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Clinical decision-making regarding treatments based on personal characteristics leads to

effective health improvements. Machine learning (ML) has been the primary concern of

diagnosis support according to comprehensive patient information. A prominent issue is the

development of objective treatment processes in clinical situations. This study proposes a

framework to plan treatment processes in a data-driven manner. A key point of the frame-

work is the evaluation of the actionability for personal health improvements by using a

surrogate Bayesian model in addition to a high-performance nonlinear ML model. We first

evaluate the framework from the viewpoint of its methodology using a synthetic dataset.

Subsequently, the framework is applied to an actual health checkup dataset comprising data

from 3132 participants, to lower systolic blood pressure and risk of chronic kidney disease at

the individual level. We confirm that the computed treatment processes are actionable and

consistent with clinical knowledge for improving these values. We also show that the

improvement processes presented by the framework can be clinically informative. These

results demonstrate that our framework can contribute toward decision-making in the

medical field, providing clinicians with deeper insights.
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Medically appropriate and patient-acceptable decision
making is beneficial in enhancing the quality of care1–3.
Considerable evidence has been accumulated from

many studies on the assessment of health statuses and risk pro-
files. Accordingly, standardized care has been provided in the
form of guidelines. Conversely, the uniform application of stan-
dardized care is undesirable in real clinical situations whereby
diversity exists in relation to individual preferences, feasibility,
and acceptability4. Personalized medicine, also known as preci-
sion medicine, has become popular and presents new opportu-
nities in clinical situations in recent years5–7. In addition to the
understanding of individual, unique health-related factors, their
consideration has been essential for shared decision making
between patients and clinicians. Realistic and appropriate health
improvement plans for the patient’s health conditions have been
regarded as a crucial component of shared decision making8,9.
However, feasible planning largely depends on the empirical
judgment of the clinicians in clinical situations, and decision
making based on objective health improvement plans for both
patients and clinicians is difficult. Major challenges remain in
providing clinicians with tools to support clinical decision making
in a data-driven manner10,11.

Machine learning (ML) technology has been extensively used
in the medical field, especially for diagnosis support and disease
prediction based on comprehensive patient information12–15.
Unlike interpretable techniques, such as classical statistical ana-
lysis and linear models, the black-box nature of highly predictive
ML models, including ensemble learning and deep learning, is
often a barrier to clinical decision-making applications16.
Explainable artificial intelligence (XAI) has been receiving
increasing attention recently in the field of ML17. XAI is a
research field on techniques that explain black-box ML predic-
tions, and it has been applied to medical ML models where
interpretability is often required18,19. A successful application of
XAI in the medical field is the identification of individual health-
related factors that contribute to disease prediction using local
interpretable model-agnostic explanations (LIME) and Shapley
additive explanations (SHAP)20–25. These methods achieve both
predictive performance and individual interpretation by using an
additional individual model referred to as the surrogate model.
The remaining important issue in clinical decision making is the
development of personalized treatment plans for rational
treatment26. However, these conventional methods merely
explain the prediction reasons but cannot provide effective
treatment processes. For example, for the prediction of hyper-
tension, it is unclear what type of actions will improve effectively
the individual blood pressure in a set of candidate actions related
to blood test data and body composition despite the fact that we
can understand important features in the prediction.

This study proposes a framework for planning an actionable
path for personalized treatment based on the predictions of an
ML model. A key idea of our framework is to use a hierarchical
Bayesian model as a surrogate model of a specified ML model.
We refer to this surrogate model as the stochastic surrogate
model. Unlike the conventional surrogate model, the stochastic
surrogate model based on the hierarchical Bayesian model
enables the calculation of the probability of being the state of a
given variable set. Our framework can evaluate the actionability
of the treatment processes that was not considered by conven-
tional methods20,21, by computing a path probability with the use
of the stochastic surrogate model. The combined use of the ML
model and the stochastic surrogate model achieves both a high-
prediction performance and actionability evaluation. The simul-
taneous computation of ML model prediction and actionability
evaluation yields an actionable treatment process that leads to
clinical applications to improve personal health.

This study also presents experiments conducted to address two
different aspects. First, we evaluated our proposed framework
from the viewpoint of the proposed methodology using a syn-
thetic dataset. Subsequently, we assessed our framework on a
clinical application using an actual health checkup dataset. In this
experiment, we calculated personal health improvement paths
and confirmed the consistency with clinical knowledge based on
the assumption of two kinds of scenarios, wherein we aimed to
lower blood pressure in individuals with systolic blood pressure
(SBP) ≥ 140 mmHg and intervene individuals with a risk of
chronic kidney disease (CKD), as examples for regression and
classification problems, respectively. Also, we performed clinician
assessments of the improvement process presented by the fra-
mework. To the best of our knowledge, this is the first study that
made it possible to present effective improvement paths based on
the ML model using an actual health checkup dataset.

Results
Path planning framework using surrogate Bayesian model.
This section describes the proposed framework (Fig. 1, Supple-
mentary Fig. 1). Our framework consisted of three steps. Step 1:
we built a prediction model using ML methods. Step 2: the sur-
rogate model of the prediction model was constructed using
hierarchical Bayesian modeling. Step 3: path planning was con-
ducted to identify an actionable path for the treatment performed
using the surrogate model. The actionability of the path was
defined as the product of probabilities of taking a series of vari-
able states on a specified path (detailed in “Methods”). Thus, the
combined framework of the prediction model and the stochastic
surrogate model achieves both high prediction performance and
actionability evaluation, which leads to an actionable treatment
process for personal health improvement.

In Step 1, a prediction model was built from a dataset
expressed in the form of a table format, wherein columns consist
of multiple explanatory variables and a response variable, and
rows represent instances (Fig. 1a). The output of the constructed
model would correspond to a clinician’s assessment of individual
health status or future predictions. For example, a regression
model for blood pressure could be used to estimate the value of
the response variable, i.e., blood pressure, from the value of
explanatory variables, such as the body composition and blood
test data. In our framework, we can use arbitrary ML algorithms,
such as high-performance nonlinear algorithms, to construct the
prediction model.

Based on the original explanatory variable values and the
predicted values of the prediction model in Step 1, a stochastic
surrogate model was constructed in Step 2 using hierarchical
Bayesian modeling (Figs. 1b and 2). Items that cannot be easily
measured in clinical situations, or future values, are available as
the response variables given that the predicted values of the
prediction model were applied in our framework. Clinically, this
stochastic surrogate model represents a set of realistic health
conditions for patients. The model was used to compute the
probability of given values of explanatory and response variables
to evaluate actionability in the next step. Note that this stochastic
surrogate model represents the probability density for all possible
states of variables.

In Step 3, a health-improvement treatment path was calculated
for each instance using the stochastic surrogate model (Figs. 1c, d,
and 3, as detailed in “Methods”), and would be equivalent to the
consideration of an appropriate health improvement plan for
individual patients in clinical situations. The explanatory
variables of an instance, such as body composition and blood
test data, were hypothetically changed to improve the response
variable predicted using the prediction model. By using the
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stochastic surrogate model constructed in Step 2, we could
calculate how easy it was to take the state of the combination of
variables. The framework output the most actionable (optimal)
path for a state that improved the prediction value, which was a
sequence of the changed values with high probability in the
surrogate model for the given ML model (detailed in “Methods”).
Therefore, this model can avoid the nonoptimal health-improving
paths (shown by the red line in Fig. 1c) where intermediate
situations could be unrealistic.

Considering real applications, explanatory variables contain
variables that cannot be changed by interventions such as age.
The appropriate subset of variables for the application should be
determined. The explanatory variables for setting the virtually
changed values were called intervention variables in this study. In
our path planning setting, the intervention variables were
regarded as a grid graph, and a path was defined by connecting
the grid points (nodes). We defined a probability of the node as
the probability of taking the node calculated using the surrogate
model. Based on a breadth-first search27, we obtained the optimal

path to the destination node that achieves the most improved
predictive value within the search iteration count L (detailed in
“Methods”).

Validation of framework on synthetic dataset. We evaluated our
framework with a synthetic dataset to confirm that improvement
paths with high actionability could be planned. This synthetic
dataset was generated from three, three-dimensional (3D) normal
distributions (Supplementary Fig. 2). We built a regression model
and subsequently constructed a stochastic surrogate model using
hierarchical Bayesian modeling (Supplementary Fig. 3a, b). The
lowest widely applicable Bayesian information criterion (WBIC)
value28 was obtained when the number of mixture components in
the hierarchical Bayesian model was equal to two. Details of the
setting related to this model are given in “Methods”. Subse-
quently, we planned paths to decrease the value of the response
variable using this stochastic surrogate model. All explanatory
variables were selected for intervention variables, and planned
paths were more actionable than the baseline path
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Fig. 1 Schematic representation of the framework for planning actionable paths for treatment using hierarchical Bayesian modeling. The framework
consists of three steps. A schematic is given as an example in which a path is planned to improve the systolic blood pressure (SBP) owing to changes in
blood data and body composition data. a Construction of a prediction model from the dataset. A variable SBP is set as the response variable in this case.
b Construction of a stochastic surrogate model based on the original dataset and the predicted values of the prediction model. This figure shows a
schematic representation of a two-variable space regarding blood glucose and body mass index (BMI). The heatmap and vertical axis represent the
existence probability of data in the variable space, which is expressed by the stochastic surrogate model. c, d Actionable path planning is applied to
improve the response variable. The path is represented as a set of multistep transitions on explanatory variables. In our framework, the optimal path (green
line in (c)) is planned on the grid graph with high probabilities in the variable space based on the stochastic surrogate model. Conversely, the nonoptimal
path (red line in (c)) could pass through nodes with low probability. γ-GTP gamma glutamyl transferase, IgM immunoglobulin M, AST_GOT aspartate
transaminase.
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(Supplementary Fig. 3c). This baseline method for the baseline
path is defined in “Methods”. The planned paths of two randomly
selected instances are shown in Fig. 4. We successfully demon-
strated that our framework could plan paths to improve response
variable values with high probabilities in our framework. Another

experiment on a more complicated five-dimensional dataset also
demonstrated successful path planning (Supplementary Notes).
These results showed that the planned paths with high prob-
abilities were discovered rather than the naïve straight path that
connected the initial node to the destination node.

Regression

Classification

Fig. 2 Graphical model representation of stochastic surrogate model. Nodes in the graphical model are represented as follows: xcont, continuous
explanatory variables; xdisc, discrete explanatory variables; y, response variable predicted by the ML model; z, the parameter of the mixture components;
and all the others, prior distributions. The formulation for y differs between regression and classification tasks. k represents each mixture component, and
Σk is a diagonal matrix with elements according to the Cauchy distribution. The symbol RMSEtest in the equation represents a root-mean-squared error of
the regression model, and ymean and ystd represent the mean and standard deviation values of the predicted response variable, respectively.

Fig. 3 The intervention variable space was regarded as a grid graph, and the grid points (nodes) were connected to plan a path. The nodal probability was
calculated using the surrogate model. The actionability was defined as the product of nodal probabilities on a specified path. The most actionable (optimal)
path for each node was calculated, and the output path was the optimal path to the node with the most improved predictive value within the search
iteration count, L. Pseudocode of path search algorithm.
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Application on actual health checkup dataset. We used the
Iwaki health promotion project (IHPP) dataset, an actual health
checkup dataset, to demonstrate that the proposed framework
can plan actionable paths for treatment. The IHPP has acquired
(on an annual basis) a wide range of health checkup data that
describe the molecular biology, physiology, biochemistry, lifestyle,

and socio-environment of participants. We considered two kinds
of scenarios to lower SBP and risks for CKD, whereby planned
paths could be interpreted from a clinical perspective. CKD risk
was defined as estimated glomerular filtration rate (eGFR)
<60mL/min/1.73m2. Table 1 shows an overview of the IHPP
dataset. Because the dataset comprised more than 2000 mea-
surement items, we reduced the explanatory variables before we
built prediction models in our framework. We excluded diastolic
blood pressure (DBP) and limb blood pressures from the expla-
natory variables for SBP prediction and creatinine for CKD risk
prediction. Our framework assumes the intervention in explana-
tory variables to improve response variables. Hence, actions such
as intervening in blood pressure (such as DBP) to lower SBP are
not reasonable. Furthermore, ambiguous items, such as answers to
questionnaires and items with ≥25% missing values, were exclu-
ded. Subsequently, XGBoost-based29 recursive feature elimination
(RFE)30 was performed to reduce the explanatory variables with
the training data (Supplementary Data 1 and Supplementary
Table 1). We applied one-hot encoding for categorical variables
and replaced the missing values with the median of the training
data for simplicity. RFE was performed with five-fold cross-vali-
dation split by participants, and the explanatory variables were
reduced to 25, which had little impact on predictive scores on
validation data (Supplementary Fig. 4). In the following sections,
applications of our framework on the regression task for SBP and
classification task for CKD risk are described.
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Fig. 4 Examples of actionable paths planned on synthetic dataset. The optimal paths for improving the response variable predicted by the ML model are
represented for randomly selected two examples: instance A (a–c) and instance B (d–f). a, d The orders of changes in the explanatory variables in the
optimal path and the accompanying changes in the predicted values. In the transition steps, the upward or downward arrow represents a unit increase or
decrease in the explanatory variable, respectively. b, e Two-dimensional (2D) plots of the path. The 2D plots are shown regarding the selected two
variables: X1 and X2 (b), and X2 and X3 (e). In the heatmaps, the probability density of the actual data, normalized by the panel with the maximum number
of data, is expressed. c, f Three-dimensional (3D) plots of the path.

Table 1 Subject characteristics during first-time
participation.

Participant characteristics (n= 3132)

Age (years) 51.3 ± 16.0
BMI (kg/m2) 23.0 ± 3.5
SBP (mmHg) 125.9 ± 19.1
DBP (mmHg) 74.8 ± 11.9
eGFR (mL/min/1.73 m2) 82.1 ± 16.5
Sex
Male 1234 (39.4%)
Female 1898 (60.6%)

History of hypertension
No history 2446 (78.1%)
Undertreatment 650 (20.8%)
Past history 36 (1.1%)

BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, eGFR estimated
glomerular filtration rate.
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Application of framework on SBP regression task. We applied
our framework to the SBP regression task. Important features
selected by RFE comprised items related to hypertension, such as
age, body composition (leg score, body mass index [BMI], and
waist), blood glucose, gamma glutamyl transferase (γ-GTP), and
serum sodium31–40 (Fig. 5a, the details of the variables are
described in Supplementary Data 1). Therefore, the selected
explanatory variables were considered to be reasonable for SBP
predictive models from the clinical perspective.

Following our framework, a regression model was built after
the replacement of missing values with the use of multiple
imputations. This is a more precise imputation method for
missing values. To estimate multiple imputations, Bayesian ridge
and random forest41 were used for continuous and discrete
variables, respectively. Consequently, the regression model
yielded a root-mean-squared error (RMSE) equal to 15.42 and
an R-squared value equal to 0.330 (Fig. 5b). Subsequently,
hierarchical Bayesian modeling was performed to construct the
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Fig. 5 Application of proposed framework on systolic blood pressure (SBP) regression task using the Iwaki health promotion project (IHPP) dataset.
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Histogram of actionability scores with intervention variables based on data-driven selection (d) or hypothesis-driven selection (e) at different instances. An
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stochastic surrogate model based on multiple imputed RFE-
selected features and predicted SBP. The lowest WBIC value was
obtained when the number of mixture components was five
(Fig. 5c). Path planning was performed with this stochastic
surrogate model. Regarding the intervention variables in path
planning, we examined two patterns for selection methods: data-
driven selection and hypothesis-driven selection.

First, the top-five variables that could be intervened were
selected based on feature importance in a data-driven selection
case: leg score, blood glucose, BMI, waist, and γ-GTP (Fig. 5a).
Variables that could be changed by direct or indirect means,
unlike such as body height and medical history, were handled as
intervenable. The unit cell size of the grid was set to 0.2 σ for each
explanatory variable, where σ represents the standard deviation of
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the training data. Assuming a scenario wherein the task is to
lower the SBP in participants with higher values, relevant
instances were selected according to the following criteria:
predictive SBP ≥ 140mmHg42 and no missing values in the
intervention variables. The number of applicable instances was
259. We executed the path-search algorithm with L= 20,000 for
each instance and acquired a path to the node with the lowest
predictive SBP value in count L. For quantitative evaluations, we
introduce the actionability score for each instance that indicates
how actionable the planned path was compared with the baseline
path (detailed in “Methods”). The histogram of the actionability
score is shown in Fig. 5d. The actionability scores were greater
than zero, that is, planned paths were more actionable than
baseline paths in 227/259 instances, and the median was 0.76.
This result suggested that even if the response variable value after
improvement was the same, the path planned by our framework
had a higher actionability than the baseline path in most cases.
The paths of the three randomly selected instances are shown in
Fig. 6 and Supplementary Fig. 5. The actual data scatters also
support the fact that the path was planned to pass through areas
with high-nodal probabilities. In instance 1, it was shown that the
path that improved the values of the variables in the following
order was more effective: blood glucose, leg score, and γ-GTP
(Fig. 6a, b). These variables are related to each other, and the path
in which multiple variables fluctuated to improve the blood
pressure was reasonable43–45. In instance 2, the path that
improved the values in the following order was more valid: γ-
GTP, leg score, and again γ-GTP (Fig. 6c, d). The SBP values
predicted by the regression model increased temporarily
compared with the original SBP value. In instance 3, the optimal
path was planned only based on the improvement of one
explanatory variable, namely, the blood glucose (Fig. 6e, f). The
actionability score yielded a value of zero because the optimal
path was identical to the baseline path in such cases.

Second, we also planned paths with another intervention
variables set considering a more realistic hypothesis-driven
selection. Assuming actual instruction, the following four variables
that would fluctuate with the clinical guideline–recommended
treatments42 were selected by cardiologists as intervention
variables: blood glucose, BMI, γ-GTP, and serum sodium
(Supplementary Table 2). Instance selection method and other
settings in path planning were the same as in the case of data-
driven selection. The number of applicable instances was 284.
Actionability scores were greater than zero in 265/284 instances,
and the median was 1.54 (Fig. 5e). Furthermore, we performed
two steps of cardiologist assessments of the improvement paths
proposed by the framework. First, we compared the reduction in
the predictive SBP of the framework-proposed improvement paths
with the cardiologist interventions. As an alternative expression
for the cardiologist’s intervention, the most suitable path was
selected from ten improvement paths, which included a
framework-proposed path and nine randomly intervened paths
(Supplementary Fig. 6, detailed in “Methods”). According to the
guideline42, the direction of improvement was set to decrease for
all intervention variables when generating random paths.

Intervention-induced changes in predictive SBP were not
displayed to the cardiologists at the time of selection. The
framework-proposed paths exhibited a significant decrease in
predictive SBP compared to the paths selected by the cardiologists
(Fig. 5f). Subsequently, the utility of the planned paths was
evaluated. The cardiologists assessed the practicality and informa-
tiveness of a framework-proposed path and random path,
respectively (Supplementary Fig. 7). The ratio of the paths that
the cardiologists evaluated as informative in the framework-
proposed paths was 0.42 ± 0.30 (mean ± standard deviation)
(Supplementary Table 3). Details of the cardiologists’ assessment
of suggestive individual instances are provided in the Supplemen-
tary Notes.

Application of framework on CKD risk classification task. We
also applied our framework to the CKD risk classification task.
Instead of improving the predicted value in the regression task,
we aimed to reduce the predicted probability of the prediction
model in the classification task using our framework. According
to the guideline for CKD, the eGFR cutoff value for the classifi-
cation task was set to 60 mL/min/1.73 m246. RFE-selected features
comprised items related to renal function, such as age, uric acid,
blood urea nitrogen (BUN), triglyceride, anemia-related factors
(hemoglobin [Hb], hematocrit [Ht], and erythrocyte count), and
blood pressure–related factor (right ankle DBP [RADIA])47–52
(Fig. 7a). Hence, the selected explanatory variables were con-
sidered to be reasonable for CKD risk prediction.

Following our framework, a classification model and stochastic
surrogate model were constructed after the replacement of
missing values with the use of the precise imputation method,
the multiple imputation method. The classification model yielded
an area under the curve (AUC) equal to 0.844 (Fig. 7b).
Subsequently, we constructed a stochastic surrogate model based
on hierarchical Bayesian modeling. The lowest WBIC was
obtained when the number of mixture components was five
(Fig. 7c). Using this stochastic surrogate model, we performed
path planning in two sets of intervention variables: data-driven
selection and hypothesis-driven selection. Assuming a scenario
wherein the task is to intervene the participants with decreased
renal functions, relevant instances were selected according to the
following criteria: predictive class of eGFR <60 and no missing
values in the intervention variables. We executed the path-search
algorithm with L= 20,000 for each instance and acquired a path
to the node with the lowest predicted probabilities of eGFR <60 in
count L. Other settings in path planning were the same as in the
case of SBP.

First, the top-five variables that could be intervened were
selected based on feature importance in a data-driven selection
case: uric acid, BUN, Hb, immunoglobulin A (IgA), and
triglyceride (Fig. 7a). The number of applicable instances was
33. Actionability scores were greater than zero in 29/33 instances,
and the median was 3.51 (Fig. 7d). The paths of the three
randomly selected instances are shown in Fig. 8 and Supplemen-
tary Fig. 8. In instance 4, it is shown that the path of improvement
in the order of BUN and Hb is effective and succeeds in reducing

Fig. 6 Examples of personal actionable paths for treatment with intervention variables based on data-driven selection in systolic blood pressure (SBP)
regression task. The optimal paths for improving the response variable predicted by the ML model are represented for randomly selected three examples:
instance 1 (a) and (b), instance 2 (c) and (d), and instance 3 (e) and (f). a, c, e The orders of changes in the explanatory variables in the optimal path and
the accompanying changes in the predicted values. In the transition steps, the upward or downward arrow represents a unit increase or decrease in the
explanatory variable, respectively. b, d, f 2D plots of the path. The 2D plots are shown regarding the two influential variables in the optimal path: blood
glucose and leg score (b), leg score and gamma glutamyl transferase (γ-GTP) (d), and blood glucose and leg score (f). In the heatmaps, the probability
density of the actual data, normalized by the panel with the maximum number of data, is expressed. 3D plots of the path are shown in Supplementary
Fig. 5. BMI body mass index.
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the prediction probability of eGFR <60. In both instances 5 and 6,
though the optimal path mainly consisted of improvements in the
order of uric acid and BUN, the amount of the total change in
each variable was different.

Second, we also planned paths with another intervention
variables set based on hypothesis-driven selection. Four variables
that would fluctuate with the clinical guideline–recommended
treatments46 were selected by nephrologists: triglyceride, RADIA,

weight and Hb (Supplementary Table 4). The number of
applicable instances was 33. Actionability scores were greater
than zero in 32/33 instances, and the median was 2.57 (Fig. 7e).
Furthermore, we performed nephrologist assessments of the
paths proposed by the framework. First, the reductions in CKD
risk, defined as the probability of eGFR <60 given by the
prediction model, were compared between framework-proposed
paths and nephrologist interventions. The most suitable path was
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selected from a framework-proposed path and nine random paths
by the nephrologists. Based on the guideline46, the direction of
improvement when generating random paths was set as follows:
increase for Hb and decrease for triglyceride, RADIA, and weight.
The framework-proposed paths exhibited a significant decrease in
predictive CKD risk compared to the paths selected by the

nephrologists (Fig. 7f). Subsequently, the utility of the planned
paths and random paths were evaluated by the nephrologists. The
ratio of paths that nephrologists evaluated as informative in
framework-proposed paths was 0.52 ± 0.26 (Supplementary
Table 3). Details of the nephrologists’ evaluation of suggestive
individual instances are provided in the Supplementary Notes.
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Discussion
In this study, we proposed a framework for planning paths to
improve the prediction values of ML models. We demonstrated
that the proposed framework could plan paths through nodes
with high probabilities using the synthetic datasets. Further-
more, our proposed framework was capable of planning
actionable paths to improve the predicted SBP and CKD risk
values in the actual health dataset. The results of applying our
framework for the eGFR regression task and the hypertension
risk classification task described in the Supplementary Notes
also show the successful path planning using our framework.
Though conventional surrogate models applied in XAI methods,
such as LIME and SHAP, are useful for identifying individual
factors that contribute to prediction, they cannot provide the
probability of taking variable states. In our framework, the
construction of a stochastic surrogate model based on hier-
archical Bayesian modeling enabled the estimation of joint
probability densities for virtually changed variables and
actionable path planning. Our framework suggests realistic
concrete treatment processes that are actionable on humans for
personal health improvement.

As shown in Figs. 6 and 8, our framework could visually
present concrete improvement paths at the individual level. The
direction of change in intervention variables was consistent with
conventional clinical knowledge for intervention in patients with
hypertension33–39,42 and CKD46,48,50. For example, high blood
glucose levels have been reported to be a risk factor of hyper-
tension, and reduction of triglyceride is an appropriate inter-
vention for patients with impaired renal function. Furthermore,
the planned paths consisted of a sequence of changes in inter-
vention variables and could be translated into actual clinical
treatments using correspondence tables between the variables and
clinical guideline–recommended treatments (Supplementary
Tables 2 and 4). In this way, our framework could plan health
improvement paths using the intervention variables that would
change as a result of clinicians’ guidance based on clinical
guidelines. Even if the guidelines to be referred to would be
changed depending on the geographical region and clinical
domain in practical use, the framework-proposed paths could be
associated with the clinicians’ guidance by using the appropriate
guidelines. As a result of clinicians’ assessment, the paths planned
using our framework exhibited significant improvement in pre-
dictive response variables compared to the paths selected by
clinicians (Figs. 5f and 7f). Also, the improvement paths pre-
sented by our framework were informative for clinicians to some
extent (Supplementary Table 3). However, the ratio of paths that
clinicians evaluated as practical was not high (Supplementary
Table 3). In this study, though we performed an objective path
planning without considering clinical constraints, practical
adjustments would be needed (detailed in the Supplementary
Notes). Tool-assisted goal-settings are expected to help time-
constrained clinicians and contribute to better health improve-
ment in patients53. Our framework can provide clinicians with
understandable and informative health improvement plans based
on patient health data and given intervention variables.

Accordingly, this can be suitable for patient–clinician collabora-
tive decision making on health interventions.

In the remaining part of this section, we provide methodolo-
gical considerations of the proposed framework. Although the
experiments were performed under specific settings, our frame-
work has generality in terms of its methodology owing to three
aspects. First, we used XGBoost29 to build the prediction models
to be explained in the main manuscript. Because our framework
operates in a model-agnostic manner, other high-performance
ML models can be used. The Supplementary Notes provide the
results of applying the framework to random forest and support
vector machine (Supplementary Figs. 9–29 and Supplementary
Tables 5–6). In the synthetic datasets, similar paths were planned
for the same instances regardless of applied ML algorithms (Fig. 4
and Supplementary Figs. 9–15). However, in the actual dataset,
the paths differed in the same instances depending on the ML
algorithms (Figs. 6, 8, and Supplementary Figs. 16–29). The actual
dataset was more complicated than the synthetic datasets, which
resulted in the construction of the prediction models with dif-
ferent properties. Our framework aimed to provide an optimal
path to the destination node that would improve the predictions
of the ML model. Therefore, the destination node itself was
changed when the properties of the ML model were different,
which resulted in large differences in the planned paths. Second,
although we assumed a mixture distribution of normal or cate-
gorical distributions for the explanatory variables in the hier-
archical Bayesian modeling (Fig. 2), distributions can be selected
according to the data. This is expected to be applied to some
extent to medical data, which is often accompanied by a sig-
nificant amount of noise and missing values. Finally, we selected
intervention variables based on the data-driven or hypothesis-
driven manner in the path planning with the health checkup data.
Also, the unit cell size in planning was set to 0.2 σ of the data
distribution. These selection methods and values can be flexibly
changed according to the application or the patient’s request and
environment.

Our objective in path planning was to obtain a path to the best-
predicted value with the set conditions of the number of iterations
L. In real situations, application-dependent or clinical constraints
would exist. A typical case is that the values of explanatory and/or
response variables should be less/more than the reference values
in all nodes along the path. For example, there were cases where
the predicted SBP values were temporarily increased from the
original value in our experiment (Fig. 6c). This would be better
avoided in clinical situations. By slightly changing the path search
condition to exclude undesirable nodes, our framework can be
applied to these cases. In addition, there would be use cases where
the target value of the response variable or intervention variable
should be determined by clinicians (Supplementary Notes). Our
framework can be applied by modifying the termination condi-
tions of the search to reach the target value.

From the perspective of expanding the proposed framework,
the high-computational cost when many intervention variables
exist or when calculating a long-term path for treatment needs to
be considered. Subject to our experimental conditions

Fig. 8 Examples of personal actionable paths for treatment with intervention variables based on data-driven selection in chronic kidney disease (CKD)
risk classification task. The optimal paths for improving the response variable predicted by the ML model are represented for randomly selected three
examples: instance 4 (a) and (b), instance 5 (c) and (d), and instance 6 (e) and (f). a, c, e The orders of changes in the explanatory variables in the optimal
path and the accompanying changes in the predicted values. In the transition steps, the upward or downward arrow represents a unit increase or decrease
in the explanatory variable, respectively. b, d, f 2D plots of the path. The 2D plots are shown regarding the two influential variables in the optimal path:
hemoglobin (Hb) and blood urea nitrogen (BUN) (b), and BUN and uric acid (d) and (f). In the heatmaps, the probability density of the actual data,
normalized by the panel with the maximum number of data, is expressed. 3D plots of the path are shown in Supplementary Fig. 8. eGFR estimated
glomerular filtration rate, IgA immunoglobulin A.
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(L= 20,000 and five intervention variables), ~10 min were
required for path planning per instance. Under the condition of
more intervention variables, the number of steps of the planned
paths decreased, and the calculation time became longer even in
the same iteration count, L (Supplementary Figs. 30,31). A more
practical path planning can be expected by combining our fra-
mework with techniques for finding intervention points, such as
counterfactual explanations54–58. Counterfactual explanations
usually present intervention goal values of the explanatory vari-
ables for changing the response variable without considering the
intervention process. Our framework can plan actionable paths to
the intervention goal values decided by counterfactual explana-
tions. For this case, a more efficient path planning algorithm,
such as the A* search algorithm59, can be applied in our fra-
mework. Similar to our actionable path planning approach, some
studies have been conducted in recent years to obtain interven-
tion points with minimum costs58. These approaches enable fast
searches by assuming linearity. Our framework is more suitable
for use with sophisticated nonlinear ML models, i.e., in cases
where linearity is difficult to assume, such as those pertaining to
medical checkup data.

Our study has some limitations. First, the health checkup
dataset used in this study was obtained from a single area and had
a small sample size. This could have contributed to the low-
prediction score of the SBP regression model (Fig. 5b). Although
the dataset problem does not impair the validity of the proposed
framework as a methodology, we performed supplementary
experiments that apply the framework on the public datasets to
support the framework’s validity (Supplementary Notes). Besides,
though we selected variables that could be directly or indirectly
modifiable as intervention variables because of the nature of
health checkup data, it is preferable to build a prediction model
with more variables that can be directly intervened. Also, because
of the limitation of the observational study data, the stochastic
surrogate model only calculated the joint probability density of a
set of variables and did not explicitly express the intervention
effect considering the causality60. By estimating the causal effect
of each intervention variable on the response variable through
more controlled studies related to individual applications, it may
be possible to construct a stochastic surrogate model considering
the causality and to present health-improvement paths that are
more consistent with the clinician’s consideration. Second, in
path planning, we set a commonly used and easy-to-interpret grid
graph, which resulted in the constraint of changing one variable
at a time. Because our framework intervened in explanatory
variables stepwise, the fluctuation on the correlated variables was
observed as a pattern in which multiple variables alternated. In
most cases, multiple variables fluctuated in the optimal paths
(Supplementary Fig. 32). In actual application, graphs other than
the grid can also be applied according to requirements. Finally,
we encountered a problem when we verified the clinical effec-
tiveness of the paths planned by using our framework. Planned
paths in the synthetic dataset indicated that our framework would
perform correctly. Also, we evaluated that the change directions
of intervention variables in some paths were consistent with
clinical knowledge in the clinical application. The clinician eva-
luation results suggested that while the framework would be
promising, there are points to be adjusted for its practical
application. It is necessary to verify the effectiveness of the paths
through a prospective cohort study to suit the real-world appli-
cations of our framework.

In conclusion, we proposed a framework to plan actionable
health improvement processes at the individual level. Using the
synthetic dataset, we proved that our framework could plan
actionable paths through the nodes with high probabilities. Fur-
thermore, we successfully demonstrated that health-improving

paths planned for lowering blood pressure and improving CKD
risk based on the application of our framework to the actual
health checkup dataset were actionable and consistent with
clinical knowledge. Our framework can present reasonable and
personalized health improvement plans based on ML model
predictions in a wide range of situations that is expected to
contribute to decision making in the medical field. Further studies
should focus on the prospective clinical validation of actionable
paths planned by using the framework proposed herein. Our
framework may provide clinicians with deeper insights by pro-
posing definite and actionable treatment paths through the use of
the ML model.

Methods
Synthetic 3D dataset. We generated a simple 3D dataset to verify whether our
framework can plan paths by transiting the nodes with high probabilities in the
variable space to improve the predicted response values of the prediction model.
The dataset was generated from three, 3D normal distributions to ensure that
straight paths were not always actionable (Supplementary Fig. 2). Each distribution
generated 200 data points that consisted of x1, x2, and x3. The response variables
were set to the sum of x1, x2, and x3 with Gaussian noise (σ= 2). The dataset
consisted of 600 data points and randomly split into training data (80%) and test
data (20%).

IHPP dataset. To evaluate our framework, we used the IHPP dataset. In this study,
we considered the use cases to plan actionable paths to improve the SBP for a
regression task and CKD risk for a classification task. CKD was defined by eGFR
value, which was calculated using the equation for Japanese population61.
According to the guideline risk classifications, the eGFR cutoff value to 60 mL/min/
1.73 m246. The IHPP has annually acquired a wide range of health checkup data
that comprise the molecular biology, physiology, biochemistry, lifestyle, and the
socio-environmental aspects of residents of the Iwaki district, Hirosaki City,
Aomori Prefecture, Japan. In this study, we targeted 12,803 health checkup
instances for 13 years (2005–2017). Given the existence of cases where the same
person participated in multiple years, the number of unique participants was 3132
(Table 1). The dataset was randomly split into training (80%) and test data (20%)
by participants (Supplementary Table 1). This study was approved by the Ethics
Committee of Hirosaki University School of Medicine (approval number: 2019-
009) and was conducted according to the recommendations of the Declaration of
Helsinki. All participants provided written informed consent.

Construction of prediction models. In the experiments, XGBoost29, which is
based on a gradient-boosting decision tree algorithm, was used to create the pre-
diction models. In general, XGBoost is a high-performance, nonlinear model. We
also examined prediction models based on other nonlinear ML algorithms in
supplementary experiments: random forest and support vector machine. The
hyperparameters of the model were determined by fivefold cross-validation of the
training data. For preprocessing, continuous explanatory variables were standar-
dized by the mean and standard deviation. In addition to this preprocessing,
techniques such as other data-dependent preprocessing were applied. These data-
dependent preprocessing is described in the results section.

Stochastic surrogate model with hierarchical Bayesian modeling. The graphical
model representation of the surrogate model constructed in this study is shown in
Fig. 2. In this case, xcont represents continuous explanatory variables, such as body
composition and blood test data, xdisc represents discrete explanatory variables,
such as sex, and y represents a response variable, such as the blood pressure value.
We denote the measured explanatory values as x and the predictions by the pre-
diction model as y. z is the parameter of the mixture components, and k represents
each mixture component. The data generative process on a regression task is
formulated as follows

k ! Categorical πð Þ ð1Þ

xcont ! N mk;Σk

! "
ð2Þ

xdisc ! Categorical ϕdisc;k
# $

ð3Þ

y ! N μk; σ
! "

ð4Þ

μk ¼ β1;k þ βT2;kxcont þ βT3;kxdisc ð5Þ

σ ¼
RMSEtest

2
ð6Þ

where RMSEtest is an RMSE of the regression model to adjust to the
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nonstandardized y scale. The priors for other hyperparameters in Eqs. (1)–(5) are
defined as follows

β1;k ! N ymean; 5ystd
! "

ð7Þ

β2;k ! DoubleExponential 0; 1ð Þ ð8Þ

β3;k ! DoubleExponential 0; 1ð Þ ð9Þ

π ! Dirichlet 1ð Þ ð10Þ

mk ! N 0; 5Ið Þ ð11Þ

Σk ! diag Cauchy 0; 2:5ð Þ
! "

ð12Þ

ϕdisc;k ! Dirichletð1Þ ð13Þ

where ymean and ystd represent the mean and standard deviation values of the
predicted response variable to adjust to the nonstandardized y scale, respectively.
Σk is a diagonal matrix with elements according to the Cauchy distribution. In a
classification task, y is a binary variable and Eqs. (4)–(7) are changed to the
following formula accordingly:

y ! Bernoulli θk
! "

ð14Þ

θk ¼
1

1þ e&μk
ð15Þ

μk ¼ β1;k þ βT2;kxcont þ βT3;kxdisc ð16Þ

β1;k ! Nð0; 5Þ ð17Þ
We used PyStan62 to estimate the parameters using the Markov chain Monte

Carlo algorithm (iteration= 1500, warm-up= 500). For model selection, the
WBIC was calculated for each model28. For a stable training, instances with values
outside the 3σ range calculated using the training data in the continuous
explanatory variables were excluded as outliers.

The priors were selected from noninformative prior distributions or weakly
informative prior distributions. The relationships between prior distribution
hyperparameters and WBIC are shown in Supplementary Figs. 33–36.
Furthermore, we set 1–8 as the range of mixture components from the viewpoint of
calculation costs and supplementary experimental results (Supplementary Figs. 37–
40). The supplemental results show that the planned paths almost unchanged
under a superabundant number of mixture components.

All analyses were carried out using custom software written in Python. Open-
source Python packages (pandas, numpy, scipy, xgboost29, scikit-learn, matplotlib,
and pystan62) were used in our framework.

Path planning using a stochastic surrogate model. We calculated a path for the
treatment for each instance based on a breadth-first search algorithm27. The
intervention variable space was regarded as a grid graph, and the grid points
(nodes) were connected to plan a path. We defined the probability of the node as
the probability of taking the node calculated using the surrogate model. Further-
more, the actionability was defined as the product of nodal probabilities on a
specified path. The purpose of this algorithm was used to obtain the most
actionable (optimal) path for each node. The output path was the optimal path to
the node with the most improved predictive value within the search iteration count,
L. From the computational perspective, we used the negative logarithm of
actionability as a path cost to minimize, which is mathematically synonymous with
maximizing actionability.

The pseudocode of this algorithm is shown in Fig. 3. In lines 2–5, the cost and
visited state (the optimal path was searched or not) of nodes were initialized. The
search started from the initial node in line 6. We obtained a list of nodes adjacent
to the currently selected node in the grid graph in line 8 of the pseudocode.
Subsequently, the costs for these nodes were updated in lines 10–12. The following
node was selected in line 16. After reaching the predetermined count L, the optimal
path to the node with the best ML model prediction value was selected as the
planned path in line 18. If multiple nodes with the same predictions existed, the
path with the minimum cost was selected.

Actionability score. To evaluate the actionability of the paths, we defined the
actionability score expressed by the following equation: log(optimal path action-
ability)—log(baseline path actionability), where the optimal path actionability is
the actionability of the path planned using our framework (Supplementary Fig. 41).
The baseline path actionability is the geometric mean of ten actionabilities of paths
that connect both ends of the optimal path by the shortest procedure in a random
manner. The actionability score indicates the log scale of the ratio of the action-
ability of the optimal path to the actionability of the baseline path. Hence, the
higher the actionability score, the better the optimal path is planned through nodes
with higher probabilities than the baseline path. When the actionability score is
zero, the optimal path has the same actionability as the baseline path.

Clinician assessment of health-improvement paths. We conducted two steps of
assessments. First, we compared the predicted value reductions between the
framework-proposed paths and clinicians’ interventions. We randomly selected
items from the intervention variables and generated random paths in which these
items were intervened in a random order on the grid graph in the appropriate
direction based on the treatment policy of clinical guidelines. The number of
interventions, that is, steps, in the random path was set to be the same as the path
planned using the framework in each instance. Nine patterns of random
improvement paths were created for each of ten randomly selected instances. For
each instance, clinicians selected an improvement path considered to be the closest
to their treatment policy among ten blinded improvement paths, which comprised
of a path planned by our framework and nine random paths (Supplementary
Fig. 6). When the clinicians made a selection, only the order of interventions and
the initial values of measurement items of the instance was presented, and the
transition of the predictive response variable was not displayed. Five board-certified
members of the Japanese Circulation Society assessed the paths in the SBP
regression task and five board-certified nephrologists of the Japanese Society of
Nephrology in the CKD risk classification task. Regarding the changes in the
predictive response variables of the paths proposed by the framework and the paths
selected by the clinicians, a two-tailed Welch’s t-test was used to determine a
significant difference between the two groups.

Second, we assessed the utility of the improvement paths presented by our
framework. The clinicians were provided with the initial values of measurement
items of the instance, as well as two blinded paths: the framework-proposed path
and the random path (Supplementary Fig. 7). The order of interventions along with
the accompanied transition of the predictive response variable and the path
projected onto 2D heatmaps, which exhibited the actual data distribution, for each
pair of intervention variables were presented. The clinicians assessed the
practicality and informativeness of paths respectively for ten instances.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The synthetic datasets can be generated from the code in the repository provided in the
Code availability section. The datasets used in the Supplementary Information are open
available on UCI machine learning repository63 and Trevor Hastie’s Software page at
https://web.stanford.edu/~hastie/Papers/LARS/. The health checkup data used in this
study were collected in the Iwaki Health Promotion Project (IHPP) and transferred to a
secure data center with restricted access controls in a de-identified format. The de-
identified data are available from Hirosaki University School of Medicine (contact via e-
mail: coi@hirosaki-u.ac.jp) for academic research purposes only and for researchers who
meet the criteria for access to the data. Researchers need to be approved by the research
ethics review committees of both the Hirosaki University School of Medicine and their
affiliation. Three months are to be expected for the access request to be approved. All
other data in this study are included in this article or are available from the
corresponding author upon reasonable request.

Code availability
We provide the custom scripts to perform our framework at (https://github.com/clinfo/
actionable_path_planning) with an assigned (https://doi.org/10.5281/zenodo.4706186).
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Supplementary Notes 
Four supplementary experiments are described below. First, we conducted a more extensive 

evaluation of our framework with a five-dimensional (5D) synthetic dataset considering the real-life 

applications than the three-dimensional (3D) synthetic dataset. Second, details of the clinicians' 

evaluations of the improvement paths planned using our framework are described. Third, applications 

on the hypertension risk classification task and estimated glomerular filtration rate (eGFR) regression 

task using Iwaki Health Promotion Project (IHPP) dataset are described. Fourth, we applied our 

framework on a non-health dataset and another simple health dataset because the prediction model 

based on the health dataset used in the main text had low-prediction scores. 

 

Validation of framework on 5D synthetic dataset 

We generated a 5D dataset to verify whether our framework can plan paths by transiting the 

nodes with high probabilities in the variable space. This synthetic dataset was generated from five, 5D 

normal distributions (Supplementary Fig. 42). Assuming the correlation between explanatory 

variables, covariance was randomly set. Each distribution generated 200 data points that consisted of 

!! (" ∈ {1, … , 5}). The response variables were set to the sum of !! with Gaussian noise (* = 2). The 

dataset consisted of 1,000 data points and randomly split into training data (80%) and test data (20%). 

We built regression models based on XGBoost, random forest (RF), and support vector machine 

(SVM) (Supplementary Fig. 12a–c). Subsequently, stochastic surrogate models using hierarchical 

Bayesian modeling were constructed (Supplementary Fig. 12d–f). Using the stochastic surrogate 

models with lowest widely applicable Bayesian information criterion (WBIC), we planned paths to 

decrease the value of the response variable. All explanatory variables were selected for intervention 

variables, and the unit cell size of the grid was set to 0.5 σ in the training data for each explanatory 

variable. The path search algorithm was executed with L = 20,000 for each instance, and an optimal 

path to the node with the lowest predictive value was acquired. Planned paths were more actionable 

than the baseline paths (Supplementary Fig. 12g–i). The planned paths of two randomly selected 

instances for each prediction model are shown in Supplementary Figs. 13–15. We demonstrated that 

our framework applied to the dataset with covariance and could be used to plan paths with five 

intervention variables. 
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Details of utility assessments of health improvement paths planned by framework 

The clinician assessments were performed on the utility of the framework related to the systolic 

blood pressure (SBP) regression task and chronic kidney disease (CKD) risk classification task as 

described in the main text. This section provides a discussion of suggestive instances in clinicians’ 

evaluation. 

Regarding instance 11 in the SBP regression task, the clinician evaluated that while lowering 

blood glucose might be reasonable in lowering blood pressure, the destination value of blood glucose 

was too low, which could pose other risks associated with hypoglycemia (Supplementary Fig. 43a–c). 

In this study, the search range, i.e., upper and lower limit, for the intervention variables were not 

defined to perform the objective path planning in the path search. While this can lead to more 

effective blood pressure-improving effects with interventions that clinicians do not usually take, it can 

also have side effects on the patient's health. Therefore, for example, regarding the blood glucose 

level, it would be better to avoid undesirable intervention by setting the lower limit based on the 

guideline or clinician's knowledge in practical application. Regarding instance 12, the clinicians 

disagreed with the framework-proposed path in which blood glucose and gamma glutamyl transferase 

(g-GTP) were intervened instead of clearly high body mass index (BMI) (Supplementary Fig. 43d–f). 

As is shown in the heatmap, there were few instances where the BMI exceeds 30 in the dataset, which 

might cause overfitting on the original nonlinear prediction model construction. For example, if there 

are accidentally a few instances with obesity but low blood pressure, the prediction model may 

present predictive blood pressure lower than the actual regarding obesity instances. Since our 

framework presents the optimal path to the node with the most improved response variable value in 

the search iteration count based on the predictive model, the prediction model has a major impact on 

the destination node selection. Although we used health checkup data for a specific region, it would be 

desired to build a robust predictive model using a larger sample size dataset. 

Regarding instance 13 in the CKD risk classification task, the framework-proposed path was 

composed of the alternating interventions in high triglyceride and right ankle diastolic blood pressure 

(RADIA), which is blood pressure-related indicators (Supplementary Fig. 44a–c). Also, the path was 

consistent with the distribution of actual data for these variables. From these results, the clinicians 
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evaluated that this health-improvement path was plausible and could lead to behavioral changes in the 

patient. In this study, we used a grid graph for the path search algorithm, and only one variable is 

intervened at a time. Paths would be planned by repeating interventions, and simultaneous fluctuations 

of multiple variables could be represented by alternating fluctuations. Regarding instance 14, the 

clinicians evaluated that intervention on overweight and blood pressure would be necessary though 

the framework-proposed path consisted of intervention in triglyceride and hemoglobin (Hb) 

(Supplementary Fig. 44d–f). While the path planned to improve the response variable without 

specifying target values of intervention variables might present new possibilities, it could be better in 

some cases that the clinician set target values of intervention variables. By changing the search end 

condition in the path search algorithm, our framework can present the optimal path to the node of the 

targeted-intervention variable values determined by the clinicians. 

 

Application of framework on hypertension risk classification task using IHPP dataset 

We applied our framework to the hypertension risk classification task. According to the guideline 

for hypertension, the SBP cutoff value for the classification task was set to 140 mmHg1. As in the 

main text, we performed explanatory variable reduction using recursive feature elimination (RFE). 

Important features selected by XGBoost-based RFE comprised items related to hypertension, such as 

age, body composition (leg score and BMI), blood glucose, and g-GTP2–10 (Supplementary Fig. 22a). 

Following our framework, classification models were built after the replacement of missing values 

with the use of multiple imputations. Area under the curve (AUC) of the models are summarized in 

Supplementary Table 6. Next, we constructed stochastic surrogate models based on multiple imputed 

RFE-selected features and predicted values (Supplementary Fig. 22b–d). Though we initially set the 

range of mixture components to 1–8, the lowest WBIC values were obtained when the numbers of 

mixture components were eight in XGBoost and RF. Therefore, we expanded the range to 16 in these 

cases. Subsequently, we performed path planning using the stochastic surrogate models selected based 

on WBIC. The top-five variables that could be intervened were selected as intervention variables 

based on feature importance in a data-driven manner: g-GTP, blood glucose, aspartate transaminase 

(AST [GOT]), leg score, and immunoglobulin G (IgG). Assuming a scenario wherein the task is to 

improve participants with higher SBP, relevant instances were selected according to the following 
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criteria: XGBoost-predictive class of SBP ≥140 mmHg1, and no missing values in the intervention 

variables. The number of applicable instances was 162. We executed the path-search algorithm with L 

= 20,000 for each instance and acquired a path to the node with the lowest predictive SBP value in 

count L. The histograms of the actionability score are shown in Supplementary Fig. 22e–g. The paths 

of the two randomly selected instances are shown in Supplementary Fig. 23–25. 

 

Application of framework on eGFR regression task using IHPP dataset 

We applied our framework to the eGFR regression task. As in the main text, we performed 

explanatory variable reduction using RFE. Important features selected by RFE comprised items 

related to renal function, such as age, uric acid, blood urea nitrogen (BUN), anemia-related factors 

(Hb and erythrocyte count), and body composition-related factors (right arm X 50 kHz and basal 

metabolic rate [BMR] score)11–15 (Supplementary Fig. 26a). Following our framework, regression 

models were built after the replacement of missing values with the use of multiple imputations. The 

scores of the prediction models are shown in Supplementary Fig. 26b–d. Next, we constructed 

stochastic surrogate models based on hierarchical Bayesian modeling based on multiple imputed RFE-

selected features and predicted values (Supplementary Fig. 26e–g). Subsequently, we performed path 

planning using the stochastic surrogate models selected based on WBIC. The top-five variables that 

could be intervened were selected as intervention variables based on feature importance in a data-

driven manner: uric acid, BUN, right arm X 50 kHz, BMR score, and erythrocyte count. Assuming a 

scenario wherein the task is to intervene the participants with decreased renal functions, relevant 

instances were selected according to the following criteria: XGBoost-predictive eGFR <60 

mL/min/1.73 m2 16, and no missing values in the intervention variables. The number of applicable 

instances was 14. We executed the path-search algorithm with L = 20,000 for each instance and 

acquired a path to the node with the highest predictive eGFR value in count L. The histograms of the 

actionability score are shown in Supplementary Fig. 26h–j. The paths of the two randomly selected 

instances are shown in Supplementary Figs. 27–29. 
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Evaluation on real estate dataset 

We obtained a dataset from the UCI Machine Learning Repository17,18. This dataset was used to 

conduct a regression analysis of the house price of a unit area based on six continuous explanatory 

variables of real estate data. There were no missing values in the dataset. The dataset was randomly 

split into training data (80%) and test data (20%). 

The trained XGBoost regression model yielded a root-mean-square error (RMSE) of 6.78 and an 

R-squared value of 0.735 in the test data (Supplementary Fig. 45a). A surrogate model was 

constructed by hierarchical Bayesian modeling using the original data and the predicted values of the 

regression model. The lowest WBIC value was obtained when the number of mixture components was 

two (Supplementary Fig. 45b). 

Subsequently, path planning was performed using the surrogate model. Among the six explanatory 

variables, X1 (the transaction date) was a variable that was difficult to intervene. Therefore, X1 was 

fixed, and the remaining five variables were selected as intervention variables. The unit cell size of the 

grid was set to 0.2 * in the training data for each explanatory variable. We executed the path search 

algorithm with L = 20,000 for each instance, and the path with the highest predicted value was 

acquired. The histogram of the actionability score for each instance is shown in Supplementary Fig. 

45c. The actionability scores were greater than zero in 75/82 instances, and the median was 5.25.  

From these results, we have demonstrated that our framework can be applicable to datasets with 

higher regression model scores. 

 

Evaluation on public dataset for disease progression 

To evaluate the feasibility of our framework on another small health dataset, we used a public 

dataset on diabetes progression19,20. This dataset was used to conduct a regression of the quantitative 

measure of diabetes progression one year after the baseline from nine continuous and one discrete 

explanatory variable (Supplementary Table 7). The dataset is openly available on Trevor Hastie’s 

Software page at https://web.stanford.edu/~hastie/Papers/LARS/. This dataset contains no missing 

values. The dataset was randomly split into training data (80%) and test data (20%). 

The feature importance of the trained model is shown in Supplementary Fig. 46a. The XGBoost 

regression model yielded an RMSE value of 62.19 and an R-squared value of 0.246 in the test data 
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(Supplementary Fig. 46b). A surrogate model was constructed by hierarchical Bayesian modeling 

using the original data and the predicted values of the regression model. The lowest WBIC value was 

obtained when the number of mixture components was two (Supplementary Fig. 46c). 

Subsequently, path planning was performed using the surrogate model. Regarding the intervention 

variables, five variables were selected from the top of the feature importance of the regression model: 

body mass index (BMI), blood pressure, T-cells, high-density lipoproteins, and lamotrigine 

(Supplementary Fig. 46a). The remaining variables were fixed. The unit cell size of the grid was set to 

0.2 * in the training data for each explanatory variable. We executed the path search algorithm with 

L = 20,000 in each instance, and the path with the lowest predicted value was acquired. The histogram 

of the actionability score for each instance is shown in Supplementary Fig. 46d. The actionability 

scores were greater than zero in 83/87 instances, and the median was 2.06. Examples of the paths 

planned by using the proposed framework are shown in Supplementary Fig. 47. This experiment 

indicates the feasibility of using the proposed framework in planning actionable paths to improve the 

predictions of the regression model. 
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Supplementary Figures 
 

Supplementary Figure 1. Detailed workflow of proposed framework. 
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Supplementary Figure 2. Generation of three-dimensional (3D) synthetic dataset. The three 3D normal 

distributions generated 200 data points that consisted of !!, !", and !#. Subsequently, a response variable was set 

to the sum of !!, !", and !# with Gaussian noise (" = 2). The synthetic dataset consisted of a total of 600 data 

points with explanatory variables (X1, X2, and X3) and a response variable.  
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Supplementary Figure 3. Results of the proposed framework on three-dimensional (3D) synthetic dataset. a 

Plot for prediction vs. true response variable. b Widely applicable Bayesian information criterion (WBIC) values of 

the stochastic surrogate models with 1–8 mixture components. c Histogram of actionability scores at different 

instances. The unit cell size of the grid was set to 0.5 " in the training data for each explanatory variable. The path 

search algorithm was executed with L = 20,000 for each instance and acquired a path with the lowest predictive 

value. An actionability score of zero indicates that the actionability of the optimal path is equivalent to that of the 

baseline path. 

  

a b c
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Supplementary Figure 4. XGBoost model scores during recursive feature elimination (RFE). Features are 

gradually reduced in RFE, and the scores on the validation data at each stage are shown. a Root-mean-squared error 

(RMSE) scores on systolic blood pressure (SBP) regression. b RMSE scores on estimated glomerular filtration rate 

(eGFR) regression. c Area under the curve (AUC) scores on hypertension risk classification. d AUC scores on CKD 

risk classification. 
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Supplementary Figure 5. 3D plots of optimal paths with intervention variables based on data-driven selection 
in systolic blood pressure (SBP) regression task. The instances respectively correspond to the instances in Fig. 6 of 

the main text. 
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Supplementary Figure 6. Example question sheet for comparison with clinician intervention. An example of an 

evaluation sheet for the SBP regression task is provided above. The order of interventions and the initial values of 

measurement items of the instance (masked in this paper to protect personal health information) were presented to 

clinicians. Clinicians were asked to select an improvement path considered to be the closest to their treatment policy 

among ten blinded improvement paths (A–J), which comprised of a path planned by our framework and nine random 

paths. In the transition step, the up or down arrow represents an increase or decrease in the unit change of the 

intervention variable, respectively. Each clinician evaluated the same ten instances.  

A B

C D

E F

G H

I J

ID: X

Initial predictive SBP: 141 mmHg
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Supplementary Figure 7. Example question sheet for utility assessment. An example of an evaluation sheet for 

the SBP regression task is provided above. The clinicians were provided with the initial values of measurement items 

of the instance (masked in this paper to protect personal health information), as well as two blinded paths (A and B). 

The blinded paths are a path planned by our framework and a random path. For each path, the order of interventions 

along with the accompanied transition of the predictive response variable and the projection on 2D heatmaps for 

each pair of intervention variables were presented. In the transition step, the up or down arrow represents an increase 

or decrease in the unit change of the intervention variable, respectively. Clinicians evaluated the practicality and 

informativeness of each path with yes/no. Clinicians also commented on the reasons for choosing each evaluation. 

Each clinician evaluated the same ten instances.  

ID: Y

A B

Initial predictive SBP: 140 mmHg
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Supplementary Figure 8. 3D plots of optimal paths with intervention variables based on data-driven selection 
in chronic kidney disease (CKD) risk classification task. The instances respectively correspond to the instances in 

Fig. 8 of the main text. 
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Supplementary Figure 9. Results of the proposed framework on three-dimensional (3D) synthetic dataset 
using different machine learning (ML) algorithms. The results of applying our framework to prediction models 

based on nonlinear ML algorithms other than XGBoost are shown: random forest (a, c, e) and support vector 

machine (b, d, f). a, b Plots for prediction vs. true response variable. c, d Widely applicable Bayesian information 

criterion (WBIC) values of stochastic surrogate models with 1–8 mixture components. e, f Histogram of actionability 

scores with intervention variables based on data-driven selection at different instances. An actionability score of zero 

indicates that the actionability of the optimal path is equivalent to that of the baseline path.  
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Supplementary Figure 10. Examples of actionable paths planned using random forest (RF) model on three-
dimensional (3D) synthetic dataset. The optimal paths for improving the response variable predicted by the RF 

model are represented for the same instances selected on the application to XGBoost: instance A (a–c) and instance 

B (d–f). a, d The orders of changes in the explanatory variables in the optimal path and the accompanying changes 

in the predicted values. In the transition steps, the upward or downward arrow represents a unit increase or decrease 

in the explanatory variable, respectively. b, e 2D plots of the path. The 2D plots are shown regarding the selected 

two variables: X1 and X2 (b), and X2 and X3 (e). In the heatmaps, the probability density of the actual data, 

normalized by the panel with the maximum number of data, is expressed. c, f 3D plots of the path. 
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Supplementary Figure 11. Examples of actionable paths planned using support vector machine (SVM) model 
on three-dimensional (3D) synthetic dataset. The optimal paths for improving the response variable predicted by 

the SVM model are represented for the same instances selected on the application to XGBoost: instance A (a–c) and 

instance B (d–f). a, d The orders of changes in the explanatory variables in the optimal path and the accompanying 

changes in the predicted values. In the transition steps, the upward or downward arrow represents a unit increase or 

decrease in the explanatory variable, respectively. b, e 2D plots of the path. The 2D plots are shown regarding the 

selected two variables: X1 and X2 (b), and X2 and X3 (e). In the heatmaps, the probability density of the actual data, 

normalized by the panel with the maximum number of data, is expressed. c, f 3D plots of the path. 
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Supplementary Figure 12. Results of the proposed framework on five-dimensional (5D) synthetic dataset. The 

results of applying our framework to prediction models based on nonlinear machine learning (ML) algorithms are 

shown: XGBoost (a, d, g), random forest (b, e, h), and support vector machine (c, f, i). a–c Plots for prediction vs. 

true response variable. d–f Widely applicable Bayesian information criterion (WBIC) values of stochastic surrogate 

models with 1–8 mixture components. g–i Histogram of actionability scores with intervention variables based on 

data-driven selection at different instances. An actionability score of zero indicates that the actionability of the 

optimal path is equivalent to that of the baseline path. 

 

  

a b c

d

g h i

e f

XGBoost Random Forest Support Vector Machine



 22 

  

Supplementary Figure 13. Examples of actionable paths planned using XGBoost model on five-dimensional 
(5D) synthetic dataset. The optimal paths for improving the response variable predicted by the XGBoost model are 

represented for randomly selected two examples: instance C (a–c) and instance D (d–f). a, d The orders of changes 

in the explanatory variables in the optimal path and the accompanying changes in the predicted values. In the 

transition steps, the upward or downward arrow represents a unit increase or decrease in the explanatory variable, 

respectively. b, e 2D plots of the path. The 2D plots are shown regarding the selected two variables: X3 and X4 (b), 

and X1 and X2 (e). In the heatmaps, the probability density of the actual data, normalized by the panel with the 

maximum number of data, is expressed. c, f 3D plots of the path.  
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Supplementary Figure 14. Examples of actionable paths planned using random forest (RF) model on five-
dimensional (5D) synthetic dataset. The optimal paths for improving the response variable predicted by the RF 

model are represented for the same instances selected on the application to XGBoost: instance C (a–c) and instance 

D (d–f). a, d The orders of changes in the explanatory variables in the optimal path and the accompanying changes 

in the predicted values. In the transition steps, the upward or downward arrow represents a unit increase or decrease 

in the explanatory variable, respectively. b, e 2D plots of the path. The 2D plots are shown regarding the selected 

two variables: X3 and X4 (b), and X1 and X2 (e). In the heatmaps, the probability density of the actual data, 

normalized by the panel with the maximum number of data, is expressed. c, f 3D plots of the path.  
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Supplementary Figure 15. Examples of actionable paths planned using support vector machine (SVM) model 
on five-dimensional (5D) synthetic dataset. The optimal paths for improving the response variable predicted by the 

SVM model are represented for the same instances selected on the application to XGBoost: instance C (a–c) and 

instance D (d–f). a, d The orders of changes in the explanatory variables in the optimal path and the accompanying 

changes in the predicted values. In the transition steps, the upward or downward arrow represents a unit increase or 

decrease in the explanatory variable, respectively. B, e 2D plots of the path. The 2D plots are shown regarding the 

selected two variables: X3 and X4 (b), and X1 and X2 (e). In the heatmaps, the probability density of the actual data, 

normalized by the panel with the maximum number of data, is expressed. c, f 3D plots of the path.  
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Supplementary Figure 16. Application of proposed framework on systolic blood pressure (SBP) regression 
task using different machine learning (ML) algorithms. The results of applying our framework to prediction 

models based on nonlinear ML algorithms other than XGBoost are shown: random forest (a, c, e) and support vector 

machine (b, d, f). a, b Plots for prediction vs. true response variable. c, d Widely applicable Bayesian information 

criterion (WBIC) values of stochastic surrogate models with 1–8 mixture components. e, f Histogram of actionability 

scores with intervention variables based on data-driven selection at different instances. An actionability score of zero 

indicates that the actionability of the optimal path is equivalent to that of the baseline path. 
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Supplementary Figure 17. Examples of personal actionable paths for treatment in systolic blood pressure 
(SBP) regression task using random forest (RF). The optimal paths for improving the response variable predicted 

by the RF model are represented for the same instances selected on the application to XGBoost: instance 1 (a, b), 

instance 2 (c, d), and instance 3 (e, f). a, c, e The orders of changes in the explanatory variables in the optimal path 

and the accompanying changes in the predicted values. In the transition steps, the upward or downward arrow 

represents a unit increase or decrease in the explanatory variable, respectively. b, d, f 2D plots of the path. The 2D 

plots are shown regarding the two influential variables in the optimal path: blood glucose and leg score (b), leg score 

and g-GTP (d), and blood glucose and leg score (f). In the heatmaps, the probability density of the actual data, 

normalized by the panel with the maximum number of data, is expressed.   
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Supplementary Figure 18. Examples of personal actionable paths for treatment in systolic blood pressure 
(SBP) regression task using support vector machine (SVM). The optimal paths for improving the response 

variable predicted by the SVM model are represented for the same instances selected on the application to XGBoost: 

instance 1 (a, b), instance 2 (c, d), and instance 3 (e, f). a, c, e The orders of changes in the explanatory variables in 

the optimal path and the accompanying changes in the predicted values. In the transition steps, the upward or 

downward arrow represents a unit increase or decrease in the explanatory variable, respectively. b, d, f 2D plots of 

the path regarding blood glucose and leg score. In the heatmaps, the probability density of the actual data, 

normalized by the panel with the maximum number of data, is expressed.   
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Supplementary Figure 19. Application of proposed framework on chronic kidney disease (CKD) risk 
classification task using different machine learning (ML) algorithms. The results of applying our framework to 

prediction models based on nonlinear ML algorithms other than XGBoost are shown: random forest (a, c) and 

support vector machine (b, d). a, b Widely applicable Bayesian information criterion (WBIC) values of stochastic 

surrogate models with 1–8 mixture components. c, d Histogram of actionability scores with intervention variables 

based on data-driven selection at different instances. An actionability score of zero indicates that the actionability of 

the optimal path is equivalent to that of the baseline path. 

 

  

a b

c d

Random Forest Support Vector Machine



 29 

  

Supplementary Figure 20. Examples of personal actionable paths for treatment in chronic kidney disease 
(CKD) risk classification task using random forest (RF). The optimal paths for improving the response variable 

predicted by the RF model are represented for the same instances selected on the application to XGBoost: instance 4 

(a, b), instance 5 (c, d), and instance 6 (e, f). a, c, e The orders of changes in the explanatory variables in the optimal 

path and the accompanying changes in the predicted values. In the transition steps, the upward or downward arrow 

represents a unit increase or decrease in the explanatory variable, respectively. b, d, f 2D plots of the path. The 2D 

plots are shown regarding the two influential variables in the optimal path: uric acid and blood urea nitrogen (BUN) 

(b, d), and triglyceride and BUN (f). In the heatmaps, the probability density of the actual data, normalized by the 

panel with the maximum number of data, is expressed.   
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Supplementary Figure 21. Examples of personal actionable paths for treatment in chronic kidney disease 
(CKD) risk classification task using support vector machine (SVM). The optimal paths for improving the 

response variable predicted by the SVM model are represented for the same instances selected on the application to 

XGBoost: instance 4 (a, b), instance 5 (c, d), and instance 6 (e, f). a, c, e The orders of changes in the explanatory 

variables in the optimal path and the accompanying changes in the predicted values. In the transition steps, the 

upward or downward arrow represents a unit increase or decrease in the explanatory variable, respectively. b, d, f 2D 

plots of the path. The 2D plots are shown regarding triglyceride and uric acid. In the heatmaps, the probability 

density of the actual data, normalized by the panel with the maximum number of data, is expressed.   
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Supplementary Figure 22. Results of the proposed framework on hypertension risk classification task. a 
Feature importance. These 25 features were selected by recursive feature elimination (RFE). RFE was performed 

with five-fold cross-validation, and the feature importance when 25 variables remained is shown for each fold (n = 

5). The plot color represents the following: red: intervention variables, gray: variables which cannot be intervened, 

and blue: other variables. In box-plot, center line represents median; box limits, upper and lower quartiles; whiskers, 

1.5x interquartile range. Details of features are described in Supplementary Data 1. b–g The results of applying our 

framework to prediction models based on nonlinear machine learning (ML) algorithms: XGBoost (b, e), random 

forest (c, f), and support vector machine (d, g). b–d Widely applicable Bayesian information criterion (WBIC) 

values of stochastic surrogate models. e–g Histogram of actionability scores. An actionability score of zero indicates 

that the actionability of the optimal path is equivalent to that of the baseline path.  
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Supplementary Figure 23. Examples of personal actionable paths for treatment in hypertension risk 
classification task using XGBoost. The optimal paths for improving the response variable predicted by the 

XGBoost model are represented for randomly selected two examples: instance 7 (a, b) and instance 8 (c, d). a, c The 

orders of changes in the explanatory variables in the optimal path and the accompanying changes in the predicted 

values. In the transition steps, the upward or downward arrow represents a unit increase or decrease in the 

explanatory variable, respectively. b, d 2D plots of the path. The 2D plots are shown regarding the two influential 

variables in the optimal path: aspartate transaminase (AST [GOT]) and leg score (b), and gamma glutamyl 

transferase (g-GTP) and leg score (d). In the heatmaps, the probability density of the actual data, normalized by the 

panel with the maximum number of data, is expressed.   
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Supplementary Figure 24. Examples of personal actionable paths for treatment in hypertension risk 
classification task using random forest (RF). The optimal paths for improving the response variable predicted by 

the RF model are represented for the same instances selected on the application to XGBoost: instance 7 (a, b) and 

instance 8 (c, d). a, c The orders of changes in the explanatory variables in the optimal path and the accompanying 

changes in the predicted values. In the transition steps, the upward or downward arrow represents a unit increase or 

decrease in the explanatory variable, respectively. b, d 2D plots of the path. The 2D plots are shown regarding the 

two influential variables in the optimal path: aspartate transaminase (AST [GOT]) and leg score (b), and gamma 

glutamyl transferase (g-GTP) and leg score (d). In the heatmaps, the probability density of the actual data, 

normalized by the panel with the maximum number of data, is expressed.   
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Supplementary Figure 25. Examples of personal actionable paths for treatment in hypertension risk 
classification task using support vector machine (SVM). The optimal paths for improving the response variable 

predicted by the SVM model are represented for the same instances selected on the application to XGBoost: instance 

7 (a, b) and instance 8 (c, d). a, c The orders of changes in the explanatory variables in the optimal path and the 

accompanying changes in the predicted values. In the transition steps, the upward or downward arrow represents a 

unit increase or decrease in the explanatory variable, respectively. b, d 2D plots of the path. The 2D plots are shown 

regarding the two influential variables in the optimal path: immunoglobulin G (IgG) and leg score (b), and aspartate 

transaminase (AST [GOT]) and leg score (d). In the heatmaps, the probability density of the actual data, normalized 

by the panel with the maximum number of data, is expressed. 
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Supplementary Figure 26. Results of the proposed framework estimated glomerular filtration rate (eGFR) 
regression task. a Feature importance. These 25 features were selected by recursive feature elimination (RFE). RFE 

was performed with five-fold cross-validation, and the feature importance when 25 variables remained is shown for 

each fold (n = 5). The plot color represents the following: red: intervention variables, gray: variables which cannot 

be intervened, and blue: other variables. In box-plot, center line represents median; box limits, upper and lower 

quartiles; whiskers, 1.5x interquartile range. Details of features are described in Supplementary Data 1. b–j The 

results of applying our framework to prediction models based on nonlinear machine learning (ML) algorithms: 

XGBoost (b, e, h), random forest (c, f, i), and support vector machine (d, g, j). b–d Plots for prediction vs. true 

response variable. e–g Widely applicable Bayesian information criterion (WBIC) values of stochastic surrogate 

models with 1–8 mixture components. h–j Histogram of actionability scores. An actionability score of zero indicates 

that the actionability of the optimal path is equivalent to that of the baseline path.   
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Supplementary Figure 27. Examples of personal actionable paths for treatment in estimated glomerular 
filtration rate (eGFR) regression task using XGBoost. The optimal paths for improving the response variable 

predicted by the XGBoost model are represented for randomly selected two examples: instance 9 (a, b) and instance 

10 (c, d). a, c The orders of changes in the explanatory variables in the optimal path and the accompanying changes 

in the predicted values. In the transition steps, the upward or downward arrow represents a unit increase or decrease 

in the explanatory variable, respectively. b, d 2D plots of the path. The 2D plots are shown regarding the two 

influential variables in the optimal path: uric acid and erythrocyte count (b), and uric acid and blood urea nitrogen 

(BUN) (d). In the heatmaps, the probability density of the actual data, normalized by the panel with the maximum 

number of data, is expressed. 
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Supplementary Figure 28. Examples of personal actionable paths for treatment in estimated glomerular 
filtration rate (eGFR) regression task using random forest (RF). The optimal paths for improving the response 

variable predicted by the RF model are represented for the same instances selected on the application to XGBoost: 

instance 9 (a, b) and instance 10 (c, d). a, c The orders of changes in the explanatory variables in the optimal path 

and the accompanying changes in the predicted values. In the transition steps, the upward or downward arrow 

represents a unit increase or decrease in the explanatory variable, respectively. b, d 2D plots of the path. The 2D 

plots are shown regarding the two influential variables in the optimal path: uric acid and blood urea nitrogen (BUN) 

(b), and uric acid and erythrocyte count (d). In the heatmaps, the probability density of the actual data, normalized 

by the panel with the maximum number of data, is expressed. 
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Supplementary Figure 29. Examples of personal actionable paths for treatment in estimated glomerular 
filtration rate (eGFR) regression task using support vector machine (SVM). The optimal paths for improving the 

response variable predicted by the SVM model are represented for the same instances selected on the application to 

XGBoost: instance 9 (a, b) and instance 10 (c, d). a, c The orders of changes in the explanatory variables in the 

optimal path and the accompanying changes in the predicted values. In the transition steps, the upward or downward 

arrow represents a unit increase or decrease in the explanatory variable, respectively. b, d 2D plots of the path. The 

2D plots are shown regarding the two influential variables in the optimal path: uric acid and blood urea nitrogen 

(BUN) (b), and uric acid and right arm X 50 kHz (d). In the heatmaps, the probability density of the actual data, 

normalized by the panel with the maximum number of data, is expressed. 
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Supplementary Figure 30. Number of steps in optimal paths. The number of steps in the optimal paths for each 

instance is shown. a, b Top-five (a) or top-ten (b) important features were selected as intervention variables on 

systolic blood pressure (SBP) regression task. c, d Top-five (c) or top-ten (d) important features were selected as 

intervention variables on chronic kidney disease (CKD) risk classification task. 
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Supplementary Figure 31. Number of nodes within certain number of steps without detours. The number of 

nodes within 5, 10, or 15 steps are shown. The vertical axis is represented on a logarithmic scale. As the intervention 

variable increases, the number of nodes increases exponentially, which causes multistep path planning difficult. 
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Supplementary Figure 32. Number of intervention variables fluctuated in optimal paths. The number of 

intervention variables that fluctuated in the optimal path for each instance is shown. a, b Data-driven (a) or 

hypothesis-driven (b) selected intervention variables on systolic blood pressure (SBP) regression task. c, d Data-

driven (c) or hypothesis-driven (d) selected intervention variables on chronic kidney disease (CKD) risk 

classification task. 
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Supplementary Figure 33. Sensitivity analysis of hyperparameters in priors of hierarchical Bayesian model 
using three-dimensional (3D) synthetic dataset. a List of hyperparameters examined. The hyperparameters are 

changed from our model setting in the main manuscript. b Widely applicable Bayesian information criterion (WBIC) 

of stochastic surrogate models with 1–8 mixture components.  
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Supplementary Figure 34. Sensitivity analysis of hyperparameters in priors of hierarchical Bayesian model 
using five-dimensional (5D) synthetic dataset. a List of hyperparameters examined. The hyperparameters are 

changed from our model setting in the main manuscript. b Widely applicable Bayesian information criterion (WBIC) 

of stochastic surrogate models with 1–8 mixture components.  
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Supplementary Figure 35. Sensitivity analysis of hyperparameters in priors of hierarchical Bayesian model on 
systolic blood pressure (SBP) regression task. a List of hyperparameters examined. The hyperparameters are 

changed from our model setting in the main manuscript. b Widely applicable Bayesian information criterion (WBIC) 

of stochastic surrogate models with 1–8 mixture components. c–e Paths planned using stochastic surrogate models 

for each hyperparameter setting. Each subfigure corresponds to the instances described in Fig. 6 in the main text: 

instance 1 (c), instance 2 (d), and instance 3 (e). 
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Supplementary Figure 36. Sensitivity analysis of hyperparameters in priors of hierarchical Bayesian model on 
chronic kidney disease (CKD) risk classification task. a List of hyperparameters examined. The hyperparameters 

are changed from our model setting in the main manuscript. b Widely applicable Bayesian information criterion 

(WBIC) of stochastic surrogate models with 1–8 mixture components. c–e Paths planned using stochastic surrogate 

models for each hyperparameter setting. Each subfigure corresponds to the instances described in Fig. 8 in the main 

text: instance 4 (c), instance 5 (d), and instance 6 (e).  
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Supplementary Figure 37. Sensitivity analysis of path planning using hierarchical Bayesian model with 
different number of mixture components on three-dimensional (3D) synthetic dataset. The optimal paths for 

improving the response variable predicted by the XGBoost model were planned using hierarchical Bayesian models 

with different number of mixture components. Displayed instances are the same as in Fig. 4: instance A (a) and 

instance B (b). 
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Supplementary Figure 38. Sensitivity analysis of path planning using hierarchical Bayesian model with 
different number of mixture components on five-dimensional (5D) synthetic dataset. The optimal paths for 

improving the response variable predicted by the XGBoost model were planned using hierarchical Bayesian models 

with different number of mixture components. Displayed instances are the same as in Supplementary Fig. 13: 

instance C (a) and instance D (b). 
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Supplementary Figure 39. Sensitivity analysis of path planning using hierarchical Bayesian model with 
different number of mixture components on systolic blood pressure (SBP) regression task. The optimal paths 

for improving the response variable predicted by the XGBoost model were planned using hierarchical Bayesian 

models with different number of mixture components. Displayed instances are the same as in Fig. 6: instance 1 (a), 

instance 2 (b), and instance 3 (c). 
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Supplementary Figure 40. Sensitivity analysis of path planning using hierarchical Bayesian model with 
different number of mixture components on chronic kidney disease (CKD) risk classification task. The optimal 

paths for improving the response variable predicted by the XGBoost model were planned using hierarchical 

Bayesian models with different number of mixture components. Displayed instances are the same as in Fig. 8: 

instance 4 (a), instance 5 (b), and instance 6 (c). 
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Supplementary Figure 41. Schematic explanation about actionability score. A baseline path is defined as a path 

that connects the initial node and destination node of the optimal path presented by the framework with a random 

minimum step, that is, without detour. Actionability score is defined as the logarithm of the ratio of the optimal path-

actionability to the baseline path-actionability. Due to the large number of baseline paths, we used the geometric 

mean of the actionability of ten random baseline paths to calculate the score. The higher the actionability score, the 

optimal path is constructed through nodes with higher probabilities than the baseline path. 
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Supplementary Figure 42. Generation of five-dimensional (5D) synthetic dataset. The five 5D normal 

distributions generated 200 data points that consisted of !$ (# ∈ {1, 	 … , 	5}). Subsequently, a response variable was 

set to the sum of !$ with Gaussian noise (" = 2). The synthetic dataset consisted of a total of 1,000 data points with 

explanatory variables (X1, …, X5) and a response variable.  
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Supplementary Figure 43. Examples of personal actionable paths for treatment with intervention variables 
based on hypothesis-driven selection in systolic blood pressure (SBP) regression task. The optimal paths for 

improving the response variable predicted by the ML model are represented for two examples: instance 11 (a–c) and 

instance 12 (d–f). a, d The orders of changes in the explanatory variables in the optimal path and the accompanying 

changes in the predicted values. In the transition steps, the upward or downward arrow represents a unit increase or 

decrease in the explanatory variable, respectively. b, c, e, f 2D plots of the path. In the heatmaps, the probability 

density of the actual data, normalized by the panel with the maximum number of data, is expressed. 
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Supplementary Figure 44. Examples of personal actionable paths for treatment with intervention variables 
based on hypothesis-driven selection in chronic kidney disease (CKD) risk classification task. The optimal 

paths for improving the response variable predicted by the ML model are represented for two examples: instance 13 

(a–c) and instance 14 (d–f). a, d The orders of changes in the explanatory variables in the optimal path and the 

accompanying changes in the predicted values. In the transition steps, the upward or downward arrow represents a 

unit increase or decrease in the explanatory variable, respectively. b, c, e, f 2D plots of the path. In the heatmaps, the 

probability density of the actual data, normalized by the panel with the maximum number of data, is expressed. 
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Supplementary Figure 45. Results of proposed framework on real estate dataset. a Plot for prediction vs. true 

response variable. b WBIC values of the stochastic surrogate models with 1–8 mixture components. c Histogram of 

actionability scores at different instances. An actionability score of zero indicates that the actionability of the optimal 

path is equivalent to that of the baseline path. 
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Supplementary Figure 46. Results of proposed framework on diabetes progression dataset. a Feature 

importance of the regression model. The color of each bar represents the following: red: intervention variables in 

path planning, gray: variables which are difficult to be intervened, and blue: other variables. Details of features are 

described in Supplementary Table 7. b Plot for prediction vs. true response variable. c WBIC values of stochastic 

surrogate models with 1–8 mixture components. d Histogram of actionability scores for each instance. An 

actionability score of zero indicates that the actionability of the optimal path is equivalent to that of the baseline path. 
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Supplementary Figure 47. Examples of personal actionable paths for treatment on diabetes progression 
dataset. The optimal paths needed for the improvement of the response variables predicted by the machine learning 

model are represented for randomly selected two examples: instance D1 (a, b) and instance D2 (c, d). a, c The orders 

of changes in the explanatory variables in the optimal path and the accompanying changes in the predicted values. In 

the transition steps, the upward or downward arrow represents a unit increase or decrease in the explanatory variable, 

respectively. b, d Two-dimensional (2D) plots of the path. The 2D plots are shown regarding the two influential 

variables: S5 and average blood pressure (BP) (b), and S5 and body mass index (BMI) (d). In the heatmaps, the 

probability density of the actual data, normalized by the panel with the maximum number of data, is expressed. 
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Supplementary Tables 
 

Supplementary Table 1. The number of instances. 

Task Training Test 
Surrogate 
modeling 

Regression task on SBP 10,260 2,543 2,222 

Classification task on SBP 
(Hypertension risk) 

10,308 2,495 2,185 

Regression task on eGFR 10,233 2,563 2,230 

Classification task on eGFR 
(CKD risk) 

10,194 2,602 2,255 

 

 
Supplementary Table 2. Correspondence between clinical guideline–recommended treatments for improving 
blood pressure and variables used in our framework. 

Guideline recommended treatments Examples of corresponding variables 

Salt reduction Serum sodium 

Exercise BMI 

Waist 

Leg score 

Blood glucose 

Alcohol restriction γ-GTP 

Alleviation of obesity BMI 

Waist 

Nutrients and dietary patterns γ-GTP 

Blood glucose 

BMI: body mass index, g-GTP: gamma-glutamyltransferase. 
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Supplementary Table 3. Clinicians’ assessments on utility of health-improvement paths. 

 
Practical Informative 

Optimal path Random path Optimal path Random path 

Cardiologists 
0.20 ± 0.21 

[0, 5, 3, 2, 0] 

0.22 ± 0.18 

[1, 4, 2, 4, 0] 

0.42 ± 0.30 

[3, 8, 6, 4, 0] 

0.38 ± 0.33 

[1, 7, 4, 7, 0] 

Nephrologists 
0.30 ± 0.29 

[1, 0, 2, 7, 5] 

0.26 ± 0.23 

[3, 0, 3, 1, 6] 

0.52 ± 0.26 

[2, 4, 6, 9, 5] 

0.46 ± 0.19 

[4, 2, 7, 6, 4] 

 

Ratio of paths clinicians evaluated as practical or informative (Mean ± standard deviation). The numbers in brackets 

indicate the instances each clinician assessed as practical or informative in ten instances. 

 

 
Supplementary Table 4. Correspondence between clinical guideline–recommended treatments for patients 
with lower renal functions and variables used in our framework. 

Guideline recommended treatments Examples of corresponding variables 

Nutrients and dietary patterns Weight 

BMR score 

Right arm X 50kHz 

Triglyceride 

Lowering blood pressure 

(Salt reduction, anti-hypertensive drugs) 

RADIA 

Iron supplementation and other erythropoiesis-

stimulating agents 

Hb 

Erythrocyte count 

Lipid-lowering treatment Triglyceride 

Alleviation of obesity 

Regular exercise 

Weight 

BMR score 

Right arm X 50kHz 

Lowering uric acid 

(Hyperuricemia drugs) 

Uric acid 

 
BMR score: basal metabolic rate score, RADIA: right ankle diastolic blood pressure, Hb: hemoglobin. 
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Supplementary Table 5. Classification model scores on chronic kidney disease (CKD) risk. 

Model AUC TP FN FP TN 

XGBoost 0.844 35 171 19 2,377 

Random Forest 0.833 9 197 4 2,392 

Support vector machine 0.790 43 163 43 2,353 

AUC: area under the curve, TP: true positive, FN: false negative, FP: false positive, TN: true negative. 

 

 
Supplementary Table 6. Classification model scores on hypertension risk. 

Model AUC TP FN FP TN 

XGBoost 0.772 127 515 98 1,755 

Random Forest 0.771 72 570 59 1,794 

Support vector machine 0.733 104 538 81 1,772 

AUC: area under the curve, TP: true positive, FN: false negative, FP: false positive, TN: true negative. 
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Supplementary Table 7. Description of the diabetes progression dataset features. 

Feature Description 

Response variable  

    Disease progression A quantitative measure of disease progression one year after baseline 

Explanatory variables  

    Age Age in years 

    Sex  

    BMI Body mass index 

    BP Average blood pressure 

    S1 T-cells (a type of white blood cells) 

    S2 Low-density lipoproteins 

    S3 High-density lipoproteins 

    S4 Thyroid stimulating hormone 

    S5 Lamotrigine 

    S6 Blood sugar level 

 


