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Title 

Deep Learning-based Algorithm Improved Radiologists’ Performance in Bone Metastases 

Detection on CT 

 

Abstract 

Objectives: To develop and evaluate a deep learning-based algorithm (DLA) for automatic 

detection of bone metastases on CT. 

Methods: This retrospective study included CT scans acquired at a single institution between 

2009 and 2019. Positive scans with bone metastases and negative scans without bone metastasis 

were collected to train the DLA. Another 50 positive and 50 negative scans were collected 

separately from the training dataset and were divided into validation and test datasets at a 2:3 

ratio. The clinical efficacy of the DLA was evaluated in an observer study with board-certified 

radiologists. Jackknife alternative free-response receiver operating characteristic analysis was 

used to evaluate observer performance. 

Results: A total of 269 positive scans including 1375 bone metastases and 463 negative scans 

were collected for the training dataset. The number of lesions identified in the validation and 

test datasets was 49 and 75, respectively. The DLA achieved a sensitivity of 89.8% (44 of 49) 

with 0.775 false positives per case for the validation dataset and 82.7% (62 of 75) with 0.617 

false positives per case for the test dataset. With the DLA, the overall performance of nine 

radiologists with reference to the weighted alternative free-response receiver operating 

characteristic figure of merit improved from 0.746 to 0.899 (P < .001). Furthermore, the mean 

interpretation time per case decreased from 168 to 85 s (P = .004). 

Conclusion: With the aid of the algorithm, the overall performance of radiologists in bone 

metastases detection improved, and the interpretation time decreased at the same time.  
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Key Points 

l A deep learning-based algorithm for automatic detection of bone metastases on CT was 

developed. 

l In the observer study, overall performance of radiologists in bone metastases detection 

improved significantly with the aid of the algorithm.  

l Radiologists’ interpretation time decreased at the same time. 

 

Abbreviations 

CAD  computer-aided detection 

DLA  deep learning-based algorithm 

CNN  convolutional neural network 

DSC  Dice similarity coefficient 

FP  false-positive 

FN  false-negative 

JAFROC  jackknife free-response receiver operating characteristic 

wAFROC-FOM weighted alternative free-response receiver operating characteristic figure of 

merit  
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Introduction 

Early detection of bone metastases is a common and important task for radiologists. Bones are 

one of the most common sites of metastases, along with the lungs and liver [1]. Metastatic 

disease significantly affects staging and prognosis in cancer patients. Moreover, bone metastases 

often cause skeletal-related events, including cancer-related pain, pathologic fractures, spinal 

cord compression, and hypercalcemia [2, 3]. 

Currently, several imaging modalities, including CT, MRI, bone scintigraphy, and 

PET, can be used to examine bone metastases, with each showing distinct advantages [2, 4, 5]. 

Because of its high spatial resolution, CT can demonstrate small and slight bone abnormalities 

[4–6]. It also allows simultaneous evaluation of the primary and metastatic lesions [5, 7]. 

Furthermore, CT is readily available at a relatively low cost [8]. Thus, in the clinical setting, CT 

is the most frequently used modality for both initial staging and serial follow-up of cancer 

patients [5, 8, 9]. 

Nevertheless, bone metastases detection on CT is challenging and time-consuming for 

the following reasons: (i) since bones are present throughout the body, radiologists must 

scrutinize all slices; (ii) the radiologic appearance of bone metastases varies from sclerosing to 

lytic types [4, 5]; thus, no single window setting can properly depict all bone metastases [10, 

11]; and (iii) benign mimickers such as bone islands, fractures, and degenerative changes often 

complicate diagnoses [4, 11]. An oversight can easily occur especially when the examination is 

not directly aimed to investigate bone metastases [12]. Therefore, there is a great demand for 

computer-aided detection (CAD) systems for bone metastases on CT. 

The use of deep learning for various tasks in medical image analysis has gained much 

interest recently [13]. However, few reports have assessed automatic detection of bone 

metastases on CT [8, 14]. 

 In this study, we attempted to develop a deep learning-based algorithm (DLA) for 

automatic detection of bone metastases on CT. An observer study with nine board-certified 
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radiologists was performed to evaluate the clinical efficacy of the algorithm. 

 

 

Materials and Methods 

This retrospective study was approved by our Ethics Committee. Formal consent was waived by 

the Ethics Committee due to the retrospective nature of data collection. 

Data Acquisition 

All images were obtained retrospectively from the clinical databases of a single institution 

acquired between 2009 and 2019. Both staging and follow-up studies of malignancy with both 

plain and intravenous contrast-enhanced CTs were included. For contrast-enhanced CTs, 

delayed phase images were used. Images with soft-tissue kernel reconstruction were included. 

Training Dataset: The inclusion criteria for positive scans in the training dataset were as 

follows: (a) presence of at least one radiologically reported bone metastasis and (b) availability 

of thin-slice images of ≤1 mm thickness. To increase data volume, more than one scan was 

included from one patient if the radiological appearance of bone metastases changed 

substantially. Simultaneously, CT scans from patients without malignancy were collected as 

negative controls to allow the networks to identify normal bones. The patients included in the 

validation and test datasets described below were excluded from the training dataset. 

Validation and Test Datasets: To evaluate the algorithm performance, 50 positive and 50 

negative control scans were consecutively collected separately from the training dataset. 

Inclusion criteria for positive scans were as follows: (a) presence of at least one radiologically 

reported bone metastasis, (b) availability of thin-slice images of ≤1 mm thickness, (c) 

availability of one or more subsequent CT studies and one or more subsequent bone 

scintigraphy or fluorine-18-fluorodeoxyglucose (FDG)-PET studies, (d) presence of at least one 

lesion ≥10 mm, and (e) presence of fewer than six lesions per scan. Bone metastases were 
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diagnosed by continuous growth on subsequent CT images or substantial focal uptake on bone 

scintigraphy or FDG-PET. Bone metastases of <5 mm were not included because of the 

difficulty in confirming their diagnosis. Negative control cases with malignancy were selected 

to match the distribution of age, sex, and primary lesions. The 50 positive and 50 negative scans 

were divided into validation and test datasets randomly in a 2:3 ratio. A flowchart outlining data 

collection and division is presented in Figure 1. 

 

Preparation of Ground Truth Labels 

For the training dataset, ground truth labels were established with manual segmentation 

performed by a board-certified radiologist (S.N.: 7 years’ experience, general radiologist). For 

the validation and test datasets, ground truth labels were established with manual segmentation, 

with consensus between two board-certified radiologists (S.N. and R.S.: 14 years’ experience, 

general radiologist). 

 

Deep Learning-based Algorithm 

The algorithm consists of three convolutional neural networks (CNNs): (i) a 2D UNet-based 

network for bone segmentation, (ii) a 3D UNet-based network for candidate region 

segmentation, and (iii) a 3D ResNet-based network for false-positive (FP) reduction. UNet and 

ResNet are popular CNN architectures commonly used for segmentation and classification, 

respectively [15, 16]. The 3D modification of these networks was performed in the second and 

third steps of our framework to capture 3D anatomical information efficiently. A schematic of 

the algorithm is shown in Figure 2 and more detailed schematic is shown in Figure S1 in the 

supplementally material.  

 As the first step, the original image was fed into a 2D UNet-based bone segmentation 

network slice by slice. The network was developed in the previous study [17]. The result of 
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bone segmentation was used as a reference in the next step. After bone segmentation, isotropic 

resampling was performed to standardize each voxel to 1 × 1 × 1 mm. As the second step, 

resampled image was cropped into 96 × 96 × 96 voxel blocks with a stride of 48, and fed into a 

3D UNet-based network to extract candidate regions of bone metastases. To reduce calculation 

time, only blocks including bone region (in reference to segmentation result) were fed into the 

network. The output blocks of the 3D UNet-based network were merged again into one image. 

In the merging process, overlapped areas of blocks were averaged according to the number of 

overlaps. After merging, candidate regions smaller than 100 voxels in volume were discarded. 

As the final step, the image was cropped into 32 × 32 × 32 voxel blocks with a stride of 16, and 

fed into 3D ResNet-based networks for FP reduction. Only blocks including candidate regions 

were fed into the networks. An ensemble of three 3D ResNet-based networks trained 

independently was employed to improve sensitivity. The networks predicted probability of bone 

metastasis for each block, and the probabilities were assembled for each candidate region. When 

at least one of the three networks predicted a probability exceeding the preset threshold, for at 

least one of the blocks including the relevant region, the region was included in the final output. 

 Total image processing took around 3 min for a torso CT (chest to pelvis or neck to 

pelvis). Details of the development environment, network architecture, and hyperparameters are 

provided in the supplementary material. The code is available at https://github.com/snkp/bmd. 

 

Measurement of Algorithm Performance 

The Dice similarity coefficient (DSC), a commonly used spatial overlap index, was employed to 

evaluate the accuracy of the final output of the DLA [18]. The DSCs of the ground truth labels 

and candidate regions were calculated in a 3D volumetric manner. Ground truth labels with a 

DSC of ≥0.3 were counted as true positive, and those with a DSC of <0.3 were counted as false 

negative (FN). Candidate regions showing no spatial overlap with ground truth labels were 

counted as FP. Lesion-based sensitivity and FP counts per case were calculated based on these 
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values and were defined as the main outcomes to assess the performance of the DLA. 

 

Observer Study 

An observer study with nine board-certified radiologists was conducted to evaluate the clinical 

efficacy of the algorithm. The observers evaluated 60 CT scans of the test dataset without and 

with the DLA and marked the locations of suspicious lesions on the images by rating the 

likelihood (1–100) of bone metastasis. 

A medical monitor (Radiforce RX440; EIZO Corporation) and an in-house dedicated 

image viewer (Figure 3) with multi-planar reconstruction and window level/width modification 

functions were offered to view the CT images. To control practice effects, the observers trained 

usage of the viewer prior to the actual study. The observers were blinded to all clinical data 

except for the age and sex of each patient. The interpretation time for each scan was recorded 

automatically by the viewer. 

Five of the nine observers interpreted each scan first without and then with the DLA. 

The other four interpreted the scans first with and then without the DLA. The interval between 

the sessions with and without the DLA was ≥28 days. The order of scans was randomized for 

each observer. 

After completion of all assessments, the marked lesion locations were compared with 

the ground truth labels for lesion identification. Lesions with a likelihood rating of 51–100 (upper 

half of 1–100) were considered as positive in lesion-based analysis. Cases with at least one 

positive lesion were considered positive in case-based analysis. 

 

Statistical Analysis 

To evaluate the overall performance of the radiologists, the jackknife free-response receiver 

operating characteristic (JAFROC) analysis was performed with random-reader and random-
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case models. A weighted alternative free-response receiver operating characteristic figure of 

merit (wAFROC-FOM) was defined as the main evaluation index of the observer study. Simply 

put, the wAFROC curve is a variant of ROC curve that supports data with multiple lesions per 

case, and the wAFROC-FOM is identical to the area under the wAFROC curve [19]. 

Lesion-based sensitivity, FP count per case, case-based sensitivity, case-based 

specificity, and interpretation time were compared between sessions without and with DLA 

using the Wilcoxon signed rank test. R (Version 4.02) and RJafroc package (Version 2.0.1) [20, 

21] were used for statistical analyses, and P < .05 was considered to indicate a significant 

difference. 

Based on the results of the previous study [22] and the sample size calculation 

conducted with RJafroc package, 60 cases with nine readers were estimated as a suitable sample 

size for the current study. 

 

 
Results 

Demographics of the Three Datasets 

A total of 269 positive scans, including 1375 bone metastases, and 463 negative scans were 

collected for the training dataset. The validation dataset consisted of 20 positive scans including 

49 lesions and 20 negative scans, and the test dataset consisted of 30 positive scans including 75 

lesions and 30 negative scans. Case demographics, scan conditions, and lesion characteristics 

are summarized in Tables 1 and 2. The details of image acquisition are also presented in the 

supplementary material. 

 

Algorithm Performance 

The overall results of the DLA for the validation and test datasets are given in Table 3. The 
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algorithm outputs different results according to the preset threshold; thus, the results for each 

threshold from 0.1 to 0.9 are presented. The lesion-based sensitivity increased with lowering the 

threshold. However, the FP count per case also increased accordingly. Based on the results for 

the validation dataset, a threshold of 0.6 was defined as the standard value, since too many FP 

outputs may impede clinical assessments. At a threshold of 0.6, the lesion-based sensitivity was 

89.8% (44 of 49) with 0.775 FPs per case for the validation dataset and 82.7% (62 of 75) with 

0.617 FPs per case for the test dataset. The case-based sensitivity and specificity were 100% (20 

of 20) and 70.0% (14 of 20) for the validation dataset and 100% (30 of 30) and 80.0% (24 of 

30) for the test dataset.  

The results of the bone metastases detection stratified according to lesion 

characteristics are presented in Table 4. Representative images of true-positive lesions with 

various appearances and locations are shown in Figure 4, and representative images of FN 

lesions and FP regions are shown in Figure 5. The sensitivity improved with increasing 

diameter; for the test dataset, it reached 87.8% (58 of 66) in lesions ≥10 mm and 94.1% (16 of 

17) in lesions ≥30 mm. However, the sensitivity in lesions of <10 mm was limited to 44.4% (4 

of 9). In terms of location, sensitivities were high for lesions located on the vertebrae and pelvis 

(89.7% and 92.9%, respectively) and low for lesions located on the scapulae and limbs (50.0% 

and 60.0%, respectively). For the test dataset, sensitivities for sclerotic lesions and mixed 

lesions were lower than those for lytic lesions (83.9%, 73.7% vs. 92.0%); however, this was not 

the case for the validation dataset (85.7%, 100% vs. 89.5%).  

The number of FNs for the test dataset was 13 of 75 lesions (ribs, 4; vertebrae, 3; 

scapulae, 2; limbs, 2; pelvis, 1; sternum, 1). Of 13 FNs, 5 lesions were <10 mm and 12 lesions 

were <20 mm. The only FN lesion ≥20 mm is shown in Figure 5c. The lesion was detected by 

the DLA but was counted as FN since the DSC was <0.3. 

The FP count for the test dataset was 37 per 60 cases (pelvis, 11; ribs, 7; scapulae, 6; 

vertebrae, 5; other bones, 3; and outside bones, 5). Typical patterns of FPs included 
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osteoarthritic changes (3 FPs), spinal compression fractures or rib fractures (5 FPs), and 

sclerotic changes due to other reasons (4 FPs). 

 

Observer Study 

The experience of the nine observers in diagnostic radiology ranged from 6 to 18 years, and 

their areas of expertise varied (breast radiology: 2, genitourinary radiology: 2, nuclear medicine: 

2, gastrointestinal radiology: 1, neuroradiology: 1, general radiology: 1). All of them had 

interpreted torso CT scans on a daily basis.  

Table 5 shows the main results for image interpretation, and Figure 6 shows the 

average free-response receiver operating characteristic curves of the nine radiologists without 

and with the DLA. In comparison with interpretation without the DLA, DLA-assisted 

interpretations were associated with a higher mean wAFROC-FOM (0.746 [95% CI: 0.690, 

0.802] vs. 0.899 [95% CI 0.865, 0.932]; P < .001), mean sensitivity in lesion-based analysis 

(51.7% [38.8 of 75] vs. 71.7% [53.8 of 75]; P = .004), and mean sensitivity in case-based 

analysis (74.4% [22.3 of 30] vs. 91.1% [27.3 of 30]; P = .004). In addition, the mean 

interpretation time per case decreased when using the DLA (168 s [95% CI: 125, 210] vs. 85 s 

[95% CI: 59, 110]; P = .004). No significant inter-session difference was observed in the mean 

FP count per case (0.237 vs. 0.157; P = .57) and mean specificity for case-based analysis (95.2% 

[28.6 of 30] vs. 96.2% [28.9 of 30]; P = .69). 

 The results of the radiologists’ interpretations stratified according to lesion 

characteristics are presented in Table 4. Improvement in sensitivity with the DLA was observed 

regardless of the location, appearance, and diameter of lesions. 

 After the observer study, all the candidate lesions indicated by the DLA or marked by 

the observers were reviewed, and two true lesions—missing from the ground truth labels—were 

newly found. The summary of these lesions is presented in Figure S4 in the supplementary 

material. Only one or two of nine radiologists detected each lesion, and the DLA did not detect 
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either of them. These two lesions were not accounted for in the sensitivity calculation and the 

markings on them were treated as FPs, because they were not included in the pre-established 

ground truth labels. 

 

Discussion 

Bone metastases detection on CT is a common but challenging task for radiologists. In the 

current study, we employed deep learning to develop a supportive algorithm to overcome this 

problem. The proposed algorithm achieved a lesion-based sensitivity of 89.8% with 0.775 false 

positives per case for the validation dataset, and 82.7% with 0.617 false positives per case for 

the test dataset. With the algorithm, the weighted alternative free-response receiver operating 

characteristic figure of merit, which indicated the overall performance of the radiologists, 

improved from 0.746 to 0.899. Furthermore, the mean interpretation time per case decreased 

from 168 to 85 s. 

In the subgroup analysis of DLA performance, diameter showed the clearest 

correlation with sensitivity. The smaller the lesion, the less image features it contained, making 

extraction more difficult. In terms of location, the sensitivity for lesions located on the vertebrae 

and pelvis was high and that for lesions located on the scapulae and limbs was low. This can be 

explained by the difference in the number of training data: 620 and 412 vertebral and pelvic 

lesions and only 38 and 32 scapula and limb lesions, respectively. The small number of scapula 

or limb lesions in the training dataset was because of the low frequency of bone metastases to 

such locations [23, 24]. The difference in sensitivity by the radiologic appearance of lesions was 

not significant. 

In the observer study, the sensitivity of radiologists in the detection of bone metastases 

improved with the aid of the DLA, from 51.7% to 71.7% in lesion-based analysis and 74.4% to 

91.1% in case-based analysis. The number of FNs (i.e., overlooked lesions or cases) decreased 

from 36.2 to 21.2 in lesion-based analysis and 7.7 to 2.7 in case-based analysis, which indicates 
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the clinical usefulness of the algorithm (Figure S5 in the supplementary material). FP count per 

case was not increased with DLA use. The case-based specificity was high enough without 

using DLA; thus, there was no significant difference between the two sessions. 

 Several attempts have been made to develop a CAD system for detecting bone 

metastases on CT. Before the era of deep learning, Burns et al. used a combination of a 

watershed segmentation algorithm and a support vector machine classifier, and Hammon et al. 

used three consecutive random forest classifiers, each processing local image features, to assess 

candidate regions for bone metastases [9, 12]. Roth et al. applied a deep CNN to the output of a 

pre-existing CAD system and demonstrated its efficacy in FP reduction [14]. Chmelik et al. 

used a deep CNN for voxel-wise segmentation, followed by a random forest classifier for FP 

reduction [8]. However, all these studies focused only on spinal lesions. Although the spine is 

the most frequent site of bone metastases, metastases can occur at any site in the entire skeleton 

[23, 24]. Our algorithm can detect bone metastases in all scanned areas, making it more 

clinically useful. From a technical point of view, the previous studies applied deep CNN in 

combination with traditional machine learning algorithms processing handcrafted image 

features [8, 14]. Our algorithm is the first to apply deep CNN to both candidate region detection 

and FP reduction. Comparison to the previous studies is summarized in Table S1 in the 

supplementary material. 

 This is the first study that evaluated the clinical usefulness of a deep learning-based 

CAD system for bone metastases detection on CT through an observer study with radiologists. 

We believe that this will be a significant step toward the development of general-purpose CAD 

[25]. Many reports have described deep learning-based CAD system for lung nodules or liver 

tumors detection, and some are already in practical use [26–32]. Combining them with the 

proposed algorithm may yield a general-purpose CAD that can be widely used for staging and 

follow-up of cancer patients. 

This study had several limitations. First, our datasets included images from only a 
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single institution and a single scanner vendor. The generalizability of the algorithm needs to be 

assessed with a multi-institution, multi-vendor external dataset. Second, data were collected 

retrospectively; therefore, selection bias may have influenced our findings and the prevalence of 

disease may not be same as in a real clinical situation. Ideally, the test dataset should be 

corrected prospectively. These two limitations are the most important factors we should address 

in our next study. Third, lesions <5 mm and scans with only lesions <10 mm were not included 

in the validation and test datasets. The usefulness of the algorithm in such extremely difficult 

cases was not evaluated. Fourth, the ground truth labels were established carefully by the 

experts, but were determined to be not truly perfect; there were two lesions newly found after 

the observer study, causing a slight bias in the results. Fifth, the lesions were not confirmed by 

histological analysis, because biopsies are rarely performed for suspected bone metastases [33]. 

As an alternative, subsequent CT images and other imaging modalities were referenced to 

confirm the diagnosis. Sixth, the algorithm assumed using thin-slice images of 1 mm or less. 

This requirement can be a limitation to clinical implementation. 

In conclusion, we successfully developed a deep learning-based algorithm for 

automatic detection of bone metastases on CT. The results of the observer study indicate the 

clinical efficacy of the algorithm. 
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Figures 

 

Figure 1. Flowchart of data collection and division 

 

All scans were collected retrospectively from the clinical databases of a single institution. 
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Figure 2. Schematic of the proposed algorithm 

 

Schemas are shown in 2D planar images for simplicity. In truth, most of the processes are 

operated in a 3D volumetric manner, except for 2D UNet for bone segmentation. In this case, a 

candidate region on the left half of the sacrum was included in the final output, and two 

candidate regions on the left ileum were discarded. 
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Figure 3. Screenshot of the image viewer for the observer study 

 

From left to right, the three images in a row are the original image, overlaid image of the 

original image and the candidate region output from the proposed algorithm, and maximum 

intensity projection of the bone region overlaid with the candidate region. In this case, two 

candidate regions located on the right rib and lumbar spine are presented. Patient age, sex, and 

number of candidate regions were also displayed. When an observer clicks on a suspicious 

lesion, a dialog box for rating the likelihood (1–100) of bone metastasis appears. 
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Figure 4. Representative images of true-positive lesions with various 

appearances and locations 
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From left to right, the three images in a row are the original image, candidate region output from 

the DLA (red), and the ground truth label (blue). The DSC of the candidate region and ground 

truth label, predicted probability for the candidate region, and detection rate by radiologists 

without and with the DLA in the observer study are shown in the right table. (a) Sclerotic bone 

metastasis on the vertebra. (b) Expansile lytic bone metastasis in the right iliac bone of the 

pelvis. (c) Sclerotic bone metastasis in the left femur. (d) Mixed sclerotic and lytic bone 

metastasis on the right transverse process of the vertebra. (e) Lytic bone metastasis in the right 

scapula. (f) Small sclerotic bone metastasis in the right rib. (g) Small lytic bone metastasis on 

the right transverse process of the vertebra. (h) Lytic bone metastasis in the sternum. 

Abbreviations: DLA, deep learning-based algorithm; DSC, Dice similarity coefficient. 
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Figure 5. Representative images of false-negative lesions (a–c) and false-

positive regions (d–f). 
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(a) Small sclerotic bone metastasis on the right scapula. It appears to be too small and faint for 

the DLA to detect. (b) Lytic bone metastasis on the right humerus. Note that the red region on 

the middle image is a candidate region before thresholding, and DSC (*) was calculated on this 

region. With a threshold of 0.6, the region was deleted since its probability was 0.328, which is 

<0.6. Therefore, this lesion was counted as false-negative. (c) Mixed sclerotic and lytic bone 

metastasis on the right ischial and pubic bones of the pelvis. The lesion was detected by the 

DLA but was counted as false-negative since the DSC was <0.3. (d) False-positive region due to 

an old rib fracture. (e) False-positive region due to non-specific inhomogeneous density of the 

right iliac bone of the pelvis. (f) False-positive region located outside the bone due to post-

therapeutic changes of the liver tumor. Such errors occurred occasionally, because the DLA 

focuses only on local image features and does not take the holistic anatomical information into 

account. Abbreviations: DLA, deep learning-based algorithm; DSC, Dice similarity coefficient; 

N/A, not applicable. 
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Figure 6. The average free-response receiver operating characteristic curves of 

the nine radiologists without and with the DLA 

 

The overall performance of radiologists improved significantly with the aid of the DLA. 

Abbreviations: DLA, deep learning-based algorithm 
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Tables 

 

Table 1. Demographics of the cases in the three datasets 

 
 

  Training Validation Test 
  Positive Negative Positive Negative Positive Negative 

Per 
Patient 

Age (years) 66.5 
 ± 12.8 
(28-86) 

63.2 
± 15.9 
(1-92) 

66.6 
± 13.0 

(34-84) 

68.6 
± 9.7 

(43-81) 

67.3 
± 9.8 

(45-86) 

67.9 
± 9.1 

(46-87) 
Sex       

    Male 100 (59) 225 (49) 13 (65) 12 (60) 20 (67) 17 (57) 
    Female 69 (41) 238 (51) 7 (35) 8 (40) 10 (33) 13 (43) 
Primary Lesion       

    Lungs 57 (34) 0* (0) 6 (30) 6 (30) 8 (27) 8 (27) 
    Prostate 33 (20) 0* (0) 4 (20) 5 (25) 6 (20) 6 (20) 
    Breast 25 (15) 0* (0) 3 (15) 5 (25) 6 (20) 6 (20) 
    Others 54 (32) 0* (0) 7 (35) 4 (20) 10 (33) 10 (33) 
Total Number of Patients 169** 463 20 20 30 30 

Per 
Scan 

Use of Contrast Media       

    Plain 153 (57) 237 (51) 8 (40) 9 (45) 12 (40) 16 (53) 
    Contrast-enhanced 116 (43) 226 (49) 12 (60) 11 (55) 18 (60) 14 (47) 
Slice Thickness       

    1.0 mm 266 (99) 417 (90) 20 (100) 20 (100) 30 (100) 30 (100) 
    0.5 mm 3 (1) 46 (10) 0 (0) 0 (0) 0 (0) 0 (0) 
Scanner Model       

    Aquilion Prime 124 (46) 191 (41) 9 (45) 7 (35) 6 (20) 10 (33) 
    Aquilion One 117 (43) 157 (34) 3 (15) 6 (30) 5 (17) 10 (33) 
    Aquilion 24 (9) 105 (23) 8 (40) 7 (35) 19 (63) 10 (33) 
    Aquilion Precision 4 (1) 10 (2) 0 (0) 0 (0) 0 (0) 0 (0) 
Scan Coverage       

    Neck to Abdomen 133 (49) 329 (71) 12 (60) 8 (40) 14 (47) 13 (43) 
    Chest to Abdomen 102 (38) 20 (4) 4 (20) 8 (40) 13 (43) 9 (30) 
    Neck to Chest 2 (1) 1 (0) 1 (5) 1 (5) 0 (0) 1 (3) 
    Chest 27 (10) 9 (2) 2 (10) 3 (15) 3 (10) 4 (13) 
    Abdomen 4 (1) 41 (9) 1 (5) 0 (0) 0 (0) 3 (10) 
    Brain 1 (0) 44 (10) 0 (0) 0 (0) 0 (0) 0 (0) 
    Neck 0 (0) 19 (4) 0 (0) 0 (0) 0 (0) 0 (0) 
Total Number of Scans 269** 463 20 20 30 30 
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For patient age, the mean age and standard deviation are presented, with range of values in 

parentheses. For other data, the number of patients or scans are presented, with percentages in 

parentheses. 

*Negative scans of the training dataset were acquired from patients without malignancy. 

**For positive cases in the training dataset, the total number of patients and scans were not 

equal, because more than one scan was included from one patient if the radiological appearance 

of bone metastases had changed substantially. 
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Table 2. Characteristics of lesions in the three datasets 
 

Training Validation Test 

Location    

  Vertebra 620 (45) 22 (45) 29 (39) 

  Pelvis 412 (30) 15 (31) 14 (19) 

  Rib 228 (17) 9 (18) 18 (24) 

  Scapula 38 (3) 1 (2) 4 (5) 

  Limb 32 (2) 0 (0) 5 (7) 

  Sternum 30 (2) 2 (4) 5 (7) 

  Clavicle 11 (1) 0 (0) 0 (0) 

  Skull 4 (0) 0 (0) 0 (0) 

Appearance    

Sclerotic 709 (52) 21 (43) 31 (41) 

  Lytic 518 (38) 19 (39) 25 (33) 

  Mixed 148 (11) 9 (18) 19 (25) 

Diameter    

  ≥50 mm 109 (8) 2 (4) 4 (5) 

  ≥30 mm to <50 mm 263 (19) 11 (22) 13 (17) 

  ≥10 mm to <30 mm 896 (65) 31 (63) 49 (65) 

  ≥5 mm to <10 mm 107 (8) 5 (10) 9 (12) 

Total Number of Lesions 1375 49 75 

 
Data are the number of lesions for each category, with percentages in parentheses. 
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Table 3. Performance of the DLA according to the preset threshold 

  Lesion-based analysis Case-based analysis 

 Thres
hold TP FN FP Sensitiv

ity (%) 
FP per 
case TP FN TN FP Sensitiv

ity (%) 
Specific
ity (%) 

V
al

id
at

io
n 

da
ta

se
t  

(2
0 

po
si

tiv
e 

ca
se

s w
ith

 4
9 

le
si

on
s  

an
d 

20
 n

eg
at

iv
e 

ca
se

s)
 

0.9 40 9 21 81.6 0.525 19 1 17 3 95.0 85.0 

0.8 41 8 25 83.7 0.625 20 0 17 3 100.0 85.0 

0.7 42 7 26 85.7 0.650 20 0 16 4 100.0 80.0 

0.6 44 5 31 89.8 0.775 20 0 14 6 100.0 70.0 

0.5 44 5 35 89.8 0.875 20 0 14 6 100.0 70.0 

0.4 44 5 41 89.8 1.025 20 0 13 7 100.0 65.0 

0.3 45 4 47 91.8 1.175 20 0 13 7 100.0 65.0 

0.2 45 4 66 91.8 1.650 20 0 12 8 100.0 60.0 

0.1 45 4 91 91.8 2.275 20 0 10 10 100.0 50.0 

Te
st

 d
at

as
et

 
(3

0 
po

si
tiv

e 
ca

se
s w

ith
 7

5 
le

si
on

s  
an

d 
30

 n
eg

at
iv

e 
ca

se
s)

 

0.9 55 20 24 73.3 0.400 30 0 27 3 100.0 90.0 

0.8 58 17 32 77.3 0.533 30 0 26 4 100.0 86.7 

0.7 60 15 35 80.0 0.583 30 0 26 4 100.0 86.7 

0.6 62 13 37 82.7 0.617 30 0 24 6 100.0 80.0 

0.5 62 13 43 82.7 0.717 30 0 22 8 100.0 73.3 

0.4 62 13 52 82.7 0.867 30 0 20 10 100.0 66.7 

0.3 65 10 60 86.7 1.000 30 0 16 14 100.0 53.3 

0.2 66 9 72 88.0 1.200 30 0 11 19 100.0 36.7 

0.1 67 8 90 89.3 1.500 30 0 9 21 100.0 30.0 
 

The results for each threshold from 0.1 to 0.9 are presented. Sensitivities are indicated as 

percentages. FP per case indicates the average number of FP counts per a case. Based on the 

results for the validation dataset, a threshold of 0.6 was defined as the standard value for the 

algorithm (given in bold numbers). Note that TNs for lesion-based analysis are omitted because 

TN lesion is undefinable for a data that contains multiple lesions in one scan and contains 

location information, unlike typical diagnostic test with a binary outcome (e.g., presence or 

absence). Abbreviations: DLA, deep learning-based algorithm; TP, true-positive; FN, false-

negative; TN, true-negative; FP, false-positive.  
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Table 4. Sensitivities of the DLA and nine radiologists without and with the DLA, 

stratified according to lesion characteristics 
 

Validation Test  
DLA DLA Radiologists 

without DLA 
Radiologists 
with DLA 

Location       
 

 

  Vertebra 90.9  (20/22) 89.7  (26/29) 60.2  (17.4/29)  78.5  (22.8/29)  

  Pelvis 93.3  (14/15) 92.9  (13/14) 60.3  (8.4/14)  87.3  (12.2/14)  

  Rib 77.8  (7/9) 77.8  (14/18) 35.8  (6.4/18)  54.9  (9.9/18)  

  Scapula 100.0  (1/1) 50.0  (2/4) 33.3  (1.3/4)  47.2  (1.9/4)  

  Limb  (0/0) 60.0  (3/5) 57.8  (2.9/5)  62.2  (3.1/5)  

  Sternum 100.0  (2/2) 80.0  (4/5) 44.4  (2.2/5)  77.8  (3.9/5)  

Appearance         

Sclerotic 85.7  (18/21) 83.9  (26/31) 45.5  (14.1/31)  66.7  (20.7/31)  

  Lytic 89.5  (17/19) 92.0  (23/25) 64.4  (16.1/25)  84.0  (21.0/25)  

  Mixed 100.0  (9/9) 73.7  (14/19) 45.0  (8.6/19)  63.7  (12.1/19)  

Diameter         

  ≥50 mm 100.0  (2/2) 75.0  (3/4) 86.1  (3.4/4)  94.4  (3.8/4)  

  ≥30 mm to <50 mm 90.9  (10/11) 100.0  (13/13) 70.1  (9.1/13)  88.0  (11.4/13)  

  ≥10 mm to <30 mm 96.8  (30/31) 85.7  (42/49) 50.6  (24.8/49)  73.0  (35.8/49)  

  ≥5 mm to <10 mm 60.0  (3/5) 44.4  (4/9) 16.0  (1.4/9)  30.9  (2.8/9)  

Total 89.8  (44/49) 82.7  (62/75) 51.7  (38.8/75)  71.7  (53.8/75)  

 

Sensitivities are indicated as percentages, with actual numbers in parentheses. For numerators of 

radiologists’ sensitivities, averages of nine radiologists are presented. Abbreviations: DLA, deep 

learning-based algorithm. 
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Table 5. Interpretation results of nine radiologists without and with the DLA 

 wAFROC-
FOM 

Lesion-based 
sensitivity (%) 

False-positives 
per case 

Case-based 
sensitivity (%) 

Case-based 
specificity (%) 

Interpretation 
time per case (s) 

Radiologist wo w wo w wo w wo w wo w wo w 

1 0.828  0.899  64.0  69.3  0.333  0.083  86.7  96.7  96.7  100.0  204 108 

2 0.743  0.924  45.3  72.0  0.083  0.050  70.0  86.7  100.0  100.0  119 43 

3 0.714  0.933  40.0  78.7  0.100  0.050  60.0  90.0  100.0  93.3  144 80 

4 0.802  0.901  65.3  78.7  0.833  0.183  90.0  96.7  90.0  93.3  257 62 

5 0.769  0.914  54.7  73.3  0.083  0.150  76.7  93.3  93.3  100.0  148 127 

6 0.754  0.936  65.3  74.7  0.217  0.283  86.7  93.3  86.7  96.7  152 82 

7 0.743  0.904  50.7  70.7  0.383  0.267  76.7  93.3  90.0  90.0  214 66 

8 0.783  0.888  52.0  76.0  0.050  0.300  70.0  93.3  100.0  93.3  196 140 

9 0.575  0.791  28.0  52.0  0.050  0.050  53.3  76.7  100.0  100.0  75 54 

Average 0.746  0.899*  51.7  71.7*  0.237  0.157  74.4  91.1*  95.2  96.2  168 85* 

 
Sensitivity and specificity are indicated as percentages, and interpretation times are indicated in 

seconds. Asterisks indicate a significant difference between the two sessions. Abbreviations: 

DLA, deep learning-based algorithm; wo, without DLA; w, with DLA; wAFROC-FOM, 

weighted alternative free-response receiver operating characteristic figure of merit. 

 


