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Abstract
Purpose Pathogenic MEFV variants cause pyrin-associated autoinflammatory diseases (PAADs), which include familial
Mediterranean fever (FMF), FMF-like disease, and pyrin-associated autoinflammation with neutrophilic dermatosis
(PAAND). The diagnosis of PAADs is established by clinical phenotypic and genetic analyses. However, the pathogenicity of
most MEFV variants remains controversial, as they have not been functionally evaluated. This study aimed to establish and
validate a new functional assay to evaluate the pathogenicity of MEFV variants.
Methods We transfected THP-1 monocytes with 32 MEFV variants and analyzed their effects on cell death with or without
stimulation with Clostridium difficile toxin A (TcdA) or UCN-01. These variants were classified using hierarchical cluster
analysis. Macrophages were obtained from three healthy controls and two patients with a novel homozygousMEFVP257L variant,
for comparison of IL-1β secretion using a cell-based assay and a novel THP-1-based assay.
Results Disease-associated MEFV variants induced variable degrees of spontaneous or TcdA/UCN-01-induced cell death in
THP-1. Cell death was caspase-1 dependent and was accompanied by ASC speck formation and IL-1β secretion, indicating that
pathogenicMEFV variants induced abnormal pyrin inflammasome activation and subsequent pyroptotic cell deaths in this assay.
The MEFV variants (n = 32) exhibiting distinct response signatures were classified into 6 clusters, which showed a good
correlation with the clinical phenotypes. Regarding the pathogenicity ofMEFVP257L variants, the results were consistent between
the cell-based assay and the THP-1-based assay.
Conclusion Our assay facilitates a rapid and comprehensive assessment of the pathogenicity ofMEFV variants and contributes to
a refined definition of PAAD subtypes.
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Introduction

FMF is the mos t common he red i t a ry sys t emic
autoinflammatory disease (SAID) and is characterized by re-
current fever, polyserositis, arthritis, and a limited erythema-
tous skin rash [1, 2]. Classically, FMF is diagnosed using
clinical criteria [3]. However, this is challenging and time-
consuming since clinical symptoms can vary between patients
[4, 5].

In 1997, it was reported that the MEFV gene, which is
composed of 10 exons and encodes pyrin, is associated
with FMF [6, 7]. Since then, it has been shown that four
founding variants in exon 10 (p.M680I, p.M694I,
p.M694V, and p.V726A) account for almost 80% of clin-
ically and ethnically typical FMF cases [8]. Moreover, ex-
tensive genetic testing for SAID has revealed an unexpect-
ed association between MEFV and other clinically distinct
diseases, such as pyrin-associated autoinflammation with
neutrophilic dermatosis (PAAND) [9, 10] and autosomal
dominant FMF-like diseases [11–13], which are caused by
mutations in exons 2, 3, 5, or 8. Consequently, the novel
umbrella term, pyrin-associated autoinflammatory diseases
(PAADs), has been proposed to define all diseases caused
by MEFV mutations [14]. Therefore, genetic analysis has
become important and indispensable for accurately diag-
nosing PAADs [15], although there is a lack of conclusive
genetic evidence for around 30% of patients diagnosed
with clinical FMF [16].

More than 370 MEFV variants have been recorded in
Infevers, a website dedicated to mutations in hereditary
autoinflammatory diseases [17]. However, the majority of
the reported variants are categorized as “variants of unknown
significance” (VOUS or VUS), partly due to a lack of reliable
functional assays. Recent improvements in our understanding
of the precise molecular mechanisms underlying the activa-
tion of pyrin inflammasomes [18–22] has led to the develop-
ment of novel patient cell-based assays that utilize newly iden-
tified pyrin inflammasome activators, such as Clostridium
difficile toxin A (TcdA) [23] or UCN-01 [22, 24]. However,
the coexistence (either in cis or in trans) of variants in a single
patient makes it difficult to evaluate the pathogenicity of indi-
vidual MEFV variants.

Here, we show that disease-associated MEFV mutants in-
duce varying degrees of spontaneous or rapid TcdA/UCN-01-
induced cell death in human THP-1 monocytes, depending on
the nature of the variant. Using hierarchical cluster analysis,
these variants were categorized into six clusters, which corre-
lated with the clinical phenotypes. The degree of cell death
induction varied among the variants, which might correlate
with the clinical impact of each variant. Therefore, our assay
facilitates a rapid and comprehensive assessment of the path-
ogenicity of the MEFV variants and contributes to a refined
definition of PAAD subtypes.

Methods

Patients and Healthy Control Subjects

Two patients with homozygous MEFVP257L, their healthy
mother with heterozygous MEFVP257L variant, and 3 healthy
controls with no MEFV variants were enrolled in this study.
All the participants were Japanese. For detailed clinical
course, see Results section.

All study participants provided informed consent, and the
study design was approved by the ethics committee of Kyoto
University Hospital (protocols G1091, G0729, G0457,
G0432), and this study is conducted in compliance with the
Declaration of Helsinki.

Cell Lines

THP-1 cells (TIB-202) were purchased from the American
Type Culture Collection (Manassas, VA, US) and maintained
in Roswell Park Memorial Institute (RPMI)-1640 medium
(Sigma-Aldrich, St. Louis, MO, USA) supplemented with
10% fetal calf serum (Thermo Fisher Scientific, Waltham,
MA, USA) and streptomycin/penicillin (Meiji, Tokyo, Japan).

Plasmids

C-terminal enhanced green fluorescent protein (eGFP)-fusion
MEFV was introduced into pcDNA-5/TO (V103320, Sigma-
Aldrich). Each MEFV variant was generated by PCR-based
mutagenesis using KOD plus (Toyobo, Osaka, Japan) or HiFi
DNA assembly (New England Biolabs, Ipswich, MA, USA).
Primer sequences are shown in Table S1.

Nucleofection and Flow Cytometry

THP-1 cells (1 × 106) were transfected with 500 ng of plas-
mids encoding GFP-fusedMEFV variants using Nucleofector
device IIb and kit V (Lonza, Basel, Switzerland). Immediately
after nucleofection, 10 ng/mL of phorbol 12-myristate 13-ac-
etate (FUJIFILMWako, Osaka, Japan) was added. Cells were
treated with colchicine (1 μM, Sigma-Aldrich) or MCC950 (1
or 10 μM as indicated, Sigma-Aldrich) after 2 h of transfec-
tion as indicated. Three hours after nucleofection, cells were
stimulated with 1 μg/mL of TcdA (List Biological
Laboratories, Campbell, CA, USA) or 10 μM UCN-01
(Sigma-Aldrich) for 3 h, stained with 7-amino-actinomycin
D (7-AAD; BD; Becton and Dickinson Bioscience, Franklin
Lakes, NJ, USA) and/or anti-Annexin V-PE (BD) as indicat-
ed. Cells were analyzed using a FACSVerse flow cytometer
(BD) and FlowJo software (BD). Cell death was calculated as
the percentage of 7-AAD-positive cells among GFP-positive
cells. Spontaneous cell death (%) was defined as percentage of
cell death without stimulation. “UCN-01/TcdA-induced cell
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death enhancement (%)”was defined as the increased percent-
age of cell death upon UCN-01 or TcdA stimulation over
spontaneous cell death: (percentage of cell death upon UCN-
01/TcdA stimulation) - (percentage of spontaneous cell
death).

Cytokine Secretion from Patient Macrophages

Peripheral blood mononuclear cells (PBMCs) were isolated
with Lymphoprep (Alere Technologies, Waltham, MA,
USA). CD14+ monocytes were sorted magnetically from
PBMCs by the autoMACS Pro Separator (Miltenyi Biotec,
Bergisch Gladbach, Germany), according to the manufac-
turer’s instructions. To obtain monocyte-derived macro-
phages, monocytes were cultured in RPMI-1640 supplement-
ed with 10% FCS and a 50-ng/mL macrophage-colony stim-
ulating factor (M-CSF; R&D Systems, Minneapolis, MN,
USA) for 7 days.

Macrophages were harvested with Accumax (Innovative
Cell Technologies, San Diego, CA, USA) and seeded in 96-
well plates at 5 × 104 cells/well in RPMI-1640 medium, sup-
plemented with 10% FCS. Colchicine (100 ng/mL) was
added, and cells were incubated for 30 min. After 2 h of
priming with 1 μg/mL LPS (InvivoGen, San Diego, CA,
USA), 1-μg/mL TcdA was added, and supernatants were col-
lected 4 h later. The IL-1β concentration was measured in
technical duplicates or triplicates by using the Bio-Plex Pro
Human Cytokine Assay (Bio-Rad Laboratories, Hercules,
CA, USA).

Statistical Analysis

Data were analyzed using GraphPad Prism software with one-
way analysis of variance (ANOVA) followed by Dunnett’s
multiple comparison test (versus the WT as a control group)
or unpaired t test. A p value less than 0.05 was considered as
significant. Hierarchical cluster analysis was performed using
Ward’s method in R, and the number of clustering is deter-
mined using NbClust package [25].

Results

GFP-Fused MEFVM694V Overexpression Caused
Spontaneous and TcdA/UCN-01-Induced Cell Death in
THP-1 Monocytes

Previously, we reported that pathogenic NLRP3 variants in-
duced rapid cell death in human THP-1 monocytes after 2–3 h
of nucleofection [26–28]. To determine if similar method
could be used to evaluate the pathogenicity of each MEFV
variant, we compared THP-1 cell death induction after intro-
ducing wild-type (WT) pyrin and the most common FMF-

associated pathogenic pyrinM694V variant. After 3 h of
nucleofection with full GFP-fused pyrin expression,
pyrinM694V induced pyroptotic cell death (7-AAD (+) and
Annexin V (+)) in THP-1 cells compared to WT (Fig. 1a–c,
S1a). Moreover, TcdA and UCN-01 treatment enhanced
pyroptotic cell death in a time-dependent manner, and these
were significantly higher in the cells transfected with
MEFVM694V compared to the cells transfected with MEFVWT

(Fig. 1b, c). Although UCN-01 is known to trigger apoptosis
[22], cell death induction in this assay was specific for
pyroptosis (Fig. S1). Therefore, we defined the “cell death
(%)” as the percentage of 7-AAD(+) cells among the GFP(+
) cells. “Spontaneous cell death (%)” indicates the percentage
of cell death without any stimulation. Because spontaneous
cell death levels differed between the variants, we defined
“UCN-01/TcdA-induced cell death enhancement (%)” as the
increased percentage of cell death upon UCN-01 or TcdA
stimulation over spontaneous cell death: (percentage of cell
death upon UCN-01/TcdA stimulation) - (percentage of spon-
taneous cell death) to clearly describe the pure additive effect
of UCN-01/TcdA treatment (Fig. 1b, c).

Cell death induction was associated with IL-1β secretion
(Fig. S2) and ASC speck formation (Fig. S3) and prevented by
caspase-1 knockout (Fig. 1d, S4). In addition, cell death in-
duction was partially inhibited by colchicine, but not by
MCC950, an NLRP3 specific inhibitor (Fig. S5). These re-
sults indicate that this assay reflects pyrin inflammasome ac-
tivation and subsequent pyroptotic cell death caused by path-
ogenic MEFV variants. Since no significant cell death was
observed in cells expressing the empty GFP vector (Fig.
S6a), and endogenous pyrin expression was low (Fig. S6b),
the effect of endogenous pyrin in THP-1 cells was almost
negligible in this assay.

The Mode of Cell Death Induction Enables the
Functional Classification of MEFV Variants

Next, we selected 32 reported MEFV variants [4, 13, 15,
29–37] and evaluated their pathogenicity. The pathogenic
score/status as per Infevers and the classification, according
to the new guideline [15], as well as other relevant information
including the minor allele frequency per individual variant are
shown in Table S2. Transfection efficacy was high and equiv-
alent among the selected variants, as assessed using GFP fluo-
rescence through flow cytometry (Fig. S7). These 32 variants
exhibited distinct signatures of cell death (Fig. 2), and we
categorized them using hierarchical cluster analysis. The op-
timal number of clusters were calculated using NbClust [25].
We chose 6 clusters, because these were in good accordance
with the previous reports (Fig. 3a).

Cluster 1 included only M694del, which is sometimes as-
sociated with dominantly inherited FMF, with increased spon-
taneous, UCN-01-induced, and TcdA-induced cell death.
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Cluster 2 included exon 10 variants, including classical
M680I, M694I, and M694V, as well as I692del and N679H.
These variants were characterized by hyper-responsiveness to
both TcdA and UCN-01. Cluster 3 was composed of two
autosomal dominant FMF-like disease-associated variants,
P373L and T577A. Cluster 4 contained FMF-associated var-
iants (F479L, V726A, and R761H) and autosomal dominant
FMF-like disease-associated variants (H478Y and T577S/N),
as well as two 14-3-3 binding site-associated variants (S208T
and E244K). The variants in clusters 3 and 4 showed en-
hanced responsiveness to UCN-01 but normal response to
TcdA. Two other 14-3-3 binding site-associated variants,

S208C and S242R, were categorized in cluster 5 with in-
creased spontaneous cell death, but with no obvious hyper-
response to UCN-01 and TcdA. No significant increase in
spontaneous cell death and TcdA/UCN-01-induced cell death
enhancement were observed among the variants in cluster 6.
In addition, the MEFVL110P-E148Q-R202Q-P369S-R408Q-S503 vari-
ant carrying six cis amino acid alterations induced levels of
cell death similar to the WT, suggesting that these variants are
unlikely to exert additive or synergistic effects in this experi-
mental setting.

To determine the optimal cut-off value for our THP-1-
based assay, we performed receiver operating characteristic
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(ROC) curve analysis by assigning clusters 1–5 as disease-
associa ted pathogenic var iants and clus ter 6 as
nonpathogenic/modifier variant (Fig. 3b–d). The optimal
thresholds for each cell death were determined as follows,

1.755% for spontaneous cell death, 5.515% for UCN-01-
induced cell death enhancement, and 11.62% for TcdA-
induced cell death enhancement (Fig. 3e–g).

Homozygous MEFVP257L Causes Autosomal Recessive
FMF

We next examined if we could utilize our THP-1 based func-
tional assay to evaluate the pathogenicity of the novel
MEFVP257L variant that we recently identified in two patients
from one family in the homozygous state (Fig. 4a). There are
no previous reports on the clinical phenotype of patients with
homozygous MEFVP257L variant. Patient 1 (III-1) was a 50-
year-old man whose symptoms of recurrent fever, chest and
abdominal pain, episcleritis, and arthralgia/arthritis developed
at the age of five. To treat joint deformity, he underwent mul-
tiple arthroplasties: right ankle (at 12 years of age) and left
metacarpophalangeal joints (at 14 years of age). In his child-
hood, he was diagnosed with suppurative arthritis or with
bacterial infection such as that of Streptococcus pyogenes dur-
ing each episode. He was diagnosed with oligoarticular juve-
nile idiopathic arthritis in his middle age, and the administra-
tion of methotrexate (from 48 years of age), iguratimod (from
49 years of age), colchicine, and etanercept, and anti-TNF-α
recombinant antibody (from 49 years of age) was partially
effective for the control of his symptoms. At the age of 50,
he was given a suspec ted cl in ica l diagnos is of
autoinflammatory disease, and panel gene test for
autoinflammatory diseases revealed the homozygous
MEFVP257L variant.

Patient 2 (III-2) was the younger sister of patient 1. Her
symptoms developed at the age of ten, starting with recurrent
chest pain (several times per year). Arthralgia/arthritis of the
bilateral knees required multiple arthrocentesis in her teens.
From the age of 18, she suffered monthly febrile surges with
abdominal pain accompanying menstruation and was diag-
nosed with pyelonephritis or idiopathic peritonitis during each
febrile episode. She also occasionally complained of head-
aches or bilateral conjunctivitis. Given the genetic test result
of her brother, she also received the genetic testing at the age
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Cutoff (%) Sensitivity Specificity Likelihood 
ratio

Youden's 
index AUC

Spontaneous 
cell death > 1.755 0.96 0.78 4.333 0.7408 0.9148

UCN-01 > 5.515 0.89 0.98 40 0.8667 0.8893

TcdA > 11.62 0.61 0.98 27.5 0.5889 0.8144
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for b spontaneous cell death, cUCN-01-induced cell death enhancement,
d TcdA-induced cell death enhancement. e Cut-off value, sensitivity,

specificity, likelihood ratio, Youden’s index, and area under the curve
(AUC) for each condition. UCN-01, UCN-01-induced cell death en-
hancement; TcdA, TcdA-induced cell death enhancement. Scatter plots
of mean UCN-01-induced cell death enhancement against f mean spon-
taneous cell death or gmean TcdA-induced cell death enhancement. Data
represent the mean of three independent experiments. Cut-off values are
indicated in blue lines
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of 49, which revealed the homozygous MEFVP257L variant.
Notably, their healthy mother (II-3) carried a heterozygous
MEFVP257L variant.

To address the pathogenicity of theMEFVP257L variant, we
first assessed IL-1β secretion from the patients’macrophages.
The TcdA-induced IL-1β secretion was higher in the patients’

a b

d

c

e

P257L 
homo

P257L 
homo

1 P257L
hetero

2

21 3

1 2 3 4

1 2 3

Fig. 4 Homozygous MEFV P257L causes autosomal recessive FMF. a
Pedigree of a family with the MEFV P257L variant. b IL-1β secretion from
macrophages obtained from homozygous MEFVP257L patients, heterozy-
gous mother and healthy controls (HC). LPS-primed macrophages were
treated with or without TcdA (1 μg/mL) and colchicine (100 ng/mL) as
indicated. THP-1 based assay to evaluate the pathogenicity of MEFVP257L.
c Percentages of spontaneous and UCN-01/TcdA-induced cell death en-
hancement by overexpression of MEFVWT, MEFVP257L, MEFVS242R, or
MEFVM694V variants in THP-1 cells. Cells were stimulated 3 h after

transfection and analyzed 6 h after transfection. The cut-off value for each
condition is indicated in black lines, and values above the cut-off are
regarded as significantly increased (*). Scatter plots of mean UCN-01-
induced cell death enhancement against d mean spontaneous cell death or
emean TcdA-induced cell death enhancement includingMEFVP257L variant
(red circle). Data represent the mean of three independent experiments. Data
represent the average of two or three technical replicates (b), the mean ±
standard deviation of three independent experiments (c), and the mean of
three independent experiments (d, e)
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macrophages, when compared to healthy controls and healthy
heterozygous mother, which was inhibited by colchicine (Fig.
4b). This pattern was in line with that observed in FMF pa-
tients in earlier reports [23, 37]. The THP-1-based functional
assay also revealed that theMEFVP257L variant induced higher
levels of cell death in response to both UCN-01 (16.353 ±
2.670%) and TcdA (17.187 ± 6.749%), compared with the
calculated cut-off value (Fig. 4c–e), as well as higher IL-1β
secretion compared with the MEFVWT (Fig. S8). Taken to-
gether, these results suggested that MEFVP257L variant could
be classified as an autosomal recessive FMF-associated vari-
ant, and both patients were finally diagnosed as FMF.
Retrospectively, both patients met the Tel Hashomer criteria
from their teenage. Subsequent administration of
canakinumab, a human anti-IL-1β monoclonal antibody,
combined with colchicine, brought clinical remission in pa-
tient 1 (III-1). As to patient 2 (III-2), the administration of
colchicine was partially effective and etanercept ameliorated
the frequency and severity of the attacks.

In conclusion, our assay, combined with clinical/laboratory
data and other functional assays, could help in a more accurate
assessment of the pathogenicity of the newly identified or rare
MEFV variants in the diagnosis of PAADs.

Discussion

In the current era of next-generation sequencing, evaluating
the pathogenicity ofMEFV variants has become important for
interpreting genetic test results. However, the majority of re-
ported variants are currently categorized as VOUS, partially
due to a lack of reproducible functional assays.

Pyrin is a key component of the pyrin inflammasome, a
multiprotein platform that promotes the release of potent in-
flammatory cytokines (IL-1β and IL-18) and pyroptotic cell
death. RhoA GTPase regulates pyrin activation by phosphor-
ylation at two specific serines, Ser208 and Ser242, via the
serine/threonine-protein kinases PKN1/2. GTPase-mediated
pyrin phosphorylation results in inhibitory binding by the cel-
lular chaperone protein 14-3-3. However, bacterial toxins,
such as TcdA, inactivate RhoA GTPases, leading to pyrin
dephosphorylation, 14-3-3 dissociation, and subsequent pyrin
inflammasome activation [18–21]. Further, pyrin dephosphor-
ylation by UCN-01, a PKN1/2 inhibitor, has been reported to
trigger inflammasome activation in FMF patients [22].

Several patient cell-based assays using TcdA or UCN-01
have been reported based on these mechanisms [22, 23].
However, the co-existence (either in cis or in trans) of multi-
ple variants in one patient can make it difficult to evaluate the
pathogenicity of individual MEFV variants using patient-
derived cells. In addition, patient cell-dependent assays can
be influenced by other factors, such as clinical status (patient
in flare or remission), treatment status, or sample condition.

Previously reported in vitro assays utilizing lentiviral-
mediated transduction into U-937 monocytic cells [22] or
piggyBac-mediated iPS cell transfection [37] require multiple
experimental steps that make it difficult to evaluate a large
number of variants.

In silico predictors, such as rare exome variant ensemble
learner (REVEL) [38–40], have been used for evaluating
MEFV variants. This is a useful tool for improving the classi-
fication of many VOUS of MEFV gene, especially in combi-
nation with clinical and functional reports. However, it still
has some discrepancies in clinical or laboratory finding-based
classifications, such as the PAAND-associated variants being
classified as benign by REVEL scoring. In addition, some rare
population-specific variants, such as A744S, were
misclassified as pathogenic based on clinical records before
the allele frequency database became available [41]. To ad-
dress these problems, we established a simple THP-1-based
functional assay, observing that mutant pyrin overexpression
caused caspase-1-dependent pyroptotic cell death upon UCN-
01/TcdA stimulation.

In our assay, all the variants in clusters 1 to 4, including
FMF-associated exon 10 variants and FMF-like disease-asso-
ciated variants, showed enhanced cell death in response to
UCN-01. These results suggest that FMF-like diseases share
a similar pathophysiology to classical FMF, consistent with
the notion that PAAD could be recognized as a continuous
spectrum, involving a qualitative and quantitative molecular
gradient ranging from classical FMF to autosomal dominant
FMF-like diseases.

Notably, the TcdA response of V726A and R761H, which
are exon 10 FMF-associated variants classified in cluster 4, was
comparable to that of WT, which clearly differed from those of
classical exon 10 FMF-associated variants in clusters 1 and 2.
These two variants are generally associated with a milder phe-
notype and are known to be observed as wild type sequence in
some non-human primates and non-primates [42, 43]. Thus,
these two variants, which evolutionarily reappeared in human,
might have different characters from other classical exon 10
variants. In addition, non-exon 10 FMF-like disease-associated
variants in cluster 4, such as H478Y and T577S/N, showed
normal TcdA-response, which was different from exon 10
FMF-associated variants. This provides insights into the genet-
ic and clinical differences between classical FMF and FMF-like
diseases, such as the mode of inheritance (autosomal recessive
or autosomal dominant) and symptoms (duration or degree of
fever). These differences might arise from the evolutionary
conservation of different pyrin domains. FMF-associated exon
10 variants are located in B30.2 domain, which recently ap-
peared during primate evolution, while FMF-like disease-asso-
ciated variants are located in the other evolutionarily conserved
domains. However, further studies are required to determine
whether these are true biological differences or only observa-
tional phenomena unique to our analysis.
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Previously, we questioned the pathogenicity ofMEFVT577N

variant based on the negative result from iPS-derived macro-
phages. Upon TcdA stimulation, iPS-derived macrophages
transfected with MEFVT577N secreted comparable amounts
of IL-1β to those transfected with MEFVWT [37]. In silico
analysis predicted MEFVT577N as benign [40]. However, the
clinical phenotypes [35] strongly suggested pathogenic asso-
ciation with FMF-like disease. In this study, MEFVT577N sig-
nificantly increased UCN-01-induced cell death compared to
MEFVWT (Fig. 2b), while it exhibited similar degrees of spon-
taneous and TcdA-induced cell death compared to MEFVWT

(Fig. 2a, c). These results suggest that MEFVT577N could be
categorized as an FMF-like disease-associated pathogenic
variant based on the hyper-responsiveness to UCN-01.

Taken together, UCN-01-induced cell death enhancement
might reflect the nature of FMF- and FMF-like disease-asso-
ciatedMEFV variants better than that induced by TcdA in this
assay. This seems reasonable because UCN-01 directly targets
the pyrin dephosphorylation which mainly controls the pyrin
inflammasome activation in FMF patients [22], while TcdA
represents one of the many agonists which indirectly induce
pyrin dephosphorylation. Also, the degree of UCN-01-
induced cell death enhancement might correlate with the clin-
ical severity of the variant. M694V, which is often associated
with severe phenotype, showed higher degrees of UCN-01-
induced cell death compared to the variants with milder phe-
notypes such as V726A [34] and M680I [44]. Among the
three variants affecting the T577 residue, T577A showed
stronger UCN-01-induced cell death enhancement than
T577N/S, which might correlate with the treatment resistance
reported in T577A cases [12].

All 14-3-3 binding site-associated variants induced high
levels of cell death in the absence of pyrin agonist stimulation,
possibly reflecting the spontaneous pyrin inflammasome acti-
vation, as reported previously [9, 10]. Interestingly, S208T
and E244K in cluster 3, but not S208C and S242R in cluster
5, showed hyper-response to UCN-01, suggesting the exis-
tence of a functional difference among the variants affecting
the same domain. Only S242R and E244K are reported as
PAAND-associated variants in clinical settings, while
S208T/C variants are linked to other autoinflammatory condi-
tions. Further analyses and clinical experience are required to
clarify whether these differences are significant.

We detected no substantial increase in spontaneous cell
death and TcdA/UCN-01-induced cell death enhancement
among the variants in cluster 6 (WT and E84K, L110P,
E148Q, E167D, R202Q, T267I, G304R, P369S, R408Q,
S503C, I591T, K695R, or A744S). However, E148Q,
R202Q, T267I, and G304R showed slightly increased spon-
taneous cell death, above the cut-off value. In addition,
H478Y, a non-exon 10 FMF-like disease-associated variant,
induced slightly higher levels of UCN-01 response above the
cut-off value. There has been only a single case report

describing heterozygousMEFVH478Y patients [11]. This assay
may not be suitable for detecting subtle effects or unknown
pathogenic mechanisms that underlie the clinical condition of
these patients. Further clinical and experimental data are re-
quired to conclude the causal relationship of these borderline
variants.

This study has a few limitations. First, although endoge-
nous WT pyrin expression was almost negligible in THP-1
cells compared to the transfected variants, we cannot
completely exclude the possibility that residual pyrin affected
our results. In contrast, transgene expression may not corre-
spond to the physiological pyrin expression and might
overrepresent the result. Second, we did not evaluate the effect
of variants in the trans state, as is often experienced in the real-
world FMF patients. Future co-expression experiments could
provide important insights into the effect of gene dose or the
trans-acting effect of MEFV variants. Third, our clustering is
based on the results from an arbitrarily selected cell line, 32
MEFV variants, and 2 agonists, which might not represent the
diverse cell types involved in PAAD pathogenesis, the diverse
spectrum of MEFV variants, and the natural triggers of pyrin
inflammasome, respectively. Therefore, a comprehensive
analysis of other cell types, variants, or agonists is required
for an accurate understanding of pyrin inflammasome activa-
tion. Lastly, the THP-1-based assay evaluates variants inde-
pendently of the patient status, co-existence of the other var-
iants, or genetic background. This could be a disadvantage in
the evaluation of a PAAD that manifests because of complex
interplay among the genetic or environmental factors.
Therefore, diagnosis of PAAD should not be established
based on a single assay, and therefore, our functional assay
needs to be framed with a balanced genotype-phenotype
correlation.

In conclusion, we analyzed 32 MEFV variants and evalu-
ated those pathogenicity based on the degrees of spontaneous
and TcdA/UCN-01-induced cell death. These variants were
categorized into 6 distinct clusters, which might partly explain
the diverse clinical entity of PAADs. The strength of cell death
induction by each variant seemed to correlate with its clinical
severity. This assay might be helpful in the diagnosis of the
PAAD patients with VOUS or previously unreported variants,
as in the case ofMEFVP257L variant. Therefore, this assay can
help in functional evaluation of MEFV variants in a simple
manner and can be used for the accurate diagnosis and better
understanding of PAADs when integrated with precise clini-
cal descriptions as well as other laboratory/experimental data.
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Supplementary methods 

 

Immunofluorescence 

THP-1 cells (1 × 106) were transfected with 500 ng of eGFP-MEFV plasmids by nucleofector device IIb and 

kit V (Lonza, Basel, Switzerland). Cells were stimulated with TcdA (Sigma-Aldrich, St. Louis, MO, US) or 

UCN-01 (Sigma-Aldrich) 3 hours after transfection. Three hours after stimulation, cells were attached to 

MAS-04 coated slides (Matsunami, Osaka, Japan) using a Cytospin 4 Cytocentrifuge (Thermo Fisher 

Scientific, Waltham, MA, US), fixed with 4 % paraformaldehyde (FUJIFILM Wako, Osaka ,Japan), and 

permeabilized with 0.1% Triton X-100 (Nacalai, Kyoto, Japan). Cells were incubated with an anti-ASC 

antibody (# AG-25B-0006-C100; 1:400; Adipogen, Liestal, Switzerland) and then with an Alexa Fluor 594–

labeled antibody to rabbit IgG (# A-11012; 1:1000; Thermo Fisher Scientific). Nuclei were stained with 4’,6-

diamidino-2-phenylinodole (Dojindo, Kumamoto, Japan). Cells were examined using a BZ-X710 

fluorescence microscope (Keyence, Osaka, Japan), and the percentage of ASC speck-positive cells among 

GFP-positive cells was calculated.  

 

IL-1β secretion from THP-1 cells 

THP-1 cells (1 × 106) were transfected with 500 ng of eGFP-MEFV plasmids by nucleofector device IIb and 

kit V (Lonza). Immediately after nucleofection, cells were seeded into 96 well plate (6.5 × 104 cells per well) 

and were primed with LPS (100 ng/mL) (Sigma-Aldrich) and PMA (10 ng/mL) (FUJIFILM Wako). After 3 

hours of LPS priming, cells were treated with TcdA (1 μg/mL) or UCN-01(10 μM) or left untreated. After 3 

hours of stimulation, supernatants were collected. The IL-1β concentration was measured in technical 

duplicates or triplicates by using the Bio-Plex Pro Human Cytokine Assay (Bio-Rad Laboratories, Hercules, 

CA, US). 

 

Genetic analysis 

Two patients (Ⅲ-1 and Ⅲ-2 in Fig. 4a) and their healthy mother (Ⅱ-3) had received next-generation 

sequencing based panel gene tests for MEFV, CECR1, COPA, FAM105B, HMOX1, IL1RN, MVK, NLRC4, 

NLRP12, NLRP3, NOD2, PLCG2, POMP, PSMA3, PSMB4, PSMB8, PSMB9, PSTPIP1, RBCK1, RNF31, 

TNFAIP3, and TNFRSF1A. We detected homozygous MEFVP257L variant in Ⅲ-1 and Ⅲ-2, heterozygous 

MEFVP257L in Ⅱ-3, respectively. No pathogenic or rare variant was detected in other autoinflammatory disease 

associated genes listed above. 

For healthy controls, all the coding regions of MEFV gene were examined by Sanger sequencing, and there 

was no MEFV variant. Detailed information for the primes and PCR is available upon request. 

 

Generation of caspase-1 knockout THP-1 cells 

The CASP1 gene was knocked out using the Clustered Regularly Interspaced Short Palindromic Repeats 

(CRISPR)/Cas9 system. Single guide RNA constructs targeting exon 6 of the CASP1 gene were introduced 

into the lentiCRISPR v2 vector (Addgene, Watertown, MA, US) and viral particles were generated using a 

Lenti-Pac HIV Expression Packaging Kit (Genecopoeia, Rockville, MD, US) according to the manufacturer’s 

instructions. The viral supernatant was added to 3 × 106 THP-1 cells and supplemented with 8 μg/mL of 

polybrene before being centrifuged for 45 min at 800 × g at 32 °C, incubated at 37 °C for 4 h, and washed and 

reseeded in fresh RPMI. After 72 h, 1 μg/mL of puromycin was added and surviving cells were diluted and 

dispersed into 96-well plates for a single-clone selection. 

 

Western blotting 

THP-1 cells (1 × 106) were lysed in Mammalian Protein Extraction Reagent (M-PER; Thermo Fisher 

Scientific) supplemented with a Protease Inhibitor Cocktail (Nacalai Tesque, Kyoto, Japan). Total protein (10 

µg) was separated by SDS-PAGE and transferred to a polyvinylidene difluoride membrane. Membranes were 

blocked with Tris-buffered saline supplemented with 0.1 % Tween 20 and 5 % nonfat dried milk and incubated 

at room temperature with primary antibodies for 1 h, and then incubated at room temperature with the 

appropriate horseradish peroxidase-conjugated secondary antibodies for 1 h (Jackson ImmunoResearch, West 

Grove, PA, US). Membranes were then incubated with Clarity Western ECL Substrate (Bio-Rad, Hercules, 

CA, US) and signals were acquired using ChemiDoc Imaging System (Bio-Rad). The following antibodies 
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were used: mouse anti-GFP (# sc-9996; 1:200; Santa Cruz, Dallas, TX, US), rabbit anti-pyrin (# AG-25B-

0020-C100; 1:1000; Adipogen, Liestal, Switzerland), rabbit anti-caspase-1 (# 3866; 1:1000; Cell Signaling 

Technology, Danvers, MA, US), and mouse anti-β-actin (# 010-27841; 1:2000; FUJIFILM Wako). 
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Table S1 List of primer sequences 

 
 HGVS 

 protein name 

HGVS 

 sequence name 
forward primer sequence reverse primer sequence 

E84K p.(Glu84Lys) c.250G>A CAACCAGCGCCTGCTGGCCAAGGAGCTCCACAGGGCAG CTGCCCTGTGGAGCTCCTTGGCCAGCAGGCGCTGGTTG 

L110P p.(Leu110Pro) c.329T>C CCGCAGCGTCCAGCTCCCCGGGGGAGAACAAGCCC GGGCTTGTTCTCCCCCGGGGAGCTGGACGCTGCGG 

E148Q p.(Glu148Gln) c.442G>C CCTCCCGGCCTGGGGCTGGCTGC GCAGCCAGCCCCAGGCCGGGAGG 

E167D p.(Glu167Asp) c.501G>C CTTGCCCTGCGCGTCCAGGCCGTCCGAGGCCTTCTCTC GAGAGAAGGCCTCGGACGGCCTGGACGCGCAGGGCAAG 

R202Q p.(Arg202Gln) c.605G>A GGCCAGGCCGAGGTCCAGCTGCGCAGAAACGCCAGC GCTGGCGTTTCTGCGCAGCTGGACCTCGGCCTGGCC 

S208C p.(Ser208Cys) c.622A>T GGCTGCGCAGAAACGCCTGCTCCGCGGGGAGGCTGC GCAGCCTCCCCGCGGAGCAGGCGTTTCTGCGCAGCC 

S208T p.(Ser208Thr) c.623G>C CTGCGCAGAAACGCCACCTCCGCGGGGAGGCTG CAGCCTCCCCGCGGAGGTGGCGTTTCTGCGCAG 

S242R p.(Ser242Arg) c.726C>G GAAAGATGCGACCTAGAAGGCTTGAGGTCACCATTTCTAC GTAGAAATGGTGACCTCAAGCCTTCTAGGTCGCATCTTTC 

E244K p.(Glu244Lys) c.730G>A GATGCGACCTAGAAGCCTTAAGGTCACCATTTCTACAGGG CCCTGTAGAAATGGTGACCTTAAGGCTTCTAGGTCGCATC 

P257L p.(Pro257Leu) c.770C>T AGTCAGGAGAATTTCTAGATTTGCGGGCGCCTTC GAAGGCGCCCGCAAATCTAGAAATTCTCCTGACT 

T267I p.(Thr267Ile) c.800C>T GACTCTAGAGGAAAAGATAGCTGCGAATCTGGACTCG CGAGTCCAGATTCGCTATCTTTTCCTCTAGAGTC 

G304R p.(Gly304Arg) c.910G>A CCAGAACATTCGGTCACCAGAAGGCCACCAGACACGGC GCCGTGTCTGGTGGCCTTCTGGTGACCGAATGTTCTGG 

P369S p.(Pro369Ser) c.1105C>T GAGCCCGGGAAGCCTAAGCTCCCAGCCCCTGCCACAG CTGTGGCAGGGGCTGGGAGCTTAGGCTTCCCGGGCTC 

P373L p.(Pro373Leu) c.1118C>T GCCCCCAGCCCCTGCTACAGTGTAAGCGCCACC GGTGGCGCTTACACTGTAGCAGGGGCTGGGGGC 

R408Q p.(Arg408Gln) c.1223G>A GGAGCACCAAGGCCACCAGGTGCGCCCATTGAGGAGG CCTCCTCAATGGGGCGCACCTGGTGGCCTTGGTGCTCC 

H478Y p.(His478Tyr) c.1432C>T CCTGGAGCAGCAAGAGTATTTCTTTGTGGCCTCAC CCTGGAGCAGCAAGAGTATTTCTTTGTGGCCTCAC 

F479L p.(Phe479Leu) c.1437C>G GGAGCAGCAAGAGCATTTGTTTGTGGCCTCACTGGAGG CCTCCAGTGAGGCCACAAACAAATGCTCTTGCTGCTCC 

S503C p.(Ser503Cys) c.1508C>G CATATGACACCCGCGTATGCCAGGACATCGCCCTGC GCAGGGCGATGTCCTGGCATACGCGGGTGTCATATG 

T577A p.(Thr577Ala) c.1729A>G GCACAAAGTACTTCTCAGAAGCCCTGCGTTCAGAAATGG CCATTTCTGAACGCAGGGCTTCTGAGAAGTACTTTGTGC 

T577N p.(Thr577Asn) c.1730C>A TCTGAACGCAGGTTTTCTGAGAAGTACTTTGTGCTC GAGCACAAAGTACTTCTCAGAAAACCTGCGTTCAGA 

T577S p.(Thr577Ser) c.1729A>T GCACAAAGTACTTCTCAGAATCCCTGCGTTCAGAAATGG CCATTTCTGAACGCAGGGATTCTGAGAAGTACTTTGTGC 

I591T p.(Ile591Thr) c.1772T>C CAATGTTCCAGAGCTGACTGGCGCTCAGGCACATG CATGTGCCTGAGCGCCAGTCAGCTCTGGAACATTG 

N679H p.(Asn679His) c.2035A>C GGCGACAGAGTCATGTGCCCTTTCCTGCTTATG CATAAGCAGGAAAGGGCACATGACTCTGTCGCC 

M680I p.(Met680Ile) c.2040G>A GCAGGAAAGGGAACATAACTCTGTCGCCAGAGAATGG CCATTCTCTGGCGACAGAGTTATGTTCCCTTTCCTGC 

I692del p.(Ile692del) c.2076_2078del 
1) CAGATATCCAGCACAGTGGCGGCCGCATGGCTAAGACCCCTAGTG 1) TTCCTTCATCATCACCACCCAGTAAGCCATTC 

2) GGGTGGTGATGATGAAGGAAAATGAGTACC 2) TTTAAACGGGCCCTCTAGACTCGAGTTACTTGTACAGCTCGTC 

M694I p.(Met694Ile) c.2082G>A GGCTACTGGGTGGTGATAATGATAAAGGAAAATGAGTACC GGTACTCATTTTCCTTTATCATTATCACCACCCAGTAGCC 

M694V p.(Met694Val) c.2080A>G GGTACTCATTTTCCTTCACCATTATCACCACCCAGTAG CTACTGGGTGGTGATAATGGTGAAGGAAAATGAGTACC 

M694del p.(Met694del) c.2081_2083del CTACTGGGTGGTGATAATGAAGGAAAATGAGTACCAG CTGGTACTCATTTTCCTTCATTATCACCACCCAGTAG 

K695R p.(Lys695Arg) c.2084A>G GGGTGGTGATAATGATGAGGGAAAATGAGTACCAGGCG CGCCTGGTACTCATTTTCCCTCATCATTATCACCACCC 

V726A p.(Val726Ala) c.2177T>C CTTCGTGGACTACAGAGCTGGAAGCATCTCCTTTTAC GTAAAAGGAGATGCTTCCAGCTCTGTAGTCCACGAAG 

A744S p.(Ala744Ser) c.2230G>T GATCCCACATCTATACATTCTCCAGCTGCTCTTTCTCTG CAGAGAAAGAGCAGCTGGAGATGTATAGATGTGGGATC 

R761H p.(Arg761His) c.2282G>A CTTCAGCCCTGGGACACATGATGGAGGGAAGAACAC GTGTTCTTCCCTCCATCATGTGTCCCAGGGCTGAAG 
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Table S2 List of analyzed variants 

 

 Exon domain 
HGVS  

protein name 

HGVS 

sequence name 
rs number 

Allele frequency in gnomAD v2.1.1 
Pathogenicity score 

/Status in Infevers (17) 

Classification 

in the new guidelines (15) Total East Asian 
European 

(non-Finnish) 

E84K 1 PYD p.(Glu84Lys) c.250G>A rs150819742 0.0001085 0.001197 0.000 Likely pathogenic/PROVISIONAL  

L110P 2  p.(Leu110Pro) c.329T>C rs11466018 0.006366 0.08509 0.0001265 Uncertain significance (VUS)/VALIDATED 
Common variants often allelic 

(complex alleles) 

E148Q 2  p.(Glu148Gln) c.442G>C rs3743930 0.06576 0.2915 0.01353 Uncertain significance (VUS)/VALIDATED 
Common variants often allelic 
(complex alleles) 

E167D 2  p.(Glu167Asp) c.501G>C rs104895079 0.00004693 0.000 0.00009827 Likely pathogenic/PROVISIONAL  

R202Q 2  p.(Arg202Gln) c.605G>A rs224222 0.2354 0.04334 0.2736 Benign/VALIDATED  

S208C 2  p.(Ser208Cys) c.622A>T     Uncertain significance (VUS)/PROVISIONAL  

S208T 2  p.(Ser208Thr) c.623G>C rs759326778 0.00003772 0.000 0.000 Likely pathogenic/To be validated  

S242R 2  p.(Ser242Arg) c.726C>G rs104895127 0.000003980 0.000 0.000 Likely pathogenic/VALIDATED 
Dominant inheritance 

(PAAND) 

E244K 2  p.(Glu244Lys) c.730G>A     Not classified/To be validated 
Dominant inheritance 
(PAAND) 

P257L 2  p.(Pro257Leu) c.770C>T rs201025181 0.000003977 0.00005437 0.000 Uncertain significance (VUS)/To be validated  

T267I 2 bZIP p.(Thr267Ile) c.800C>T rs104895081 0.0001485 0.000 0.0001703 Likely pathogenic/VALIDATED  

G304R 2  p.(Gly304Arg) c.910G>A rs75977701 0.004685 0.01806 0.001017 Likely benign/VALIDATED  

P369S 3  p.(Pro369Ser) c.1105C>T rs11466023 0.01470 0.07148 0.009158 Uncertain significance (VUS)/VALIDATED 
Common variants often allelic 

(complex alleles) 

P373L 3 Bbox p.(Pro373Leu) c.1118C>T     Uncertain significance (VUS)/VALIDATED 
Dominant inheritance 

(FMF-like) 

R408Q 3 Bbox p.(Arg408Gln) c.1223G>A rs11466024 0.01336 0.05378 0.009130 Uncertain significance (VUS)/PROVISIONAL 
Common variants often allelic 
(complex alleles) 

H478Y 5  p.(His478Tyr) c.1432C>T rs104895105    Uncertain significance (VUS)/VALIDATED 
Dominant inheritance 

(FMF-like) 

F479L 5  p.(Phe479Leu) c.1437C>G rs104895083 0.00004242 0.000 0.00009288 Likely pathogenic/VALIDATED  

S503C 5  p.(Ser503Cys) c.1508C>G rs190705322 0.00007555 0.0009786 0.000 Likely pathogenic/VALIDATED  

T577A 8  p.(Thr577Ala) c.1729A>G     Likely pathogenic/PROVISIONAL 
Dominant inheritance 

(FMF-like) 

T577N 8  p.(Thr577Asn) c.1730C>A rs1057516210    Likely pathogenic/VALIDATED 
Dominant inheritance 

(FMF-like) 

T577S 8  p.(Thr577Ser) c.1729A>T rs104895193    Likely pathogenic/PROVISIONAL 
Dominant inheritance 
(FMF-like) 

I591T 9  p.(Ile591Thr) c.1772T>C rs11466045 0.01089 0.00005015 0.01650 Uncertain significance (VUS)/PROVISIONAL 
Common variants often allelic 

(complex alleles) 

N679H 10 B30.2 p.(Asn679His) c.2035A>C     Not classified/To be validated  
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M680I 10 B30.2 p.(Met680Ile) c.2040G>A rs28940580 0.000007953 0.000 0.00001758 Pathogenic/VALIDATED 
Classical FMF 
(criteria and ethnicity) 

I692del 10 B30.2 p.(Ile692del) c.2076_2078del rs104895093 0.000007953 0.000 0.000008790 Likely pathogenic/VALIDATED  

M694I 10 B30.2 p.(Met694Ile) c.2082G>A rs28940578 0.0001273 0.000 0.0001471 Pathogenic/VALIDATED 
Classical FMF 

(criteria and ethnicity) 

M694V 10 B30.2 p.(Met694Val) c.2080A>G rs61752717 0.0002722 0.000 0.0004567 Pathogenic/VALIDATED 
Classical FMF 
(criteria and ethnicity) 

M694del 10 B30.2 p.(Met694del) c.2081_2083del rs104895091 0.000007953 0.000 0.00001758 Likely pathogenic/VALIDATED 
Sometimes associated 

with dominant transmission 

K695R 10 B30.2 p.(Lys695Arg) c.2084A>G rs104895094 0.005826 0.000 0.007942 Likely pathogenic/VALIDATED  

V726A 10 B30.2 p.(Val726Ala) c.2177T>C rs28940579 0.001983 0.000 0.0008902 Pathogenic/VALIDATED 
Classical FMF 
(criteria and ethnicity) 

A744S 10 B30.2 p.(Ala744Ser) c.2230G>T rs61732874 0.001764 0.000 0.001603 Uncertain significance (VUS)/VALIDATED  

R761H 10 B30.2 p.(Arg761His) c.2282G>A rs104895097 0.0002051 0.001904 0.00007743 Likely pathogenic/VALIDATED  

6 combined 
variants 

          

 

6 combined variants: MEFVL110P-E148Q-R202Q-P369S-R408Q-S503; PYD: pyrin domain; VUS: variants of unknown significance; PAAND: pyrin-associated 

autoinflammation with neutrophilic dermatosis; FMF: Familial Mediterranean fever 
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Figure S1 7-AAD/Annexin V staining in GFP-positive cells 

 

 
 

(a) Representative flow-cytometry dot plots by 7-AAD and Annexin V staining among GFP-positive cells. 

The number in each quadrant indicates the percentage of the cells. Blue rectangles indicate 7-AAD-negative 

and Annexin V-positive cells (early apoptosis). The percentage of cells (b) in each quadrant and (c) in 7-

AAD-negative/Annexin V-positive among GFP-positive population. Cells were stimulated 3 h after 

transfection and analyzed by flow-cytometry 6 h after nucleofection. Data were analyzed by unpaired two-

tailed t-test. ns: nonsignificant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data represent the 

mean  standard deviation of three independent assays 
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Figure S2 IL-1β production from transfected THP-1 cells 

 

 
 

Cells were primed with LPS (100 ng/mL) immediately after nucleofection for 3 hours when indicated. After 

3 hours of nucleofection, cells were (a) left untreated (no stimulation and LPS-prime only), stimulated with 

(b) UCN-01 (10 µM), or (c) TcdA (1 µg/mL) for additional 3 hours. Supernatant was collected 6 h after 

nucleofection and analyzed for IL-1β. Data were analyzed by unpaired two-tailed t-test. ns: nonsignificant, *p 

< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data represent the mean  standard deviation of three 

independent assays 
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Figure S3 ASC speck formation in transfected THP-1 cells 

 

 
 

(a) Representative fluorescence microscopy images for quantifying ASC speck formation in THP-1 cells 

transfected with GFP-fused MEFVWT (left) or MEFVM694V (right); top: no-stimulation, middle: UCN-01 

stimulation, bottom: TcdA stimulation. (b) Quantification of ASC speck formation. Cells were stimulated 3 h 

after transfection and fixed for analysis 6 h after nucleofection. Data were analyzed by unpaired two-tailed t-

test. ns: nonsignificant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data represent the mean ± 

standard deviation of three independent assays 
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Figure S4 Cell death by each MEFV variant was prevented by caspase-1 knockout. 
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Cells were stimulated 3 h after transfection and fixed for analysis 6 h after nucleofection. Cell death was 

calculated as the percentage of 7-AAD-positive cells among GFP-positive cells. Circle: CASP1WT THP-1, 

rectangle: CASP1KO THP-1. White/gray: spontaneous cell death; red/pink: UCN-01-induced cell death 

enhancement; blue/light blue: TcdA-induced cell death enhancement. Spontaneous cell death indicates cell 

death without stimulation. UCN-01/TcdA-induced cell death enhancement was defined as the increased 

percentage of cell death upon UCN-01/TcdA stimulation over spontaneous cell death: ((percentage of cell 

death upon UCN-01/TcdA stimulation) - (percentage of spontaneous cell death)). If UCN-01/TcdA-induced 

cell death enhancement was a negative value, 0 was plotted. Data represent the mean  standard deviation of 

three (for CASP1WT THP-1) or two (for CASP1KO THP-1) independent assays 
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Figure S5 Cell death was inhibited by colchicine but not by MCC950. 
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Quantification of cell death (spontaneous cell death and UCN-01/TcdA-induced cell death enhancement) 

caused by each MEFV variant. Colchicine (1 µM) or MCC950 (1 or 10 µM) was added 2 hours after 

nucleofection. Three hours after nucleofection, cells were stimulated with UCN-01 (10 µM)/TcdA (1 µg/mL) 

for additional 3 hours and analyzed by flow cytometry. Cell death was calculated as the percentage of 7-AAD-

positive cells among GFP-positive cells. Spontaneous cell death indicates cell death without stimulation. 

UCN-01/TcdA-induced cell death enhancement was defined as the increased percentage of cell death upon 

UCN-01/TcdA stimulation over spontaneous cell death: ((percentage of cell death upon UCN-01/TcdA 

stimulation) - (percentage of spontaneous cell death)). If UCN-01/TcdA-induced cell death enhancement was 

a negative value, 0 was plotted. Data were analyzed by unpaired two-tailed t-test. ns: nonsignificant, *p < 0.05, 

**p < 0.01, ***p < 0.001, ****p < 0.0001. Data represent the mean  standard deviation of three independent 

assays 
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Figure S6 Endogenous pyrin expression was almost negligible in this assay. 

 

 
 

(a) Quantification of cell death caused by each MEFV variant. Three hours after nucleofection, cells were left 

untreated or stimulated with UCN-01(10 µM)/TcdA(1 µg/mL) for additional 3 hours, and analyzed by flow 

cytometry. Cell death was calculated as the percentage of 7-AAD-positive cells among GFP-positive cells. 

Spontaneous cell death (white) indicates cell death without stimulation. UCN-01 (red)/TcdA (blue)-induced 

cell death enhancement was defined as the increased percentage of cell death upon UCN-01/TcdA stimulation 

over spontaneous cell death: ((percentage of cell death upon UCN-01/TcdA stimulation) - (percentage of 

spontaneous cell death)). If UCN-01/TcdA-induced cell death enhancement was a negative value, 0 was 

plotted. Data were analyzed by one-way ANOVA followed by Dunnett’s multiple comparison test (versus the 

WT as a control group). ns: nonsignificant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data 

represent the mean  standard deviation of three independent assays. (b) Western blot of CASP1WT/CASP1KO 

THP-1 with or without GFP-fused MEFVWT transfection. MEFV overexpression was detected using anti-GFP 

antibodies. Endogenous (arrowhead) and overexpressed MEFV (arrow) were both detected using anti-pyrin 

antibodies 
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Figure S7 Transfection efficiency assessed by GFP expression 
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The percentages of GFP-positive cells per transfection were measured. Cells were analyzed 6 h after 

nucleofection. Data represent the mean  standard deviation of three independent assays. 6 combined variants: 

MEFVL110P-E148Q-R202Q-P369S-R408Q-S503 
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Figure S8 IL-1β production from THP-1 cells transfected with MEFVP257L 

 

 
 

Cells were primed with LPS (100 ng/mL) immediately after nucleofection for 3 hours when indicated. After 

3 hours of nucleofection, cells were (a) left untreated (no stimulation and LPS-prime only), stimulated with 

(b) UCN-01 (10 μM), or (c) TcdA (1 μg/mL) for additional 3 hours. Culture supernatants were collected 6 h 

after nucleofection and analyzed for IL-1β. Data were analyzed by unpaired two-tailed t-test. ns: 

nonsignificant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data represent the mean  standard 

deviation of three independent assays 
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