubic group

Oh, which is associated with the S-wave NBS wave functions (for the details of the cubic group,
see Appendix C). Furthermore, since both spin components produce the same leading-order
potentials, we take an average over them. For the truncation of the summation in Eq. (3.64), we
take k ≤ 2 for both isospin channels.

We apply the CAA combined with the truncated solver method. For the transformation g ∈
G, we employ the translation of the spatial coordinate of the nucleon source operator: ∆z0 =
(0, 0, 0), (0, 0, 16), · · · , (16, 16, 16). In this case, the number of elements of the translationNG =
8. The terminate condition of the Bi-CG solver is set to ϵ = 10−12 as the exact ones, followed
by the approximated evaluations with ϵ = 10−4. We employ the method to keep the covariance
by choosing the location before the translation z0 randomly on each configuration.

We calculate the 2-point correlation functions using all-to-all propagators together with the
calculation by the one-end trick for the mesons while point-to-all propagators for the nucleons.
Also, we employ the smearing to quarks at the source in the same way as for the 4-point corre-
lation functions. The results of the hadron masses are mπ ≈ 570 MeV, mK ≈ 713 MeV, and
mN ≈ 1405 MeV.
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FIGURE 5.3: The leading-order potentials V0(r) for I = 1 (Left) and I = 0 (Right) NK systems at
t = 10–12.

FIGURE 5.4: The potentials and the terms in Eq. (3.64) at t = 12 for I = 1 (Left) and I = 0 (Right).
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I a0 [MeV] a1 [fm] a2 [MeV] a3 [fm] a4 [MeV] a5 [fm] a6 [MeV] a7 [fm]
1 3180(193) 0.08(0.00) 1185(17) 0.18(0.02) 501(97) 0.36(0.08) 61(111) 0.70(0.36)
0 352(121) 0.08(0.01) 381(86) 0.15(0.03) 189(34) 0.33(0.03) -23(8) 0.90(0.22)

TABLE 5.1: Results of the fit parameters ai for the potentials at t = 12. We employ the uncorrelated fit.
χ2/dof = 0.65(0.19) for I = 1 and χ2/dof = 0.27(0.09) for I = 0.

5.3 Numerical results

5.3.1 Leading-order potentials
Fig. 5.3 represents the leading-order potentials for the S-wave NK systems at t = 10–12. In
this time region, the effective masses of both the kaon and nucleon 2-point correlation functions
are saturated. Also, both the I = 1 and I = 0 potentials have very weak t-dependences at the
timeslices, which indicates that the contributions from the inelastic states and the higher-order
terms in the derivative expansion are well suppressed. In addition, both potentials become zero
within errors at long distances (1.5 < r < 2.5 fm), indicating the negligible finite volume effect.

The I = 1 potential is repulsive everywhere with the repulsive core at short distances (0 <
r < 0.5 fm), while the I = 0 potential has a repulsive core at short distances and a shallow
attractive pocket with a depth of about 10 MeV at the middle distances (0.5 < r < 1.5 fm). The
repulsive core of the I = 1 potential is much stronger than that of the I = 0 potential.

Fig. 5.4 shows the potentials and their breakups into the laplacian term and the two time-
derivative terms in Eq .(3.64) at t = 12. The 2nd time-derivative terms (purple diamonds) are
small, indicating that the O(∆W 3) corrections in Eq. (3.64), which are ignored in our calcu-
lation, are expected to be further reduced. Indeed we find that the potentials with and without
these corrections give almost identical results on the phase shifts.

5.3.2 Phase shifts
We use the potentials at t = 12 in the fitting. As the fit function, we employ the sum of four
Gaussians given by

V (r) = a0e
−(r/a1)2 + a2e

−(r/a3)2 + a4e
−(r/a5)2 + a6e

−(r/a7)2 , (5.9)

where we assume that a1 < a3 < a5 < a7. Table 5.1 lists the results of the fit parameters and
Fig. 5.5 depicts the curves of the functions Eq. (5.9) with the parameters.

We solve the Schrödinger equation in the radial direction as

− 1

2µ

(︂1
r

d2

dr2
r − l(l + 1)

r2

)︂
ψl,ER (r) + V (r)ψl,ER (r) =

k2

2µ
ψl,ER (r), (5.10)

where k is the relative momentum, V (r) is the fitted potential, and the angular momentum is
set to l = 0 for the S-wave channel. The total energy E is related to k2 as E =

√︁
k2 +m2

N +√︁
k2 +m2

K . We then extract a scattering phase shift from its solution. Finally, by varying k2 (or
E), we determine an energy dependence of the scattering phase shift.

We show in Fig. 5.6 the results of the phase shifts as functions of the momentum of the
kaon in the laboratory frame Plab. The I = 1 phase shift is negative in all the energy regions
due to the repulsion of the potential at all distances. On the other hand, the I = 0 phase shift
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FIGURE 5.5: The fitted potentials (Red lines) for I = 1 (Left) and I = 0 (Right) at t = 12. Blue crosses
show the potential data at t = 12.

FIGURE 5.6: The S-wave NK scattering phase shifts for I = 1 (blue band) and I = 0 (red band). The
experimental results [62] are plotted by green diamonds for I = 1 and by purple circles for I = 0.
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becomes slightly positive in the low energy region (0 < Plab < 400 MeV), coming from the
small attractive pocket in the potential, and then turns into negative in the higher energy region
(400 < Plab < 1000 MeV) due to the repulsion at a short distance. The qualitative behavior of
the scattering phase shifts is consistent with that of the experimental results [62]: both the lattice
and experimental results decrease as Plab increases, and the I = 1 channel is negatively larger
than the I = 0 channel. At the quantitative level, however, our results are smaller in magnitude
than the experimental ones, which is probably due to the difference of the pion mass, 570 MeV
in this study and 140 MeV in Nature.

For the comparison to the previous theoretical studies, in the constituent quark model of
hadrons [63], both the I = 1 and I = 0 channels have the repulsive behavior, although the small
attraction in the I = 0 channel, which can be seen in our results, has not been predicted. The
lattice QCD studies in the finite volume method at the lighter pion masses [54–56] give similar
but more negative phase shifts than ours. These suggest the absence of the attractive pocket in
the I = 0 potential at the lighter quark mass. Furthermore, the previous study by the HAL QCD
method with the wall source at mπ ≈ 700 MeV [58]1, which is slightly heavier than that in our
study, gives the I = 1 phase shifts consistent with our study within errors. The deviation may
be explained by the difference of the quark masses or by the systematic uncertainty due to the
higher-order contributions in the derivative expansion.

For the existence of the pentaquark Θ+(1540), we do not observe any behaviors of phase
shifts corresponding to resonances or bound states in both channels. Indeed we find that the
phase shifts do not pass 90 degrees, which typically indicates an existence of a resonant state.
Also, the phase shifts approach zero when we increase Plab, which indicates that no bound
states appear according to the Levinson’s theorem. These suggests that Θ+(1540) does not exist
in the S-wave NK systems (I(JP ) = 0(1/2−) and 1(1/2−) channels) for the quark masses
corresponding to mπ ≈ 570 MeV.

1There is also an unpublished study with the same technique at mπ ≈ 570 MeV. We have found that the phase
shift results are almost the same as those at mπ ≈ 700 MeV.
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Chapter 6

Lattice QCD studies on ∆ and Ω baryons
as meson-baryon bound states in the HAL
QCD method

In this chapter, we investigate P-wave I = 3/2 Nπ and I = 0 ΞK̄ scatterings, which couple to
∆ and Ω baryons, respectively, as a first step towards the studies on meson-baryon scatterings
having the quark pair creation and annihilation in the HAL QCD method. The two baryons be-
long to spin 3/2 baryons symmetric under quark flavor exchanges, called the decuplet baryons.
Also, ∆ baryon appears as a resonance decaying to Nπ while Ω is a stable particle below the
ΞK̄ threshold in Nature. There are several studies on ∆ baryon in the other lattice QCD ap-
proaches [64–70].

In order to reduce computational costs, we employ the heavy quark masses, where u, d quark
masses are close to the s quark mass. In this case, ∆ baryon exists as a stable particle as well as
Ω. Here, we focus on the origin of the reason why Ω is stable while ∆ is resonance in Nature. It
is obvious that an inequalitymN+mπ−m∆ < mΞ+mK̄−mΩ holds in Nature because the left-
hand side is negative while the right-hand side is positive. Furthermore, as seen in the previous
lattice QCD results [11], this still holds in the setup with the heavier quark masses. Therefore,
we investigate the rephrased question, “what physical origin causes this hierarchy?” in the latter
setup. The HAL QCD method, which extracts the interaction potentials directly, enables us to
distinguish two possible origins of the hierarchy: one from the difference in interactions and
another from the difference in kinematics. We extract the Nπ and ΞK̄ potential in the HAL
QCD method and compare them.

6.1 Three-point correlation functions with single-baryon source
operators

In order to investigate P-wave I = 3/2Nπ and I = 0 ΞK̄ scatterings in the HAL QCD method,
we calculate the following 3-point correlation functions,

FNπ
α,jz(r, t) = ⟨π+(r+ x, t+ t0)pα(x, t+ t0) ∆̄

++
jz (t0)⟩, (6.1)

FΞK̄
α,jz(r, t) = ⟨ 1√

2
(K−(r+ x, t+ t0)Ξ

0
α(x, t+ t0)− K̄

0
(r+ x, t+ t0)Ξ

−
α (x, t+ t0)) Ω̄

−
jz(t0)⟩,(6.2)
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where sink operators are defined by

π+(x) = −id̄(x)γ5u(x), K̄
0
(x) = −id̄(x)γ5s(x), K−(x) = iū(x)γ5s(x),

pα(x) = ϵabcua,α(x)(u
T
b (x)Cγ5dc(x)),

Ξ0
α(x) = ϵabcsa,α(x)(s

T
b (x)Cγ5uc(x)), Ξ−

α (x) = ϵabcsa,α(x)(s
T
b (x)Cγ5dc(x)).

(6.3)

We employ 3-quark-type decuplet baryon operators at the source given by

D+ 3
2
(t0) =

∑︂
z

ϵabc(q
T
b (z, t0)Γ+qc(z, t0))qa,0(z, t0),

D+ 1
2
(t0) =

1√
3

∑︂
z

ϵabc[
√
2(qTb (z, t0)Γzqc(z, t0))qa,0(z, t0) + (qTb (z, t0)Γ+qc(z, t0))qa,1(z, t0)],

D− 1
2
(t0) =

1√
3

∑︂
z

ϵabc[
√
2(qTb (z, t0)Γzqc(z, t0))qa,1(z, t0) + (qTb (z, t0)Γ−qc(z, t0))qa,0(z, t0)],

D− 3
2
(t0) =

∑︂
z

ϵabc(q
T
b (z, t0)Γ−qc(z, t0))qa,1(z, t0),

(6.4)

with Γ± = 1
2
C(γ2± iγ1) and Γz =

−i√
2
Cγ3, and q = (u, s) forD = (∆++,Ω−), respectively. All

the source operators in Eq. (6.4) belong to an Hg irreducible representation of the cubic group
OD
h , corresponding to the angular momentum JP = 3/2+, with different components.

To obtain NBS wave functions with JP = 3/2+, we project Fα,jz(r, t) onto the same com-
ponent in the Hg representation of D̄jz(t0). For the details, see Appendix C. The projected
3-point correlation functions can be decomposed into the spherical harmonics Yl,m(r̂) and a
factor fjz(r, t) that depends only on r = |r| and t as(︄

F↑,+ 3
2
(r, t)

F↓,+ 3
2
(r, t)

)︄
= f+ 3

2
(r, t)

(︃
Y1,+1(r̂)

0

)︃
,

(︄
F↑,+ 1

2
(r, t)

F↓,+ 1
2
(r, t)

)︄
= f+ 1

2
(r, t)

⎛⎝√︂2
3
Y1,0(r̂)√︂

1
3
Y1,+1(r̂)

⎞⎠,
(︄
F↑,− 1

2
(r, t)

F↓,− 1
2
(r, t)

)︄
= f− 1

2
(r, t)

⎛⎝√︂1
3
Y1,−1(r̂)√︂
2
3
Y1,0(r̂)

⎞⎠, (︄
F↑,− 3

2
(r, t)

F↓,− 3
2
(r, t)

)︄
= f− 3

2
(r, t)

(︃
0

Y1,−1(r̂)

)︃
.

(6.5)

Thus we extract fjz(r, t) using a projection to (l = 1,m), defined on a discrete space as

fjz(r, t) =

∑︁
r′∈{r′|r′=r} Y

∗
1m(r̂

′)Fα,jz(r
′, t)∑︁

r′∈{r′|r′=r} Y
∗
1,m(r̂

′)Y1m(r̂
′)

(6.6)

with corresponding (m,α) for each jz. For jz = ±1/2, we can derive fjz(r, t) in two ways by
setting either (m,α) = (0, ↑) or (1, ↓) for jz = +1/2 and either (m,α) = (0, ↓) or (−1, ↑) for
jz = −1/2, respectively. In this study, we take an average of the factors calculated from the two
choices.

Using Eq. (6.5), we obtain an equation alternative to Eq. (3.64);

V LO(r) ≃ 1

Rjz(r, t)

[︄
∞∑︂
k=1

C(k)
mM ,mB

(︃
− ∂

∂t

)︃k
+

1

2µ

(︃
1

r

∂2

∂r2
r − l(l + 1)

r2

)︃]︄
Rjz(r, t), (6.7)
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where the angular momentum l = 1 and

Rjz(r, t) =
fjz(r, t)

CM(t)CB(t)
(6.8)

with the meson and baryon 2-point functionCM(t) andCB(t), respectively. We use this equation
to extract the LO potentials in this study. Since fjz(r, t) for any jz gives the same LO potential,
we take an average over jz to increase statistics. Furthermore, a charge conjugation symmetry
provides a relations among fjz(r, t) as

f+ 3
2
(r, t) = −f ∗

− 3
2
(r, t), f+ 1

2
(r, t) = −f ∗

− 1
2
(r, t), (6.9)

guaranteeing that an average of fjz(r, t) over jz is pure imaginary. Therefore, we ignore its real
part.

6.2 Simulation details
In this numerical calculation, we employ the gauge configurations with the same setup as that
for the analysis of NK systems except for the hopping parameters; we set κu = κd = 0.13754
and κs = 0.13640 in this study. A periodic boundary condition is imposed in all spacetime
directions. We use 450 configurations with 16 sources at different time slices on each configura-
tion and average forward and backward propagations to increase statistics. Statistical errors are
estimated by the jackknife method with a binsize of 45 configurations.

We employ a smeared quark source with the smearing function Eq. (2.71) with (A,B) =
(1.2, 0.17) for light quarks and (A,B) = (1.2, 0.25) for the strange quark in lattice unit. We
also apply the same smearing to quarks at the sink with (A,B) = (1.0, 1/0.7) to reduce singular
behaviors of potentials at short distances [22], which are explained in Appendix B.

The quark contraction diagrams corresponding to Eq. (6.1) and the first term of Eq (6.2)
are shown in Fig. 6.1 (Left) and Fig. 6.1 (Right), respectively. For mu = md, the second term
of Eq. (6.2) gives the same contribution as that of the first. The spatial coordinate z of the
source operator is summed over so that it has zero momentum. In this case, quark propagators
represented by red lines in this figure are all-to-all propagators. For the calculation, we use
the stochastic technique together with dilutions for color/spinor/time components and the s2
(even/odd) dilution for the position z.

We fix the spatial coordinate x at the sink so that the propagator which corresponds to the
quark pair creation and annihilation becomes a point-to-all propagator (black line in Fig. 6.1).
Also, we employ the CAA combined with the truncated solver method using the translational
invariance of x: ∆x = (0, 0, 0), (0, 0, 8), · · · , (24, 24, 24). The number of elements NG = 64 in
this case. For the specific value of x, we choose it randomly for each gauge configuration, as is
the case of the S-wave NK scatterings.

Meson 2-point correlation functions are calculated using all-to-all propagators, where the
one-end trick is employed, while baryon 2-point correlation functions are calculated using point-
to-all propagators. Also, both in the meson and baryon 2-point functions, we employ the smear-
ing to quarks at the source and the sink in the same way as for the 3-point correlation functions.
We extract the masses of single hadrons obtained from them in this setup, which are listed in
Table 6.1. Since ∆ and Ω masses lie below Nπ and ΞK̄ threshold energies, respectively, they
appear as bound states in this setup.



6.3. Numerical results 49

FIGURE 6.1: Quark contraction diagram corresponding to Eq. (6.1) (Left) and the first term in Eq. (6.2)
(Right). A circle with a two-way arrow across three lines indicates permutations of quark contractions
among them. All-to-all and point-to-all propagators are used in red lines and black lines, respectively.

hadron π K N Ξ ∆ Ω

mass 411.2(1.7) 635.1(1.5) 1217.2(4.7) 1505.3(4.5) 1522.9(7.8) 1847.0(6.5)
fit range [10,30] [10,30] [7,20] [7,20] [6,15] [6,20]

TABLE 6.1: Hadron masses in unit of MeV estimated by fitting 2-point functions. The second row shows
temporal fitting ranges in lattice unit.

For the truncation of the summation over k in Eq. (6.7), we set k ≤ 2 for Nπ and k ≤ 3 for
ΞK̄, respectively. We checked that the higher-order contributions are negligible.

6.3 Numerical results

6.3.1 Leading-order potentials
In Fig. 6.2, we present LO potentials for Nπ system at t = 8–10 and ΞK̄ system at t = 8–11,
where effective masses of ∆ and Ω reach plateaux, respectively. We do not observe significant
t-dependence of potentials, indicating that the contributions from the inelastic states and the
higher-order terms in the derivative expansion are well under control.

Both potentials have very strong attractions at short distances (r ≲ 0.5 fm), which can be
responsible for producing bound states associated with ∆ and Ω. The attraction of the Nπ
potential is deeper than that of the ΞK̄ by a few thousand MeV at r ≈ 0.1 fm.

For the shape of middle and long distances (r ≳ 0.5 fm), both potentials are similar. Here
we suppose that meson-baryon interactions may be dominated by one meson exchange in this
region. TheNπ system exchanges a ρmeson while the ΞK̄ system exchanges ϕ/ω meson as well
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FIGURE 6.2: The LO potentials of the Nπ system at t = 8–10 (Left) and the ΞK̄ system at t = 8–11
(Right). The laplacian terms are calculated in 4th-order accuracies.

as ρ at middle and long distances. Then we have one possibility to explain the reason for the two
similar potentials that the masses of these vector mesons almost degenerate in our lattice setup
near the SU(3) flavor symmetric point (mρ/mϕ ≈ 0.80) [11]1. If this is a relevant assumption,
the two potentials at middle and long distances remain to be similar even at the physical point,
since the mass difference of vector mesons is not so large at the point (mρ/mϕ ≈ 0.75).

From Fig. 6.2, it seems the interaction ranges are longer than half of the box size, L/2 ≈
1.45 fm. We therefore carefully check the possible finite-volume effects on observables, as will
be explained below.

6.3.2 Estimation of systematic uncertainties of the fitting results
We estimate systematic uncertainties in our analysis as follows.

We evaluate finite-volume effects by using the following two types of fit functions. One is a
simple three Gaussians as

V 3G(r) = a0e
−(r/a1)2 + a2e

−(r/a3)2 + a4e
−(r/a5)2 , (6.10)

where we assume that a1 < a3 < a5, and the other is a three Gaussians with its 6 mirror images
on the boundaries of the finite box [21] as

V 3G
P (r) = V 3G(r) +

∑︂
n

V 3G(r+ Ln), (6.11)

where n ∈ {(0, 0,±1), (0,±1, 0), (±1, 0, 0)}. For the Schrödinger equations, we use only
V 3G(r) with the parameters in both cases.

We estimate the contributions from the higher-order terms in the derivative expansion, by
employing potentials at different t, from t = 8 to 10 for Nπ and from t = 8 to 11 for ΞK̄.

1Note that this discussion is only qualitative because even the Compton wavelength of the lightest pion is 0.5 fm
in this setup.
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fit potential data at r = a accuracy of∇2

Fit 1 V 3G(r) not included 2nd order
Fit 2 V 3G(r) not included 4th order
Fit 3 V 3G(r) included 2nd order
Fit 4 V 3G(r) included 4th order
Fit 5 V 3G

P (r) not included 2nd order
Fit 6 V 3G

P (r) not included 4th order
Fit 7 V 3G

P (r) included 2nd order
Fit 8 V 3G

P (r) included 4th order

TABLE 6.2: A list of combinations of the fitting schemes to estimate systematic uncertainties.

Finite lattice spacing effects are estimated by two approaches. The first is to evaluate the
difference between the laplacian term in Eq. (6.7) calculated with 2nd- and 4th-order accuracies:

(∇2R(r))2nd =
∑︂

i=x̂,ŷ,ẑ

R(r+ ai)− 2R(r) +R(r− ai)
a2

,

(∇2R(r))4th =
∑︂

i=x̂,ŷ,ẑ

−R(r+ 2ai) + 16R(r+ ai)− 30R(r) + 16R(r− ai)−R(r− 2ai)

12a2
.

(6.12)

The second is to estimate the difference between fits with and without data at r = a. For the
fit including data at r = a, we find that modification for fit functions is necessary. In fact, if
we naively fit with Eqs. (6.10), (6.11), the results fail to reproduce the original potential data.
This is probably due to the strong attraction at short distances together with a non-monotonic
behavior at middle distances in the potentials, which makes the fitting by three Gaussians too
difficult. We also observe similar difficulties for other functions such as four Gaussians or two
Gaussians plus one Yukawa potential.

To avoid this difficulty, we employ interpolation combined with the usual fitting in the fol-
lowing way. First, we perform the fitting for the potentials without the data at r = a,

√
2a

with Eqs. (6.10), (6.11). Then we perform quadratic interpolation using the original data at
r = a,

√
2a and the fit result at r = (

√
3a + 2a)/2. Let the function obtained by the inter-

polation be V int(r). Finally, we use the following function as the potential for the Schrödinger
equation:

V (r) =

{︄
V 3G(r) (r >

√
3a+2a
2

)

V int(r) (r ≤
√
3a+2a
2

)
(6.13)

with the parameters determined in the above way. Although smoothness at r = (
√
3a + 2a)/2

is not guaranteed in this method, we do not find any serious non-smoothness in the results of the
observables.

In summary, for potentials at a given t, there are 2 × 2 × 2 = 8 combinations of fitting
schemes, which are listed in Table 6.2.

As a calculation of the central values of physical observables, we use Fit 2 scheme at t = 9
for Nπ and at t = 10 for ΞK̄. The results of the fit parameters are listed in Table 6.3, where
χ2/dof = 4.5 forNπ and χ2/dof = 36.0 for ΞK̄, where we employ uncorrelated fit. This large
χ2/dof comes mostly from deviations between fit results and original data at short distances,
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system a0 [MeV] a1 [fm] a2 [MeV] a3 [fm] a4 [MeV] a5 [fm]
Nπ -13311.7(46.2) 0.24(0.00) 693.8(197.9) 0.56(0.08) -615.3(217.7) 1.08(0.14)
ΞK̄ -9651.8(12.1) 0.24(0.00) 462.0(67.7) 0.60(0.04) -427.9(72.4) 1.25(0.10)

TABLE 6.3: Fit parameters {an} for potential data in Fit 2 at t = 9 for Nπ and at t = 10 for ΞK̄, used
to calculate central values of observables.

which are largely fluctuated by systematic uncertainties rather than statistical ones, even though
the most problematic data at r = a are excluded in the Fit 2 scheme. Systematic errors are
estimated from the results in other fitting schemes and at other timeslices.

Fig. 6.3 presents original data by red crosses and fitting results by blue bands. The dark blue
bands correspond to statistical errors in the Fit 2 scheme at t = 9 for Nπ and at t = 10 for
ΞK̄, whereas light blue bands show statistical and systematic errors added in quadrature, where
the latter error is estimated from other fitting schemes and t dependences. Note that systematic
uncertainties at short distances, mainly caused by finite lattice spacing effects, are much larger
than those at long distances, dominantly caused by finite-volume effects.

FIGURE 6.3: Fit results for Nπ (Left) and ΞK̄ (Right). Dark (light) blue bands show statistical errors
(statistical and systematic errors added in quadrature). Systematic errors are estimated from other fitting
schemes and t dependences. Red crosses represent original potential data.

Fig. 6.4 shows the fitted potential plus the centrifugal term for Nπ (Left) and ΞK̄ (Right).
Both have a large attractive pocket with a depth of about 3 GeV at r ≈ 0.2 fm, a small barrier
with a height of about a hundred MeV at r ≈ 0.5 fm, and a shallow pocket with a depth of about
a hundred MeV at r ≈ 1.0 fm.

6.3.3 Physical observables
We solve the Schrödinger equation in the radial direction Eq. (5.10) with l = 1 for the P-wave
scattering, and then extract scattering phase shifts.

Fig. 6.5 presents the scattering phase shift in both channels as a function of energy measured
from the 2-body threshold, ∆E = E−mM−mB. Both results show typical attractive behaviors;
suddenly rising around ∆E = 0 and then slowly decreasing, which is consistent with the shape
of the potentials. As we increase energy further, the scattering phase shift in each channel
approach zero degree, suggesting an existence of one bound state according to the Levinson’s
theorem.
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FIGURE 6.4: Fit results with a centrifugal term for Nπ (Left) and ΞK̄ (Right). Dark and light blue bands
represent statistical errors and statistical and systematic errors added in quadrature, respectively.

FIGURE 6.5: Scattering phase shifts for Nπ (Left) and ΞK̄ (Right). Dark and light blue bands represent
statistical errors and statistical and systematic errors added in quadrature, respectively.

We calculate a binding energy in each channel by solving the Schrödinger equation via
the Gaussian Expansion Method (GEM) [71] and converting the negative eigenvalue k2 to the
binding energy through

Ebind =
√︂
−κ2 +m2

M +
√︂
−κ2 +m2

B −mM −mB, (6.14)

where κ2 = −k2 is the absolute value of k2. The results are

ENπ
bind = 115.6(17.2)

(︁
+54.0
−69.3

)︁
MeV, (6.15)

EΞK̄
bind = 256.6(5.5)

(︁
+88.2
−82.2

)︁
MeV, (6.16)

where the first and second errors show statistical and systematic errors, respectively. The results
are also shown in Fig. 6.6 (vertical axis). The binding energies in both channels are consistent
with the estimate using the decuplet baryon masses measured from 2-point functions;

mN +mπ −m∆ = 105.5(5.2) MeV,
mΞ +mK̄ −mΩ = 293.5(2.8) MeV,

(6.17)

within large systematic errors.
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FIGURE 6.6: A binding energy (vertical axis) and a root-mean-square distance (horizontal axis) for Nπ
(blue) and ΞK̄ (red). Solid and dotted error bars show statistical errors and statistical and systematic
errors added in quadrature, respectively. Cyan and magenta bands show binding energies estimated from
∆ and Ω 2-point functions, respectively. Note that there is no constraint for root-mean-square distances
from 2-point functions.

The binding energy in the ΞK̄ system is larger than that in the Nπ system by more than
a hundred MeV. Combined with the previous observation that the ΞK̄ potential has weaker
attraction than the Nπ, it is indicated that a reason for a larger binding energy in the ΞK̄ than in
the Nπ is not the difference of the two interactions.

We also calculate root-mean-square (RMS) distances of wave functions obtained via the
GEM for bound states, which gives√︁

⟨r2⟩Nπ = 0.77(0.03)
(︁
+0.37
−0.12

)︁
fm, (6.18)√︁

⟨r2⟩ΞK̄ = 0.50(0.00)
(︁
+0.08
−0.06

)︁
fm, (6.19)

where the first and second errors represent statistical and systematic errors, respectively. The
results of RMS distances are also depicted in Fig. 6.6 (horizontal axis). Sizes of both bound
states estimated by RMS distances are quite small and similar to ranges of attractive pockets in
their potentials. These suggest that ∆ and Ω can be regarded qualitatively as composite states of
3 quarks rather than meson-baryon molecule states at this quark mass(?).

More quantitatively, however, their RMS distances are larger than a range of the attractive
pocket r ≈ 0.2 fm in both Nπ and ΞK̄ potentials with the centrifugal term, as seen in Fig. 6.4.
This can be explained by shapes of wave functions, shown in Fig. 6.7, which exhibits peak
structures at r ≈ 0.2 fm but has long-range tails.

The RMS distance for ΞK̄ system is smaller than that for Nπ. This indicates that the
main reason for the larger binding energy in ΞK̄ system is the smaller size of its wave func-
tion, as seen explicitly in Fig. 6.7, which leads to a larger contribution from a combination∫︁
d3r ψ∗(r)V (r)ψ(r) to the binding energy. Since such wave function is likely to be formed for

systems with a large reduced mass, the difference between the size of the two wave functions
mainly comes from the difference between the two reduced masses. Therefore, if we assume that
the interaction potentials are not so sensitive to the quark masses, we could predict the behaviors
of ∆ and Ω in Nature as follows. When we decrease quark masses to the values in Nature, the
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FIGURE 6.7: Normalized wave functions for bound states in Nπ (Left) and ΞK̄ (Right) systems. Dark
and light blue bands represent statistical errors and statistical and systematic errors added in quadrature,
respectively.

bound state would disappear and ∆ would become a resonance in the Nπ system because of its
small reduced mass and the broad structure of ∆, while the bound state Ω would remain in the
ΞK̄ system due to its large reduced mass leading to the compact size of Ω.

Results of both binding energies and RMS distances suffer from quite large systematic un-
certainties compared to statistical errors. Such large uncertainties come dominantly from lattice
artifacts at short distances. Fig. 6.8 and Fig. 6.9 show binding energy and RMS distance, re-
spectively, estimated in each fitting scheme and timeslice t. A dependence on an order of the
approximation for the Laplacian (2nd/4th for Fit 1/2, 3/4, 5/6, 7/8), or a dependence on treat-
ment of data at r = a (without/with for Fit 1/3, 2/4, 5/7, 6/8), are much larger than dependences
on t or fit without/with mirrors (Fit 1/5, 2/6, 3/7, 4/8). Comparing, for example, the magenta
and cyan points in Fig. 6.10, the precision of the Laplacian term affects potential data at short
distances. Moreover, as we can see, for example, the red and orange lines in the figure, fit results
without and with data at r = a (without/with for Fit 1/3, 2/4) deviate from each other around
r = a ≈ 0.09 fm. Consequently, large dependences of binding energies and RMS distances on
the accuracy of the Laplacian and the treatment of the data at r = a are caused dominantly by
lattice artifacts at short distances, which is associated with rapid changes of potentials around
the origin. On the contrary, the results are not so sensitive to finite-volume effects as seen from
comparisons between Fit i and Fit i+ 4 schemes in Fig. 6.8 and Fig. 6.9.
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FIGURE 6.8: Bound state energies for different fitting schemes and t for Nπ (Left) and ΞK̄ (Right).
Plots are separated for different t by dashed lines.

FIGURE 6.9: Root-mean-square distances for different fitting schemes and t for Nπ (Left) and ΞK̄
(Right). Plots are separated for different t by dashed lines.
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FIGURE 6.10: Original potential data with 2nd (magenta) and 4th (cyan) order accuracies of the Lapla-
cian term for Nπ at t = 9, and fit results for Fit 1-4 at the same t.
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Chapter 7

Studies on Λ(1405) in SU(3) limit in the
HAL QCD method

In this chapter, we attempt to study Λ(1405), which is a resonance with the quantum number
S = −1, I = 0, and JP = 1/2− lying around 1405 MeV, below NK̄ threshold and above
Σπ threshold. This hadron is one of the exotic hadrons, that is, Λ(1405) cannot be described
by a 3-quark state in the quark model. There have been numerous theoretical and experimental
studies, suggesting that it is a 5-quark state or a molecule state of NK̄ system. There are several
previous studies by the chiral unitary model [72], which predict that Λ(1405) is represented by
not a pole but two poles of the S-matrix in the complex plane.

As a first step of the calculation, we study Λ(1405) in the flavor SU(3) limitmu = md = ms,
where only the single channel analysis is necessary. The previous work by the chiral unitary
model [73] suggests that the two poles associated with Λ(1405) correspond to the two at the real
axis in the SU(3) limit: one is in the singlet representation and the other is in the octet represen-
tation. This indicates that the meson-baryon system in each singlet and octet representation has
a bound state. In this study, by analyzing the interaction potential in the HAL QCD method and
solving the Schrödinger equation with the potentials, we see whether this scenario is true in the
QCD theory.

7.1 Meson-baryon operators and 3-point correlation functions
in SU(3) limit

In the SU(3) limit, the lightest meson and baryon belong to the octet representation. Thus
the meson-baryon states are characterized by their tensor product, which gives the direct-sum
decomposition as

8⊗ 8 = 27⊕ 10⊕ 10∗ ⊕ 81 ⊕ 82 ⊕ 1. (7.1)

Here, we define that 81 and 82 are symmetric and anti-symmetric under exchanging the two
identical octet representations in the left-hand side of the equation, respectively. The chiral
unitary model suggests that the meson-baryon scatterings in the two octet representation 81 and
82 and one singlet representation 1 have a pole of the S-matrix corresponding to Λ(1405) in
Nature. Therefore, we use the HAL QCD method to analyze the meson-baryon scatterings
belonging to these three representations1.

1The meson-baryon systems for 81 and 82 representations cannot be distinguished and could mix with each
other. We ignore their mixing in this study and such an effect on the observables should be examined in the future.
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Each octet meson operator is given by⎛⎝π+

π0

π−

⎞⎠ =

⎛⎝ d̄γ5u
1√
2
(−ūγ5u+ d̄γ5d)

−ūγ5d

⎞⎠ ,

(︃
K+

K0

)︃
=

(︃
s̄γ5u
s̄γ5d

)︃
,

(︃
K̄

0

K−

)︃
=

(︃
d̄γ5s
−ūγ5s

)︃
, η8 = − 1√

6
(ūγ5u+ d̄γ5d− 2s̄γ5s),

(7.2)

and each octet baryon operator is described as⎛⎝Σ+
α

Σ0
α

Σ−
α

⎞⎠ =

⎛⎝ ϵabc(sCγ5u)u
1√
2
ϵabc[−(dTaCγ5sb)uc,α + (sTaCγ5ub)dc,α]

−ϵabc(dTaCγ5sb)dc,α

⎞⎠ ,

(︃
pα
nα

)︃
=

(︃
ϵabc(u

T
aCγ5db)uc,α

ϵabc(u
T
aCγ5db)dc,α

)︃
,

(︃
Ξ0
α

Ξ−
α

)︃
=

(︃
ϵabc(s

T
aCγ5ub)sc,α

−ϵabc(dTaCγ5sb)sc,α

)︃
,

Λ8
α = − 1√

6
ϵabc[(d

T
aCγ5sb)uc,α + (sTaCγ5ub)dc,α − 2(uTaCγ5db)sc,α].

(7.3)

with upper two spinor index α. Here we abbreviate the spacetime coordinates. There are eight
bases in the 81 and 82 representations, and we consider the basis which has the isospin I = 0
and strangeness S = −1. According to Ref. [74], the meson-baryon operators in SU(3) limit
can be rewritten by the linear combination of the product of the meson operator Eq. (7.2) and
the baryon operator Eq. (7.3). The meson-baryon operators in the 81, 82, and 1 representations
are represented as

(MBα)
S=−1,I=0
81

=

√
10

10
(KΞα)

I=0 −
√
10

10
(K̄Nα)

I=0 −
√
15

5
(πΣα)

I=0 −
√
5

5
η8Λ8

α

=

√
5

10
(K+Ξ−

α −K0Ξ0
α − K̄

0
nα +K−pα − 2(π−Σ+

α − π0Σ0
α + π+Σ−

α )− 2η8Λ8
α),

(MBα)
S=−1,I=0
82

=

√
2

2
(KΞα)

I=0 +

√
2

2
(K̄Nα)

I=0

=
1

2
(K+Ξ−

α −K0Ξ0
α + K̄

0
nα −K−pα),

(MBα)
S=−1,I=0
1 =

1

2
(KΞα)

I=0 − 1

2
(K̄Nα)

I=0 +

√
6

4
(πΣα)

I=0 −
√
2

4
η8Λ8

α

=

√
2

4
(K+Ξ−

α −K0Ξ0
α − K̄

0
nα +K−pα + π+Σ−

α − π0Σ0
α + π−Σ+

α − η8Λ8
α).

(7.4)

In spite of that, the ChPT more or less guarantees this approximation in a low-energy region because the two
systems in the model do not mix and have equal interactions up to the Born term in the chiral expansion [73].
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(A) Contraction 1 (C1) (B) Contraction 2 (C2) (C) Contraction 3 (C3)

(D) Contraction 4 (C4) (E) Contraction 5 (C5)

FIGURE 7.1: Quark contraction diagrams which appear in Eq. 7.5. Black dotted circles surrounding two
quarks (or antiquarks) represent the diquark part qTCγ5q in the baryon operator. All-to-all and point-to-
all propagators are used in red lines and black lines, respectively.

In this study, we calculate the following 3-point correlation functions in the 81, 82, and 1
representations:

F 81
α (r, t) = ⟨(M(r+ x, t+ t0)Bα(x, t+ t0))

S=−1,I=0
81

∑︂
z

Λ8†
ᾱ (z, t0)⟩,

F 82
α (r, t) = ⟨(M(r+ x, t+ t0)Bα(x, t+ t0))

S=−1,I=0
82

∑︂
z

Λ8†
ᾱ (z, t0)⟩,

F 1
α(r, t) = ⟨(M(r+ x, t+ t0)Bα(x, t+ t0))

S=−1,I=0
1

∑︂
z

Λ1†
ᾱ (z, t0)⟩,

(7.5)

where Λ1
ᾱ is the singlet baryon operator defined as

Λ1
ᾱ =

1√
3
ϵabc[(d

T
aCγ5sb)uc,ᾱ + (sTaCγ5ub)dc,ᾱ + (uTaCγ5db)sc,ᾱ], (7.6)

where ᾱ denotes the lower two spinor components with the same spin as α, which represents a
singlet baryon with negative parity with spin α.

The quark contraction diagrams for the general meson-baryon 3-point correlation functions
with the octet baryon source are classified into the five types shown in Fig. 7.1. We label each
contraction diagram as “Cn” (n = 1, 2, 3, 4, 5) as shown in the caption of the figure. For the 81,
82, and 1 representations, the explicit forms of the 3-point correlation functions in terms of the
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contractions in Fig. 7.1 read

F 81
α (r, t) = −

√
10[(C1) + (C2) + (C3)− (C4)− 2(C5)],

F 82
α (r, t) = −

√
6

2
[(C1) + (C2) + (C3) + (C4)],

F 1
α(r, t) = −

4√
3
[(C1)− 2(C2) + (C3)− (C4) + (C5)].

(7.7)

As is the case of the analysis of Nπ and ΞK̄ scatterings, the coordinate x at the sink is fixed
and z is summed over in order for the operator ΛR†

ᾱ (R = 8, 1) to have zero momentum. Then
the propagators shown by red lines in Fig. 7.1 are all-to-all propagators, while the propagators
represented by black lines are point-to-all.

7.2 Simulation details
In this calculation, we use gauge configurations in flavor-SU(3) limit generated by Inoue (for
HAL QCD Collaboration) with the improved Iwasaki gauge action and the O(a)-improved
Wilson quark action at β = 1.83 on 324 lattice volume [75], where the lattice spacing a =
0.121(2) fm. The hopping parameters are κu = κd = κs = 0.13800. We impose the periodic
boundary condition in all spacetime directions. We used 130 configurations with 32 sources at
different time slices on each configuration, and average forward and backward propagations to
increase statistics. Statistical errors are estimated by the jackknife method with a binsize of 13
configurations.

We employ a quark source with the smearing function Eq. (2.71) with (A,B) = (1.2, 0.3)
at the source, and with (A,B) = (1.0, 1/0.7) at the sink to reduce the singular behaviors of
potentials at short distances.

For the approximate calculation of all-to-all propagators, we use the conventional stochastic
technique combined with the dilutions for color/spinor/time components and the s4 dilution [61]
for the position z defined as⎧⎪⎪⎪⎨⎪⎪⎪⎩

η(0)(x) ̸= 0 ⇐⇒ (x, y, z) = (even, even, even) or (odd, odd, odd)
η(1)(x) ̸= 0 ⇐⇒ (x, y, z) = (odd, even, even) or (even, odd, odd)
η(2)(x) ̸= 0 ⇐⇒ (x, y, z) = (even, odd, even) or (odd, even, odd)
η(3)(x) ̸= 0 ⇐⇒ (x, y, z) = (even, even, odd) or (odd, odd, even)

. (7.8)

For the fixed spatial coordinate x at the sink, we employ the CAA combined with the trun-
cated solver method using the translational invariance of x: ∆x = (0, 0, 0), (0, 0, 8), · · · , (24, 24, 24).
The number of elements NG = 64 in this case. For the specific value of x, we choose it ran-
domly for each gauge configuration, as is the case of the S-wave NK scatterings and the Nπ
and ΞK̄ scatterings.

We project each spin component of the 3-point correlation functions onto the A+
1 represen-

tation, corresponding to the S-wave wave functions. Also, we take an average over the spin
components, which gives the signal only in the real part thanks to the charge conjugation sym-
metry. We thus ignore its imaginary part.

We calculate the octet meson 2-point correlation functions using all-to-all propagators, where
the one-end trick is employed, and the octet and singlet baryon 2-point correlation functions
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Repr. Octet
mass (MeV) 671.2(1.5)

fit range [8,15]
Repr. Octet Octet Singlet
Parity + − −

mass (MeV) 1488.8(3.9) 2013.2(11.2) 1923.4(9.1)
fit range [8,13] [6,11] [5,11]

TABLE 7.1: Meson (Upper panel) and baryon masses (Lower panel) estimated from the 2-point corre-
lation functions. The third row in the upper panel and the fourth row in the lower panel show temporal
fitting ranges in lattice unit.

using point-to-all propagators. We also employ the smearing to quarks at the source and the
sink in the 2-point functions with the same parameters as for the 3-point correlation functions.
Table. 7.1 lists the results of the hadron masses, which satisfy m−

8B − m+
8B − mM < 0 and

m−
1B − m+

8B − mM < 0, where mM is the octet meson mass and mP
RB is the mass of baryon

with the parity P and the representation R. The two inequalities indicate that there is at least
one bound state of each meson-baryon system in this setup.

For the truncation of the summation over k in Eq. (3.64), we set k ≤ 2.

7.3 Numerical results

7.3.1 3-point functions, LO potentials, and their fitting results
Fig. 7.2 shows the 3-point correlation function in each representation. All three correlation
functions have a behavior of changing rapidly and crossing zero in short distances (r < 0.5 fm)
while smoothly changing in the middle and long distances (r > 0.5 fm). Fig. 7.3 depicts the
following quantity formed by the 3-point correlation functions:

Weff(t) = − ln

∑︁
r F (r, t+ a)∑︁

r F (r, t)
, (7.9)

called effective energy. From Eq. (3.55), Weff(t) at large t becomes the lowest energy W0 and
gets independent of t. From the figure, Weff(t) in each representation seems to have a plateau
near the value of the mass in the corresponding representation with negative parity evaluated
from the 2-point correlation function shown in Table 7.1, which implies that the energy of the
ground state takes the value around that shown in the table.

We show in Fig. 7.4 the LO potentials at t = 8. We find a singular behavior in every
potential; it has a quite large value and seems to be non-continuous at a finite radius r. As we
see that the zero point of the 3-point correlation function represented by a star plot matches the
singular point of the potential, the singular behavior comes from the zero point of the correlation
function in the denominator in Eq. (3.64).

Assuming that there is a singular point of the potential at the zero point of the corresponding
3-point correlation functions, we perform the uncorrelated fitting as follows. First, we use the
data (r − rs)V LO(r) in the fitting, where V LO(r) is the original potential data and rs is the zero
point of the 3-point correlation functions. The fit function is the four Gaussians Eq. (5.9). As
seen in Fig. 7.5, it seems that the data (r − rs)V LO(r) is continuous and the fitting works well.
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FIGURE 7.2: Three point correlation functions in 81 (Upper left), 82 (Upper right), and 1 representation
(Lower panel) at t = 8.

7.3.2 Bound states
We solve the Schrödinger equation in the radial direction Eq. (5.10) with l = 0 for the S-
wave scatterings and calculate its binding energy in each representation by GEM. For the po-
tential function, since using the fit funciton V 4G(r) divided by r − rs directly fails to solve the
Schrödinger equation due to a large value around r = rs, we utilize the following functions:

Vδ(r) =
V 4G(r)

r − (rs + δ)
θ(rs − r) +

V 4G(r)

r − (rs − δ)
θ(r − rs), (7.10)

where δ is a positive small value, which plays a role of a “cutoff” of the singularity. In our actual
calculation, we set δ = 0.001a with the lattice spacing a.

From the results, we find that there are two bound states in each channel. The value of κ2 in
each state is listed in Table. 7.2. The κ2 for the ground state is too large, much larger than m2

M ,
to be converted to the binding energy. This observation together with the time dependence of
effective energy in Fig. 7.3 indicates that the state is not the physical one and may come from
the singular behavior of the potential due to the zero point of the 3-point correlation function.
On the other hand, the first excited state has κ2 smaller than m2

M . The corresponding binding
energies are

E81
bind = 185± 17 MeV, E82

bind = 167± 11 MeV, E1
bind = 206± 56 MeV, (7.11)
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FIGURE 7.3: Effective energies Eq. (7.9) in each representation.

81 82 1

ground state 24.14(2.91) 3.65(0.09) 3.59(0.81)
1st excited state 0.35(0.03) 0.32(0.02) 0.39(0.09)

TABLE 7.2: The results of κ2/m2
M for the ground and first excited states.

which are similar to the results from the 2-point correlation functions:

m+
8B +mM −m−

8B = 146.0± 13.1 MeV,
m+

8B +mM −m−
1B = 236.7± 8.2 MeV,

(7.12)

This suggests that the first excited state is the actual physical bound state.
One possible reason for the existence of the unphysical states, that is, the zero point in the 3-

point correlation function, is as follows. The operator product expansion (OPE) [76–79] predicts
the singular behavior of the NBS wave function with quark pair creation and annihilation at
r → 0 as

Ψ(r) ∝ 1

r3
(log r)α (7.13)

with a real value α, which is the contribution from the dynamics in a very high-energy region.
The correlation function crossing zero may come from the short-distance behavior of the NBS
wave function represented by Eq. (7.13) with a negative sign, which comes from the high-energy
dynamics, together with the behavior in a long distance, which originates from the low-energy
dynamics, with a positive sign. Furthermore, the behavior Eq. (7.13) gives the form of the
LO potential V LO(r) ∝ 1

r2
in a short distance, which is the behavior that we cannot handle

on in the quantum scattering theory. One of the solutions to these problems is that we use
the source operator which does not have either the form Eq. (7.13) or the behavior of crossing
zero. In the actual calculation, this corresponds to preparing correlation functions with different
source operators and the same sink operator and then taking linear combinations to cancel out
the problematic behaviors which each correlation function has. In order to do so, we should
additionally calculate the 4-point correlation function: the correlation function with the meson-
baryon source operator. This is left for our future studies.
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FIGURE 7.4: LO potentials in 81 (Upper left), 82 (Upper right), and 1 representation (Lower panel) at
t = 8. The zero points of the corresponding 3-point correlation functions are plotted as star plots in the
figures.

FIGURE 7.5: Fit results of (r − rs)V
LO(r) in 81 (Upper left), 82 (Upper right), and 1 representation

(Lower panel) at t = 8 represented by black bands. The plots in each panel show the original data.
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Chapter 8

Summary and Discussions

In this thesis, towards the exploration of baryon resonances and pentaquarks from the first-
principle calculation of QCD, we have analyzed meson-baryon scatterings in lattice QCD with
all-to-all propagators. We employ the calculation technique of all-to-all propagators which is
similar to that used in the previous analysis of meson-meson systems. We calculate the leading-
order (LO) potential using the time-dependent HAL QCD method and then extracted the scat-
tering phase shifts by solving the Schrödinger equations with the fitted potentials.

8.1 S-wave NK scatterings
We have analyzed S-wave nucleon-kaon (NK) scatterings atmπ ≈ 570 MeV. We have evaluated
the 4-point correlation functions with the kaon operator at sources which has zero momentum,
where we have employed the one-end trick to calculate all-to-all propagators. In addition, we
have used the covariant-approximation averaging (CAA) combined with the truncated solver
method, which is equivalent to the all-mode averaging (AMA) without low modes.

Both the I = 1 and I = 0 potentials have repulsive cores while the I = 1 potential is more
repulsive than the I = 0. The scattering phase shifts for both isospins qualitatively reproduce
the energy dependences of the experimental data and are consistent with the previous theoretical
results such as the lattice calculations. These results suggest that the all-to-all propagator tech-
nique in this study works well to investigate meson-baryon scatterings in the HAL QCD method.
Furthermore, we have found that no resonances or bound states appear in the behaviors of the
phase shifts, suggesting that Θ+(1540) does not exist in the JP = 1/2− with I = 0, 1 channels
at the quark mass in this setup.

The experiment and the previous theoretical studies give completely repulsive behavior of the
phase shift for the I = 0 NK systems, while our analysis with heavier quark masses produces
the attractive pocket in the I = 0 potential. This suggests that the attractive pocket disappears
at the lighter quark mass. The study from the HAL QCD approach at such quark mass is of
interest, which is left to our future works.

8.2 P-wave I = 3/2 Nπ and I = 0 ΞK̄ interactions
We have studied P-wave I = 3/2Nπ and I = 0 ΞK̄ scatterings. We have calculated the 3-point
correlation functions, which have 3-quark-type source operators with zero momentum. As a
calculation of the all-to-all propagator, we have employed the conventional stochastic technique
and the CAA combined with the truncated solver method. We have used gauge configurations
at mπ ≈ 410 MeV, where both ∆ and Ω baryons exist as bound states in Nπ and ΞK̄ systems,
respectively.
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From the results of the LO potential, the ΞK̄ system has a weaker attractive interaction
than the Nπ. On the other hand, the binding energy of the ΞK̄ is larger than that of the Nπ.
This indicates that the difference between the two interactions does not contribute to the larger
binding energy of the ΞK̄, in other words, the inequality mN +mπ −m∆ < mΞ +mK̄ −mΩ.
On the other hand, an RMS distance of a bound state of ΞK̄ system is smaller than that of
Nπ, which suggests that the inequality is mainly explained by a smaller spatial size of the wave
function of the ΞK̄ bound state due to its larger reduced mass. This inequality probably holds
even at the physical pion mass, so that ∆ exists as a resonance while Ω is a stable particle.

RMS distances of bound states in both systems are very small, which indicates that in this
setup, ∆ and Ω are tightly bound states and can be regarded qualitatively as 3-quark states.

Binding energies in both systems are consistent with those extracted from 2-point functions
of single ∆ and Ω baryons, although systematic errors are rather large, mainly due to lattice
artifacts at short distances. The RMS distances also have large systematic errors as well. These
observations together with the small RMS distances indicate that a short distant part of the
potentials is relevant for a compact state such as ∆ and Ω in this study while it suffers severely
from lattice artifacts. Therefore, further improvement is desirable for the HAL QCD method
to handle such states. On the other hand, direct extraction of a single hadron mass from a 2-
point correlation function of a single hadron operator is rather insensitive to such problems.
However, in a setup where ∆ appears as a resonance, the HAL QCD method is expected to
become efficient.

In this work, we have performed the LO analysis in the derivative expansion of non-local po-
tentials. Our results of the binding energies consistent with those from 2-point correlation func-
tions imply that the LO analysis is sufficient in the present study. However, when the systematic
uncertainties from lattice discretization are improved, the NLO analysis might be required as
well, since the bound states lie much below the threshold in this lattice setup. The NLO analysis
may be also necessary to study the ∆ as a resonance since a resonance peak appears much higher
energy than the threshold. The study in this direction is presented in Ref. [22].

This work together with the study of the S-wave NK scatterings is the first step toward the
studies on actual baryon resonances in the HAL QCD method. Such studies, where we use
lighter quark masses, require additional challenges due to larger statistical fluctuations caused
by lighter quarks as well as the necessity of the NLO analysis explained above.

8.3 Studies on Λ(1405) in SU(3) limit
We have shown our preliminary analysis of the S-wave meson-baryon scatterings in the two
octet representations and one singlet representation in the flavor SU(3) limit, which are expected
to have signals associated with Λ(1405) according to the previous studies using the chiral uni-
tary model. As well as the analysis of the Nπ and ΞK̄ scatterings, we have calculated the
3-point functions with 3-quark type source operators with zero momentum and employed the
conventional stochastic calculation and the CAA technique. We have used the gauge configura-
tion at the octet meson mass mM ≈ 670 MeV. The hadron masses calculated from the 2-point
correlation functions indicate that there is at least one bound state of each meson-baryon system.

The 3-point correlation function in every representation crosses zero in a short distance,
which causes the singular behavior of the LO potential. In the results of the solutions of the
Schrödinger equation, there are two bound states in each channel: one is the ground state which
has too large κ2 to be converted to the binding energy, which seems to be unphysical, and the
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other is the first-excited state which has the same order of the binding energy as that estimated
from the 2-point correlation function, which seems to be physical and the true ground state.

The existence of such a ground state may come from the singular behavior of the potential,
that is, the 3-point correlation function crossing zero value. One possible reason is that the NBS
wave function has the 1/r3(log r)α behavior in a very short distance, which is contributed by the
high-energy dynamics, and analytic behavior in a middle and long distance, which is determined
by the low-energy dynamics, with opposite signs to each other. To solve this problem, we have to
use the source operator to suppress the 1/r3(log r)α behavior of the 3-point correlation function
so that it has no zero points. In our actual calculation, this solution corresponds to calculating
the additional 4-point correlation function with the same sink operator and taking the linear
combination of the two correlation functions so that does not cross zero, which should be done
in the future.
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Appendix A

Exact-relativistic time-dependent HAL
QCD method with different masses

In this thesis, we obtain the LO potential from Eq. (3.62) with the truncation of the summation
over k, in which the relativistic effect is expressed as the Taylor series in terms of time deriva-
tives. The coefficient of the series C(k)

m1,m2 has a nontrivial value for any k unless the two hadrons
have equal mass and the coefficient only for k = 1, 2 has nonzero value [16].

In this appendix, we present an alternative formula in which relativistic effect can be exactly
included by employing at most the 3rd time derivatives.

A.1 Naive formula
First, we show the direct application of Eq. (3.59) to the time-dependent HAL QCD method [84].
Multiplying Eq. (3.58) by (∆Wn/M + 1)2, we have[︄

P(∆Wn)−
(︃
1 +

∆Wn

M

)︃2

H0

]︄
AnΨ

Wn
α (r)e−∆Wnt

=

∫︂
d3r′ Uαβ(r, r

′)

(︃
1 +

∆Wn

M

)︃2

AnΨ
Wn
β (r′)e−∆Wnt.

(A.1)

We rewrite ∆Wn in terms of the time derivative as[︄
P
(︃
− ∂

∂t

)︃
−
(︃
1− 1

M

∂

∂t

)︃2

H0

]︄
AnΨ

Wn
α (r)e−∆Wnt

=

∫︂
d3r′ Uαβ(r, r

′)

(︃
1− 1

M

∂

∂t

)︃2

AnΨ
Wn
β (r′)e−∆Wnt.

(A.2)

Taking summation over n, we obtain the exact relativistic form of the relation as[︄
P
(︃
− ∂

∂t

)︃
−
(︃
1− 1

M

∂

∂t

)︃2

H0

]︄
Rα(r, t)

=

∫︂
d3r′ Uαβ(r, r

′)

(︃
1− 1

M

∂

∂t

)︃2

Rβ(r
′, t),

(A.3)
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where

P
(︃
− ∂

∂t

)︃
= − ∂

∂t
+
µ+M

2µM

∂2

∂t2
− 1

2µM

∂3

∂t3
+

1

8µM2

∂4

∂t4
. (A.4)

The LO potential in this formulation reads

V LO(r) =

(︂
P
(︁
− ∂
∂t

)︁
−
(︁
1− 1

M
∂
∂t

)︁2
H0

)︂
Rα(r, t)(︁

1− 1
M

∂
∂t

)︁2
Rα(r, t)

, (A.5)

which requires at most 4th-order time derivative terms.

A.2 Improved formula
Here we present a sophisticated technique that reduces the highest order in the time derivatives.
We decompose P

(︁
− ∂
∂t

)︁
into a term proportional to (1− 1

M
∂
∂t
)2 and a remnant as

2µP
(︃
− ∂

∂t

)︃
=

(︃
1− 1

M

∂

∂t

)︃2

2µ

[︃
− ∂

∂t
+ b

∂2

∂t2

]︃
+ 2µ

[︃(︃
−b+ 1

2µ
− 3

2M

)︃
∂2

∂t2
− 1

M

(︃
−2b+ 1

2µ
− 1

M

)︃
∂3

∂t3
+

1

M2

(︃
−b+ 1

8µ

)︃
∂4

∂t4

]︃
.

(A.6)

Here we introduce an arbitrary parameter b, such that terms proportional to b are summed up
to zero and the above identity formula holds for any b. Taking b = 1

2M
(1 + c δ2) with another

arbitrary parameter c, where δ = (mM −mB)/M , we obtain(︃
1− 1

M

∂

∂t

)︃2 [︃
−∇2Rα(r, t) + 2µ

∫︂
d3r′ Uαβ(r, r

′)Rβ(r
′, t)
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=
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1− 1

M

∂
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2µ
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+

(︃
1

2M
+

δ2

2M
c+

δ4

8µ
c
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Rα(r, t)

+ δ2
[︃(︃
−1

4
c+ 1
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− 1

M
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−1

2
c+ 1
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1
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−1
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(A.7)

We then decompose the potential as

Uαβ(r, r
′) = U

(0)
αβ (r, r

′) + U
(1)
αβ (r, r

′), (A.8)

where U (i)
αβ(r, r

′) (i = 0, 1) are defined by the following two equations:[︃
−∇2Rα(r, t) + 2µ

∫︂
d3r′ U

(0)
αβ (r, r

′)Rβ(r
′, t)

]︃
= 2µ

[︃
− ∂

∂t
+

(︃
1

2M
+

δ2

2M
c+

δ4

8µ
c

)︃
∂2

∂t2

]︃
Rα(r, t),

(A.9)
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FIGURE A.1: The Nπ LO potential at t = 9 (Left) and the ΞK̄ LO potential at t = 10 (Right) estimated
from Eq. (6.7) (Red), and Eq. (A.5) (Green) and Eq. (A.11) (Blue). Note that blue points are almost
invisible in the figure because they are almost the same as red points.
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(A.10)

The LO potential in this decomposition reads

V LO(r) = V (0)LO(r) + V (1)LO(r), (A.11)

where

V (0)LO(r) =
1

Rα(r, t)

[︃(︃
− ∂
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+
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2M
+

δ2

2M
c+

δ4

8µ
c

)︃
∂2

∂t2

)︃
−H0

]︃
Rα(r, t), (A.12)
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.(A.13)

If we set c = 1, the 4th-order time derivative term in Eq. (A.10) or Eq. (A.13) vanishes, so that
we need only 3rd-order terms at most.

A.3 Comparison of potentials among semi-relativistic and exact-
relativistic formulae for P-wave Nπ and ΞK̄ systems

Fig. A.1 shows a comparison of the Nπ and ΞK̄ potentials estimated from Eq. (6.7), and those
from Eq. (A.5) and Eq. (A.11). For the truncation in Eq. (6.7), we set k ≤ 2 for Nπ and k ≤ 3
for ΞK̄, respectively, as well as the main part of this thesis. All three results are consistent
with each other within statistical errors, though results from Eq. (A.5) have larger statistical
errors. These are caused by statistical fluctuations of the 4th-order time-derivative terms that
appear in the numerator. The results from Eq. (6.7) and Eq. (A.11) agree with each other within
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comparable errors, which indicates that systematic uncertainties for the truncation in Eq. (6.7)
are well under control.
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Appendix B

Singular behaviors of the Nπ LO potential
and smeared sink quark operators

B.1 Nπ LO potential with point sink quarks
We have sometimes observed singular behavior of a potential between two hadrons in the HAL
QCD method if the n-point correlation function has quark pair creation and annihilation dia-
grams. As an example, we show in Fig. B.1 (Left) a real part of the normalized 3-point function
in the P-wave I = 3/2 Nπ system for point sink quark operators in our trial calculation using
2+1-flavor configurations by the CP-PACS and JLQCD Collaborations [85] at a ≈ 0.12 fm and
mπ ≈ 870 MeV on 163 × 32 lattice volume. Then the corresponding LO potential, shown in
Fig. B.1 (Right), has multi-valued behavior in a short distance. As discussed below, this is due to
a complicated structure with rapid changes around the origin of the 3-point correlation function,
rather than contaminations of higher partial waves due to a cubic box (long-distance effects).
Due to quark pair creation and annihilation which is possible in this channel, the operator-
product expansion (OPE) [76–79] predicts the following behavior of the 3-point function at
r → 0:

F (r) ∝ 1

r3
Y l
m(Ω), (B.1)

where Y l
m(Ω) is the spherical harmonics with the angular momentum of the system. We find

that the behavior of Eq. (B.1) for l = 1 at short distances looks very similar to a plot in Fig.B.1
(Left). Also, the discretized one of the following quantities:

∇2( 1
r3
Y l
m(Ω))

1
r3
Y l
m(Ω)

, (B.2)

which is associated with the laplacian part of the LO potential Eq. (3.64), also becomes multi-
valued if the number of discrete data at short distances is too small to reproduce a smooth single-
valued behavior. Thus the problem is caused by short-distance discretization effects. Note that
a similar singular behavior was already observed in the I = 1 P-wave ππ system [22].

One of the possible prescriptions to tame singular behaviors at short distances is the sink
smearing at the quark level, which is proposed in Ref. [22]. This corresponds to replacing the
sink quark operators with the smeared ones in the NBS wave function, which does not change the
physical observables in principle. Fig. B.2 (Left) represents the 3-point function with smeared
sink quark operator, while Fig.B.2 (Right) is the corresponding potential. As expected, sink
smearings make the behavior of the NBS wave function at short distances much smoother, so
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FIGURE B.1: (Left) An upper component (α = 1) of the Nπ 3-point function at t = 6 and z = 0
for point sink quark operators. The function is normalized so that its maximum value is 1. (Right) The
corresponding LO potential.

FIGURE B.2: Same as Fig. B.1 but for smeared sink quark operators.

that the potential becomes almost single-valued even at short distances where discrete data points
are sparsely located.

B.2 Non-locality effect of sink smearing on the potentials
Although smeared sink operators suppress singular behaviors in potentials at short distances,
they may enhance the higher-order terms in the derivative expansion of non-local potentials.
This may cause large systematic errors in the LO analysis, as was observed in the case of the
LapH method [86]. In order to quantify effects of the non-locality caused by our sink smearing,
we compare phase shifts of I = 1 S-wave ΞK̄ scattering between point and smeared sink
operators in the same setup as in Chapter 5.

Comparisons in Fig. B.3 show that they agree with each other at ∆E ≲ 100 MeV, where
∆E is an energy difference from the threshold. This suggests that the non-locality effect due to
the sink smearing is negligible for physical observables in the low-energy region in this setup.
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FIGURE B.3: Phase shifts in I = 1 ΞK̄ system calculated form potentials at t = 8. Blue (orange) bands
show results with point (smeared) sink operators.
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Appendix C

Rotational symmetry on a lattice

In this appendix, we review the cubic group, which is the discrete rotational symmetry on a three-
dimensional isotropic lattice. We first show its conjugate classes and irreducible representations,
then present the transformation properties of several hadron operators under the cubic group.
Then we define the states and operators which belong to the irreducible representations. Finally,
we explain how to project states and operators onto specific representations and the explicit
projection of meson-baryon operators utilized in the main part of this thesis.

C.1 Cubic group and its irreducible representations
In the continuum, QCD has three-dimensional rotational symmetry, but the lattice QCD does
not. It instead has a symmetry under which a three-dimensional cube does not change, which is
called the cubic group or the octahedral group O [87]. O has 24 elements and is classified by
five conjugate classes as follows:

• identity: I ,

• π rotations along 3 lattice axes: 3C2,

• ±2π/3 rotations along 4 space diagonals: 8C3,

• ±π/2 rotations along 3 lattice axis: 6C4,

• ±π rotations along 6 face diagonals: 6C ′
2.

Each conjugate class is shown graphically in Figure C.1. Since the number of the conjugate
classes is equal to that of the irreducible representations (IRs), O has five IRs called A1, A2, E,
T1, and T2. The dimensions of the IRs are 1, 1, 2, 3, and 3, respectively.

We consider the spin degree of freedom by introducing the double cover of the cubic group,
called OD. OD has the same elements as those of O except for an additional action of 2π
rotation, which corresponds to multiplying a factor −1 to states with spin in the continuum. OD

thus has 48 elements. The conjugate classes of the double cover of the cubic group OD are as
follows:

• identity: I ,

• 2π rotation: J

• π rotations about 3 lattice axes: 6C4,

• ±4π/3 rotations about 4 space diagonals: 8C3,
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FIGURE C.1: Rotations classified by the conjugate classes.

• ±2π/3 rotations about 4 space diagonals: 8C6,

• ±3π/2 rotations about 3 lattice axis: 6C8,

• ±π/2 rotations 3 lattice axis: 6C ′
8,

• ±π rotations about 6 face diagonals: 12C ′
4.

Here −θ rotation is identified with 4π − θ rotation. Therefore, 8C3 and 6C8 are same as 2π
rotation followed by 8C6 and 6C ′

8, respectively. OD includes the same five IRs of O, which cor-
responds to spin-integer states, with additional ones called G1, G2, and H , which are associated
with spin-half-integer states.

QCD also has the parity reflection symmetry I . The double cover of the cubic group together
with the reflection, called OD

h , has 96 elements and 8 additional conjugate classes. The IR of
OD
h are represented as XP , where X is the IRs of OD and P = + (P = −) denotes parity even

(odd).

C.2 Transformation properties of the hadron operators for
the cubic group

Here we briefly review the transformation properties of several hadron operators under OD
h .

Here we abbreviate the time component of operators. The pseudo-scalar meson operator with
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momentum p is given by

M(p) =
∑︂
x

q̄(x)γ5q(x)e
ip·x, (C.1)

and the octet and decuplet baryon operator by

Bα(p) =
∑︂
x

ϵabcqa,α(x)(q
T
b (x)Cγ5qc(x))e

ip·x, (C.2)

Dα,i(p) =
∑︂
x

ϵabcqa,α(x)(q
T
b (x)Cγiqc(x))e

ip·x, (C.3)

where qa,α(x) and q̄a,α(x) are the quark operators, C is the charge conjugation matrix acting on
the spinor space, and γi (i = 1, 2, 3) are gamma matrix in the spatial direction.

M(p), Ba,α(p) and Dα,i(p) transform under rotation R and parity refrection I as

URM(p)U †
R =M(Rp), UIM(p)U †

I = −M(−p),
URBα(p)U

†
R = S(R)−1

αβBβ(Rp), UIBα(p)U
†
I = (γ4)αβBβ(−p),

URDα,i(p)U
†
R = A(R)−1

ij S(R)
−1
αβDβ,j(Rp), UIDα,i(p)U

†
I = (γ4)αβDβ,i(−p),

(C.4)

where UR and UI are the unitary operators on the Hilbert space, S(R)αβ is the 4 × 4 rotation
matrix acting on the spinors, and A(R)ij is the 3 × 3 rotation matrix acting on the index of the
gamma matrices.

For a rotation with the axis n = (n1, n2, n3) (|n|= 1) and the angle θ, Rp is represented as⎛⎝ n2
1(1− cos θ) + cos θ n1n2(1− cos θ)− n3 sin θ n1n3(1− cos θ) + n2 sin θ

n1n2(1− cos θ) + n3 sin θ n2
2(1− cos θ) + cos θ n2n3(1− cos θ)− n1 sin θ

n1n3(1− cos θ)− n2 sin θ n2n3(1− cos θ) + n1 sin θ n2
3(1− cos θ) + cos θ

⎞⎠⎛⎝p1p2
p3

⎞⎠,(C.5)

and S(R)αβ and A(R)ij are described as

S(R) = exp

(︃
1

8
ωµν [γµ, γν ]

)︃
, A(R) = exp(−iθn · J), (C.6)

where ωjk = −ϵijkniθ and ω04 = ω40 = 0, and (Jk)ij = −iεijk with the total antisymmetric
tensor εijk. Note that the matrix in Eq. (C.5) and A(R) are identical. In particular, in the Dirac
representation, the upper two spinor components Bs(p) and Ds,i(p) (s = up, down) transform
as

URBs(p)U
†
R = exp

(︂
iθn · σ

2

)︂
ss′
Bs′(Rp), UIBs(p)U

†
I = Bs(−p),

URDs,i(p)U
†
R = exp(iθn · J)ij exp

(︂
iθn · σ

2

)︂
ss′
Ds′,j(Rp), UIDs,i(p)U

†
I = Ds,i(−p),

(C.7)

where σi is the Pauli matrix.
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C.3 States and operators in the IR of OD
h

A state that belongs to IR ΓP with rth-component (basis)
⃓⃓
ΓP , r

⟩︁
is defined by

Ug
⃓⃓
ΓP , r

⟩︁
=
∑︂
r′

T ΓP

r′,r(g)
⃓⃓
ΓP , r′

⟩︁
, (C.8)

where Ug is the unitary operator of g ∈ OD
h on the Hilbert space and T ΓP

r′,r(g) is the representation

matrix. For example, for a rotation R, TA
±
1 (R) = 1 and T T

±
1

r′,r (R) = exp
(︁
−iθ(R)n(R) · J

)︁
r′r

,
where θ(R) and n(R) denote the rotation angle and axis of R, respectively, and (Jq)r′r = −iεr′rq
(For the other IRs, see, for example, Appendix A in [88]). For a parity reflection I , TX±

(I) =
±1 for every IR. An operator in the IR ΓP with the component r is defined as

UgOΓP ,rU
†
g =

∑︂
r′

T ΓP

r,r′(g
−1)OΓP ,r′ , (C.9)

so that O†
ΓP ,r
|0⟩ has the same transformation as

⃓⃓
ΓP , r

⟩︁
.

C.4 Projection method
Here we explain the projection of a state |p⟩ and an operator O(p) with momentum p onto
specific IR and component [89]. The same technique also can be applied to a state and operator
with specific spatial coordinates x. We obtain the states and the operators in the IR ΓP and row
r by the projection as ⃓⃓

ΓP , r;p
⟩︁

=
dΓP

nOD
h

∑︂
g∈OD

h

T ΓP

r,r (g
−1) Ug |p⟩ , (C.10)

OΓP ,r(p) =
dΓP

nOD
h

∑︂
g∈OD

h

T ΓP

r,r (g) UgO(p)U
†
g , (C.11)

where r is not summed over. The proof is as follows. According to the completeness relation,
|p⟩ and O(p) is decomposed into

⃓⃓
ΓP , r

⟩︁
and OΓP ,r, respectively as

|p⟩ =
∑︂
ΓP ,r

cΓP ,r(p)
⃓⃓
ΓP , r

⟩︁
, (C.12)

O(p) =
∑︂
ΓP ,r

CΓP ,r(p)OΓP ,r, (C.13)
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where cΓP ,r(p) and CΓP ,r(p) are the coefficients. Thus using Eq. (C.8), the right hand side of
Eq. (C.10) reads ∑︂

ΓP ′ ,r′

cΓP ′ ,r′(p)
dΓP

nOD
h

∑︂
g∈OD

h

T ΓP

r,r (g
−1) Ug

⃓⃓⃓
ΓP

′
, r′
⟩︂

=
∑︂
ΓP ′ ,r′

cΓP ′ ,r′(p)
dΓP

nOD
h

∑︂
g∈OD

h

T ΓP

r,r (g
−1)
∑︂
r′′

T ΓP ′

r′′,r′(g)
⃓⃓⃓
ΓP

′
, r′′
⟩︂

=
∑︂
ΓP ′ ,r′

cΓP ′ ,r′(p)
∑︂
r′′

dΓP

nOD
h

∑︂
g∈OD

h

T ΓP ′

r′′,r′(g)T
ΓP

r,r (g
−1)

⏞ ⏟⏟ ⏞
=δ

ΓP ′
,ΓP δr′′,rδr′,r

⃓⃓⃓
ΓP

′
, r′′
⟩︂

=cΓP ,r(p)
⃓⃓
ΓP , r

⟩︁
.

(C.14)

Here, from the second to the third line, we use the orthogonal relation of T ΓP

r,r′(g). Similarly,
using Eq. (C.9), the right-hand side of Eq. (C.11) reads∑︂

ΓP ′ ,r′

CΓP ′ ,r′(p)
dΓP

nOD
h

∑︂
g∈OD

h

T ΓP

r,r (g) UgOΓP ′ ,r′U
†
g

=
∑︂
ΓP ′ ,r′

cΓP ′ ,r′(p)
dΓP

nOD
h

∑︂
g∈OD

h

T ΓP

r,r (g)
∑︂
r′′

T ΓP ′

r′,r′′(g
−1)OΓP ′ ,r′′

=
∑︂
ΓP ′ ,r′

cΓP ′ ,r′(p)
∑︂
r′′

dΓP

nOD
h

∑︂
g∈OD

h

T ΓP

r,r (g)T
ΓP ′

r′,r′′(g
−1)

⏞ ⏟⏟ ⏞
=δ

ΓP ,ΓP ′ δr,r′′δr,r′

OΓP ′ ,r′′

=CΓP ,r(p)OΓP ,r.

(C.15)

Therefore, Eq. (C.10) and Eq. (C.11) provide the appropriate projections.
Furthermore, taking summations of Eq. (C.10) and Eq. (C.11) over r, we obtain⃓⃓

ΓP ; p
⟩︁

=
dΓP

nOD
h

∑︂
g∈OD

h

χΓP (g) Ug |p⟩ , (C.16)

OΓP (p) =
dΓP

nOD
h

∑︂
g∈OD

h

χΓP (g) UgO(p)U
†
g , (C.17)

where χΓP (g) =
∑︁

r T
ΓP

r,r (g) =
∑︁

r T
ΓP

r,r (g
−1), called character. These equations also represent

the projected states and operators onto the IR ΓP , but the component r cannot be specified.
Nevertheless, these are useful since the different elements in the same conjugate class share the
same value of χΓP (g). The character in each conjugate class for OD

h is listed in Table.1 of [87]),
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The explicit form of the projected meson-baryon operator in the momentum space is repre-
sented as

OMB
ΓP ,r(p) =

dΓP

nOD
h

∑︂
g∈OD

h

T ΓP

r,r (g) UgM(−p)Bα(p)U
†
g

=
dΓP

nOD
h

∑︂
R∈OD

[︂
T ΓP

r,r (R) URM(−p)Bα(p)U
†
R + (−1)PT ΓP

r,r (R) UR(−M(p))Bα(−p)U †
R

]︂
=
dΓP

nOD
h

∑︂
R∈OD

T ΓP

r,r (R) exp
(︂
iθn · σ

2

)︂
αβ

[︁
M(−Rp)Bβ(Rp) + (−1)P+1M(Rp)Bβ(−Rp)

]︁
,

(C.18)

and the operator in the real space is described as

OMB
ΓP ,r(x) =

dΓP

nOD
h

∑︂
g∈OD

h

T ΓP

r,r (g) UgM(x)Bα(0)U
†
g

=
dΓP

nOD
h

∑︂
R∈OD

T ΓP

r,r (R) exp
(︂
iθn · σ

2

)︂
αβ

[︁
M(Rx)Bβ(0) + (−1)P+1M(−Rx)Bβ(0)

]︁
.

(C.19)

The representation matrix of H± IR, which corresponds to spin-3/2, is given by

TH
±
(R) = exp

(︁
−iθn · J3/2

)︁
(C.20)

with

J3/2
x =

1

2

⎡⎢⎢⎣
0
√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0

⎤⎥⎥⎦, J3/2
y =

1

2

⎡⎢⎢⎣
0 −i

√
3 0 0

i
√
3 0 −2i 0

0 2i 0 −i
√
3

0 0 i
√
3 0

⎤⎥⎥⎦,

J3/2
z =

1

2

⎡⎢⎢⎣
3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎤⎥⎥⎦.
(C.21)

Equation (C.19) together with Eq. (C.21) are used in the main part of this thesis.
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