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Introduction
Elucidating the modes of action (MoAs) of drugs and candidate compounds is critical 
for guiding translation from drug discovery to clinical application. Understanding the 
complex responses of the human biological system to chemicals is of vital importance 
in medical and pharmaceutical research. For many chemicals, including some approved 
drugs, the MoAs remain elusive. !e task of revealing MoAs can be moderately 
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simplified to the identification of target proteins implicated in the pharmacological 
effects of chemicals on disease. Phenotype-based high-throughput screening (PHTS) is 
an efficient way to find candidate compounds with a desired phenotype [1–3]. Although 
PHTS can rapidly screen thousands of chemicals, the underlying molecular mechanisms 
of the hit compounds remain unknown. Identification of the target proteins associated 
with a phenotype requires considerable effort, e.g., analysis of drug–protein interactions 
using biochemical and chemoinformatic methods [4–11]. Recent developments in bio-
technology have contributed to the increase in the amounts of omics data for chemicals 
and proteins in the genome, transcriptome, epigenome, and interactome, which can be 
useful sources for inferring the MoAs of drugs.

Based on the concept that gene expression changes are pivotal for pharmacophysi-
ological effects, another major approach to drug discovery is transcriptome profiling 
following administration of compounds. A popular transcriptome-guided drug reposi-
tioning approach for finding novel drugs is to search for compounds whose gene expres-
sion patterns are inversely correlated with those of a disease of interest [12–16]. !ese 
methods involve genome-wide expression profiling of transcriptional responses to 
compound treatment. In recent years, chemically induced gene expression data based 
on large-scale transcriptome experiments have been made available from several pub-
lic databases. !e Toxicogenomics Project-Genomics Assisted Toxicity Evaluation sys-
tem (TG-GATEs) hosts the results of a toxicogenomics project implemented in Japan, 
in which 170 compounds were used to perturb cell homeostasis in  vitro [17]. Subse-
quently, the Connectivity Map (CMap) database was constructed to provide the gene 
expression profiles of five cancer cell lines perturbed by 1,309 compounds [18]. Many 
more compounds have been examined by the National Institute of Health Library of 
Integrated Network-Based Cellular Signatures (LINCS) consortium, which analyzed the 
transcriptomic responses of 68 human cell lines to more than 20,000 compounds [19]. 
!e LINCS consortium took advantage of a “reduced representation of the transcrip-
tome”, in which 978 landmark genes, termed L1000, are investigated as a representative 
gene set for biological significance. !e Comparative Toxicogenomics Database (CTD) 
is another public resource that provides information about differentially expressed genes 
(DEGs) following administration of chemicals and medical drugs [20]. !e distinguish-
ing feature of CTD is that all records were generated by manual curation of more than 
13,713 peer-reviewed publications, including expression changes of 23,081 genes upon 
administration of 4,121 compounds to human cells. !us, relative to the aforementioned 
large-scale projects, CTD integrates a wider variety of genes in an unbiased manner.

Despite the construction of chemically induced gene expression signatures, the molec-
ular cues that mediate gene expression changes in response to chemical administration 
remain to be clarified. One class of promising mediators are the transcription factors 
(TFs) that act upstream of sets of chemically induced DEGs to control their expression. 
TFs are master regulators that profoundly alter cell phenotype and behavior by modulat-
ing the epigenetic landscape, thereby organizing the expression of large sets of genes. 
Although it is true that TFs are not often directly targeted by drugs, recent studies have 
demonstrated the power of epigenetic drug discovery, e.g., by revealing the potential 
utility of inhibitors of bromodomain proteins and histone deacetylases (HDACs) against 
neoplasms [21–25]. !ese findings highlight the importance of modeling epigenetic 
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landscapes in the context of pharmacological strategies. Although specifically targeting 
TF activity faces major hurdles, targeting effectors downstream of cell signaling (e.g., 
TFs) rather than upstream factors is likely to be a more specific approach [26]. In this 
study, instead of predicting directly druggable targets, we developed a computational 
method for identifying TFs pivotal to thousands of chemically induced DEGs, mak-
ing full use of large-scale TF binding profiles obtained from tens of thousands of actual 
chromatin immunoprecipitation sequencing (ChIP-seq) datasets. !e predicted chemi-
cal–TF associations provided clues about drug MoAs involved in drug efficacies and side 
effects. Our approach outperformed methods that directly evaluated the similarity of 
chemically induced and disease-specific DEGs without considering key TFs.

Results
Overview of TF-focused elucidation of drug MoAs
A considerable proportion of bioactive compounds and medical drugs exert their effects 
by modifying disease-elicited gene expression. To further understand the MoAs of chem-
icals and, in turn, to define chemical–disease associations, it is of crucial importance 
to focus on the master regulators that organize the expression of chemically perturbed 
DEGs. In the proposed approach, shown in Fig. 1, we identified TFs that integratively 
regulate chemically perturbed DEGs by analyzing large-scale comprehensive ChIP-seq 
data obtained from ChIP-Atlas [27]. In addition, we evaluated the matches of predicted 
target TFs with disease-associated proteins available from the DisGeNET database [28] 
(details shown below). !e predicted chemical–TF and chemical–disease associations 
were validated with known chemical–protein associations from the Kyoto Encyclopedia 
of Genes and Genomes DRUG database (KEGG DRUG) [29] and the chemical–disease 
association dataset from CTD, respectively.

Evaluation of biological signi"cance of genes and TFs in databases
To confirm the quality of chemically induced transcriptomes, we evaluated the biologi-
cal significance of annotated chemically perturbed genes by comparing the statistics 

Fig. 1 Overview of the proposed ChIPEA-based approach. To elucidate the epigenetic landscape of drug 
responses, we identified the TFs enriched on chemically induced genes by analyzing large-scale ChIP-seq 
data. Overlaps were evaluated between the transcription start site ± 5 kb regions of chemically induced 
genes (green arrow) and peak-call data (black lines) of 13,558 TF-related experiments archived in ChIP-Atlas
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of gene expression profile data in CTD and L1000 in order to estimate their overlap. 
Additional file 1: Figure S1a shows a Venn diagram of the genes that overlapped among 
the comparisons. Almost all (99.3%) of the L1000 landmark genes are also included in 
CTD. We sorted chemically induced genes in the order of the frequency with which they 
appeared in CTD, and assessed their matches with L1000 landmark genes (Additional 
file 1: Fig. S1b). !e results confirmed that the representative L1000 genes were ranked 
generally higher among the genes annotated in CTD (p = 2.5 ×  10−176 by Wilcoxon rank-
sum test). In particular, 41 DEGs in the top 100 of CTD were designated as L1000 genes. 
!ese data suggest that CTD includes a wide variety of biologically significant genes.

We then compared the annotated proteins in DisGeNET and ChIP-Atlas (Additional 
file 1: Fig. S1c). Most of the TFs profiled by ChIP-seq experiments (67.9% of ChIP-Atlas 
TFs) are also curated in DisGeNET. We sorted disease-associated proteins in the order 
of the frequency with which they appeared in DisGeNET, and assessed the match with 
TFs contained in ChIP-Atlas (Additional file  1: Fig. S1d). !e results confirmed that 
the TFs were ranked generally higher among the proteins annotated in DisGeNET 
(p = 3.2 ×  10−33 by Wilcoxon rank-sum test). !ese data suggest that the TFs analyzed by 
ChIP-seq associate with diseases more strongly than other proteins within DisGeNET. 
In summary, CTD, ChIP-Atlas, and DisGeNET include information about biologically 
significant genes and proteins, and are therefore suitable for elucidating the MoAs of 
chemicals and inferring chemical–disease associations.

Identi"cation of master regulators that organize the expression of DEGs in response 
to drug treatment
Chemical perturbation of gene expression is organized by a series of TFs in an integrated 
manner. !erefore, identification of key TFs is critical for understanding drug MoAs. To 
this end, we combined chemically induced DEGs from CTD (Additional file 2: Table S1) 
and large-scale public ChIP-seq data (n = 13,558) from ChIP-Atlas (Fig.  1, Additional 
file  2: Table  S2). We then performed ChIP-seq-based enrichment analysis (ChIPEA, 
detailed in Methods) to identify TFs that exhibited enriched binding around up- or 
down-regulated genes following drug administration (target range: transcription start 
site ± 5 kb).

We then asked whether the TFs with higher enrichment scores were involved in the 
MoAs of query compounds. As standard data, we used known chemical–protein inter-
actions data obtained from KEGG DRUG and applied the receiver operating character-
istic (ROC) curve, a plot of true-positive rates as a function of false-positive rates, as 
well as the precision-recall (PR) curve, which is a plot of precision (positive predictive 
value) as a function of recall (sensitivity). We then summarized the evaluation using the 
area under the ROC curve (AUROC) score, where 1 is perfect classification and 0.5 is 
random classification, and the area under the PR curve (AUPR) score, where 1 is perfect 
inference and the ratio of positive examples in the standard data is random inference.

!e distribution of AUROC and AUPR scores for each chemical (n = 35) that directly 
targets TFs was visualized with a violin plot (Fig. 2a). Mean AUROC and mean AUPR 
across chemicals were 0.7063 and 0.4187, respectively. Given that the distribution pat-
tern of AUROC varied depending on the highest enrichment score of each chemical 
(Additional file 1: Fig. S2), we were concerned that the item discrimination to distinguish 
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associated and not associated TFs within individual chemicals was in some sense lim-
ited. !erefore, we calculated “global” statistics using an inter-chemical merged enrich-
ment score vector to emphasize the significance of the actual values of enrichment 
scores (detailed in the Methods section). !e global AUROC and global AUPR scores 

Fig. 2 Identification of target TFs by ChIPEA. a Distribution of AUROC and AUPR scores for each chemical–
TF association predicted using ChIPEA. Red and black horizontal lines inside the box represent mean and 
median scores, respectively, and global scores are noted beside the violin plots. b Distribution of AUROC 
scores by chemical class according to the first level of the Anatomical Therapeutic Chemical classification 
system (ATC code). Chemicals are assigned the following ATC codes. A: alimentary tract and metabolism; B: 
blood and blood-forming organs; C: cardiovascular system; D: dermatologicals; G: genitourinary system and 
sex hormones; H: systemic hormonal preparations, excluding sex hormones and insulins; J: anti-infectives 
for systemic use; L: antineoplastic and immunomodulating agents; M: musculoskeletal system; N: nervous 
system; P: anti-parasitic products, insecticides and repellents; R: respiratory system; S: sensory organs; V: 
various; NaN: not assigned. The numbers of chemicals assigned to each ATC code are noted above the 
violin plots. Mean, median, and global AUROC scores are shown with red, black, and blue horizontal lines, 
respectively. c Predicted target TFs of five representative chemicals. Dots indicate individual TFs and are 
colored orange if they matched chemical–target associations recorded in KEGG DRUG. AUROC scores 
indicating the accuracy of the chemical–TF association inference are shown in parentheses following the 
names of the chemicals. Enrichment scores (−log10[p-value]) were calculated using the two-tailed Fisher’s 
exact test. The null hypothesis is that the intersection of the reference peaks for up-regulated genes occurs 
in the same proportion as for those with down-regulated genes. Fold enrichment (detailed in Methods) 
was calculated using the same ChIP-seq data and the following equation: (overlaps/up-regulated genes)/
(overlaps/down-regulated genes)
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were 0.6642 and 0.0092, respectively. Figure 2b shows the distribution of AUROC scores 
for a number of chemical classes on the basis of the first level of the WHO Anatomical 
!erapeutic Chemical (ATC) Classification code; the detailed explanations on the ATC 
codes are shown in the figure caption. !ese results revealed that ChIPEA can generally 
predict chemical–TF associations with high efficiency, particularly for chemicals catego-
rized as ATC code A (alimentary tract and metabolism, e.g., diabetes treatments and 
vitamins) and G (genitourinary system and sex hormones), which directly target nuclear 
receptors.

Figure  2c illustrates representative predictions of chemical–TF associations (Addi-
tional file  2: Table  S3). For example, androgen receptor (AR), estrogen receptor (ESR) 
1/2, and retinoic acid receptor alpha (RARA) were shown to significantly bind to the up-
regulated genes induced by testosterone (primary male sex hormone), estradiol (major 
female sex hormone), and tamibarotene (synthetic retinoid) treatment, respectively 
[30–32]. !ough they did not exhibit the highest enrichment, the binding of histone 
deacetylases (HDACs) was clearly detected among the TFs that bound in a biased man-
ner to down-regulated genes after treatment with vorinostat, a pan-HDAC inhibitor. In 
addition, bromodomain-containing proteins (BRDs), which are crucial factors involved 
in the transcription elongation process, were enriched among the down-regulated genes 
after treatment with (+)-JQ1 compound (JQ1), a bromodomain and extra-terminal 
motif (BET) protein inhibitor and potential antineoplastic agent. !ese results suggest 
that testosterone, estradiol, and tamibarotene promote, whereas vorinostat and JQ1 sup-
press, the activities of the corresponding receptors or factors in a manner consistent 
with the evidence [30–34].

Highlighting MoAs along with presumed chemical–TF–disease associations of CTD 
chemicals
To examine the MoAs more deeply, and in turn construct the chemical–TF–disease 
associations, we linked the TFs enriched for chemically induced DEGs by ChIPEA with 
protein–disease associations according to the DisGeNET database. In the proposed 
method, the probabilities of chemical–TF–disease associations were simply represented 
by the ChIPEA enrichment scores. For comparison, we also used a conventional DEG-
connected method for chemical–disease association analysis, which directly calculates 
the positive or negative correlation between chemically induced DEGs from CTD and 
disease-specific DEGs from Crowd Extracted Expression of Differential Signatures 
(CREEDS) [35]. !e sets of genes included in CTD and CREEDS modestly overlapped 
with each other (69.3% and 81.1% of genes, respectively), and CREEDS was confirmed to 
include an extensive range of biologically significant genes suitable for inferring chemi-
cal–disease associations (Additional file 1: Fig. S1a, b).

To compare the accuracies of predicted chemical–disease associations between the 
proposed method and the DEG-connected method, we applied ROC and PR curves 
using known chemical–disease associations obtained from CTD as standard data. !e 
global AUROC and global AUPR of the proposed approach were 0.6839 and 0.0574, 
respectively (mean AUROC = 0.7026, mean AUPR = 0.3504), higher than that of 
approaches that only compared DEGs versus non-DEGs (global AUROC = 0.6286, mean 
AUROC = 0.6133, global AUPR = 0.0461, mean AUPR = 0.2790; p = 2.7 ×  10−15 for 
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AUROC, p = 5.8 ×  10−6 for AUPR by Wilcoxon rank-sum test) or up- versus down-reg-
ulated genes (global AUROC = 0.6413, mean AUROC = 0.5972, global AUPR = 0.0505, 
mean AUPR = 0.2846; p = 1.2 ×  10−10 for AUROC, p = 6.1 ×  10−5 for AUPR by Wilcoxon 
rank-sum test) (Fig. 3a). Figure 3b shows the distribution of AUROC scores of the pur-
posed method, stratified by ATC code. !ese results suggest that the identification of 
target TFs using ChIPEA is a powerful approach that can be used to clarify pivotal fac-
tors for specific MoAs and is therefore useful for predicting the diseases associated with 
treatments, particularly for chemicals categorized as ATC code G (genitourinary system 
and sex hormones) or L (antineoplastic and immunomodulating agents). Use of this 
approach can ultimately lead to increased predictive power relative to directly calculat-
ing the commonalities between chemically induced and disease-specific DEGs.

Biological interpretations of chemical–TF–disease associations to estimate the pivotal TFs 
involved in e#cacies and side e$ects of CTD chemicals
Figure 4 shows representative results of chemical–TF–disease associations constructed 
using the proposed approach for cisplatin, leflunomide, and valproic acid.

Cisplatin is an antineoplastic chemotherapy agent that acts by crosslinking DNA, 
resulting in DNA damage; in cancer cells, the drug activates ferroptosis and apoptosis 
[36–39]. Among the predicted target TFs, tumor suppressors TP53 and TP63 showed 
the most significant enrichment for genes up-regulated by cisplatin administration [40, 
41]. By contrast, oncogenic factors MYC and MYCN were the most enriched TFs for 
the down-regulated genes [42]. !ese four TFs were assigned to various types of cancers 
in DisGeNET, leading to the prediction that cisplatin is associated with neoplasms; this 
prediction is firmly consistent with the evidence [38, 39]. Although the primary MoA of 
cisplatin is well known to involve crosslinking of genomic DNA, there is no evidence to 
support a direct interaction between TP53 or MYCs and cisplatin. !erefore, it is likely 
that cisplatin indirectly promotes the anti-tumor function of TP53 while suppressing the 
cancer-inducing function of MYCs. !is suggests that our approach is useful for discov-
ering indirect mediators in pharmacological processes that cannot be found by methods 
based on molecular structures, such as docking simulation and structure-based machine 
learning.

Leflunomide (LEF) is approved for treating adult rheumatoid arthritis. !e drug acts 
mainly through direct inhibition of dihydroorotate dehydrogenase (DHODH), which 
is thought to impair proliferation of inflammatory T cells by blocking de novo pyrimi-
dine biosynthesis [43–47]. Controversially, some reports have shown that impairment 
of cell proliferation by LEF is not rescued by uridine supplementation, implying that the 
drug also exerts DHODH-independent effects [48, 49]. Remarkably, our ChIPEA-based 
approach revealed that the most enriched TF for the LEF-induced up-regulated genes 
was TLE3, which suppresses cellular proliferation by inhibiting MAPK pathways [50, 
51]. Another intriguing TF enriched for the up-regulated DEGs was AHR, an impor-
tant regulator of inflammation in the immune system. !is is consistent with the fact 
that LEF induces the AHR–ARNT interaction, thereby attenuating bone erosion in 
rheumatoid arthritis [52]. In addition, LEF was also predicted to inactivate the NF-κB 
pathway component RELA and the key cell cycle promoter E2F1, both of which activate 
cellular proliferation [53, 54]. !ese results suggest that LEF suppresses proliferation of 
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inflammatory cells in rheumatoid arthritis patients by influencing those TFs in a manner 
independent of DHODH. !e top hit of RELA, along with the well-known interaction 
of NF-κB with the immunoglobulin light-chain enhancer in B cells, is consistent with 
previous findings that LEF prevents immunoglobulin production through inhibition of 

Fig. 3 Prediction of chemical–TF–disease associations. a, b Distributions of AUROC (a) and AUPR scores 
(b) for each chemical–disease association predicted using the proposed ChIPEA-based approach and 
approaches that ignore TFs. Red and black horizontal lines inside the box represent mean and median 
scores, respectively, and global scores are noted beside the violin plots. Differences between the methods 
are presented with p-values by Wilcoxon rank-sum test above the violin plots. c Distribution of AUROC 
scores by chemical class according to the first level of the Anatomical Therapeutic Chemical classification 
system (ATC code). Chemicals are assigned the following ATC codes. A: alimentary tract and metabolism; B: 
blood and blood-forming organs; C: cardiovascular system; D: dermatologicals; G: genitourinary system and 
sex hormones; H: systemic hormonal preparations, excluding sex hormones and insulins; J: anti-infectives 
for systemic use; L: antineoplastic and immunomodulating agents; M: musculoskeletal system; N: nervous 
system; P: anti-parasitic products, insecticides and repellents; R: respiratory system; S: sensory organs; 
V: various; NaN: not assigned. The numbers of chemicals assigned each ATC code are noted above the 
violin plots. Mean, median, and global AUROC scores are shown with red, black, and blue horizontal lines, 
respectively
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tyrosine kinase activity [55, 56]. Other than its antirheumatic effect, LEF has potential 
anticancer activity [57–59]. Although the underlying mechanism is elusive, our ChIPEA 
suggested that LEF suppresses tumor growth by activating TLE3 and inactivating RELA 
and E2F1, possibly via the same mechanisms involved in rheumatoid arthritis treatment. 
!us, our proposed approach can be used to reveal MoAs that would not be expected 
from consensus interpretations.

Valproic acid (VPA), a structurally simple fatty acid, has anticonvulsant properties and 
has been widely applied in the treatment of epilepsy [60]. It is also a potent HDAC inhibi-
tor and is under investigation as a treatment for various cancers [61–64]. In this analysis, 
several factors involved in chromatin remodeling, such as KDM1A, BRD2/4, and EP300, 
were significantly enriched to the down-regulated genes in response to VPA adminis-
tration. Given that aberrant chromatin remodeling is a hallmark of oncogenesis [65], 
it is reasonable to speculate that chromatin landscapes would be moderately regulated 
by those factors, and that such effects could be responsible for the anticancer actions 

Fig. 4 Biological interpretations of the chemical–TF–disease associations. Representative diseases are 
associated with the predicted target TFs of three chemicals. Dots indicate individual TFs and are colored 
orange only if they match the chemical–disease associations recorded in CTD database. Chemical–disease 
associations are indicated in blue (marked as “therapeutic” in CTD) or red (marked as “marker/mechanism” in 
CTD). AUROC scores showing the accuracy of chemical–TF association inference are shown in parentheses 
following the names of chemicals
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of VPA. Furthermore, we detected significant enrichment of the chromatin remodeler 
CHD8, which genome-wide association studies have shown to be strongly associated 
with the risk of autism spectrum disorder in humans and in mouse models [66–68]. A 
well-known adverse effect of VPA is that exposure during pregnancy increases the risk 
of autism in children [69], although the molecular mechanism underlying this process 
remains poorly understood. Our results suggest that prenatal use of VPA affects the 
activity of CHD8, thereby perturbing the target genes involved in neural development. 
Interestingly, lower CHD8 binding enrichment was observed for the genes perturbed 
after treatments with the HDAC inhibitor vorinostat (Fig.  2c). !is suggests that the 
potential key role of CHD8 in VPA-induced autism is HDAC-independent, an idea that 
is also supported by the lack of evidence showing a relationship between maternal use of 
vorinostat and neonatal autism. !ese findings demonstrate that our proposed approach 
has the potential to elucidate the MoAs involved in adverse effects of chemicals, and 
could therefore identify possible preventive strategies.

Discussion
In this paper, we present a novel computational approach for elucidating MoAs, focused 
on pivotal TFs, using large-scale data sets of chemically induced DEGs. !is method 
enables estimation of the efficacies and side effects of given chemicals. In the proposed 
approach, we identified the TFs that organize the expression of chemically induced 
DEGs before addressing the associations with diseases based on gene/protein–disease 
databases. We also tested a method that did not consider key TFs involved in MoAs; in 
that approach, chemical–disease associations were defined based on the commonalities 
of chemically induced and disease-specific DEGs. In terms of accuracy, the performance 
of the proposed approach was superior. !is is likely because gene expression changes 
are the final outcome of complex pharmacophysiological cascades; consequently, direct 
comparison of chemically induced DEGs with disease-specific DEGs will be influenced 
by secondary effects and other unknown factors. By contrast, TFs that integrate chemi-
cally induced DEGs are likely to be the direct targets of the corresponding compounds, 
or at least more proximal to them. Indeed, AR and ESR1 were identified as the targets of 
the sex hormones testosterone and estradiol, respectively, whereas HDACs and BRDs 
were suppressed upon treatment with the anti-tumor drugs vorinostat and JQ1. In addi-
tion, we found that TP53/TP63 and MYCs integratively organized the expression of the 
up- and down-regulated genes that were responsive to cisplatin administration, respec-
tively, revealing these proteins as pivotal factors in the MoAs of cisplatin’s anti-tumor 
activities. !us, in the context of pharmaceutical research, it might be only part of a 
complex system: ChIPEA is useful for elucidating MoAs from the epigenetic standpoint 
by revealing pivotal factors within the black box between input (drug administration) 
and output (gene expression changes). Our proposed method is easily performed using 
the “Enrichment Analysis” tool from the ChIP-Atlas website (Additional file 1: Fig. S3), 
where one can identify TFs simply by submitting a list of the DEGs that were identified 
after drug administration.

Genome-wide identification of TF binding sites based on inference of binding motifs 
is widely used to understand transcriptional regulation [70]. Previously, a method was 
proposed to model gene regulatory relationships based on predicted TF binding motifs 
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[71]. On the other hand, we utilized sets of target genes for each TF, which were con-
structed based on actual ChIP-seq experimental data in a motif-independent manner 
[27]. Relative to motif-based methods, our approach, which is based on ChIP-seq data, 
has the advantage of taking into consideration the actual TF binding sites within a spe-
cific cellular state. It is important to note that TFs do not always bind to specific binding 
motifs, even those that are statistically well-defined. Similarly, it is not uncommon for 
a TF to bind to sites that totally differ from its modeled motifs. !is observation may 
partially explain the undesirable results that are obtained when using a DNA sequence 
motif-based method to estimate chemical–TF associations for chemically induced genes 
(Additional file  1: Fig. S4) [72], though these motif-based methods are of value when 
ChIP-seq data for specific TFs cannot be obtained from publicly available resources.

To predict chemical–target interactions, chemogenomics methods have been devel-
oped based on the compound molecular structures and protein sequence motifs or 
structural features [4–8]. When aiming to find proteins that directly interact with given 
ligands, these methods are generally efficient, with high prediction accuracy as long as 
the structures of the proteins and compounds have been well characterized. As a com-
plementary approach, our method is applicable to proteins and compounds with less 
defined structures, as we do not focus primarily on direct drug–target interactions. Our 
approach only requires transcriptome analysis data for given chemicals, and is therefore 
capable of providing novel insights into chemical–protein associations fully based on 
biological experiments and public ChIP-seq data. In recent years, supervised machine 
learning algorithms have been used to predict drug targets and novel indications [9, 10]. 
Predictions made using this kind of approach can be very accurate if the system is pro-
vided with sufficient unbiased knowledge about specific drugs, proteins, and diseases. 
Such machine learning approaches will become more powerful when combined with 
TF-based knowledge obtained from our proposed method, which will allow gene-regu-
latory networks based on actual ChIP-seq experiments to contribute more accurate and 
explainable predictions.

Although the ChIPEA procedure itself is not novel, we show in this paper that 
the proposed ChIPEA-based approach is capable of identifying key regulators that 
are the direct targets of, or are primarily involved in the MoAs of, given bioactive 
compounds, implying that it could be used to make important contributions to 
the pharmaceutical field. For instance, ChIPEA could be used to analyze data from 
high-throughput expression screening of thousands of chemicals. !e conventional 
approaches for screening candidate compounds include Gene Ontology and path-
way enrichment analyses, which can be used to identify common features among 
chemically induced genes. In addition, our proposed approach provides insight into 
the regulatory mechanism acting upstream of these genes, allowing identification of 
drug candidates targeting the desired TFs. Furthermore, our method could also be 
applied to the transcriptome data of unapproved drugs, including compounds under 
development and those that failed to be approved in clinical trials. Identification of 
TFs primarily involved in MoAs, together with the factors associated with potential 
side effects, could shed light on the potential utility of repositories of compounds 
hoarded in pharmaceutical industries. In addition, our method could be used to ana-
lyze approved drugs, including those with more or less well-defined MoAs. Other 
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possible applications include drugs composed of unidentified ingredients, such as tra-
ditional herbal medicines. Potential therapeutic effects, side effects, and novel targets 
and actions can be inferred by identifying TFs involved in unexpected physiological 
pathways.

Finally, we wish to discuss the limitations and the extensibility of the proposed ChI-
PEA-based method. In this study, we considered only TF binding sites adjacent to the 
chemically induced genes (target range: transcription start site ± 5 kb). In general, genes 
are regulated by a complex series of enhancers at a short or long distance, of which a fair 
proportion are considered to fall outside the target range of ChIPEA. !us, it would be 
informative to use chromatin accessibility data (DNase-seq and ATAC-seq) to analyze 
TF binding at longer ranges from chemically perturbed genes. Furthermore, genome-
wide chromatin conformation capture (Hi-C) data is most suited to identifying chemi-
cally perturbed genes and the long-range TF binding sites that are sometimes observed 
for cis-regulatory elements. If ATAC-seq data are available for a broad coverage of 
chemicals, a more direct type of input data for ChIPEA would be the open chromatin 
regions, rather than the genes, rearranged by chemical administration. In our proposed 
method, the gene–TF matrix needs to be binarily abstracted as “binding” or “non-bind-
ing”, which does not take into account the broad range of binding affinities observed. 
Development of a weighted enrichment analysis method that includes an algorithm to 
factor in the binding affinity between each TF and specific gene loci, such as the statis-
tical values obtained using the MACS2 peak calling procedure (q-values), and the dis-
tance between genes and TF binding sites [73] would address this issue. It should be kept 
in mind that ChIPEA focuses on the “binding” patterns of TFs to chemically induced 
genes; however, “binding” does not necessarily mean that there is a regulatory relation-
ship. It would also be best to experimentally validate the predicted results for pivotal TFs 
in order to determine their relationships within regulatory networks. Finally, because we 
are using experimental ChIP-seq data, TFs lacking public ChIP-seq data cannot be ana-
lyzed using ChIPEA. However, because the number of ChIP-seq experiments is steadily 
increasing, the ChIPEA-based approach will become increasingly powerful in the future.

Conclusions
In this paper, we introduced a computational approach to elucidating the epigenetic 
landscape of drug responses, in which large-scale public ChIP-seq experiment data were 
analyzed to identify key TFs acting upstream of chemically induced genes. Chemical–TF 
associations were predicted by ChIPEA of chemically induced expression profiles and 
validated using a chemical–protein association database. Furthermore, chemical–TF–
disease associations were constructed by linking the TFs with known disease-associated 
proteins. Together, our findings demonstrate that ChIPEA using public ChIP-seq data 
is an efficient way to identify master regulators involved in MoAs from an epigenetic 
perspective. !erefore, this approach is a powerful means of predicting chemical–TF 
and chemical–disease associations in a biologically interpretable manner, outperforming 
methods that do not consider information about the TFs involved in MoAs. Our pro-
posed approach could be used to further understand the MoAs of candidate drugs, as 
well as to discover unexpected therapeutic effects and side effects of approved drugs.
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Methods
Datasets
Chemically perturbed DEGs from CTD
Gene symbols of genes up- and down-regulated by environmental chemicals and medi-
cal drugs were obtained from CTD (chemical–gene interaction; download link, http:// 
ctdba se. org/ repor ts/ CTD_ chem_ gene_ ixns. csv. gz; downloaded on May 15th, 2020). 
CTD is a community-supported genomic resource that provides manually annotated 
associations among chemicals, genes/proteins, and diseases [20]. In the chemical–gene 
interaction database, each chemical–gene interaction is addressed in a declarative state-
ment and qualified by a degree: increases, decreases, affects, or does not affect. We used 
only gene expression profiles of human cells in response to chemical administration with 
the interaction type “C (analog) results in increased/decreased expression of G mRNA/
protein”, where C and G represent a chemical and a gene, respectively. !e number of 
DEGs in response to treatment with each chemical varied widely, from 1 to over 6,000. 
We extracted expression profiles with more than ten each of up- and down-regulated 
DEGs, yielding a total of 890 gene expression profiles related to 434 chemicals (Addi-
tional file 2: Table S1).

Genome-wide TF binding experimental data from ChIP-Atlas
We obtained information about genome-wide TF binding sites from ChIP-Atlas, an 
integrative database that covers almost all public ChIP-seq data submitted to the NCBI 
SRA [27]. !e metadata of all experiments, such as names of antigens and cellular states, 
are manually curated according to commonly or officially adopted nomenclature. !e 
sequence data are processed with a unified pipeline in which sequenced reads are aligned 
to a reference genome with Bowtie2 and subjected to peak calling with MACS2. We 
retrieved full sequencing data from 13,558 experiments (Additional file 2: Table S2) that 
identified 170,067,307 binding sites (peaks were called with MACS2; q-value < 1 ×  10−10) 
of 997 TFs in the human genome (download link, http:// dbarc hive. biosc ience dbc. jp/ 
kyushu- u/ hg19/ allPe aks_ light/ allPe aks_ light. hg19. 05. bed. gz; genome version, hg19; 
downloaded on May 15th, 2020). It is worth noting that all of the binding data in ChIP-
Atlas were determined experimentally and therefore are not binding-motif dependent.

Gene/protein–disease association
Gene/protein–disease association data were acquired from DisGeNET (version, v7.0; 
download link, https:// www. disge net. org/ static/ disge net_ ap1/ files/ downl oads/ curat ed_ 
gene_ disea se_ assoc iatio ns. tsv. gz; downloaded on June 4th, 2020), a large collection of 
genes and variants associated with human diseases [28]. DisGeNET integrates data from 
expert-curated repositories and the scientific literature. We retrieved only manually 
curated data labeled with referenced PubMed IDs, yielding 77,524 gene/protein–disease 
associations involving 9,334 genes/proteins and 7,687 diseases.

Disease-speci"c DEGs from CREEDS
Disease-specific gene expression profiles were constructed based on gene expression 
profiles in CREEDS (manual disease signatures v1.0; download link, http:// amp. pharm. 
mssm. edu/ CREEDS/ downl oad/ disea se_ signa tures- v1.0. json; download on June 16th, 

http://ctdbase.org/reports/CTD_chem_gene_ixns.csv.gz
http://ctdbase.org/reports/CTD_chem_gene_ixns.csv.gz
http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/allPeaks_light/allPeaks_light.hg19.05.bed.gz
http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/allPeaks_light/allPeaks_light.hg19.05.bed.gz
https://www.disgenet.org/static/disgenet_ap1/files/downloads/curated_gene_disease_associations.tsv.gz
https://www.disgenet.org/static/disgenet_ap1/files/downloads/curated_gene_disease_associations.tsv.gz
http://amp.pharm.mssm.edu/CREEDS/download/disease_signatures-v1.0.json
http://amp.pharm.mssm.edu/CREEDS/download/disease_signatures-v1.0.json
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2020), a crowdsourcing project aimed at annotating and reanalyzing a large number of 
gene expression profiles from Gene Expression Omnibus [35]. !e gene expression pro-
files were associated with scores calculated using the characteristic direction method, in 
which gene expression levels in diseased tissues were compared with healthy controls. 
Genes with positive or negative expression scores were considered to be up- or down-
regulated DEGs, respectively, yielding 554 gene expression profiles associated with 235 
diseases.

Standard chemical–protein interactome
Compound–protein interaction data were acquired from KEGG DRUG (download link, 
ftp:// ftp. biosc ience dbc. jp/ archi ve/ kegg- medic us/ LATEST/ kegg_ medic us_ drug. csv. 
zip; downloaded on July 1st, 2019), a comprehensive collection of approved drugs and 
their target information, including 11,550 chemical–protein interactions involving 1,458 
chemicals and 768 proteins [29].

Standard chemical–disease associations
Chemical–disease association data were acquired from CTD (chemical–disease interac-
tions; download link, http:// ctdba se. org/ repor ts/ CTD_ chemi cals_ disea ses. tsv. gz; down-
loaded on June 15th, 2020). In total, we obtained 219,317 chemical–disease associations 
involving 9,855 chemicals and 3,244 diseases, curated from 78,582 papers.

The proposed ChIPEA-based approach
Identi"cation of key TFs that organize the expression of chemically induced genes using 
ChIPEA
Taking full advantage of this enormous quantity of data, we performed enrichment anal-
ysis termed ChIPEA to profile TFs whose binding sites were enriched around chemi-
cally induced genes of interest. In particular, starting with the gene symbols of up- and 
down-regulated genes induced by a query chemical, we counted the overlaps between 
the transcription start site ± 5 kb regions of chemically induced DEGs and peak-call data 
of all TF-related experiments archived in ChIP-Atlas, using the “intersect” command of 
BEDTools2 (version, v2.23.0) [74]. Enrichment scores (−log10[p-values]) were calculated 
using the two-tailed Fisher’s exact probability test, with the null hypothesis that the two 
data sets (up- and down-regulated genes) overlap with the ChIP-seq peak-call data in 
the same proportion; fold enrichment values were returned at the same time. If a chemi-
cal–TF association was given by multiple ChIP-seq experiments, the highest enrichment 
score was adopted. !is ChIPEA procedure was proposed previously [27].

Relating the chemical–TF matrix identi"ed using ChIPEA to TF–disease associations
Data for gene/protein–disease associations derived from DisGeNET (formula 1; where 
 Pm and  Dn represent a protein and a disease, respectively) were correlated with the 
chemical–TF associations determined using ChIPEA (formula 2; where Ci, Tj, and  Eij 
represent a chemical, a TF, and an enrichment score, respectively) when  Tj was also 
included in DisGeNET as  Pm (formula 3). !e enrichment scores calculated by ChIPEA 
were also used to evaluate the probability of each chemical–disease prediction (formula 
4).

ftp://ftp.biosciencedbc.jp/archive/kegg-medicus/LATEST/kegg_medicus_drug.csv.zip
ftp://ftp.biosciencedbc.jp/archive/kegg-medicus/LATEST/kegg_medicus_drug.csv.zip
http://ctdbase.org/reports/CTD_chemicals_diseases.tsv.gz
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If a chemical–disease pair was predicted via multiple TFs, the highest enrichment 
score was adopted.

Calculation of global AUROC and AUPR
After evaluating their validity, all predicted chemical–TF or chemical–disease associa-
tions were arranged into a single m × n matrix consisting of enrichment scores with cor-
rectness information, where m was the total number of chemicals and n was the number 
of TFs or diseases, respectively. We then stored the maximum value of enrichment 
scores within each column (TF or disease) into a vector with n elements. We generated 
ROC and PR curves and summarized the results into global AUROC and AUPR scores 
as described in the Results section.

Baseline methods
Motif-based enrichment analysis using the regulatory genomics toolbox [72]
In the motif matching step, a set of TF motifs identified from several main reposito-
ries was compared to the genomic regions of chemically induced genes without taking 
into account the DNase-seq signals. Subsequently, motif enrichment analysis was per-
formed for each chemical (download link, http:// www. regul atory- genom ics. org/ wp- 
conte nt/ uploa ds/ 2017/ 03/ RGT_ Motif Analy sis_ FullS iteTe st. tar. gz; downloaded on July 
12th, 2021). In particular, Fisher’s exact test was used in order to determine whether 
the chemically induced genes were enriched for particular TFs. Enrichment scores (−
log10[p-values]) were calculated using the two-tailed Fisher’s exact probability test, with 
the null hypothesis that the two data sets (up- and down-regulated genes) overlap with 
the TF motif data in the same proportion; fold enrichment values were returned at the 
same time. Testosterone-, vorinostat-, and JQ1-induced genes were obtained from CTD 
database.

DEG-connected method for predicting chemical–disease associations
Chemically induced and disease-specific expression changes in 28,268 genes were clas-
sified as up-regulated, down-regulated, or non-DEG; RefSeq genes were obtained from 
the UCSC genome annotation database of the human genome (download link, http:// 
hgdow nload. soe. ucsc. edu/ golde nPath/ hg19/ datab ase/ refFl at. txt. gz; genome, hg19; 
downloaded on July 7th, 2020). All chemical and disease profiles were further arranged 
into two-by-two cross tabulations for each of the chemical–disease pairs in two ways 
(“DEGs vs. non-DEGs” and “up- vs. down-regulated genes”), as illustrated in Table 1.

(1)Pm−Dn

(2)Ci−Tj−Eij

(3)Tj = Pm

(4)Ci−Tj−Dn−Eij

http://www.regulatory-genomics.org/wp-content/uploads/2017/03/RGT_MotifAnalysis_FullSiteTest.tar.gz
http://www.regulatory-genomics.org/wp-content/uploads/2017/03/RGT_MotifAnalysis_FullSiteTest.tar.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refFlat.txt.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refFlat.txt.gz
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!e chemical–disease associations were evaluated based on p-values calculated 
using the two-tailed Fisher’s exact probability test with the null hypothesis that the 
comparative gene expression patterns in response to a given C (chemical) and D (dis-
ease) (n1, n2, n3, and n4) were uniformly distributed. Chemical–disease pairs with 
smaller p-values were considered to be more firmly associated.

Abbreviations
AUPR: Area under the precision-recall curve; AR: Androgen receptor; AUROC: Area under the receiver operating char-
acteristic curve; ChIPEA: Chromatin immunoprecipitation sequencing-based enrichment analysis; ChIP-seq: Chroma-
tin immunoprecipitation sequencing; CMap: Connectivity Map; CREEDS: Crowd Extracted Expression of Differential 
Signatures; CTD: Comparative Toxicogenomics Database; DEGs: Differentially expressed genes; DHODH: Dihydroorotate 
dehydrogenase; ES: Enrichment score; ESR1: Estrogen receptor 1; ESR2: Estrogen receptor 2; KEGG DRUG : Kyoto Encyclo-
pedia of Genes and Genomes DRUG database; LINCS: National Institute of Health Library of Integrated Network-Based 
Cellular Signatures; MoA: Mode of action; PHTS: Phenotype-based high-throughput screening; PR: Precision-recall; RARA 
: Retinoic acid receptor alpha; ROC: Receiver operating characteristic; TF: Transcription factor; TG-GATEs: Toxicogenomics 
Project-Genomics Assisted Toxicity Evaluation system; VPA: Valproic acid.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 022- 04571-8.

Additional "le 1: Fig. S1 Comparison of gene expression pro"les and annotated proteins contained in dif-
ferent databases. a, c Venn diagram showing genes shared between the chemical–gene (CTD and L1000) and 
disease–gene (CREEDS) association databases (a), and proteins shared between the ChIP-seq experiment (ChIP-Atlas) 
and gene/protein–disease association (DisGeNET) databases (c). b, d Bar charts showing the frequencies with which 
the genes appeared in CTD and CREEDS, with L1000 genes colored in orange (CTD) and green (CREEDS) (b), and 
the frequencies with which proteins were defined as disease-associated proteins in DisGeNET, with ChIP-Atlas TFs 
colored in blue (d). Fig. S2 Factors potentially a$ecting the distribution of AUROC scores. AUROC scores, sorted 
according to the highest enrichment score for each (a, c) chemical and (b, d) the number of DEGs that were used 
to predict (a, b) chemical–TF and (c, d) chemical–disease associations using the proposed ChIPEA-based approach. 
Fig. S3 Visual manual for GUI-based ChIPEA. a. Submission form for ChIPEA on the website. GUI-based ChIPEA 
is provided on the ChIP-Atlas website (termed “Enrichment Analysis” tool; https:// chip- atlas. org/ enric hment_ analy 
sis). When used to identify pivotal TFs involved in drug MoAs, genome assembly should be set as “hg19/hg38” (hg19 
was used in this paper). “TFs and others” needs to be selected in panel “1. Antigen Class”. “2. Cell type Class” and “3. 
Threshold for Significance” may be changed by the user according to demand. The “4. Enter dataset A” dialog box is 
to be filled in with the list of up-regulated genes, and the box “5. Enter dataset B” is for down-regulated genes. After 
specifying the “Distance range from TSS” in the “6. Analysis description” panel, the user can press the “Submit” button 
to submit the parameters to the server, and ChIPEA will initialize immediately. b. Interpretation of the results. The 
overlaps between the genomic loci (originating from panels 4 and 5 of the submission form) and reference peak call 
data (specified on upper panels 1–3 of the submission form) are counted using the bedtools intersect command 
(BedTools2; ver 2.23.0). The results are returned in html and tsv format. p-values are calculated using a two-tailed 
Fisher’s exact probability test. The null hypothesis is that the intersection between the reference peaks and the data 
submitted in panel 4 occurs at the same proportion as for the data in panel 5 of the submission form. q-values are 
calculated using the Benjamini & Hochberg method. Fold enrichment was calculated by dividing the result from 
column 6 by the result from column 7 for a given row of data. If the ratio > 1, the rightmost column is “TRUE”, mean-
ing that the protein from column 3 is more likely to bind to the variable from panel 4 than to that from panel 5. Fig. 
S4 Identi"cation of target TFs using a motif analysis-based method. TF binding profiles of three chemicals 
predicted by motif analysis using DEGs from CTD (testosterone, vorinostat, and JQ1). Dots indicate individual TFs and 
are colored orange only if they match the chemical–target associations recorded in KEGG DRUG database. AUROC 
scores are shown in the upper right corner of the volcano plot of each chemical.

Table 1 Cross tabulation showing the frequency distribution of chemically induced and disease-
specific genes, with C and D representing a chemical and a disease, respectively

Disease D Disease D

DEGs non-DEGs Up Down

Chemical C DEGs n1 n2 Chemical C Up n1 n2

non-DEGs n3 n4 Down n3 n4

“DEGs vs. non-DEGs” comparison “up- vs. down-regulated genes” com-
parison

https://doi.org/10.1186/s12859-022-04571-8
https://chip-atlas.org/enrichment_analysis
https://chip-atlas.org/enrichment_analysis
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Additional "le 2: Table S1. List of CTD chemicals. Column 1, CTD ID; column 2, chemical name. Table S2. List of 
ChIP-seq experiments. Column 1,  Experiment ID; column 2, ChIP-seq antigen. Table S3. Predicted chemical–TF 
associations using ChIPEA for Fig. 2c. a Testosterone; b Estradiol; c Tamibarotene; d Vorinostat; e JQ1 compound.
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ABSTRACT

ChIP-Atlas (https://chip-atlas.org) is a web service
providing both GUI- and API-based data-mining tools
to reveal the architecture of the transcription reg-
ulatory landscape. ChIP-Atlas is powered by com-
prehensively integrating all data sets from high-
throughput ChIP-seq and DNase-seq, a method for
profiling chromatin regions accessible to DNase. In
this update, we further collected all the ATAC-seq
and whole-genome bisulfite-seq data for six model
organisms (human, mouse, rat, fruit fly, nematode,
and budding yeast) with the latest genome assem-
blies. These together with ChIP-seq data can be vi-
sualized with the Peak Browser tool and a genome
browser to explore the epigenomic landscape of
a query genomic locus, such as its chromatin ac-
cessibility, DNA methylation status, and protein–
genome interactions. This epigenomic landscape
can also be characterized for multiple genes and ge-
nomic loci by querying with the Enrichment Anal-
ysis tool, which, for example, revealed that inflam-
matory bowel disease-associated SNPs are the most
significantly hypo-methylated in neutrophils. There-
fore, ChIP-Atlas provides a panoramic view of the
whole epigenomic landscape. All datasets are free to
download via either a simple button on the web page
or an API.

GRAPHICAL ABSTRACT

INTRODUCTION

In the past decade, despite the increasing number of high-
throughput sequencing experiments, the secondary use of
the obtained raw data has required complex and large-scale
computational processing, and thus most data are still be-
ing hoarded. Since 2015, we have been comprehensively col-
lecting, analyzing and integrating almost all chromatin im-
munoprecipitation sequencing (ChIP-seq) (1) and DNase-
seq (2)––a method for pro!ling chromatin regions accessi-
ble to DNase––data derived from six representative model
organisms (Homo sapiens, Mus musculus, Rattus norvegi-
cus, Drosophila melanogaster, Caenorhabditis elegans and
Saccharomyces cerevisiae) archived at the Sequence Read
Archive (SRA). SRA is the largest publicly available data
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repository that accepts submissions of high-throughput se-
quencing data, which is maintained by NCBI, EBI, and
DDBJ. Data-mining tools powered by these data were pro-
vided through our web server, ChIP-Atlas (https://chip-
atlas.org) (3), for visualization of assembled peak data and
enrichment analysis for given genomic loci to identify tran-
scription factor (TF) binding and histone modi!cation sta-
tus. ChIP-Atlas is powered by dedicated manual curation
and annotation of experimental metadata, and a uniform
data process pipeline to reveal the complex architecture of
the transcription regulatory landscape.

Information on TF binding and histone marks is, how-
ever, still insuf!cient to fully understand the regulatory
systems for gene expression control because an absence
of nucleosomes and low methylation levels also charac-
terize active promoters, enhancers, and other gene regu-
latory sequences (4–7). To detect accessible chromatin re-
gions, several experimental methods including DNase-seq,
formaldehyde-assisted isolation of regulatory elements (8),
and assay for transposase-accessible chromatin with se-
quencing (ATAC-seq) (9) have been developed. Among
these, ATAC-seq identi!es accessible chromatin regions
based on their increased accessibility to Tn5 transposase in-
tegration and is now predominantly used given its advan-
tages of technical ease and sensitivity to a small number
of cells. In contrast, bisul!te sequencing (Bisul!te-seq) is
a well-established protocol to detect methylated cytosines
in genomic DNA, which employs a chemical method that
selectively deaminates unmodi!ed cytosine to uracil while
leaving 5-methylcytosine intact before DNA sequencing
(10).

Here, we describe the ChIP-Atlas 2021 update, which col-
lected all the ATAC-seq (n = 66 104) and whole-genome
bisul!te sequencing (WGBS) data (n = 51 074) for the six
representative model organisms. This update makes ChIP-
Atlas, to our knowledge, the !rst and only web service
that enables users to explore not only protein binding, but
also chromatin accessibility and DNA methylation status,
within a single given genomic region of interest (ROI) at
the same time (Peak Browser tool). ChIP-Atlas can also be
used to reveal the regulatory network involved in a batch of
genomic ROIs (Enrichment Analysis tool) based on ATAC-
seq and WGBS data in addition to ChIP-seq data in the pre-
vious version. ChIP-Atlas provides a panoramic view of the
whole epigenomic landscape and should be of great interest
to researchers in the !elds of genetics and genomics, as well
as those studying transcriptional regulation in general.

MATERIALS AND METHODS

Source data obtained from SRA

We obtained sample metadata from the NCBI BioSam-
ple database FTP server (ftp://ftp.ncbi.nlm.nih.gov/
biosample). We also retrieved the metadata of SRA exper-
iments (accession number with the pre!x SRX, ERX or
DRX; hereafter SRXs), such as library preparation or used
sequencing instrument models, from the NCBI SRA FTP
server (ftp://ftp.ncbi.nlm.nih.gov/sra/reports/Metadata).
ChIP-Atlas uses ATAC-seq and WGBS SRXs that meet the
following criteria: LIBRARY STRATEGY is ‘ATAC-seq’
or ‘Bisul!te-seq’; LIBRARY SOURCE is ‘GENOMIC’;

LIBRARY SELECTION is ‘PCR’ or ‘others’ for ATAC-
seq, and ‘RANDOM’ for WGBS; taxonomy name is
‘Homo sapiens,’ ‘Mus musculus’, ‘Rattus norvegicus’,
‘Caenorhabditis elegans’, ‘Drosophila melanogaster’ or
‘Saccharomyces cerevisiae’; and INSTRUMENT MODEL
includes ‘Illumina’, ‘NextSeq’ or ‘HiSeq.’ For ChIP-seq
and DNase-seq data, refer to the previous paper on
ChIP-Atlas (3).

Primary processing

Binarized sequence raw data (.sra) for each SRX were
downloaded and decompressed into FASTQ format with
the ‘fasterq-dump’ command of SRA Toolkit (ver. 2.9.4;
https://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/2.9.4/sratoolkit.
2.9.4-ubuntu64.tar.gz) according to the default mode, with
the exception of paired-end reads, which were decoded
with the ‘-split-!les’ option. For ATAC-seq data, the
subsequent alignment (with Bowtie2 [ver. 2.2.2] (11))
and peak call (with MACS2 [ver. 2.1.1; macs2 callpeak]
(12)) process was the same as that for ChIP-seq and
DNase-seq data, which was previously described in the
!rst ChIP-Atlas paper. As for WGBS data, BMap (ver.
1.0; https://github.com/FumihitoMiura/Project-2/blob/
master/Project-2.tar.gz) (13), a speedy aligner with small
temporary !le sizes, was used for alignment and MethPipe
(ver. 4.1.1; https://github.com/smithlabcode/methpipe/
releases/download/v4.1.1/methpipe-4.1.1.tar.gz) (14) was
subsequently used as a region-caller for identifying hyper-,
partially and hypo-methylated regions (MRs). After cre-
ation of the index !les for all genome assemblies, we aligned
the downloaded FASTQ !les against the reference genomes
with the ‘-fastq’ and ‘-pfastq’ options for single-end and
paired-end reads, respectively. The alignment data (in
bigWig format) containing methylation level and coverage
information were generated for each SRX. Methylation
level and coverage were then calculated for each CpG,
and these data were next streamed into MethPipe. The
‘hypermr,’ ‘pmd,’ and ‘hmr’ sub-commands of MethPipe
were used for identifying hyper-, partially, and hypo-MRs
(in bigBed format), respectively, for each SRX according
to the default mode.

Analysis of disease-associated SNPs

GWAS SNP data were downloaded from the website of
UCSC genome browser (https://hgdownload.soe.ucsc.edu/
goldenPath/hg19/database/gwasCatalog.txt.gz; on 21 De-
cember 2021) (15). A BED format !le was created by ex-
tending the genomic coordinates of all SNPs by 5 kb up-
and downstream. Genomic regions containing SNPs were
then categorized into ‘in"ammatory bowel disease (IBD)-
associated’ (n = 393) and ‘Others’ (n = 189 036) accord-
ing to the disease/phenotype names listed in the ‘trait’ col-
umn. The IBD-associated SNPs (in BED format) were di-
rectly used as ‘dataset A’ for the Enrichment Analysis tool
on the ChIP-Atlas web interface. Meanwhile, 3930 SNPs in
the ‘Others’ category, which is ten times the number of IBD-
associated SNPs, were randomly selected as the background
data for ‘dataset B’.
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RESULTS

Overview of the ChIP-Atlas update

In this update, the major expansion of the experiment types
results in signi!cant growth in the number of experiments
and the number of annotated functional genome regions
by including all ATAC-seq and WGBS datasets archived at
SRA (Figure 1A, Table 1). For uni!ed management of the
records, each experiment is assigned a unique ID (hereafter
referred to as ‘SRX’) in ChIP-Atlas, which is exactly the
same as the original SRA accession number. The number of
SRXs collected in ChIP-Atlas is over 300 000 for the six or-
ganisms, which corresponds to 84.3% of the total number of
ChIP-seq, ATAC-seq, DNase-seq and Bisul!te-seq SRXs in
SRA for all of these organisms (n = 362 121 as of Septem-
ber 2021; Table 1). In this update, we adopted the latest ver-
sion of genome assemblies in addition to previous ones (Ta-
ble 2). Since the public release of ChIP-Atlas, the data have
been updated monthly concurrent with the monthly update
of the NCBI SRA metadata dump (Figure 1B), by which
>100 000 ChIP-seq experimental datasets have been added
since 2018 (Table 1).

We manually curated and annotated the cell types
used in each experiment according to commonly or of-
!cially adopted nomenclature. The cell types were fur-
ther categorized into superordinate ‘cell type classes’ (Fig-
ure 1C). We adapted a uniformed data process pipeline
(Figure 1D; detailed in the Materials and Methods), in
which the ChIP-seq, ATAC-seq, and DNase-seq data are
aligned to corresponding reference genomes with Bowtie2
(11) and then subjected to peak calling with MACS2
(12); meanwhile, for WGBS data, we align the raw reads
against the reference genomes using BMap before apply-
ing MethPipe for statistically calling hyper-, partially, and
hypo-methylated regions (MRs). All alignment and peak-
call data are freely downloadable from http://dbarchive.
biosciencedbc.jp/kyushu-u/ (detailed on the documentation
page of ChIP-Atlas [https://github.com/inutano/chip-atlas/
wiki/#downloads doc]), and can be browsed by users in
the IGV genome browser (16) by entering the SRX ID or
a given keyword (or keywords) in the corresponding Data
Search page of ChIP-Atlas (Supplementary Figure S1 and
Supplementary Material S1).

Example of use

Peak browser. All peak-call data recorded in ChIP-Atlas
can be presented graphically with the Peak Browser tool.
One can therefore easily understand not only protein–
genome interactions (ChIP-seq), but also chromatin acces-
sibility (ATAC-seq) and DNA methylation levels (WGBS),
within any query genomic region of interest (ROI). To im-
plement this tool, we integrated a large amount of peak-call
data, indexed them for IGV, and constructed a web inter-
face that externally controls IGV preinstalled on the user’s
machine (tested on Mac, Windows and Linux platforms).
For instance, upon the speci!cation of ChIP-seq, ATAC-
seq or WGBS data of mouse spermatogonia on the web
page (Figure 2A), the corresponding results are automat-
ically streamed into IGV (Figure 2B). In this case, multiple
ATAC-seq and WGBS in spermatogonia data characterize

an accessible chromatin region and hypo-MR, respectively,
at the locus between the Tcf19 and Cchcr1 genes, where mul-
tiple factors such as Smarca4, Zbtb16, and Sall4 are colo-
calized, suggesting that the Tcf19–Cchcr1 locus is robustly
hypo-methylated and open to bind Sall4 and other TFs
in spermatogonia. Representative ChIP-seq (SRX1284250),
ATAC-seq (SRX5884282) and WGBS (SRX749893) align-
ment data are also exhibited in the top panel of Figure 2B.
The IGV sessions can be saved as XML !les at any mo-
ment, so that the results obtained by using the Peak Browser
tool can be easily and precisely shared among collaborators
(Supplementary Material S2). With the use of ChIP-Atlas,
users can not only check individual experimental data, but
also browse an integrative landscape of multiple epigenetic
pro!ling results, potentially providing useful insight into the
location of functional genomic regions (enhancers, promot-
ers and insulators) and the corresponding regulators.

Enrichment analysis. Enrichment Analysis is a tool that
allows a search for TFs, accessible chromatin regions, and
hypo- or hyper-MRs enriched at a batch of genomic ROIs
or gene loci. Upon the submission of two sets of genomic
regions (ROIs and background regions), all SRXs are eval-
uated to count the overlaps between the peaks and sub-
mitted regions and to perform Fisher’s exact test, before
returning the enrichment analysis results in HTML and
TSV formats. Although ChIP-Atlas can generate random
background regions for comparison to ROIs, the users are
strongly recommended to provide biologically appropriate
background genomic intervals because most randomly se-
lected regions are probabilistically devoid of any functional
genomic annotation. The results are assigned unique URLs,
which are permanently available to the public. As an ex-
ample of usage, we selected in"ammatory bowel disease
(IBD)-associated SNPs identi!ed by GWAS as the ROIs
(n = 393) and other SNPs as the background (n = 3930),
and we applied these selections to the Enrichment Anal-
ysis tool (Figure 2C; detailed in the Materials and Meth-
ods). The results in HTML format are shown in Figure
2D (upper), including SRX IDs (column 1), features (col-
umn 3), cell types (column 5), P-values (column 9) and
fold enrichments (column 11), where hypo-MRs of neu-
trophils are signi!cantly enriched (P = 1 × 10−17). To visu-
ally interpret the results, we downloaded the resultant TSV
!les (refer to Supplementary Table S1 for unique URLs
for each analysis) and generated volcano plots (Figure 2D
[bottom]; Supplementary Table S1). The IBD-associated
SNPs were shown to be enriched in hypo-MRs and acces-
sible chromatin regions of blood-related cells (red in Fig-
ure 2D), including the ATAC-seq peaks of macrophages
(P = 1 × 10−20) and Th17 cells (P = 1 × 10−17), both in-
volved in the in"ammation of IBD. Furthermore, the en-
richment analysis of TF ChIP-seq data revealed that the
IBD-associated SNPs were preferentially bound by STAT1
in monocytes (P = 1 × 10−22) and SPI1 in macrophages
(P = 1 × 10−21), essential factors for in"ammation and
macrophage differentiation, respectively, which is consis-
tent with the nature of IBD as an autoimmune disease (17).
All resultant URLs for generating Figure 2D are summa-
rized in Supplementary Table S2. API of the Enrichment
Analysis tool is also provided by ChIP-Atlas, the general
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Figure 1. Overview of the ChIP-Atlas data set and computational processing. (A) Numbers of ChIP-seq, DNase-seq, ATAC-seq and WGBS experiments
recorded in ChIP-Atlas (as of September 2021). Colors indicate different experiment types. Color legend is shown in the !gure. Hm, Homo sapiens; Mm,
Mus musculus; Rn, Rattus norvegicus; Dm, Drosophila melanogaster; Ce, Caenorhabditis elegans; Sc, Saccharomyces cerevisiae. (B) Cumulative number
of SRX-based experiments recorded in ChIP-Atlas. Colors of the dots indicate different experiment types. Color legend is the same as that in (A). The
gray, blue, and orange arrowheads indicate the timing of the release of ChIP-Atlas in 2015, the publication of the !rst ChIP-Atlas paper in 2018, and the
inclusion of ATAC-seq and WGBS in 2021, respectively. ChIP-seq and DNase-seq data published before 2015, and ATAC-seq or WGBS data published
before January 2021 are shown in gray. (C) Numbers of experiments according to cell type classes for human, mouse, and fruit "y data. PSC, pluripotent
stem cell; CDV, cardiovascular; DGT, digestive tract; EMF, embryonic !broblast. (D) Overview of data processing. Raw sequence data are downloaded
from NCBI SRA, aligned to a reference genome, and subjected to peak calling, all of which can be monitored with the IGV genome browser. MR,
methylated region.
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Table 1. Data statistics of ChIP-Atlas

Experiment type ChIP-seq ATAC-seq DNase-seq Bisul!te-seq All

Year 2021 2018 2021 2021 2021 2021
Number of experiments 182 891 74 076 66 104 5346 51 074 305 415
Number of ChIP
antigens

2 477 1 979 NA NA NA 2 477

Number of cell types 2 486 1 615 772 406 553 2 918
Number of peaks 1 329 049 688 717 206 934 362 032 813 128 597 931 3 798 954 139 5 618 634 571

Table 2. Comparison of ChIP-Atlas with other similar web services

ChIP-Atlas Cistrom DB ReMap GTRD MethBank

Data source NCBI SRA GEO, ENCODE,
and Roadmap
Epigenetics

GEO, ENCODE,
and ENA

GEO, SRA,
ENCODE, and
modENCODE

NCBI SRA and
Genome Sequence
Archive

Experiments ChIP-seq, ATAC-seq,
DNase-seq, and
Bisul!te-seq

ChIP-seq,
ATAC-seq, and
DNase-seq

ChIP-seq, ChIP-exo,
and DAP-seq

ChIP-seq, ChIP-exo,
ChIP-nexus,
MNase-seq,
DNase-seq,
FAIRE-seq,
ATAC-seq, and
RNA-seq

Bisul!te-seq

Filtering of data
for quality
control

No Yes Yes No Yes

Number of
experiments

76 217 → 305 415 56 442 19 983 36 540 673

Organism Hs, Mm, Rn, Dm, Ce,
and Sc

Hs and Mm Hs, Mm, Dm and At Hs, Mm, At, Ce, Dr,
Dm, Rn, Sc and Sp

Hs, Dr, Mm, Os, Gm,
Me, Pv and Sl

Genome
assembly

hg19, hg38, mm9,
mm10, rn6, dm3,
dm6, ce10, ce11 and
sacCer3

hg38 and mm10 hg38, mm10, dm6,
and tair10 (can be
lifted to hg19/mm9
with liftover)

hg38, mm10, tair10,
ce11, danRer11,
dm6, rn6,
sacCer3 and spo2

hg38, danRer7, mm10,
IRGSP-1.0,
Gmax 275 v2.0,
Mesculenta 305 v6,
Pvulgaris 218 v1 and
GCF 000188115.3 SL2.53

Alignment tool Bowtie2/BMap BWA Bowtie2 Bowtie2 WSBA
Peak caller MACS2/MethPipe MACS2 MACS2 MACS2, MACS,

GEM, PICS,
SISSRs

NA

Display format
for each
experiment

Alignment and peaks Alignment and
peaks

Peaks Peaks Alignment

Browsing
assembled peaks

Possible None Possible Possible NA

Genome browser IGV and UCSC WashU and UCSC UCSC, ENSEMBL
and IGV

Self-developed,
UCSC and
ENSEMBL

JBrowse

Integrative
analysis tools

Search tool for target
genes and
colocalizing factors of
given TF, and
enrichment analysis
tool for given genes
and genomic
coordinates

Search tool for
target genes of
single experiment,
TFs binding to
single given genomic
locus or query gene

Enrichment analysis
tool for given
genomic coordinates
relative to random
background

Search tool for
target genes of given
TF

Predictor of DNA
methylation, age of
human blood and
enrichment analysis
tool for identi!cation
of differentially
methylated promoters

Hm, Homo sapiens; Mm, Mus musculus; Rn, Rattus norvegicus; Dm, Drosophila melanogaster; Ce, Caenorhabditis elegans; Sc, Saccharomyces cerevisiae; At,
Arabidopsis thaliana; Dr, Danio rerio; Sp, Schizosaccharomyces pombe; Os, Oryza sativa; Gm, Glycine max; Me, Manihot esculenta; Pv, Phaseolus vulgaris;
Sl, Solanum lycopersicum.

instructions for which can be found on the documentation
page (https://github.com/inutano/chip-atlas/wiki/Perform-
Enrichment-Analysis-programmatically).

DISCUSSION

In this paper, we present a major update of ChIP-Atlas in-
volving signi!cant expansion in the number of experiments

by including all public ATAC-seq and WGBS data. The up-
dated web service enables users to explore not only protein
binding, but also chromatin accessibility and DNA methy-
lation levels within single (Peak Browser tool) or multi-
ple (Enrichment Analysis tool) queries of genomic ROIs or
gene loci. As an example of use, we performed enrichment
analysis to reveal that IBD-associated SNPs are the most
signi!cantly hypo-methylated in the neutrophils, a granu-
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DC

BA

Figure 2. Examples of use of the integrative analysis tools in ChIP-Atlas. (A) Parameters when users perform a query to show chromatin accessibility,
methylation status, and TF binding around mouse Tcf19–Cchcr1 locus in spermatogonia using the Peak Browser tool. (B) Peak-call data for TF ChIP-seq,
ATAC-seq and WGBS SRXs around the mouse Tcf19–Cchcr1 locus are shown in the IGV genome browser. The highlighted region indicates an accessible
chromatin and hypo-methylated region. Bars represent the peak regions, with the curated names of the ChIP antigens (only for ChIP-seq peaks) and cell
types being shown below the bars. The color of the bars in the ‘ChIP (TFs)’ and ‘ATAC’ panel indicates the score calculated with the peak-caller MACS2
(−log10[Q-value]). Black, pink, and beige bars in the ‘WGBS’ panel indicate hyper-, hypo- and partially methylated regions, respectively. (C) Parameters
when users perform a query to evaluate TF binding, chromatin accessibility, and methylation levels of multiple IBD-associated SNPs in all cell types. (D)
The resultant HTML of enrichment analysis using WGBS data (upper). Volcano plots for visualizing the results (bottom). X-axis, log2[fold enrichment];
Y-axis, –log10[P-value]. Each dot represents an individual SRX. SRXs are categorized by cell type classes and indicated by different colors. Red, ‘Blood’
class. The whole color legend is summarized in Supplementary Table S2.

locyte subtype known to be involved in autoin"ammatory
IBD (17).

Before and after the public release of ChIP-Atlas, several
similar web services have been released (Table 2). For ChIP-
seq, ATAC-seq and DNase-seq data, Cistrome DB (http:
//cistrome.org/db/), ReMap (https://remap2022.univ-amu.
fr/), and GTRD (https://gtrd.biouml.org/) are representa-
tives providing thousands of preprocessed datasets (18–20).
As for Bisul!te-seq data, MethBank (http://bigd.big.ac.cn/
methbank) is widely used (21). ChIP-Atlas covers much
more experimental data than all of these other services.
ChIP-Atlas does not cover ChIP-exo (22) and MNase-seq
(23) data, in contrast to ReMap and GTRD, and there are
fewer available organisms than in GTRD and MethBank.
Alignment data (in bigWig format) are available from ChIP-
Atlas, Cistrome DB and MethBank. Integrative analysis

tools are provided in all services. Enrichment analysis is pos-
sible with ChIP-Atlas in both a GUI and an API, while
ReMap provides such a tool in a CLI (R package named
‘ReMapEnrich’). Since the publication of the !rst ChIP-
Atlas paper, we have improved the service to make it com-
patible with the latest versions of reference genomes such
as hg38 for human and mm10 for mouse, as is the case for
other services. Meanwhile, alignment of raw reads against
old references is still performed during the monthly update
of ChIP-Atlas, and alignment and peak-call data in old ver-
sions are still provided for analyzing the data of users ob-
tained years ago.

In addition to the examples of use mentioned in the RE-
SULTS section, ChIP-Atlas has been cited by hundreds of
peer-reviewed articles since its !rst release in 2015, includ-
ing research for analyzing cis-regulatory elements of cer-
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tain genes (24,25), and TF enrichment at genomic ROIs and
query genes (26–30) (see http://chip-atlas.org/publications
for the full list of publications citing ChIP-Atlas). Fur-
thermore, because all alignment (bigWig) and peak-call
(bigBed) data can be freely downloaded, ChIP-Atlas is now
interconnecting with many other databases or web services
such as UCSC Browser, DeepBlue (an epigenomic data
server providing a central data access hub for large col-
lections of epigenomic data), RegulatorTrail (a web service
predicting target genes of TFs), jPOSTrepo (a data repos-
itory of sharing raw/processed mass spectrometry data),
and the Signaling Pathways Project (a multi-omics knowl-
edgemine based upon public transcriptomic and cistro-
mic datasets) (31–35). Along with the inclusion of ATAC-
seq and WGBS data, and the ongoing monthly updates
with semiautomatic pipelines and systematic curation, the
source data in ChIP-Atlas are continuously expanding. We
are planning to include more experiment types such as
CUT&Tag (36) and ChIL-seq (37) and more organisms in-
cluding plants such as Arabidopsis thaliana. Integration of
preprocessed 3D genome conformation data such as Hi-C
datasets (38) into the Peak Browser and Enrichment Anal-
ysis tool is also on the agenda.

DATA AVAILABILITY

ChIP-Atlas (https://chip-atlas.org) is a publicly available
web server with no sign up required. Documentation for
data processing and downloadable data are available in the
‘Documentation’ section (https://github.com/inutano/chip-
atlas/wiki).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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