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Abstract

A drug side effect or an adverse drug reaction is a response to a medicine
that is noxious and unintended occurring at doses, which can be a single drug
or a drug combination (drug-drug interactions), normally used in humans.
Drug side effects are responsible for significant patient morbidity and mortality,
costing billions of dollars annually. Hence, determining drug side effects is an
important task in pharmacology to guide drug safety. Traditionally, drug side
effects are obtained from clinical trials or surveillance reports of released drugs
on the market, which are time-consuming and costly. To deal with these dis-
advantages, machine learning models integrating various kinds of drug data
sources have been applied to obtain fast, inexpensive, and highly accurate pre-
dictions of drug side effects. The prediction results provide not only potential
side effects but also the mechanisms which can support further clinical verifi-
cation to improve drug side effect studies.

In this thesis, we explore machine learning models used in predicting drug
side effects with a focus on deep learning models with the highest prediction
performances. Basically, deep learning models aim to learn latent vector rep-
resentations of drugs in low dimensional spaces which reflect drug properties
causing side effects. We analyze the remaining problems in learning latent rep-
resentations of drugs of the current cutting-edge methods and then propose
new advanced models. The contributions of the thesis include 1) we present
a comprehensive survey on data resources, tasks, and machine learning mod-
els used in drug side effect studies; 2) we present CentSmoothie, a central-
smoothing hypergraph neural network for predicting drug-drug interactions,
that not only learns representations of drugs but also latent representations of
side effects to improve the prediction performances; 3) we present SPARSE for
further improving CentSmoothie in terms of prediction accuracy and explain-
ing the potential biological interpretation of the drug-drug interactions. We
summarize the organization of the thesis as follows.

In Chapter 1, we introduce the predicting drug side effect problems with
relevant background and terminologies.

In Chapter 2, we survey and classify data resources in drug side effects and
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machine learning models used on them. Data resources related to drug side
effects consist of two types: (i) clinical data and (ii) non-clinical data. The clin-
ical data contains observations of side effects in clinical treatments, which are
often electronic health records or records from adverse report systems. The
non-clinical data contains information on the chemical, physical, and biolog-
ical properties of drugs and biological systems. The results showed that the
deep learning models integrating both types of data achieved the highest pre-
diction performance on the side effects of each drug, showing the prominence
of the deep learning models. In Chapter 3, we present CentSmoothie, a central-
smoothing hypergraph neural network for predicting drug-drug interactions
(DDI). DDI is usually represented as a graph in that nodes are drugs and edges
are interacting drug pairs with side effects as labels. The task is to predict the la-
bels of all pairs of nodes in the DDI graph. Existing work often uses graph neu-
ral networks to learn vector representations of drug nodes on the DDI graph
and uses them to predict interactions. One drawback of this method is the lack
of learning side effect representations. Side effects have complex relationships,
for example, co-occurrences. Previous methods often represent each side effect
as a one-hot vector indicating the presence of the side effect. This representa-
tion considers that side effects are independent, potentially under-utilizing the
side effect relationships. Hence, it is necessary to learn representations of both
side effects and drugs altogether. To address the above drawback, we propose
to encode DDI data with a hypergraph that a node in the hypergraph can be
either a drug or a side effect and each hyperedge is a triple of two drugs and
a side effect that they cause. CentSmoothie, with the core idea that the side
effect is caused by a single combination of the properties of two corresponding
drugs, was proposed to learn on the new DDI hypergraph. The experimen-
tal results on the largest DDI benchmark dataset showed that CentSmoothie
outperformed existing methods with 0.9348 and 0.8749 in AUC (area under
the ROC curve) and AUPR (area under the precision-recall curve) while the
second-best method was only 0.9044 and 0.8410, respectively.

In Chapter 4, we present SPARSE, a model for learning multiple types of
latent combinations of drug-drug interactions. In CentSmoothie, we assumed
that the side effect is caused by a single combination of the properties of two

iv



corresponding drugs. However, in reality, a side effect might have multiple,
different mechanisms that cannot be represented by a single combination of la-
tent representations of drugs. Furthermore, DDI data is sparse, suggesting that
using a sparsity regularization would help to learn better latent representa-
tions to improve prediction performances. To solve these remaining problems,
we propose SPARSE, which encodes the DDI hypergraph and drug features
to latent spaces to learn multiple types of combinations of latent features of
drugs and side effects, controlling the model sparsity by a sparse prior. The
experimental results on the largest DDI benchmark data showed that SPARSE
achieved an AUC of 0.9524 and AUPR of 0.882, which was higher than Cent-
Smoothie with 0.9348 and 0.8749. We also validated the prediction results by
analyzing the biological properties such as target proteins of the top prediction
obtained by the learned latent interactions of SPARSE. For the top 10 cases,
we could find relevant references for all cases, suggesting the prominence of
prediction and the usefulness of SPARSE in practice.

In Chapter 5, we conclude our work in establishing advanced deep learning
models for predicting drug side effects and give some possible future directions
to enhance the models.
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Chapter 1

Introduction

Computational needs for predicting drug side effects

According to WHO, an adverse drug reaction (ADR) or a drug side effect
(side effect for short) is a response to a medicine which is noxious and unin-
tended, and which occurs at doses normally used in humans [WHO, 1972]. In
reports of 2011, drug side effects accounted for nearly 6% of total hospitaliza-
tions in the USA, which cost billions of dollars and was responsible for signif-
icant patient morbidity and mortality [Poudel et al., 2017, Weiss et al., 2013].
Therefore, studies of drug side effects are important in drug discovery.

The traditional methods for obtaining drug side effects often use clinical tri-
als or post-marketing surveillance reports [Hoots et al., 2018]. However, these
methods are costly and time-consuming, leading to the need for developing
methods to support the process of determining drug side effects.

Nowadays, with the development of technologies and standardization, there
exist numerous databases related to drugs and side effects, for example, more
than 7 million electronic health records of patients [FDA, 2019], 113 million
chemical substances [Kim et al., 2016], biological knowledge for mechanisms of
more than 15 thousand drugs [Kanehisa and Goto, 2000, Wishart et al., 2018].
By integrating these various kinds of data, computational methods, especially
deep learning, can be used to make highly accurate, inexpensive, and fast drug
side effect predictions. These results not only provide potential drug side ef-
fects but also potential mechanisms for further clinical verification to enhance
drug side effect studies.
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Objectives of the Thesis

In light of the need for computational models for predicting drug side ef-
fects, we aim to provide a systematic survey of available data resources for
deep insights into the information that can be used. We also aim to establish
novel prediction models that can provide highly accurate drug side effects, es-
pecially for potential drug-drug interactions. Furthermore, the models should
provide suggestions to support explanations of the reasons causing drug-drug
interactions in some cases. We believe that the models developed in our re-
search can contribute to the drug development process to guide drug safety.

Overview of the Thesis

In the thesis, Chapter 2 gives a survey of data resources used in drug side
effect studies with corresponding tasks and methods. First, we describe data
resources consisting of two kinds: clinical data and non-clinical data. We also
present a commonly used way to represent drug information from these data
resources: vectors of drug descriptors for the presence of drug properties in
terms of chemical, physical, and biological features. Next, we present three
main tasks used in drug side effect studies with corresponding methods in drug
side effect benchmark data creation, drug side effect prediction, and drug side
effect mechanism analysis. We note here that in this chapter, we only illustrate
methods for predicting drug side effects where the input is a single drug and
the output is the corresponding side effects, then compare the performances of
existing methods.

Chapter 3 addresses the problem of predicting (drug) side effects for drug-
drug interactions, where the input is a pair of drugs and the output is corre-
sponding drug side effects. First, we describe related work on the problem,
with a focus on the existing state-of-the-art methods of graph representation
for drug-drug interaction data. Next, we analyze the problem with this kind
of graph representation in terms of the lack of expressing side effect relation-
ships and propose a new representation in the form of a hypergraph to leverage
the side effect relationships. Then, we propose a deep learning model namely
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CentSmoothie to learn drugs and side effects altogether with the assumption
that the side effect should be close to the combination of the properties of the
two corresponding drugs, which is also the midpoint. Finally, we show empir-
ical experimental results to verify the performance advantage of CentSmoothie
in comparison with existing cutting-edge methods in testing data.

Chapter 4 presents the next model to further improve the prediction perfor-
mance of CentSmoothie. First, we show the remaining problems of CentSmoothie
in two aspects: i) there is only one combination of properties of the drugs for
each side effect while in reality, there might exist multiple ways to combine
drug properties, and ii) not considering the problem of sparsity given a very
few percentages of known drug-drug interactions, which might impair the
model performance. Next, we introduce SPARSE, an advanced hypergraph
neural network model to solve both problems. Finally, we show empirical
experimental results to verify the advantage of SPARSE in comparison with
CentSmoothie. In addition, we provide some examples for the ability to ex-
plain the reasons for side effects predicted from SPARSE.

Chapter 5 gives concluding remarks on the thesis and discusses some po-
tential further directions to improve the work.
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Chapter 2

A survey of drug side effect studies:
data, task, and methods

2.1. Introduction

In general, data used in drug side effect studies consist of clinical and non-
clinical data. The clinical data contains observations of drug side effects from
clinical treatments of patients. These observations have not only adverse drug
reactions but also personal contexts, such as dosages of treatments, ages, gen-
ders, and diseases of patients. Since different patients can have different ad-
verse drug reactions, such personal contexts can support to build personalized
drug side effect prediction models.

The non-clinical data contains information about biological systems such as
drug-protein interactions and biological processes. In fact, there are various
possible mechanisms in drug side effects, for example, by interactions of drugs
with proteins, but the details of these mechanisms are still unknown [Mann
and Andrews, 2007, Rieder, 1994]. By integrating clinical data with non-clinical
data, it is expected that the quality of drug side effects studies will be improved,
and drug side effect mechanisms can be revealed.

Since there are different machine learning methods using various kinds of
drug side effect data resources, an overview of current methods in drug side ef-
fect studies is necessary. Table 2.1 summarizes the latest survey papers related
to drug side effect studies up to 2018. These studies often use either clinical data
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[Poloju and Muniganti, 2018] or non-clinical data [Chen et al., 2016]. There is
only one survey that uses both kinds of data [Ho et al., 2016], but there is no de-
tailed analysis of methods, such as providing a taxonomy or conducting exper-
iments to compare performances of methods. Recently, there are new studies of
drug side effects with the emerging of using machine learning methods, lead-
ing to a need for a more detailed classification for these methods. Moreover,
drug side effect studies are not only drug side effect prediction [Chen et al.,
2016] but also analyzing drug side effect mechanisms by revealing biological
components associated with drug side effects [Wang et al., 2013]. Motivated by
this, we give a broader view of drug side effect studies containing drug side
effect data resources and how computational tasks in drug side effect studies
use these kinds of data.

The content of this chapter can be summarized as follows. 1) We summa-
rize the drug side effect data resources containing both clinical and non-clinical
data. 2) We summarize a wide range of drug descriptors used in drug side ef-
fect studies. 3) We analyze methods used in drug side effect studies in three
main tasks: (i) drug side effect benchmark data creation, (ii) drug side effect
prediction, and (iii) drug side effect mechanism analysis (We focus on papers
in the main journals with the most numbers of papers on this topic such as
Bioinformatics, BMC Informatics, Briefing in Bioinformatics, and Nucleic acid
research, then we follow cited papers. Papers are collected up to Feb 2019.). In
each task, we analyze data and commonly used machine learning methods. 4)
We conduct an experiment to compare the drug side effect prediction perfor-
mances of eight commonly used methods.

2.2. Data resources in drug side effect studies

In this section, we summarize commonly used data resources in drug side
effect studies. Fig. 2.1 illustrates a hierarchical classification of data resources
in drug side effect studies containing two groups: clinical and non-clinical data.
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Table 2.1: Recent surveys on drug side effect studies (up to 2018).

Paper
Task Data

Method
analysis

Clinical data

extraction

Drug side

effect

prediction

Clinical data Drug side effect

& non-clinical

data

Poloju et al., 2018 [Poloju and

Muniganti, 2018]

✓ ✓

Chen et al., 2016 [Chen et al.,

2016]

✓ ✓ ✓

Ho et al., 2016 [Ho et al.,

2016]

✓ ✓ ✓ ✓
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Figure 2.1: Data resource hierarchy in drug side effect studies.

2.2.1 Clinical data

Clinical data contains observations of drug side effects in clinical treatments,
which are often electronic health records (EHR) or records from adverse re-
port systems. Each record contains drugs and observed drug side effects. In
addition, personal contexts such as demographic and dosage information are
also stored. There is evidence that drug side effects are different from differ-
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Table 2.2: Commonly used clinical data resources.

Data
resources Personal

context

Drug side effect benchmark

Monopharmacy Polypharmacy
FAERS [FDA, 2019] ✓
OMOP-CDM [Hripcsak et al., 2015] ✓

SIDER [Kuhn et al., 2015] ✓
Liu’ dataset [Liu et al., 2012] ✓
AEOLUS [Banda et al., 2016] ✓
OFFSIDES [Tatonetti et al., 2012] ✓
TWOSIDES [Tatonetti et al., 2012] ✓

ent patients [Alberti and Cavaletti, 2014], therefore, these personal contexts are
important to build personalized drug side effect prediction models [Bao et al.,
2017].

Table 2.2 provides the commonly used clinical data resources. For per-
sonal contexts, it has FDA Adverse Event Reporting System (FAERS) [FDA,
2019] and Medical Outcomes Partnership Common Data Model (OMOP CDM)
[Stang et al., 2010]. There are four main tables in FAERS: demographics, drug,
therapy, and reaction. The demographics table describes patient information
containing patient identification, age, gender, weight, location, and other re-
lated information. The amount and routes of drug administration with patient
identifications come from the drug table, and the time of drug treatments is
from the drug therapy table. The reaction table contains the drug adverse reac-
tions with patient identifications.

OMOP CDM is a data model provided by Observational Health Data Sci-
ences and Informatics [Hripcsak et al., 2015], which is an international collabo-
ration with the aim to create and apply data analytic solutions to a large num-
ber of observational health databases. There are four domains of OMOP CDM
v5.0: standardized clinical data, standardized health system data, standardized
health economics data, and standardized derived elements. Standardized clin-
ical data contains the core information with clinical events and demographic
information of patients. With OMOP CDM, millions of health records from dif-
ferent resources are transformed into pre-defined tables of the four domains,
supporting further analysis Simpson et al. [2013].

FAERS was used to extract drug side effect benchmark datasets, which con-
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Table 2.3: Commonly used non-clinical databases.

Database
Elements

Having

InteractionsChemical /

Drug

Protein /

Gene

Pathway drug

side

effect

term

Disease

DrugBank [Wishart et al., 2007] ✓ ✓ ✓

PubChem [Kim et al., 2015] ✓

PDB [Berman et al., 2000] ✓

BindingDB [Liu et al., 2006] ✓ ✓ ✓

HPRD [Keshava Prasad et al., 2008] ✓ ✓

CTD [Davis et al., 2008] ✓ ✓ ✓ ✓

KEGG [Kanehisa and Goto, 2000] ✓ ✓ ✓ ✓ ✓

SuperTarget [Günther et al., 2007] ✓ ✓ ✓

ADReCS [Cai et al., 2014] ✓

DART [Ji et al., 2003] ✓ ✓ ✓ ✓

TTD [Chen et al., 2002] ✓ ✓ ✓ ✓ ✓

Bio2RDF [Belleau et al., 2008] ✓ ✓ ✓ ✓ ✓ ✓

tain reliable drug side effect associations [Kuhn et al., 2015, Tatonetti et al.,
2012]. SIDER, a common drug side effect benchmark dataset for many drug
side effect studies, was extracted from FAERS for drug side effects caused by
single drugs (monopharmacy) [Kuhn et al., 2015]. Liu’ dataset [Liu et al., 2012]
is a benchmark dataset extracted from SIDER into the binary format with ad-
ditional drug information. AEOLUS is also a monopharmacy dataset extracted
from FAERS and has more drug side effect associations than SIDER. Extracting
from FAERS with a criterion of removing bias data, OFFSIDES for drug side
effects caused by single drugs, and TWOSIDES for drug side effects caused
by combinations of two drugs (polypharmacy) were created [Tatonetti et al.,
2012]. However, SIDER, AEOLUS, OFFSIDES, and TWOSIDES only contain
two kinds of information: drugs and drug side effects. As far as we know,
there is no benchmark Drug side effect data for academic research that con-
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tains personal contexts such as diseases, and duration of drug treatments.
In recent years, data from social media such as Facebook, Twitter is another

kind of data to analyze drug side effects. This social media data contains com-
ments from patients during drug treatments. However, the tasks on this kind of
data are mainly drug side effect identification using techniques of natural lan-
guage processing [Emadzadeh et al., 2017, Huynh et al., 2016, Lee et al., 2017],
which are considered as data pre-processing steps, therefore, we do not cover
them in this survey.

2.2.2 Non-clinical data

The non-clinical data contains information about chemical, physical, and bi-
ological properties of drugs and biological systems, which can help revealing
mechanisms of drugs and drug side effects. In fact, drug side effects are the re-
sults of complex reactions of drugs with biological components. Some studies
have shown that drug side effects can be the results of reactions of drug chemi-
cals with proteins [Mann and Andrews, 2007, Rieder, 1994, Ring and Brockow,
2002], which interrupts normal biological processes leading to abnormal reac-
tions in human bodies. By using this kind of data, we can improve the perfor-
mance of models and extract possibly associated biological components with
drug side effects.

Table 2.3 summarize the commonly used non-clinical databases in drug side
effect studies in two aspects: elements in each database and interactions among
elements existing or not. For example, ADReCS [Cai et al., 2014] is a database
for only drug side effect term definitions, and KEGG [Kanehisa and Goto, 2000]
contains information about proteins, drugs, biological pathways, diseases, and
interactions among them such as drugs with proteins targets. To link these
databases, Bio2RDF [Belleau et al., 2008] provides interconnections among ele-
ments of different databases.

Finally, the connection between clinical and non-clinical data can be illus-
trated by a network in Fig. 2.2. The clinical data provides information of drug
side effect connections with personal contexts. The non-clinical data contains
connections of drug-drug, drug-protein, protein-protein, and protein-biological
pathway. This network is used to support some computational tasks repre-

9



Figure 2.2: A network for clinical and non-clinical data.

sented in Section 4.

2.3. Drug descriptors

One possible way of encoding drugs is to use descriptors, which are physi-
cal, chemical, and biological characteristics of a drug. Since the quality of these
descriptors impacts drug side effect prediction performances, the understand-
ing of drug descriptors is a basic need. Fig. 2.3 presents a classification for
drug descriptors. In general, drug descriptors can be categorized into two
classes: physical or chemical descriptors (PC-descriptors) and biological de-
scriptors (BIO-descriptors).

2.3.1 Physical or chemical (PC) descriptors

The PC-descriptors describe the structure of drug molecules and their phys-
ical, and chemical properties [Grisoni et al., 2018, Testa and Kier, 1991, Todes-
chini and Consonni, 2008]. Based on their dimensionalities and properties, this
class of descriptors can be divided into 3 subgroups: structural descriptors,
spatial descriptors, and other miscellaneous descriptors.

The structural descriptors describe features of molecular structures such as

10
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Figure 2.3: Different kinds of drug descriptors.

Table 2.4: Two groups of structural descriptors implemented in CDK [Steinbeck
et al., 2003].

Group Name Number of
descriptors

Variable-size Daylight family [Daylight, 2018] -

Fixed-size

E-State fragments [Hall and Kier, 1995] 79
Klekota-Roth [Klekota and Roth, 2008] 4860
MACCS keys [Durant et al., 2002] 166
PubChem descriptors [Kim et al., 2015] 881
CDK substructures [Steinbeck et al., 2003] 307

atom counters, atom pairs, rings, and other substructures. Table 2.4 presents
two groups of structural descriptors (fingerprints) implemented in Chemistry
Development Kit (CDK) [Steinbeck et al., 2003]: variable-size and fixed-size
groups. The former group generates substructures from a given set of molecules,
in which the number of substructures can be changed depending on the pro-
vided molecule set [Daylight, 2018]. In contrast, the latter group uses pre-
defined substructures, for example, MACCS keys and PubChem descriptors.
An illustration of PubChem descriptors is shown in Fig. 2.4. The PubChem
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descriptors contain pre-defined 881 bits, which are divided into seven sections
with corresponding bits. For instance, bit 308, which belongs to section 3 of
simple atom pairs, indicates the existence of O-H connection.

Figure 2.4: Seven sections in PubChem descriptors.

The spatial descriptors describe spatial properties of drug molecules. In
PubChem 3D database [Bolton et al., 2011], 3D conformers descriptors of molecules
are used. These descriptors are calculated by OMEGA [Openeye scientific software,
2018], a tool published by OpenEye. Molecular interaction fields (MIFs) are an-
other kind of spatial descriptors for drugs. MIFs describe spatial variation of
the interaction energy between a molecular target and a chosen probe. Probes
are small molecules representing common interactions such as hydrophobic,
hydrogen bond donors, and acceptors [Wermuth, 2011]. Some well known
MIFs are GRID [Goodford, 1985], VolSurf [Crivori et al., 2000], CoMFA [Ku-
binyi, 1998], and MetaSite [Cruciani et al., 2005]. Fig. 2.5 illustrates the idea
of GRID descriptors. A molecule is put into a cube with grids. An empirical
energy function will be used to calculate the interaction field of each cell at
position (x, y, z) of the cube. The energy function is defined by:

Exyz = ∑ El j + ∑ Eel + ∑ Ehb

where El j, Eel, and Eeb are the Lennard-Jones function, the electronic func-
tion, and the hydrogen bound function, respectively [Goodford, 1985].

12



Figure 2.5: A molecule with 3D GRID.

Other miscellaneous descriptors such as physicochemical properties of drugs
also affect the action of drugs. Lipophilicity [Testa et al., 2000, Young et al.,
1988] impacts solubility, absorption, distribution, membrane penetration, and
plasma protein binding of drugs. Hydrogen bond [van de Waterbeemd and
Kansy, 1992] is another physical property of electrostatic attraction, which takes
two out of five Lipinski’s rules [Lipinski et al., 1997]. Size/geometric features of
drugs such as molecular weight and atom counters can also reflect drug prop-
erties.

2.3.2 Biological (BIO) descriptors

The BIO-descriptors describe biological properties of drugs, which can be
classified into two subgroups: function-based descriptors and interaction-profile
descriptors. The function-based descriptors describe purposes of drugs in ther-
apy. ATC code [WHO, 2019], which is a classification system for drugs based
on therapeutic properties, is a typical example of function-based descriptors.

The interaction-profile descriptors describe associated biological components
of drugs containing protein targets and associated biological pathways of drugs
[Liu et al., 2012, Yamanishi et al., 2012]. These interaction-profile descriptors are
taken from the databases having drug interaction information in Table 2.3, such
as DrugBank [Wishart et al., 2007], BindingDB [Liu et al., 2006], and Bio2RDF
[Belleau et al., 2008].
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2.4. Tasks, data, and methods

In this section, we summarize three main computational tasks in drug side
effect studies: (i) drug side effect benchmark data creation, (ii) drug side effect
prediction, and (iii) drug side effect mechanism analysis. Fig. 2.6 provides
an overview of drug side effect studies of these three tasks. In each task, we
analyze objectives, data, and commonly used methods. The main notations for
this chapter used in the following subsections are described in Table 2.5.

Table 2.5: Main notations in Chapter 2.

Notation Description
i ∈ {1, . . . , d} a drug index in a set of given d drugs
j ∈ {1, . . . , s} a drug side effect index in a set of given s

drug side effects
xi ∈ Re a descriptor vector of size e of drug i
X = [x1 . . . xd]

T ∈ Rd×e a descriptor matrix of given d drugs, T is
the transpose operator.

yi,j ∈ R an association score of drug i and drug side
effect j

yi = [yi,1 . . . yi,s]
T ∈ Rs a vector for association scores of drug i

with s drug side effect
Y = [y1 . . . yd]

T ∈ Rd×s a given drug side effect association score
matrix

hi ∈ Rm a vector of size m representing associated
biological components of drug i

H = [h1, . . . , hd]
T ∈

Rd×m
a given drug-biological component matrix

2.4.1 Task 1: Drug side effect benchmark data creation

Clinical data for drug side effects contains millions of records with redun-
dant information, for example, some records contain similar information. Cre-
ating a drug side effect benchmark dataset is a necessary task in drug side effect

14
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Figure 2.6: Computational tasks of drug side effect studies: Data and com-
monly used methods.

studies. It helps other studies in evaluating performances of new methods and
comparing them with existing methods.

Table 2.6: Contingency table for Fisher’s exact test.

Number of records of drugs
drug i other drugs

drug side effect j
Yes n1 n3

No n2 n4

In drug side effect studies, benchmark data is extracted from clinical records
to retrieve reliable drug side effect associations, which are pairs of drugs with
corresponding drug side effects. However, drug side effect pairs have different
levels of association significance in clinical records. Some pairs of drug side
effects rarely appear in the clinical records, leading to their low association
significance. In addition, some records often contain a combination of more
than one drug, making the verification of drug side effect associations difficult.
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To check the significance of drug side effect associations, association rule
mining or statistical significance tests can be applied [Montastruc et al., 2011].
We will briefly explain a typical significance test, Fisher’s exact test [Agresti,
1992]. Consider drug i and drug side effect j in a clinical database, the asso-
ciation information of drug i and drug side effect j is stored in a contingency
table as in Table 2.6. In this table, n1 denotes the number of records containing
drug side effect j of drug i, while n2 is that of the other drugs. The number of
records that do not contain drug side effect j of drug i is n3, and that of the other
drugs is n4. The Fisher’s exact test evaluates the significance of the association
of drug i and drug side effect j by a p-value:

p =
(n1 + n2)!(n3 + n4)!(n1 + n3)!(n2 + n4)!

n1!n2!n3!n4!(n1 + n2 + n3 + n4)!

This technique was used on FAERS to extract SIDER, a monopharmacy drug
side effect benchmark dataset used in a large number of drug side effect studies
[Kuhn et al., 2010, 2015]. The technique was also used to extract OFFSIDES
for monopharmacy drug side effects, which are drug side effects of drugs that
do not appear in the drug’s package insert and TWOSIDES for polypharmacy
drug side effects of drug-drug interactions [Tatonetti et al., 2012].

2.4.2 Task 2: Drug side effect prediction

Predicting drug side effects of drugs, or drug side effect association scores is
an important objective of drug side effect studies. Depending on the personal
context information is used or not, studies in drug side effect prediction can be
divided into two classes: personalized drug side effect prediction and general
drug side effect prediction. In the following subsections, we analyze machine
learning methods according to each class. We here note that the prediction task
in this chapter is illustrated with single drug input. The prediction for drug-
drug interactions will be addressed in Chapters 3 and 4.

Personalized drug side effect prediction

The personalized drug side effect prediction uses personal contexts taken
from clinical data with information such as dosages of treatments, gender, and
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age of each patient. Therefore, the prediction result will be different among
patients even with the same drugs. For this prediction, we focus on methods
using Poisson models, which are commonly used models for personalized drug
side effect prediction.

i. Poisson models

The aim of using Poisson models is to predict the probabilities of the num-
bers of occurrences of drug side effects during drug treatments. It is assumed
that these numbers follow Poisson distributions with expectations depending
on the taken drugs [Bao et al., 2017, Simpson et al., 2013]. For simplicity, consid-
ering a patient p in drug treatment, the probabilities of numbers of occurrences
of s drug side effects Φ(ỹ|x̃) ∈ Rs are calculated by:

Φ(ỹ|x̃) = [P(ỹ1|ϕ1(x̃)) . . . P(ỹj|ϕj(x̃)) . . . P(ỹs|ϕs(x̃))]T

where x̃ = [x̃p,1 . . . x̃p,i . . . x̃p,d]
T is a vector indicating drugs taken by patient

p during the treatment, ỹ = [ỹ1 . . . ỹj . . . ỹs]
T is a vector denoting the numbers

of occurrences of s drug side effects, and P(ỹj|ϕj(x̃))) = ϕj(x̃)
ỹj e−ϕj(x̃)/ỹj! is the

Poisson distribution for the number of occurrences of drug side effect j with
expectation ϕj(x̃). A commonly used formulation of ϕj is:

ϕj(x̃) = exp (θp,j +
d

∑
i=1

x̃p,i.wi,j)

where θp,j is a parameter depending on the patient, leading to differences in
drug side effect occurrences of different patients, and wi,j is a parameter used
as a weight for the association of drug i and drug side effect j [Simpson et al.,
2013]. This formulation shows a multiplicative contribution of each drug to the
expectation of the number of occurrences of each drug side effect.

However, the existing Poisson models have a limitation in terms of integrat-
ing other information such as weights, genders of patients and also non-clinical
data.
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ii. Other methods

There are other methods that were used to combine drugs with personal
contexts into medical case vectors. A feature-based similarity method was pro-
posed to learn weights for these medical case vectors with the idea to distin-
guish cases having a drug side effect from cases not having the drug side effect
[Yang et al., 2014]. These medical case vectors were also used as inputs for a
classification problem [Chen, 2018].

General drug side effect prediction
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Figure 2.7: An example of latent variables with thirteen psychoactive sub-
stances [Huba et al., 1981].

In contrast to personalized drug side effect prediction, general drug side
effect prediction predicts drug side effect association scores without using per-
sonal contexts. A common approach for this class is to combine knowledge
of drugs from non-clinical data to enrich drug information and apply machine
learning methods to build drug side effect prediction models. As presented
in Section 2.3, drug information is described by various types of drug descrip-
tors. The drug side effect prediction models receive the drug descriptors as the
inputs and output all corresponding drug side effects.

In this study, we consider general drug side effect prediction as a multi-label
classification problem such that each drug side effect is a label and each drug
can have many labels [Muñoz et al., 2017, Zhang et al., 2015]. The prediction
models calculate the association scores, which are real numbers, of each drug
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with all labels. The final labels of the drug are selected from these scores by a
ranking method. In detail, a drug side effect prediction model is formulated as
a function f : Re → Rs, where e is the number of descriptors and s is the number
of drug side effects. Given a drug with descriptor vector x ∈ Re, the model
predicts drug side effect association scores with s drug side effects: f(x) ∈ Rs.

We further classify the models into two classes: i. non-latent variable models
and ii. latent variable models. Latent variables are ones that are not directly ob-
served or measured and needed to infer from observed data. Fig. 2.7 presents
an example of latent variables from a study on finding patterns of psychoactive
substances used in adolescents [Huba et al., 1981]. There are thirteen psychoac-
tive substances from beer to hallucinogenics, which are observed variables. In
addition, there are some correlated pairs of substance usage, for example, co-
caine and amphetamines. The study suggested that these substances can be
grouped into three groups: alcohol, cannabis, and hard drug. The patterns of
substance usage will be taken from these three groups, which are called latent
variables.

A latent variable model is a model that contains latent variables obtained
from observed ones. In application to drug side effect prediction, latent vari-
ables of drugs can be interpreted as groups of drug descriptors that are highly
correlated with each other. The representations of drugs in the space created
by latent variables are called latent vectors.

In the following contents, we first describe the formulation for function f
according to models of the two classes: non-latent variable models and latent
variable models, which are based on the criteria that latent vectors of drugs are
learned or not. Then we present an experiment to compare the prediction per-
formances of these models.

i. Non-latent variable models

In non-latent variable models, drug descriptors are used to predict drug
side effect associations without learning drug latent vectors. We present three
typical methods: a. k nearest neighbors, b. kernel methods and c. mining networks
of drug side effects.

a. k nearest neighbors
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The idea of using k nearest neighbors (k-NN) is that drugs having similar
descriptor vectors tend to have similar drug side effects [Cao et al., 2015, Liu
et al., 2012, Muñoz et al., 2016, Pauwels et al., 2011, Zhang et al., 2015]. Suppose
that there is a similarity measure sim : Re × Re → R, for example, cosine
similarity. To predict drug side effect association scores f(x), first the top k
most similar drugs to x are identified resulting in a set of indices of the similar
drugs T(x, k). Then the drug side effect association scores are calculated by:

f(x) = [ f1(x) . . . f j(x) . . . fs(x)]T.

where f j is a weighted average function:

f j(x) = ∑
i∈T(x,k)

wi(x)yi,j, j ∈ {1 . . . s},

with weights wi are obtained from drug similarities, for example:

wi(x) =
sim(x, xi)

∑i′∈T(x,k) sim(x, xi′)
(2.1)

Some extensions of KNN were also applied, for example the linear neigh-
borhood similarity method (LNSM) [Zhang et al., 2016]. In LNSM, the similar-
ity weights are calculated such that a drug descriptor vector is a linear combina-
tion of descriptor vectors of the neighbor drugs with corresponding similarity
weights.

b. Kernel methods
The idea of using kernel methods, for example, support vector machines

(SVMs), is to use classification functions calculated from kernel functions in the
form of inner products of drug descriptor vectors [Jahid and Ruan, 2013, Liu
et al., 2012, Pauwels et al., 2011, Yamanishi et al., 2012]. To predict drug side
effect association scores f(x) = [ f1(x) . . . f j(x) . . . fs(x)]T, the kernel methods
use the following form for f j:

f j(x) = g(
d

∑
i=1

wi,jyi,jK(x, xi)), j ∈ {1 . . . s}

where g is a function, for example, a sign function. K : Re×Re → R is a ker-

nel function, for example, a radial basis function (rbf): K(x, xi) = exp(− (x−xi)
T(x−xi)

2δ2 )
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with a hyperparameter δ, and wi,j is a parameter used as a weight for the asso-
ciation of drug i and drug side effect j.

Different from k-NN, the kernel methods learn weights from a training pro-
cess, which depends on both drugs and drug side effects, while weights in
k-NN are calculated only from drug similarities.

c. Mining networks of drug side effects
Consider a drug side effect network G = (V, E), where V is a set of nodes

of d drug and s drug side effects: V = {v1, . . . , vi, . . . , vd} ∪ {ν1, . . . , νj, . . . , νs},
and E is a set of edges of drug nodes-drug side effect nodes for known drug
side effects of drugs and drug nodes-drug nodes for drug similarities. The idea
of mining this network is that if a drug and a drug side effect in the network are
well-connected, they possibly have a high association score Cami et al. [2011],
Davazdahemami and Delen [2018], Lin et al. [2013]. This approach can be for-
mulated in two steps:

1. Calculate partial connection scores r(vi, νj) ∈ Rl of each pair of drug node
vi and drug side effect node νj using l different measures on G. A com-
monly used measure is the Jaccard index [Cami et al., 2011, Davazdahe-
mami and Delen, 2018]. Let Ni = {v|(v, vi) ∈ E} be a set of neighbor
nodes of drug node vi, and Nj = {v|(v, νj) ∈ E} be that of drug side ef-
fect node νj, the partial connection score calculated by Jaccard index is:
|Ni ∩Nj|/|Ni ∪Nj|, where | . | denotes the cardinality of a set. Some other
measures such as Dice index and Adamic/Adar index were also applied
[Davazdahemami and Delen, 2018]. Random walk [Tong et al., 2006] was
also applied to calculate r [Rahmani et al., 2016].

2. Calculate drug side effect association scores f(x) of a drug with descrip-
tor vector x. Let v(x) be the corresponding node in G of the drug. The
association scores are obtained by:

f(x) = [ f (r(v(x), ν1)) . . . f (r(v(x), νj)) . . . f (r(v(x), νs))]
T

where f was often a binary function [Lin et al., 2013] or a logistic regres-
sion function (LR) [Cami et al., 2011]. In addition, random forest (RF) was
also applied to f [Davazdahemami and Delen, 2018].
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However, a problem with mining drug side effect networks is sparsity that
there are too few edges between drugs and drug side effects, for example, in
SIDER dataset, the edge density is 0.017. This makes the prediction less effec-
tive since there is only a small number of drug side effects predicted for each
drug.

ii. Latent variable models
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Figure 2.8: Learning latent variables and using latent variables.

In latent variable models, drug side effect association scores are calculated
by using drug latent vectors learned from drug descriptors. Fig. 2.8 illustrates
two stages of using latent models: learning latent vectors of drugs and then
using these latent vectors for prediction. It is expected that latent vectors can
remove redundant information from drug descriptors, for example, unneces-
sary descriptors. In addition, calculating with latent vectors of small size can
reduce the complexity of high-dimensional data. In this chapter, we briefly de-
scribe three commonly used latent variable models (canonical correlation anal-
ysis, matrix factorization, and neural networks), and some other miscellaneous
models.

a. Canonical correlation analysis
The aim of using canonical correlation analysis (CCA) is to find weight vec-

tors a ∈ Re and b ∈ Rs such that the correlation of the projections of drug
descriptor matrix X and drug side effect association matrix Y is maximized
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[Yamanishi et al., 2012]:

arg max
a,b

(Xa)T(Yb)√︁
(Xa)T(Xa)

√︁
(Yb)T(Yb)

.

The first pair of (Xa, Yb) is called the first pair of canonical variables (latent
variables). The remaining pairs of canonical variables have an additional con-
straint in that they are uncorrelated with existing pairs of canonical variables.
c pairs of weight vectors a and b form two weight matrices: A ∈ Re×c and
B ∈ Rs×c, respectively.

The latent vector of a drug with descriptor vector x is calculated by: z(x) =
ATx. drug side effect association scores f(x) are obtained by minimizing the
distance of latent vectors:

f(x) = arg min
y∈Rs

⃦⃦⃦
z(x)− BTy

⃦⃦⃦
.

where ∥ . ∥ is a norm, for example, Euclidean norm.
Sparse canonical correlation analysis (SCCA), a variant of CCA, was also

applied to predict drug side effect association scores Pauwels et al. [2011]. In
SCCA, L1 regularization is applied to columns of A and B, leading to their
sparsity.

b. Matrix factorization
The idea of using matrix factorization (MF) is illustrated in Fig.2.9 [Poleksic

and Xie, 2018]. It is assumed that drugs and drug side effects share c unknown
latent variables. Then the drug side effect association matrix Y is decomposed
into two matrices of latent vectors of drugs and drug side effects in the space of
latent variables: U ∈ Rd×c and V ∈ Rs×c, such that Y ≈ UVT. Supposing there
is a drug similarity matrix Sd ∈ Rd×d calculated from drug descriptors matrix
X, and a drug side effect similarity matrix Ss ∈ Rs×s calculated from drug side
effect definitions, the objective function is:

arg min
U,V

⃦⃦⃦
Y−UVT

⃦⃦⃦
+R(U, V, Sd, Ss),

where the first part is the error from matrix factorization, and the second one
is the regularization for U and V given Sd and Ss, for example, Laplacian reg-
ularization.
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Figure 2.9: An illustration of matrix factorization.

To calculate drug side effect association scores f(x), first k-NN is applied to
calculate a new latent vector z(x) from the existing drug latent vectors:

z(x) = ∑
i∈T(x,k)

wi(x)ui

where ui ∈ Rc is the latent vector of drug i such that uT
i corresponds to the ith

row of U, T(x, k) is the set of indices of the top k most similar drugs to x, and
wi(x) are similarity weights defined in Equation 2.1.

Then, the drug side effect association scores are obtained by:

f(x) = Vz(x)

Different from CCA, MF only focuses on Y to learn latent vectors and uses
X as additional information which can be omitted from the regularization part.
Meanwhile, CCA requires both X and Y to obtain latent vectors.

c. Neural networks
Neural networks, which are machine learning models featured by the abil-

ity to learn non-linear relationships, were applied to predict drug side effect
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Figure 2.10: An illustration of a neural network.

association [Dey et al., 2018, Wang et al., 2019, Zitnik et al., 2018]. Fig. 2.10 il-
lustrates this technique in detail. The basic components of neural networks are
neurons. Each neuron receives an input vector x′ = [x′1 x′2 . . . x′n]T and outputs a
value y′ by a function: y′ = f (wTx′ + b), where b is a bias, w = [w1 w2 . . . wn]T

is a weight vector, and f is an activation function, for example, a sigmoid func-
tion, making non-linear combinations. A neural network module is composed
of multiple layers of neurons that the output of each neuron of a layer is used
as an input for neurons of other layers. The outputs of a neural module, for
example, named Encoder, given an input vector x is denoted by Encoder(x).

To predict drug side effect association scores f(x), there are two steps to
process:

1. Obtain the latent vector: z(x) = Encoder(x), where Encoder is a neural
module receiving drug descriptor vector x as the input vector.

2. Predict drug side effect association scores: f(x) = Decoder(z(x)), where
Decoder is a neural module receiving drug latent vector z(x) as the input
vector.
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An advantage of using neural networks is the ability to approximate any
continuous function. If there is no hidden layer, neural networks become lo-
gistic regression functions. The architecture of neural networks can be more
complex when changing connections of neurons and the numbers of layers, for
example, a multi-layer feedforward neural network (MLN) [Wang et al., 2019],
or a deep convolutional neural network (DCN) [Dey et al., 2018]. These com-
plex neural networks aim to approximate mapping functions from inputs to
outputs better. However, the number of parameters in a neural network is of-
ten much larger than that of other models. This problem leads to increasing
computational complexity and the potential for overfitting of neural networks.

d. Other methods
There are some miscellaneous methods to obtain latent vectors of drugs to

predict drug side effect associations, for example, mapping drugs into a drug
side effect space [Dimitri and Lió, 2017, Xiao et al., 2017] and mapping drugs
into a metabolic reaction space [Shaked et al., 2016]. In mapping drugs into a
drug side effect space, groups of highly correlated drug side effects were ex-
tracted, then each drug was represented by a vector over these groups. In map-
ping drugs into a metabolic reaction space, flux variability analysis (FVA) was
applied to represent drug-protein/gene interaction profiles by a vector over
metabolic reactions [Mahadevan and Schilling, 2003], then these vectors were
used to predict drug side effects.

Performance comparison in general drug side effect prediction

We conducted experiments to compare the general drug side effect predic-
tion performances on monopharmacy cases of eight machine learning models.
There were four non-latent variable models: LNSM [Muñoz et al., 2017, Zhang
et al., 2016], SVMs [Jahid and Ruan, 2013, Liu et al., 2012], RF [Davazdahemami
and Delen, 2018, Liu et al., 2012] and LR[Cami et al., 2011, Liu et al., 2012],
and four latent variable models: CCA [Pauwels et al., 2011, Yamanishi et al.,
2012], MF [Poleksic and Xie, 2018], MLN [Wang et al., 2019], DCN [Dey et al.,
2018] (The convolutional network proposed in [Zitnik et al., 2018] addressed
polypharmacy drug side effects, so we do not compare.).
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i.Experimental setups

We ran experiments with AEOLUS dataset [Banda et al., 2016], a monophar-
macy dataset for drug side effect prediction, which was also used in [Muñoz
et al., 2017] (AEOLUS is the largest one among AEOLUS, SIDER, and Liu’s
datasets.). We only selected drugs appearing in DrugBank and drug side ef-
fects occurring in more than 50 drugs. The final statistical information of the
dataset is provided in Table 2.7, containing the number of drugs, the numbers
of drug side effects, the numbers of drug side effect associations, the average,
minimum, and maximum numbers of drug side effects per each drug.

Table 2.7: Statistics of the used dataset.

#drugs #ADRs
#drug-ADR
pairs

#ADRs/drug

Avg. Min
Max

1,385 2,707 605,121 445 1
2,703

Table 2.8: Statistics of the used drug descriptors.

Name Source Size
PCBio Pubchem+Bio2RDF 7, 593

2DChem PubChem [N_ATOMS_OF_DRUG , 53]

In the experiments, we used PCBio and Chem2D as two kinds of drug
descriptors with information presented in Table 2.8. PCBio descriptors are
the combinations of PubChem descriptors taken from PubChem and chemical,
physical, and biological descriptors taken from Bio2RDF. We extracted descrip-
tors with information from DrugBank in Bio2RDF as in [Muñoz et al., 2016],
and selected descriptors occurring in at least 3 drugs. 2DChem descriptors are
drug chemical descriptors represented in the form of a matrix such that each
row of the matrix corresponds to chemical features of an atom in a drug. To rep-
resent 2DChem descriptors, we extracted 53 chemical properties of each atom
in the drug’s molecule, hence each drug is represented in the form of a ma-
trix that the number of rows equals to the number of atoms of the drug and
the number of columns is 53 (see supplement materials). In our experiments,
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2DChem descriptors are only used for DCN model [Dey et al., 2018], other
models use PCBio descriptors.

Two commonly used metrics were selected to evaluate prediction perfor-
mance: area under the ROC curve (AUC) and area under the precision-recall
curve (AUPR) [Dimitri and Lió, 2017, Pauwels et al., 2011, Yamanishi et al.,
2012, Zhang et al., 2015].

We used ten-fold cross-validation for the experiment. The hyperparameters
of each model were selected by grid searches to obtain the highest prediction
performances. In detail, the number of neighbors for LNSM was 60, SVMs were
run with an RBF kernel and the soft-margin hyperparameter was 1. RF was run
with 80 estimators. CCA had 60 pairs of canonical variables, MF had 60 latent
factors, and MLF had two hidden layers with sizes of 1000 and 800. DCN had
the same architecture described in [Dey et al., 2018] with 4 convolutional and
pooling layers.

We calculated the average computational time of each fold. The computa-
tional time was evaluated on a computer with Intel Core i7-6700 CPU and 16
GB RAM.

ii.Experimental results

Table 2.9: Performance comparison of drug side effect prediction models on
Aeolus dataset and PCBio descriptors. Results for AUC and AUPR contain
mean and standard error values in the format value× 10−2.

Models
Non-latent models Latent models

LNSM SVMs RF LR CCA MF MLN

AUC

(×10−2)

86.07

±0.56

89.26

±0.47

86.82

±0.41

89.00

±0.40

64.51

±1.05

87.13

±0.03

89.55

±0.39

AUPR

(×10−2)

59.04

±1.58

67.57

±1.63

61.92

±1.11

66.75

±1.08

34.17

±2.07

61.03

±1.13

68.70

±1.23

Time

(s)

73 22642 181 3658 317 25 186
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Table 2.10: Summary of the models in terms of performance, non-linearity, and
dimensional reduction.

Models AUC
ranking

Time
ranking

Non-
linearity

Dimen-
sional

reduction

Non-
latent

LNSM 6 2
SVMs 2 8 ✓

RF 5 3 ✓

LR 3 6 ✓

Latent

CCA 7 4 ✓

MF 4 1 ✓

MLN 1 4 ✓ ✓

DCN 8 7 ✓ ✓

The results of prediction performances and computational time are pre-
sented in Table 2.9. In addition, DCN with 2DChem descriptors achieved 73.80±0.46
in AUC, 39.10±0.63 in AUPR, and 4862(s) of computational time.

The results show that MLN is the model having the highest prediction per-
formances in both AUC and AUPR (89.55 ×10−2 and 68.70 ×10−2). SVMs are
the second highest model with 89.26 × 10−2 and 67.57 × 10−2 for AUC and
AUPR. In terms of computational time, MF is the fastest model, and SVMs is
the slowest one. CCA and DCN are the two models having the lowest predic-
tion performances.

We summarize the properties of the models in terms of linearity and dimen-
sional reduction and rank the performances of the models in AUC and compu-
tational time as in Table 2.10. This table shows that in balancing between pre-
diction accuracy and computational time, two latent variable models, MLN and
MF, are the two most promising ones. In addition, latent variable models learn
latent representation vectors of small size for drugs, which are much smaller
than the original size of the drug descriptor vectors. This dimensional reduc-
tion can help to remove redundant information from drug descriptors. We also
can see that three out of the four highest AUC models are non-linear, suggest-
ing that there are non-linear relationships between drug descriptors and drug
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side effects.

2.4.3 Task 3: Drug side effect mechanism analysis

The objective of this task is to reveal associated biological components such
as proteins or pathways of drug side effects. In this task, non-clinical data of
drug-protein interactions, protein-pathways, chemical-pathways is combined
with clinical data, usually drug side effect benchmark data. There are two com-
monly used approaches for this task: i. using sparse learning and ii. using network
mining.

i. Using sparse learning
In the sparse learning approach, the idea is to consider associated biological

components of each drug as a feature vector, and then find associated features
corresponding to drug side effects. To do this, weight vectors over biological
components and drug side effects are used with sparse constraints by applying
L1 regularization. The remaining subsets with high weights of biological com-
ponents and drug side effects are associated with each other. We describe two
studies using this approach with logistic regression and canonical correlation
analysis.

Logistic regression with regularization was proposed to obtain associated
biological pathways with each drug side effect [Wallach et al., 2010]. To obtain
pathways associated with drug side effect j, let wj ∈ Rm be weights over m
pathways obtaining from:

arg min
wj

1
d

d

∑
i=1

(︁
− yi,j log

1
1 + exp(−hi ·wj)

− (1− yi,j) log(1− 1
1 + exp(−hi ·wj)

)
)︁
+ λw

⃦⃦
wj
⃦⃦

1 .

where λw is a regularization parameter.
L1 regularization

⃦⃦
wj
⃦⃦

1 forces wj to be a sparse vector. The corresponding
pathways with high weights are associated with drug side effect j.

SCCA was applied to obtain subsets of correlation of drug side effects and
pathways [Zheng et al., 2014]. By applying SCCA into two matrices Y and
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H of drug side effect and drug-biological component, respectively, two sparse
weight matrices A ∈ Rs×c and B ∈ Rm×c are obtained. The corresponding
subsets of drug side effects and pathways of each pair of (al, bl) with l = 1 . . . c
are correlated.

ii. Using network mining
The idea of using networks of drug side effect-biological components is sim-

ilar to mining drug side effect networks for drug side effect prediction. If a
biological component and a drug side effect are well-connected in a network
of biological component-drug side effects, they are highly associated with each
other. The technique was used in [Chen et al., 2013, Jiang et al., 2014, Wang
et al., 2013] to build a protein-drug side effect network and discover associated
proteins with each drug side effect. Dijkstra algorithm, a well-known method
to calculate the shortest paths in a graph, was used on the network of biological
components-drug side effects to obtain associated biological pathways of drug
side effects [Wang et al., 2011].

2.5. Discussion

This survey addresses drug side effect-related studies in three aspects: data,
drug descriptors, and tasks with corresponding methods. We divide data re-
sources into clinical and non-clinical data. Clinical data contains important per-
sonal context information such as drug side effects, diseases, dosages of treat-
ments, and demographic information. Non-clinical data contains more detailed
information about drugs and biological systems with chemical, and physical
properties of drugs, drug-protein interactions, and biological pathways.

We summarize the commonly used drug descriptors in drug side effect
studies. In addition to traditional physical and chemical descriptors, many
studies integrate biological descriptors of drugs to have better drug informa-
tion.

There are three main tasks in drug side effect studies: creating drug side
effect benchmark data, drug side effect prediction, and drug side effect mecha-
nism analysis. Association rule mining is the commonly used method for cre-
ating drug side effect benchmark data. The drug side effect prediction task is
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classified into two classes: personalized drug side effect prediction and gen-
eral drug side effect prediction. In the former class, Poisson models are widely
used. In the latter class, the commonly used machine learning models can be
categorized into non-latent variable models and latent variable models. The
non-latent variable models predict drug side effects without learning latent
variables, while the latent variable models learn latent vectors of small size
to represent drugs such that these latent vectors can help the prediction effi-
ciently. The experimental results show that MLN is the model having the high-
est prediction performances, and the latent variable models have the potential
for further development. In drug side effect mechanism analysis, using sparse
learning and network mining are two commonly used approaches.

From this survey, we have three remarks on problems in the current drug
side effect studies as follows in current drug side effect studies as follows:

1) Most drug side effect prediction studies address monopharmacy cases
in SIDER benchmark data. There are few studies that proposed models for
polypharmacy prediction, for example, predicting with TWOSIDES benchmark
data [Zitnik et al., 2018], in spite of the fact that most of the significant drug side
effects come from drug combinations [Tatonetti et al., 2012, Zitnik et al., 2018].

2) Drug side effect data resources are not effectively used. Recent drug side
effect studies only use either clinical data without non-clinical data information
or use drug side effect benchmark data and non-clinical data without personal
context information. There are no studies that combine full clinical data with
non-clinical data. In addition, current drug side effect benchmark data such as
SIDER, OFFSIDES, and TWOSIDES only contain drugs and drug side effects,
other personal context information still remains in original clinical records.

3) Machine learning models are mostly used as black boxes for drug side ef-
fect prediction since they only output association scores of drugs and drug side
effects. In drug side effect discovery, explaining drug side effect mechanisms
is a big challenge. It is not only a problem of predicting corresponding drug
side effects of drugs but also how drug side effects occur. However, predicting
and revealing drug side effect mechanisms are now considered as two sepa-
rate parts. Designing drug side effect prediction models which reveal related
information about drug side effect mechanisms seems to be an important topic.
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In conclusion, the use of machine learning models in drug side effect studies
is likely to develop in the future. Effectively using available data with suitable
models still remains a big challenge. It is not only drug side effect prediction
that is an important task but also revealing drug side effect mechanisms is an-
other task to concentrate on.
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Chapter 3

CentSmoothie: Learning a single
combination of drug properties on a
drug-drug interaction hypergraph
for predicting drug-drug
interactions

3.1. Introduction

A drug-drug interaction (DDI) is a reaction between two drugs, whereby
the effects of one drug are modified by the concomitant use of the second drug.
A DDI might cause (drug) side effects, which are unwanted effects and are
responsible for significant patient morbidity and mortality [Magro et al., 2012].
Therefore, it is a very important task to predict drug-drug interactions to guide
drug safety. Given drug information and known (drug) side effects of many
pairs of drugs, one wishes to learn a model to predict side effects of all pairs of
drugs, which include new pairs of drugs without known side effects or known
pairs (to denoise or complete side effect data). DDI data is usually represented
as a graph with nodes for drugs, edges for drug pairs that interact, with (binary
vector) labels for (known) side effects [Zitnik et al., 2018]. The task is to predict
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Figure 3.1: Illustrative examples of (a) a traditional graph and (b) a (proposed)
hypergraph for drug-drug interactions, and (c) central-smoothing assumption.

labels of all pairs of nodes in the DDI graph. Fig. 3.1a shows an example of
a DDI graph, where the dotted edge with question marks is the pair of drugs
with labels to be predicted.

Recently, graph neural networks have emerged as a prominent approach
for this task with high prediction performance [Feng et al., 2020, Zitnik et al.,
2018]. Graph neural networks for predicting DDI have two steps: learning new
representations of drugs from a DDI graph and using these representations for
predictions. One drawback of this approach is the lack of learning label (i.e.
side effect) representations. There are many side effects with complicated rela-
tionships. For example, our largest dataset has 964 side effects, where the num-
ber of drug pairs for one side effect (positive samples in supervised learning)
ranges from 288 to 22,520. Previous methods represent each side effect as an in-
dependent one-hot vector, potentially under-utilizing the relationship among
side effects [Chu et al., 2019, Feng et al., 2020, Zitnik et al., 2018]. Considering
the relationship between side effects would be beneficial for predicting side
effects, especially the ones with only small numbers of positive samples (i.e.
infrequent side effects). Hence, it is desirable to learn the representations for
both drugs and side effects, namely both nodes and edge labels, together.

To this end, we propose to encode DDI data with a hypergraph [Nguyen
and Mamitsuka, 2020]. A node in the hypergraph can be either a drug or a
side effect. A hyperedge is a triple of two drugs and a side effect that they
caused. Hence, a pair of drugs with multiple side effects (interactions) will
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result in many hyperedges in the hypergraph. Fig. 3.1b illustrates an example
of a hypergraph corresponding to the DDI graph in Fig. 3.1a. Existing learning
methods of hypergraph neural networks are based on a smoothing assumption
that the representations of nodes in a hyperedge should be close to each other
[Bai et al., 2019, Feng et al., 2019]. However, this assumption is not necessarily
appropriate for our DDI problem, since each node representation should reflect
(chemical or biological) properties of the corresponding drug and interacting
drugs do not necessarily need to have similar properties.

We propose CentSmoothie, a central-smoothing hypergraph neural network
that uses our idea, central-smoothing assumption (see Fig. 3.1c) for each hyper-
edge in the hypergraph for DDI. The idea is to learn k-dimensional representa-
tion vectors for nodes in a hyperedge such that (i) a drug node representation
reflects the property of the corresponding drug and (ii) a side effect node repre-
sentation reflects a combination of some properties of the two drugs that cause
the corresponding side effect [Corrie and Hardman, 2011]. To implement (ii),
we first assume that a side effect representation should be related to the mid-
point of the representations of the two interacting drugs, reflecting the com-
bination of the two drug properties. Furthermore, there might have different
side effects of the same two drugs, suggesting that each side effect might be ob-
tained by a partial combination of the two drug properties. Hence, we propose
that the representation for each side effect is learned to be close to a weighted
midpoint of the corresponding two drug representations.

We formulate the above assumption, and then define the central-smoothing
hypergraph Laplacian to be used in each layer of the hypergraph neural net-
work with spectral convolution [Feng et al., 2019]. We also provide a com-
putational method with the complexity of O(n) for the proposed hypergraph
Laplacian.

We conducted extensive experiments to verify the performance advantages
of CentSmoothie in both synthetic and real datasets. Our experimental results
demonstrated that CentSmoothie significantly outperformed existing spectral-
based convolutional hypergraph neural networks in all cases. In particular,
CentSmoothie achieved higher performances over baselines for real datasets
with more infrequent side effects, which are more difficult to predict, justifying
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the benefit of learning label (side effect) representations.

3.2. Related Work

Existing work in predicting DDI can be divided into two approaches: non-
graph based and graph based ones. In the non-graph based approach, pre-
defined feature vectors, indicating the existence of chemical substructures and
interacting proteins of drugs, are used. The side effects can be predicted by
using a model (for example, a multilayer feedforward neural network), which
receives the feature vectors of two drugs as input and the vector indicating the
side effects of the two drugs as output [Chu et al., 2019, Rohani and Eslahchi,
2019].

In the graph based approach, topological information of graphs is used to
enhance the representations of nodes, leading to higher performance than the
non-graph based approach. There are two types of graphs that can be used:
molecular graphs of drugs and a DDI graph. For a DDI graph where nodes
are drugs and edges are interactions between drugs, graph neural networks
(GNNs) are applied to learn a new representation of a drug node based on its
neighbors. Recent results show that GNNs for predicting DDI achieve cutting-
edge performance [Feng et al., 2020, Zitnik et al., 2018]. An extension of a
DDI graph can be a DDI heterogeneous graph, where nodes are drugs and
side effects and edges are pairs of interacting drugs or drug-side effects [Zhang
et al., 2019a]. However, the DDI heterogeneous graph cannot preserve triples
of drug-drug-side effects.

GNNs can be further divided into two approaches: spectral convolution
and spatial convolution [Wu et al., 2020]. In the spectral convolution, at first,
the graph Laplacian is defined, and then each GNN layer is constructed from
the graph Fourier transformation given the graph Laplacian [Feng et al., 2019,
Kipf and Welling, 2016]. The spatial convolution approach uses node spatial
relation that a node is updated based on information from neighbor nodes
[Gilmer et al., 2017, Zhang et al., 2019a].

Different from existing work for predicting drug-drug interactions, we for-
mulate the drug-drug interactions in the form of a hypergraph and develop a
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new hypergraph neural network (HGNN) on the DDI hypergraph.
In HGNNs, recent work has inherited the spectral convolution approach on

graphs to adapt to hypergraphs by defining the hypergraph Laplacian [Feng
et al., 2019]. Once the hypergraph Laplacian is defined, HGNNs can be con-
structed in the same manner as that for GNNs. Another approach for HGNNs
is the spatial convolution approach with attention mechanisms [Bai et al., 2019].

3.3. Background

In this section we briefly describe the hypergraph Laplacian being derived
from a smoothness measure [Nguyen and Mamitsuka, 2020]. Let G = (V, E)
be a general hypergraph, where V is the node set and E ⊂ 2V is the hyperedge
set. Let W = diag(w(e1), ..., w(e|E|)) ∈ R|E|×|E| ≽ 0 be the diagonal matrix
that w(e) is the weight of hyperedge e. Let x ∈ R|V| be values of nodes on the
hypergraph that xu is the value of x at node u.

The hypergraph Laplacian is usually defined to be used in a similar manner
to the graph Laplacian: to evaluate the smoothness of a function on a graph.
Let sh(x, G) be a smoothness measure of x on G and ss(x, e) be a smoothness
measure of x on hyperedge e. The smoothness on the hypergraph usually has
the following form [Nguyen and Mamitsuka, 2020]:

sh(x, G) = Te∈Ew(e)ss(x, e) (3.1)

where T is an aggregation operator, such as sum (the most commonly used
one), max, or lp norm [Nguyen and Mamitsuka, 2020]. The usual smoothing
assumption on hypergraphs is that nodes within a hyperedge should be close
to each other [Bai et al., 2019, Chan and Liang, 2020, Feng et al., 2019], and then
the smoothness measure on each hyperedge is calculated by:

ss(x, e) = ∑
(u,v)∈e

(xu − xv)
2. (3.2)

When T is a sum operator, the smoothness of a function on a hypergraph can
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be found in the following form:

sh(x, G) = ∑
e∈E

w(e) ∑
(u,v)∈e

(xu − xv)
2 (3.3)

= xTLx (3.4)

which has the quadratic form with L, and L is then called the hypergraph
Laplacian of the hypergraph. In the next section, we will propose a new smooth-
ing assumption on hypergraphs and then define a new hypergraph Laplacian.

3.4. CentSmoothie: Central-Smoothing Hypergraph
Neural Networks

3.4.1 Problem Setting

We formulate the problem of predicting DDI as follows.
Input: Given a hypergraph of drug-drug interactions: G = (V, E), where

the node set V = VD ∪VS consists of a drug node set VD and a side effect node
set VS, a known hyperedge set E ⊂ VD × VD × VS (Since two drugs in a drug
pair are unordered, two triples (u, v, t) and (v, u, t) (u, v ∈ VD and t ∈ VS) are
the same), and the feature vectors of drugs: XD ∈ R|VD|×K0 , where K0 is the
feature size. The feature vectors of side effects are one-hot vectors.

Output: For each triple e = (u, v, t) ∈ VD × VD × VS, t is predicted to be a
side effect of u and v if the score of the triple is larger than a threshold.

3.4.2 Central-Smoothing Hypergraph Laplacian

The key idea is a central-smoothing assumption: each hyperedge is called
central-smooth if a weighted version of the midpoint of drug node representa-
tions is close enough to the representation of the side effect node. It is moti-
vated by biological research that a side effect of a pair of drugs is caused by a
combination of properties of the two drugs [Corrie and Hardman, 2011]. As-
suming that representations reflecting all properties of drugs are obtained in a
k-dimensional space, the combination containing properties of the two drugs
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should reflect corresponding side effects. We show that among commonly
used combination operators: average, concatenation, max-pooling, and min-
pooling, the average (also the midpoint) is a good option. First, our operator
for combining two drug properties for side effects needs to satisfy the following
two criteria: (i) order invariance in the k-dimensional space since the drug pair
has no order and (ii) effects of both positive and negative embedding values
must be kept to cover the whole embedding space. We can see that concatena-
tion violates (i) and max-pooling and min-pooling violate (ii), but the average
(midpoint) satisfies both criteria. In addition, a weighted midpoint, which in
the ideal case, would contain properties from each drug, represents a specific
combination of the properties, potentially reflecting the cause of a side effect.

Central-smoothing measure on a hyperedge. In the embedding space of
K-dimension, considering dimension k with the embedding of nodes: Xk ∈
R|V| that Xk,u ∈ R is the embedding of node u ∈ V. Given a hyperedge e =

(u, v, t), a weight Wk,t ∈ R+ is a parameter indicating the relevance of side
effect t on dimension k. We assign the weight of side effect t to the hyperedge
(wk(e) = Wk,t), and let Wk = diag(wk(e1), ..., wk(e|E|)) be the diagonal matrix of
the hyperedge weights. The central-smoothing measure on dimension k of the
hyperedge is defined as:

ssc(Xk, e) = Wk,t(
Xk,u + Xk,v

2
− Xk,t)

2. (3.5)

Central-smoothing measure on the hypergraph. For hypergraph G, the
central-smoothing measure on dimension k is defined as the sum of the central-
smoothing measures on all hyperedges:

shc(Xk, G) = ∑
e∈E

Wk,t(
Xk,u + Xk,v

2
− Xk,t)

2. (3.6)

Central-smoothing hypergraph Laplacian. Since shc(Xk, G) is a nonnega-
tive quadratic form, there exists a Lk ∈ R|V|×|V| such that shc(Xk, G) = XT

k LkXk.
We call Lk as the central-smoothing hypergraph Laplacian, which can be derived
as follows.

Let H ∈ R|V|×|E| be a weighted oriented incidence matrix of G that for a
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hyperedge e ∈ E, Hu,e = Hv,e =
1
2 and Ht,e = −1, we have:

shc(Xk, G) = ∑
e∈E

Wk,t(
Xk,u + Xk,v

2
− Xk,t)

2

= XT
k HWkHTXk (3.7)

def
= XT

k LkXk. (3.8)

Then,
Lk = HWkHT. (3.9)

Proof: Let H.,e ∈ R|V|×1 be the column of H corresponding to hyperedge e.
We have:

∑
e∈E

Wk,t(
Xk,u + Xk,v

2
− Xk,t)

2

= ∑
e∈E

(
Xk,u + Xk,v

2
− Xk,t)Wk,t(

Xk,u + Xk,v

2
− Xk,t)

= ∑
e∈E

(XkH.,e)Wk,t(XkH.,e)

= XT
k HWkHTXk □

Computing the central-smoothing hypergraph Laplacian. The central-smoothing
hypergraph Laplacian Lk in (3.9) can be computed with the time complexity of
O(|E|). Concretely, each element Lk,i,j can be computed by:

Lk,i,j = ∑
e∈E|i,j∈e

wk(e)Hi,eHj,e. (3.10)

We have four cases:

• Lk,i,j = Lk,j,i =
1
4 ∑t∈Vs|(i,j,t)∈E Wk,t if i! = j ∈ VD.

• Lk,i,j = Lk,j,i = −1
2 nd(i, j)Wk,j if i ∈ VD, j ∈ VS.

• Lk,i,i =
1
4 ∑t|t∈VS

md(i, t)Wk,t if i ∈ VD.

• Lk,i,i = q(i)Wk,i if i ∈ VS.
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where nd(i, j) = |{(u, v, j) ∈ E|u = i ∨ v = i}|, md(i, t) = |{u|(i, u, t) ∨
(u, i, t) ∈ E}|, q(i) = |{(u, v, i)|(u, v, i) ∈ E}|.

Proof: Given the formulation for Lk:

Lk,i,j = ∑
e∈E|i,j∈e

wk(e)Hi,eHj,e.

We have:

1. i, j ∈ VD, i! = j, meaning that Hi,e = Hj,e =
1
2 , hence:

Lk,i,j = ∑
e∈E|i,j∈e

wk(e)Hi,eHj,e

=
1
4 ∑

e∈E|i,j∈e
wk(e)

=
1
4 ∑

t∈VS|e=(i,j,t)∈E
Wk,t

2. i ∈ VD, j ∈ VS, meaning that Hi,e =
1
2 and Hj,e = −1, hence:

Lk,i,j = Lk,j,i = ∑
e∈E|i,j∈e

wk(e)Hi,eHj,e

=
−1
2 ∑

e∈E|i,j∈e
wk(e) =

−1
2 ∑

e∈E|i,j∈e
Wk,j

=
−1
2

Wk,j ∑
e∈E|i,j∈e

1

=
−1
2

Wk,j ∑
e=(u,v,j)∈E|u=i∨v=i

1

=
−1
2

Wk,jnd(i, j)

where nd(i, j) = |{(u, v, j) ∈ E|u = i ∨ v = i}|.
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3. i = j ∈ VD, Hi,e = Hj,e =
1
2 , hence:

Lk,i,i = ∑
e=(u,v,t)∈E|u=i∨v=i

wk(e)Hi,eHi,e

=
1
4 ∑

e=(u,v,t)∈E|u=i∨v=i
wk,t

=
1
4 ∑

t∈VS

wk,t ∑
e=(u,v,t)∈E|u=i∨v=i

1

=
1
4 ∑

t∈VS

wk,tmd(i, t)

where md(i, t) = |{u|(i, u, t) ∨ (u, i, t) ∈ E}|.

4. i = j ∈ VS, meaning that Hi,e = Hj,e = −1, hence:

Lk,i,i = ∑
e=(u,v,t)∈E|u=i∨v=i

wk(e)Hi,eHi,e

= ∑
e=(u,v,i)∈E

wk(e) = Wk,i ∑
e=(u,v,i)∈E

1

= Wk,iq(i)

where q(i) = |{(u, v, i)|(u, v, i) ∈ E}|.

Complexity analysis. Given N convolution layers, the computational com-
plexity for all central-smoothing hypergraph Laplacian is O(N · K · |E|). Each
Lk can be computed with a complexity of O(|E|) by iterating over all hyper-
edges in E once, and for each hyperedge, the side effect weight is added to the
corresponding elements in Lk and we have N · K Laplacian matrices to com-
pute. We note that K here is referred to the size of latent features, and this is
not the original input features. In practice, even if the size of the original input
features is very large, the number of latent features can be very small (≤ 200),
which is computationally tractable.

Non-weighted version. In our experiments, we will examine the need for
the weight of each side effect. So we here show a non-weighted version of
central-smoothing hypergraph Laplacian, called CentSimple by fixing Wk to
be an identity matrix, where the central-smoothing hypergraph Laplacian in
(3.9) becomes L̃k = HHT.
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3.4.3 Central-Smoothing Hypergraph Neural Networks (HGNNs)

Transforming input features to latent spaces
We first transform the input feature vector of drugs and one-hot vector of

side effects to the K-dimension latent space by using a two-layer feedforward
neural network for drugs, and a one-layer feedforward neural network (as an
embedding table) for side effect, respectively, as follows:

X(0)
D = fD(XD) (3.11)

X(0)
S = fS(XS), (3.12)

where XD ∈ R|K0|×|VD| is the drug input features with feature size K0, XS ∈
R|VS|×|VS| is the one-hot vector of side effect, X(0)

D ∈ RK×|VD|, X(0)
S ∈ RK×|VS|

and fD and fS are the corresponding feedforward neural networks.
Convolution layers on the latent spaces
We adapt HGNN layers [Feng et al., 2019] using Lk at dimension k. Given

hypergraph Laplacian Lk, we have the normalized adjacency matrix with a self-
loop at each node:

Ãk = 2I − d−1/2
Lk

Lkd−1/2
Lk

(3.13)

where dLk is the degree matrix, corresponding to Laplacian Lk and I is the
identity matrix.

Let D̃k be the corresponding degree matrix of Ãk, each layer of central-
smoothing HGNNs has the following form:

X(l+1) = σ(X̃(l+1)Θ(l)), (3.14)

where X̃(l+1)
= [x̃(l+1)

1 , ..., x̃(l+1)
K ] and x̃(l+1)

k = D̃−1/2
k ÃkD̃−1/2

k x(l)k , Θ(l) ∈ RK×K

is the parameters for the transformation from layer (l) to layer (l + 1), and σ is
an activation function.

3.4.4 Predicting Drug-Drug Interactions

Assuming that X∗T ∈ R|V|×K is the final node representation with learned
weights W∗ = {W∗k |k = 1...K}. For all e = (u, v, t), t is predicted to be a
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side effect of u and v if the representation of t is close enough to the weighted
midpoint of the two drug node representations (computed by score function
p(e, X∗, W∗)). First, we compute smoothness measures ssa(e, X∗, W∗) of (u, v, t)
on all dimensions:

ssa(e, X∗, W∗) =
K

∑
k=1

W∗k,t(
X∗k,u + X∗k,v

2
− X∗k,t)

2. (3.15)

Then, the prediction score is defined to be:

p(e, X∗, W∗) =
1

1 + ssa(e, X∗, W∗)
. (3.16)

If p(e, X∗, W∗) > h, a predefined threshold, then t is predicted to be a side effect
of u and v.

3.4.5 Objective Function of CentSmoothie

Let Ē = VD × VD × VS \ E be the complement of the hyperedge set. The
objective function to train CentSmoothie is to maximize the score p(e, X∗, W∗)
of the known hyperedges and minimize the score of the complement set Ē∗.
Then the objective function can be defined as:

min
W∗≥0,X∗

f (X∗, W∗) = ∑
e∈E

(1− p(e, X∗, W∗))2 (3.17)

+ λ ∑
e∈Ē

p(e, X∗, W∗)2, (3.18)

where λ is a hyperparameter.
In practice, as |Ē| is too large, we randomly sample a subset of Ω ⊂ Ē, |Ω| =

|E| to replace Ē in the objective function to reduce the computational cost (A
CentSmoothie implementation is available at https://github.com/anhnda/Cent
SmoothieCode.). To keep the non-negative constraint on W∗, we used a pro-
jected gradient descent [Lin, 2007].
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3.5. Experiments

We conducted experiments to evaluate the performance of our proposed
method, CentSmoothie, a hypergraph neural network with a central-smoothing
assumption, in two scenarios: (i) a synthetic dataset and (ii) three real DDI
datasets. On the synthetic dataset, we aimed to validate that CentSmoothie
could achieve higher performances than traditional hypergraph neural net-
works, by using the data generated from the central-smoothing assumption.
On the real DDI datasets, we examined the performance of CentSmoothie in
comparison with baseline models, to prove that the central-smoothing assump-
tion is suitable for DDI data.

For both scenarios, we used 20-fold cross-validation using the mean AUC
(area under the ROC curve) and the mean AUPR (area under the precision-
recall curve) with standard deviations, to validate the prediction performances
[Zitnik et al., 2018].

For graph and hypergraph neural networks, the numbers of layers and the
embedding sizes were in [1, 2, 3] and [10, 20, 30], respectively. The activation
function was rectified linear unit (ReLu). The hyperparameter λ was fixed:
0.01. The results obtained were the highest performances with the number of
layers of 2 and the embedding size of 20 for all methods. All experiments were
run on a computer with Intel Core I7-9700 CPU, 8 GB GeForce RTX 2080 GPU,
and 32 GB RAM.

3.5.1 Synthetic Data

Generation

The idea to generate synthetic data is that each drug has several groups of
features and the combination of two groups of features leads to a side effect of
the drugs. The generation process consists of three steps:

• Step 1: Generating groups of features and their combinations. Suppose
that there were n groups of features: G = {g1, ..., gn}. There are maxi-
mally n(n−1)

2 group combinations: P = {(gi, gj)|i = 1...n, j = i + 1...n}.
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Each group combination pi ∈ P, i = 1...|P| is assigned with a side effects
si.

• Step 2: Generating drug features. Let a be the number of features in a
group, D be the number of drugs, and m be the maximum number of
groups of features for each drug.

For each drug i, we first uniformly sampled the number of groups 1 ≤
ni ≤ m and then sample ni groups from G. Let Gi ∈ G be the sampled
groups of drug i. Let the binary vector bi ∈ Ra.n indicated the existence
of features for drug di that bi(j) = 1 if ⌊j/a⌋ ∈ Gi, otherwise bi(j) = 0.

The feature vector of drug i was sampled from a Gaussian distribution
with mean bi and variance σ: fi = Gaussian(bi, σ).

• Step 3: Generating triples of drug-drug and side effects. For each pair of
two drugs generated from Step 2, we matched the group combinations of
the two drugs with the corresponding side effects from Step 1. For a pair
of two drugs i and j with corresponding groups Gi and Gj, let Pij = Gi ×
Gj and Sij = {st|pt ∈ Pij}, we generated the triples: Eij = {(di, dj, st)|st ∈
Sij}.

By going through all pairs of drugs, we obtained the synthetic data set with
the drug feature vectors F = { fi|i = 1...n} and the triples of drug-drug-side
effect E = ∪i=1...n,j=i+1...nEij.

We set the number of groups n = 10, the number of features in each group
a = 3, the variance σ = 0.01, and the number of drugs D = 500. We changed m
in the range of [1, 2, · · · 6].

Comparing Methods

For the synthetic dataset, we used the central-smoothing hypergraph neu-
ral networks CentSmoothie, the non-weighted central-smoothing hypergraph
neural networks CentSimple, and the existing spectral based hypergraph neu-
ral network, HPNN [Feng et al., 2019].
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Figure 3.2: Synthetic data performance comparison: (a) AUC and (b) AUPR.

Results

Fig. 3.2 shows the AUC and AUPR of each compared method, obtained
by changing the maximum number of groups of features for drugs. We could
easily see that CentSmoothie achieved the highest AUC and AUPR scores for
all values of x-axis, followed by CentSimple and then HPNN. In particular,
the AUC scores of CentSmoothie were always higher than 0.95, while those of
HPNN decreased when drugs are more complex with larger numbers of groups
of drug features. This clearly showed that CentSmoothie could correctly cap-
ture the patterns generated by the central smoothing assumption, particularly
for larger numbers of groups of drug features. Similarly, the AUC scores of
CentSimple decreased with higher maximum numbers of groups of features,
e.g. around 0.75 at 6. The pattern for AUPR scores was also similar to that of
AUC scores. This result showed that CentSmoothie could learn different side
effects for drug pairs more effectively than CentSimple, implying the signifi-
cance of using a weight for each side effect in CentSmoothie.
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3.5.2 Real Data

Data description

We used three real DDI datasets: TWOSIDES, CADDDI, and JADERDDI.
TWOSIDES is a public dataset for DDI extracted from the FDA adverse event
reporting system (US database) [Tatonetti et al., 2012]. To our knowledge,
TWOSIDES is the largest and commonly used benchmark dataset for DDI [Ro-
hani and Eslahchi, 2019, Xu et al., 2019, Zitnik et al., 2018]. In a similar manner
as in [Tatonetti et al., 2012] of TWOSIDES, we used significant tests to gen-
erate two new DDI datasets: CADDDI from Canada vigilance adverse reac-
tion report (Canada database, from 1965 to Feb 2021) [ Canada Vigilance Pro-
gram , 2021] and JADERDDI from The Japanese Adverse Drug Event Report
(Japanese database, from 2004 to March 2021) [ Pharmaceutical and Medical
Devices Agency , 2021].

The detail of the new dataset extraction is as follows:
For Canada vigilance adverse and JADERDDI from The Japanese Adverse

Drug Event Report, each database consists of reports such that each report con-
tains drugs and the corresponding observed side effects of a patient.

The extraction from these databases was that for each drug pair, we divided
the reports into two groups: an exposed group for the reports having the drug
pair and a nonexposed group for the reports not having the drug pair. Then,
for each side effect, Fisher’s exact test with the threshold p-value of 0.05 was
used to check if the occurrence rate of the side effect in the exposed group was
significantly higher than in the nonexposed group.

Finally, we obtained a set of significant triples of drug-drug-side effects for
each database.

Regarding the overlapping of the datasets, between TWOSIDES and CAD-
DDI, there is 24.8% overlapping in side effect names and 59.8% overlapping
in drug names. For JADERDDI, we used Google service to translate Japanese
drug names to English, mostly written in Katakana, which are more reliable
to translate. The overlapping in drug names of TWOSIDES and JADERDDI is
15%. We did not calculate the overlapping of side effects in JADDERDDI since
the side effect names were not translated.
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We only selected small molecular drugs appearing in DrugBank [Wishart
et al., 2018]. Each drug feature vector was a binary vector with a size of 2,329,
indicating the existence of 881 substructures and 1,448 interacting proteins [Nguyen
et al., 2021]. The statistics of the final datasets is shown in Table 3.1.

Table 3.1: Statistics of the three real datasets.

Dataset #drugs #side effects #drug-drugs
#drug-drug-
side effects

Avg. side effects/
drug-drugs

drug-drugs/ side effects
Min Max Avg

TWOSIDES 557 964 49,677 3,606,046 72.58 288 22,520 3740.7
CADDDI 587 969 21,918 373,976 17.06 89 3288 385.9
JADERDDI 545 922 36,929 222,081 6.01 60 1922 240.9

Table 3.2: Comparison of performances of the methods on the real DDI
datasets.

Method TWOSIDES CADDDI JADERDDI
AUC AUPR AUC AUPR AUC AUPR

MLNN 0.8372 ± 0.0050 0.7919 ± 0.0041 0.8689 ± 0.0021 0.6927 ± 0.0082 0.8578 ± 0.0015 0.3789 ± 0.0020
MRGNN 0.8452 ± 0.0036 0.8029 ± 0.0039 0.9226 ± 0.0015 0.7113 ± 0.0031 0.9049 ± 0.0009 0.3698 ± 0.0019
Decagon 0.8639 ± 0.0029 0.8094 ± 0.0024 0.9132 ± 0.0014 0.6338 ± 0.0029 0.9099 ± 0.0012 0.4710 ± 0.0027
SpecConv 0.8785 ± 0.0025 0.8256± 0.0022 0.8971 ± 0.0055 0.6640 ± 0.0014 0.8862 ± 0.0025 0.5162 ± 0.0047
HETGNN 0.9113 ± 0.0004 0.8267 ± 0.0005 0.9371 ± 0.0004 0.7974 ± 0.0011 0.8989 ± 0.0007 0.5618 ± 0.0012
HPNN 0.9044 ±0.0003 0.8410 ± 0.0007 0.9495 ± 0.0004 0.7020 ± 0.0018 0.9127 ± 0.0004 0.5198 ± 0.0016
CentSimple 0.9242 ± 0.0003 0.8638 ± 0.0011 0.9584 ± 0.0005 0.6890 ± 0.0016 0.9239 ± 0.0007 0.5349 ± 0.0021
CentSmoothie 0.9348 ± 0.0002 0.8749 ± 0.0013 0.9846 ± 0.0001 0.8230 ± 0.0019 0.9684 ± 0.0004 0.6044 ± 0.0025

Comparing Methods

On the real datasets, we compared our proposed methods to baselines:
none-graph based, graph based, and hypergraph based methods. For the none-
graph based method, we used a multi-layer feedforward neural network (MLNN)
[Rohani and Eslahchi, 2019]. For graph neural networks, on the drug molecular
graphs, we used MRGNN [Xu et al., 2019] with the recommended hyperparam-
eter settings. On the DDI graph, we used Decagon [Zitnik et al., 2018], a spatial
convolution, SpecConv (a spectral convolution graph neural networks) [Kipf
and Welling, 2016], and HETGNN (a heterogeneous graph neural network)
[Zhang et al., 2019a]. For hypergraph neural networks, we used the existing
spectral convolution hypergraph neural network, HPNN [Feng et al., 2019].
We also showed the results of CentSimple to see the effect of central-smoothing
without having weights for side effects.
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Figure 3.3: Performance comparison (AUC (left) and AUPR (right)) on (a)
TWOSIDES, (b) CADDDI and (c) JADDERDDI.51



Results

Table 4.2 shows the AUC scores and AUPR scores of all methods. We could
see that again CentSmoothie achieved the highest AUC and AUPR scores in
all three datasets. For TWOSIDES, CentSmoothie achieved 0.9348 in AUC and
0.8749 in AUPR, followed by CentSimple (0.9242 and 0.8638), HPNN (0.9044
and 0.8410), HETGNN (0.9113 and 0.8267), SpecConv (0.8785 and 0.8256), Decagon
(0.8639 and 0.8094), MRGNN (0.8452 and 0.8029), and MLNN (0.8372 and 0.7919).

For CADDDI and JADERDDI, CentSmoothie had the highest performances
with AUC and AUPR: (0.9845 and 0.8230) and (0.9684 and 0.6044), respectively.
The second and third best methods were CentSimple and HPNN, respectively.

In particular, in AUC, there existed two clear performance gaps. The first
one was between hypergraph based methods (CentSmoothie, CentSimple, and
HPNN) and non-hypergraph based methods (HETGNN, SpecConv, Decagon,
MRGNN, and MLNN). The second one was between CentSmoothie and (Cent-
Simple and HPNN). The first gap showed the advantage of using hypergraph
based method for predicting drug-drug interaction. The second gap showed
the advantage of central smoothing over regular smoothing. In addition, we
could see the importance of learning weights for each side effect to improve
the prediction performance.

In AUPR, there was a clear gap between CentSmoothie and the remaining
methods. This again showed the advantage of learning weights under the cen-
tral smoothing assumption for predicting DDI.

CentSmoothie can learn the representations of side effects together with
drugs to leverage the relationships of side effects (see the supplement for repre-
sentation visualization of side effects). These side effect representations might
be useful for infrequent side effects which are harder to predict due to the
scarcity of positive training data. Fig. 3.3 showed the AUC (left) and AUPR
(right) scores of the methods on the subset of most infrequent side effects, ob-
tained by starting with the most infrequent side effect and adding the next
infrequent side effects to the subset. From both AUC and AUPR scores in Fig.
3.3, we could see that CentSmoothie achieved the best performances for all val-
ues of x-axis (the rightmost point of x-axis corresponds to using all side effects),
being followed by CentSimple and HPNN.
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Case studies for predicting unknown drug pairs on infrequent side effects

Drug pair Rank (Score) LiteratureCentSmoothie HPNN Decagon
Ranitidine, Pioglitazone 1(0.94) 10(0.53) - ✓

Diazepam, Clarithromycin 2(0.94) 7(0.57) 139(0.27) ✓
Folic Acid, Metoclopramide 3(0.89) 12(0.50) 62(0.40) -

Fexofenadine, Furosemide 4(0.88) 6(0.58) 34(0.47) ✓
Metronidazole, Salbutamol 5(0.87) 5(0.59) 1(0.61) ✓

Zolpidem, Warfarin 6(0.85) 1(0.66) 91(0.34) ✓
Salbutamol, Warfarin 7(0.85) 2(0.66) - ✓

Sertraline, Hydrochlorothiazide 8(0.85) 4(0.62) 130(0.29) -
Warfarin, Tolterodine 9(0.84) 17(0.45) - ✓

Acetaminophen, Amoxicillin 10(0.82) 13(0.48) 61(0.40) ✓

Table 3.3: Predictions of unknown drug pairs for an infrequent Panniculitis side
effect, top-ranked by CentSmoothie (trained with TWOSIDES) with prediction
scores and the literature support.

We showed sampled results obtained by CentSmoothie trained with the
largest dataset (TWOSIDES), for predicting unknown drug pairs of the Panni-
culitis side effect, where the drug pairs with the side effect shown here are not
in the current drug-drug interaction data [Tatonetti et al., 2012]. Our focus was
on infrequent side effects, which were thought to be harder to predict. Also,
we confirmed the biological validity of the predicted drug pairs by finding rel-
evant biomedical articles by searching the biological literature using keywords
of the predicted drug pair and the side effect.

Table 3.3 shows the result for the Panniculitis side effect (randomly selected
from the top 5% infrequent side effects), which contains ten unknown pairs
with the highest prediction scores by CentSmoothie. Also for each drug pair,
the score obtained by HPNN (also Decagon) and the rank according to the score
are shown if they were in the top 200 predictions. The last column showed
the article relevant to each predicted drug pair. For 8 of the 10 predictions,
we could find evidence (biomedical articles) by literature survey, implying the
prominence of the findings by CentSmoothie. Comparing with the ranks (top
ten) by CentSmoothie, those by HPNN were larger. Meanwhile, those ranks by
Decagon were very large, where some ranks were out of the top 200, meaning
that CentSmoothie and Decagon have different prediction preferences.
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Figure 3.4: Visualization of representations of drugs and side effects ((a-b) Pan-
niculitis learned from HPNN and CentSmoothie trained with TWOSIDES.

Visualizing representations

Side effects and drug pairs
We visualized the representations of drugs and side effects learned by Cent-

Smoothie and HPNN using TWOSIDES dataset to examine the difference be-
tween the central-smoothing assumption and the traditional smoothing assump-
tion. We used the same four side effects as those we showed in Section 3.5.2.

Fig. 3.4 shows the visualization obtained by applying principal compo-
nent analysis (PCA) to the resultant representation by each of the two methods,
where for each side effect, drugs (blue dots) and the side effect (red triangle) are
shown in the three-dimensional (3D) space. (For CentSmoothie, the represen-
tations on the subspace corresponding to the side effect were fed into PCA). We
drew (gray) lines for drug pairs with side effects. For CentSmoothie, we further
showed the midpoint of each drug pair (with a side effect) by a black dot, to see
if the midpoint is close to the representation of the side effect. We could easily
see that for each side effect, the representations of side effects tended to be lo-
cated around the mean point among all midpoints (black dots). However, for
HPNN, it was difficult to interpret the representations (of side effects) learned
by HPNN among the representations of drugs. Also by using these visualiza-
tions, we could easily understand how each pair of drugs and the side effect
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Figure 3.5: Visualization of side effect representations.

are positioned in the space. Particularly, by checking if the side effect is located
nearby the midpoint of the corresponding drug pair, we can guess that the side
effect might be caused.

Side effects relationships
We visualized the representations of all side effects learned by CentSmoothie

on TWOSIDES dataset to see the relationships of side effects. Fig. 3.5 shows the
visualization of side effects in a three-dimensional space. We could see that side
effects are grouped into some small clusters. We highlighted an infrequent side
effect: Panniculitis and two of its nearest neighbors: Fracture nonunion and
Hemia inguinal. Furthermore, we could find evidence for the occurrence of
Panniculitis with Fracture nonunion and Hemia inguinal [Ogden et al., 1960,
Stieger et al., 2015].
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3.6. Discussion

In this chapter, we presented CentSmoothie, a hypergraph neural network,
for predicting drug-drug interactions, to learn representations of side effects
together with drug representations in the same space. A unique feature of
CentSmoothie is a new central-smoothing formulation, which can be incorpo-
rated into the hypergraph Laplacian, to model drug-drug interactions. Our
extensive experiments using both synthetic and three real datasets confirmed
clear performance advantages of CentSmoothie over existing hypergraph and
graph neural network methods, indicating that CentSmoothie could learn rep-
resentations of drugs and side effects simultaneously with the central-smoothing
assumption. Furthermore, CentSmoothie kept high performance on the in-
frequent side effects for which the performances of other methods dropped
significantly, indicating that CentSmoothie allows leveraging the relationships
among side effects to help the difficult cases of less frequent side effects. For
future work, it is interesting to extend the central-smoothing assumption into
more general cases not limited to 3-uniform hypergraphs. In addition, learning
adaptive ratios to replace the constraint of the midpoint might be considered.
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Chapter 4

SPARSE: Learning multiple
combinations of drug properties
with sparsity control for improving
prediction performances of
drug-drug interactions

4.1. Introduction

In the previous chapter, we proposed a state-of-the-art generalization of a
DDI graph can be a DDI hypergraph, which can capture higher-order relation-
ships, where drugs and side effects are both nodes, and each hyperedge is a
triple of a side effect with two interacting drugs. On the DDI hypergraph, we
proposed a novel hypergraph neural network, namely CentSmoothie [Nguyen
et al., 2022a], to learn the representations of drugs and side effects altogether.
In DDIs, two drugs with totally different properties can still interact with each
other, hence the traditional hypergraph neural networks using similarity as-
sumption on node representations are not suitable [Feng et al., 2019]. Instead,
CentSmoothie, assumes that each side effect is caused by a unique combination
of latent features of the corresponding interacting drugs. However, in real life,
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Figure 4.1: A schematic illustration of the procedure in the proposed model,
SPARSE.

each side effect might have many different mechanisms [Suleyman et al., 2010]
that cannot be reflected in a single combination of drug latent features. Hence it
is necessary to learn different types of combinations of drug latent features for
each side effect. This is the first problem (P1), which we would like to address
for further improvement.

To solve P1, we borrow one idea of stochastic block models (SBMs) on hy-
pergraphs such that each node (e.g. drug or side effect) has one or several latent
features [Anandkumar et al., 2013, Pal and Zhu, 2021] and there exist interac-
tions (associations) of latent features. This method can learn different types of
combinations of drug latent features for each side effect, at once. In addition, to
improve the quality of learned latent features, input node features also can be
used [Zhang et al., 2019b]. However, transformations from input node features
and node relationships in the hypergraphs to latent features might be complex
and, especially, non-linear. This is the second problem (P2), which has not been
addressed in existing SBMs and we address in this chapter.

Moreover, DDI data is sparse (for example, in the largest DDI dataset, 97.6%
of all triples of drug-drug-side effects are not a DDI), suggesting that the model
for learning DDIs also should be sparse. However, recent work on DDIs has not
used this sparsity of the data [Nguyen et al., 2022a, Zitnik et al., 2018], which
might potentially impair model performance. This is the third problem (P3),

58



which we address in this chapter.
We propose SPARSE, a new model for DDI prediction, to solve the above

three problems. For P1, we assume that there exist drug and side effect latent
features with latent interactions so that each side effect latent feature interacts
with several pairs of drug latent features. For P2, we encode drug features and
the DDI hypergraph altogether in the latent representations using a suitable hy-
pergraph neural network. For P3, we guide the model to preserve the sparsity
of the data using a suitable sparsity control. Fig. 4.1 schematically illustrates
these ideas of our model. That is, the model consists of two parts: (i) an encoder
and (ii) a decoder. The encoder encodes the input of the DDI hypergraph (for
example, three hyperedges in Fig. 4.1) with drug features into latent spaces of
drug and side effect latent representations, and interactions of latent features.
The decoder reconstructs from the latent spaces the DDI hypergraph with new
DDI predictions (for example, the dotted hyperedge in Fig. 4.1). Finally, a spar-
sity prior (horseshoe priors in our model) is used to control the sparsity of the
latent interactions.

Our extensive experiments first validated the advantage of SPARSE in terms
of prediction performance by using both synthetic and real-world datasets.
Throughout all experiments on prediction performance, SPARSE achieved bet-
ter prediction performances than competing methods, such as CentSmoothie
and SBM. For example, in the experiment using the largest real DDI dataset,
called TWOSIDES, SPARSE achieved AUC (area under the ROC curve) of 0.9524
and AUPR (area under the precision-recall curve) of 0.882, while CentSmoothie
achieved AUC of 0.9348 and AUPR of 0.8749 and SBM achieved AUC of 0.9337
and AUPR of 0.8583. Similarly when using JADERDDI, another DDI dataset,
SPARSE achieved AUC of 0.9698 and AUPR of 0.7348, while CentSmoothie was
AUC of 0.9684 and AUPR of 0.6044 and SBM was AUC of 0.9428 and AUPR of
0.5963.

We then examined the top prediction obtained by SPARSE, which is trained
by using the whole TWOSIDES. That is, we checked the number of overlaps be-
tween the top 400 predictions by one method and DDIs in drugs.com [Drugs.com,
2021, Thelwall et al., 2017], which is a commonly used online web checker for
DDI. We found 98 DDIs in drugs.com out of the top 400 predictions, while by
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using the same procedure, CentSmoothie found only 71 DDIs out of the top
400 predictions, implying that SPARSE can find new DDIs more than compet-
ing methods.

Finally, we validated the prediction results by characterizing the top predic-
tions obtained by SPARSE. In more detail, we checked the biological properties,
such as target proteins, of the top ten triples of drug-drug-side effect, predicted
by SPARSE, by using latent features connected to these top ten predictions. We
then found that top predictions can be associated with some biological mecha-
nisms and particularly with responsible proteins/pathways. These results in-
dicate that our model, SPARSE, can provide high predictive performances as
well as latent biological knowledge beneficial to understand the background
behind predicted DDIs.

4.2. Related Work

Recalling from Chapter 3, a DDI hypergraph is a generalization of DDI
graphs to allow learning representations of drug and side effect nodes alto-
gether in latent spaces instead of fixing side effects as one-hot labels [Nguyen
et al., 2022a]. In detail, with DDI hypergraph representation, DDI is considered
as high-order relationships of drug-drug-side effects in the form of a hyper-
graph where nodes are both drugs and side effects, and each hyperedge is a
triple of two interacting drugs and a side effect caused by the drugs. There
are two types of hypergraph neural networks models on the DDI: similarity
based and non-similarity based. The similarity based models, for example,
traditional spectral based hypergraph neural networks, assume that interact-
ing drugs should have similar representations [Fan et al., 2021, Feng et al.,
2019]. However, in DDI, two interacting drugs are not necessarily similar.
For non-similarity models, the current state-of-the-art method is CentSmoothie
[Nguyen et al., 2022a] which assumes that the representation of a side effect
can be represented by a combination of latent features of two drugs causing
the side effect. However, CentSmoothie cannot deal with multiple combina-
tions of latent features at the same time.

In order to deal with multiple combinations of latent features, one possible
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approach is to use the idea of stochastic block models (SBMs), which can be
applied to hypergraphs, with each node belonging to several latent features
(groups) and associations of latent features (groups) [Anandkumar et al., 2013].
However this has not been applied to DDI hypergraphs, and more importantly,
SBM is based on linear assumption, while DDI can be generated through more
complex relations to be represented by non-linearlity.

Many studies have shown the benefits of sparsity regularization, which is a
commonly used method to achieve sparsity of models, especially on noisy and
sparse data [Carvalho et al., 2009, Tibshirani, 1996]. In a Bayesian viewpoint,
sparsity regularization can be understood as a result of using sparse prior dis-
tributions. A state-of-the-art method for sparsity regularization is to use horse-
shoe priors [Carvalho et al., 2009, Piironen and Vehtari, 2017]. It shows an
advantage in comparison with traditional Laplace prior (Lasso regularization)
[Tibshirani, 1996] in that the horseshoe prior allows to shrink in both directions:
no shrinkage for important features and complete shrinkage for non-important
(noise) features. A comparable shrinkage prior with the horseshoe prior is the
spike and slab prior [Hoeting et al., 1999]. However, the spike-and-slab prior
is a discrete prior that requires the Markov chain Monte Carlo sampling for
optimization, which is not effective for large-scale datasets like DDI.

4.3. Materials and Methods

4.3.1 Background

We give definitions for horseshoe priors and n-mode tensor products for
3-dimensional tensors, which will be used later.

Horseshoe priors

We summarize the horseshoe prior [Carvalho et al., 2009], a state-of-the-
art prior for sparsity control, for a non-negative 3-dimensional tensor: B =

{Bi,j,k} ∈ R
K1×K2×K3
0+ . The idea of the horseshoe prior is that each Bi,j,k follows

a normal distribution with the same zero mean and a different variance. Each
variance has two parts: one is a global parameter sharing among all variances
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to decide the sparsity of B and one is a local parameter to decide the magni-
tude of each variance by using a heavy tail distribution with the Half-Cauchy
distribution. In more detail:

Bi,j,k ∼ N(0, τ2Λ2
i,j,k) (4.1)

Λi,j,k ∼ C+(0, 1) (4.2)

where τ is a global parameter for sparsity, and C+(0, 1) is a Half-Cauchy dis-
tribution defined by: p(Λi,j,k) =

2
π

1
1+Λ2

i,j,k
for Λi,j,k ≥ 0.

Both the horseshoe prior and Laplace prior (for Lasso regularization) are
shrinkage priors such that by using priors, values of features tend to be shrunk
[Piironen and Vehtari, 2017]. Let B̂i,j,k be the optimal values without priors,
then the optimal values having priors have the form: B̄i,j,k = (1− κi,j,k)B̂i,j,k,
where 0 ≤ κi,j,k ≤ 1 is a shrinkage factor depending on the priors. With Laplace
prior (Lasso regularization), the density of κi,j,k tends to be a constant near 1 and
disappears near 0, meaning that it always shrinks all features, containing im-
portant ones. In contrast, the density of κi,j,k with the horseshoe prior has two
peaks at 0 and 1, meaning that the horseshoe prior allows two kinds of shrink-
age: no shrinkage to maintain important features and complete shrinkage to
remove unimportant features.

N-mode tensor product

The n-mode tensor product can be understood as a generalization of the ma-
trix dot product in high-dimension that the product is processed at the nth di-
mension. Considering in the 3-dimensional space with a tensor: B ∈ RK1×K2×K3

and a matrix H ∈ RT×Kn , n ∈ {1, 2, 3}, the n-mode product of B and H is de-
noted by B×n H and is defined for each of n = 1, 2 and 3, as follows:

(B×1 H)t,j,k =
K1

∑
i=1

Bi,j,kHt,i|t = 1...T, j = 1...K2, k = 1...K3 (4.3)

(B×2 H)i,t,k =
K2

∑
j=1

Bi,j,kHt,j|t = 1...T, i = 1...K1, k = 1...K3 (4.4)

(B×3 H)i,j,t =
K3

∑
k=1

Bi,j,kHt,k|t = 1...T, i = 1...K1, j = 1...K2 (4.5)
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4.3.2 Problem formulation

We recall the formulation of the DDI prediction problem as follows.
Input: Given a DDI hypergraph: G = (V, E), V = VD ∪VS, E ⊂ VD ×VD ×

VS, where VD is a set of drug nodes, VS is a set of side effect nodes1. The drug
node features are FD ∈ R

|VD|×K0
0+ and the side effect node features are one-hot

vectors: FS ∈ R
|VS|×|VS|
0+

Output: For e = (u, v, t) ∈ VD × VD × VS, calculate a prediction score for
interaction m(e).

4.3.3 Proposed model

We propose SPARSE: a sparse model for learning multiple types of latent
combinations of side effects and drugs to predict DDIs. Our model follows an
auto-encoder framework with two parts: an encoder and a decoder. The en-
coder encodes the DDI hypergraph with drug node features to latent spaces
with latent representations of drugs and side effects (H), and interactions of la-
tent features (B). The decoder aims to reconstruct the DDI hypergraph with
new predicted hyperedges from H and B. In the following parts, we first
present our latent interaction assumption with sparsity for the interactions of
drugs and side effects, and then we describe the encoder and decoder.

Latent interaction assumption

To model DDIs, we suppose that there exist latent spaces with drug latent
features and side effect latent features where drug-drug interactions occur. The
latent interaction assumption is that two interacting drugs cause a side effect
if there exist a pair of drug latent features of the two drugs that interact with a
latent feature of the side effect.

In detail, the formulation for the latent interaction assumption can be de-
scribed as follows. Let LD = {1, ..., KD} and LS = {1, ..., KS} be the sets of in-
dices of latent features of drugs and side effects with KD and KS be the numbers
of latent features. Let B ∈ R

KD×KD×KS
0+ be a 3-dimensional tensor representing

1Given u, v ∈ VD, t ∈ VS, two triples (u, v, t) and (v, u, t) are the same.
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interactions of latent features of drugs and side effects. The set of interacting
latent features is: A = {(i, j, k) ∈ LD × LD × LS|Bi,j,k > 0}.

Considering a triple of two drugs and one side effect e = (u, v, t) ∈ VD ×
VD × VS. Let hd(u), hd(v) ∈ R

KD
0+ , hs(t) ∈ R

KS
0+ be the vectors representing the

presence of latent features of the two drugs and the side effect, respectively.
Let gu = {i ∈ LD|hd(u)i > 0} , gv = {i ∈ LD|hd(v)i > 0} and gt = {i ∈
LS|hs(t)i > 0} be the sets of latent features of u, v, and t, respectively.

Under the latent interaction assumption, u interacts with v to cause t if:

gu × gv × gt ∩ A ̸= ∅ (4.6)

or with tensor product formulation:

B×1 hd(u)×2 hd(v)×3 hs(t) > 0 (4.7)

In practice, we can change the value 0 on the right side of Eq. (4.7) to a positive
threshold. Eq. (4.6) will be used to generate synthetic data in the experimental
section. Eq. (4.7) will be used in the decoder of the model.

Sparsity property
We first define formulations for sparsity measures of the DDI data and the

latent interactions using the percentages of non-interactions. Let sd be the spar-
sity of the hypergraph G:

sd = 1− 2|E|
|VD|(|VD| − 1)|VS|

(4.8)

The sparsity of the latent interactions sl is defined as the percentage of the num-
ber of non-interacting triples of the latent features per the total number of all
triples of the latent features.

sl = 1− 2|A|
|LD|2|LS|

(4.9)

DDI data is sparse as per statistics in Table 4.1. It is shown that 97.6% and
99.87% of all triples are non-interacting in TWOSIDES and JADERDDI, respec-
tively.

The motivation for us to use sparse models is that sparse models, according
to statistical learning theory, are usually more reliable models if they could fit
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the training data well [Hastie, 2015]. As our sparse models have sparse inter-
actions among latent features, we will prove that they tend to generate sparse
data and are suitable for DDI data. We show a relationship between the spar-
sity of the models and the sparsity of data generated by the models, which are
the ones that best fit the models, as follows.

Property 1: Assume that the DDI data is generated from the true generation
model according to formula (4.7). Assuming that each drug and side effect
has exactly nu and nt nonzero latent features, respectively. Then, there exists a
relationship between the sparsity of the model and the expected sparsity of the
generated data as follows:

E(sd) = 1− (1− sl)
n2

unt

K2
DKS

(4.10)

Proof:
For a pair of drug u, v to cause side effect t, then B ×1 hd(u) ×2 hd(v) ×3

hs(t) > 0. This means that there is at least one nonzero entry of B correspond-
ing to latent features of u, v, and t. Since there are exactly n2

unt possible en-
tries of B corresponding latent features of u, v and t, then the probability of a
uniform sampling of entries of B to corresponding to these latent features is

p1 = n2
unt

K2
DKS

. This is the probability of having an interaction among the features

(that generates a side effect data point).
Since entries of B are assumed to be randomly sampled according to a uni-

form distribution, the number of interactions when B have |B|0 = (1− sl)K2
DKS

nonzero entries follows a binomial distribution Binomial(|B|0, p1).
With the assumption that the hypergraph is generated from this generative

process, the expected number of nonzero data points (the number of hyper-
edges) becomes |B|0.p1 = (1 − sl).n2

unt. The expected sparsity of the hyper-

graph becomes E(sd) = 1− (1−sl)n2
unt

K2
DKS

= 1− (1− sl)p1.

This result leads to E(sd) > sl p1. It shows a relationship between the spar-
sity of the model (sl) and the expected sparsity of the data generated by the
model (E(sd)). It shows that the model can be sparse but cannot be as sparse
as we want. It can be a hint on setting the sparsity of the model in learning
processes.
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Encoder

For the encoder, we use a hypergraph neural network with message passing
[Yadati, 2020] to encode the input hypergraph and node features into latent
spaces with node latent representations H and latent interactions B 2.

H = (Hd, Hs) = gw0(G, F) ∈ R
|VD|×KD
0+ ×R

|VS|×KS
0+ (4.11)

B = fw1(G, F) ∈ R
KD×KD×KS
0+ (4.12)

where gw0 and fw1 are hypergraph neural networks based on message passing
[Yadati, 2020] with parameters to learn w0, w1, Hd = {hd(u) ∈ R

KD
0+ |u ∈ VD}

(node representations of drugs) and Hs = {hs(t) ∈ R
KS
0+|t ∈ VS} (node repre-

sentations of side effects). The formulation of each message passing layer has
the following form:

h(l+1)(a) = σ

(︃
T
(︃{︂

M(l)
(︂

a, h(l)(a),
{︂
(b, h(l)(a))

}︂
b∈e

)︂}︂
e∈Na

)︃)︃
(4.13)

where h(l)(a) is the representation of node a ∈ VD ∪ VS at layer (l), σ is an ac-
tivation function, T is an aggregation function (for example, an average func-
tion), Na = {e ∈ E|a ∈ e} and M(l) is a message passing function at layer (l) to
pass information from neighbor nodes in hyperedge e to a:

M(l)
(︂

a, h(l)(a),
{︂
(b, h(l)(b))

}︂
b∈e

)︂
= (4.14)

∑
b∈e
M(l)(c(a), c(b), h(l)(a), h(l)(b)), (4.15)

whereM(l) is a two layer feedforward neural network, c(b) = 1 if b ∈ VD and
c(b) = −1 if b ∈ VS are the node types.

Decoder

The reconstruction of the hypergraph is from the latent interaction assump-
tion. The likelihood to reconstruct each triple e = (u, v, t) ∈ VD × VD × VE

follows a Gaussian distribution:

p(e|B, H) =
1

σ
√

2π
exp

(︄
−1

2

(︃
i(e)−mw0,w1(e))

σ

)︃2
)︄

(4.16)

2For simplicity, B can be considered as a free parameter to learn.
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where i(e) = 1 if e ∈ E, i(e) = 0 if e ∈ Ē = VD × VD × VS/E, and mw0,w1(e) is
the mean value for the latent interaction of e:

mw0,w1(e) = B×1 hd(u)×2 hd(v)×3 hs(t) (4.17)

Eq. (4.17) is also the score for the interactions of triples (u, v, t) used for
prediction. The likelihood for the decoder is:

p(G|B, H) = ∏
e=(u,v,t)∈VD×VD×VE

p(e|B, H) (4.18)

Objective function

The objective function of our method is to maximize the posterior of the
model. The objective function consists of two parts: one for the log-likelihood
of the model and one for the prior for sparsity control. Let Λ ∈ R

KD×KD×KS
0+ be

the horseshoe prior parameter for B and τ be the hyperparameter for the global
sparsity of the horseshoe prior. We have the following objective function:

argmax
B,H,Λ≥0

log p(G|B, H)⏞ ⏟⏟ ⏞
log likelihood

+ log p(B|Λ, τ) + log p(Λ)⏞ ⏟⏟ ⏞
log of horseshoe prior

, (4.19)

where log p(G|B, H) is the log likelihood of Eq. (4.18) with H in Eq. (4.11)
and B in Eq. (4.12), and log p(B|Λ, τ) + log p(Λ) is the logarithm of the horse-
shoe prior:

log p(B|Λ, τ) = ∑
−1
2
(

Bi,j,k

τΛi,j,k
)2 + ∑ log Λ−1

i,j,k + const (4.20)

log p(Λ) = ∑ log
1

1 + Λ2
i,k,j

(4.21)

We then use stochastic gradient descent libraries in the PyTorch framework
for optimizing Eq. (4.19). An implementation of SPARSE is available at https://
github.com/anhnda/SPARSE.

We also consider two other variants of SPARSE: SPARSEO for not using any
sparsity prior and SPARSEL for using Laplace prior (Lasso regularization), to
examine the effect of using the horseshoe prior.
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4.4. Experimental results

We validated SPARSE in two scenarios: synthetic data and real data. On the
synthetic data, assuming that the data is generated from the latent interactions,
we examined if SPARSE can recover the latent interactions under changing hy-
perparameters of data: the number of latent features, sparsity, and amount
of noise. On real data, we checked the prediction performance of SPARSE in
comparison with state-of-the-art DDI prediction methods by using three real-
world DDI datasets. Additionally, we evaluated if the top unknown predic-
tions by SPARSE can be related to biological phenomena like functions and
mechanisms.

For all experiments, we used 20-fold cross-validation by dividing hyper-
edges into 20 folds, keeping the same number of hyperedges (side effects) in
each fold. We reported the mean and standard deviation of the two commonly
used measures AUC (area under the ROC curve) and AUPR (area under the
precision-recall curve). Also, all reported results were the highest performances
through grid searches of hyperparameters. There were three hyperparameters
for grid searches for SPARSE: 1) latent feature sizes. The tested values were 30,
40, 50, and 60. We set the same size for all layers. 2) global sparsity τ. The
tested values were 0.01, 0.02, 0.03, 0.05, and 0.1, and 3) the numbers of neural
layers. The tested values were 1, 2, and 3. The hyperparameter values obtained
were 50 for the latent feature size, τ = 0.02 for TWOSIDES, and τ = 0.01 for
CADDDI and JADERDDI, and the number of neural layers was 2. All experi-
ments were run in a computer with Intel Core I7-9700 CPU, 8 GB GeForce RTX
2080 GPU, and 32 GB RAM.

4.4.1 Synthetic data

Data generation

The generation process for synthetic data consists of two steps: 1) generat-
ing latent interactions and 2) generating triples of interacting drug-drug-side
effects from the latent interactions, as follows.

1. Generating latent interactions. Given sets of indices of drug latent fea-

68



tures: LD = {1, 2, ..., KD} and side effect latent features: LS = {1, 2, ..., KS}.

(a) Initialize a set of latent interactions A = ∅.

(b) For each k ∈ LS:
i. Sample the number of drug latent feature pairs: nk = RandomInteger(M),

where M is the maximum number of pairs.

ii. Sample nk pairs (i, j) ∈ LD × LD. For each pair (i, j): A = A ∪
{(i, j, k)}.

2. Generating drug interactions:

(a) Generate drug and side effect latent features. Assume that there are
VD drugs and VS side effects.

i. For each drug u ∈ VD:
i) Sample the number of drug latent features: nu = RandomInter(N1),

where N1 is the maximum number of drug latent features.

ii) Sample gu ⊂ LD, |gu| = nu. For drug feature vectors F: mu ∈
R

KD×c
0+ , mu ← 0, mu[i] = 1 if ⌊i/c⌋ ∈ gu, fu = Gaussian(mu, δ).

F = F ∪ fu.
ii. For each side effect t ∈ VS, sample the number of side effect

latent feature nt = RandomInter(N2) and Sample gt ⊂ LS, |gt| =
nt.

(b) Generating true triples E∗. Initialize E∗ → ∅. For (u, v, t) ∈ VD ×
VD × VS, if gu × gv × gt ∩ A! = ∅ then (u, v, t) is a true triple: E∗ =
E∗ ∪ (u, v, t).

(c) Adding noise:
i. For each e ∈ E∗, replace e by a random sample e′ ∈ E∗¯ = VD ×

VD × VS/E∗ with probability r. The final set of triples of drug-
drug-side effects is E.

Finally, we have a synthetic data set with triples of drug-drug-side effects E
and drug feature vectors F.
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Figure 4.2: Performances on synthetic data, when changing (a) #latent features,
(b) sparsity, and (c) amount of noise.

Experiments

The synthetic data has five hyperparameters: the number of drugs, the
number of side effects, the number of latent interactions, data sparsity, and
the amount of noise (noise rate). We evaluated our methods by changing one
hyperparameter and fixing the other four. The hyperparameters changed are
1) numbers of latent features, 2) data sparsity, and 3) noise rate.

1) Changing the number of latent features
Setting: VD = 400, VS = 300, noise rate r = 0.01. We changed KD = KS ∈

{5, 10, 20, 30, 40, 50}. For each (KD, KS), we selected N1, N2 and M such that the
sparsity of the generated data is kept at 0.98.

Compared methods: We compared four methods: SPARSEO (no sparsity con-
trol), CentSmoothie [Nguyen et al., 2022a], a similarity-based hypergraph neu-
ral network, HPNN [Feng et al., 2019] and stochastic block model on hyper-
graph (SBM) [Anandkumar et al., 2013].
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Results: Fig. 4.2a shows the results, where SPARSEO achieved the highest
performances among the compared methods in all cases. We had the following
two findings:

1) For the small number of latent features, the performance of CentSmoothie
was close to SPARSEO (both AUC and AUPR were around 0.99 under KD =

KS = 5). However, by increasing the number of latent features, the perfor-
mance gap between SPARSEO and CentSmoothie also increased (gaps in AUC
and AUPR were around 0.01 and 0.03, respectively, when KD = KS = 50). This
result implies that CentSmoothie was unable to distinguish latent interactions
clearly for a large number of latent interactions, while SPARSEO worked better
for capturing multiple latent interactions.

2) The performances of SBM were lower than both CentSmoothie and SPARSEO

since SBM did not use the node features, which decreased the performance.
HPNN, a similarity based hypergraph neural network, had the lowest perfor-
mance since the two drugs of a DDI do not necessarily have similarity in the
data generated from latent interactions. Overall, these results indicated that
SPARSEO can recover the latent interactions better than the other methods.
2) Changing data sparsity

Setting: VD = 400, VS = 300, KD = KS = 50, N1 = N2 = 4 and r = 0.01. We
changed M in {50, 40, 30, 20, 10, 5}, resulting in data sparsity in {0.6, 0.75, 0.88,
0.92, 0.95, 0.98}, respectively.

Compared methods: Since in the previous experiment, SPARSEO outperformed
the compared methods already, we compared SPARSE and two variants SPARSEL

and SPARSEO (please see the end of Section 3.3.4) to check the effect of sparse
priors.

Results: Fig. 4.2b shows the results, where SPARSE achieved the highest
performance, followed by SPARSEL and SPARSEO. In particular, the perfor-
mance advantage by SPARSE using sparsity control was clearer with higher
sparsity. These results indicate that the horseshoe prior is suitable for learning
sparse data.

3) Changing the amount of noise
Setting: VD = 400, VS = 300, KD = KS = 50, N1 = N2 = 4, M = 1 (keeping
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Figure 4.3: Illustrations of learned latent interactions of SPARSE (and variants)
on synthetic data.

the data sparsity of 0.98). We changed noise r in [0, 0.01, 0.05, 0.10, 0.20].
Compared methods: We again compared SPARSE with two variants SPARSEL

and SPARSEO to examine the effectiveness of the sparse priors to deal with
noise.

Results: Fig. 4.2c shows the results, where again SPARSE achieved the
highest performances among the three methods for all different amounts of
noise. When there is no noise, the performances of the three methods were
very close to each other. However, as the amount of noise is increased, the
advantage of SPARSE over the other two methods became clearer. For exam-
ple, when the amount of noise is 20%, the gap between SPARSE and SPARSEL

reached around 0.07, and the gap between SPARSE and SPARSEO was around
0.1. These results suggest that the horseshoe prior could deal with noise better
than the Laplace prior and the case with no sparsity prior.

Illustrations of learned latent interactions on synthetic data.

We visualized the learned latent interactions on the synthetic data in Fig. 1,
where the x-axis is for pairs of drug latent features, the y-axis is for the side
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effect latent feature, and the latent interactions are shown as dots. We used the
data with a sparsity of 0.98.

Fig. 1 (a) is the true latent interactions that were used to generate sparse
(only a few number of) DDIs. Fig. 1 (b), 1 (c), and 1 (d) are learned latent
interactions of SPARSE, SPARSEL, and SPARSEO, respectively. We can see that
the learned latent interactions of SPARSE were the closest ones to the true latent
interactions (Fig. 1 (a)). On the other hand, the other methods captured non-
significant interactions also. Hence, these results show that SPARSE with the
horseshoe prior was suitable to deal with sparse data.

Sensitivity of SPARSE by changing the global sparsity hyperparameter τ

We examined the sensitivity of SPARSE by changing global sparsity hyper-
parameter τ in (10−10, 10−5, 0.001, 0.01, 0.02, 0.03, 0.05, 0.1, 0.5,1, 10, 100, 1000,
105 and 1010). The results are in Fig. 4.4. The x-axis is log10 of τ, and the y-axis
is AUPR.

We can see that SPARSE achieved the highest performance with log10(τ) of
around -3 and 0 ( τ from 0.001 to 1) and decreased as τ → 0 or τ → ∞. This is a
reasonable, expected result, since as τ → 0, the horseshoe regularization term
becomes stronger and as τ → ∞, the horseshoe regularization term becomes
weaker (and eventually no regularization).
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Figure 4.4: Sensitivity of SPARSE by changing the global sparsity hyperparam-
eter τ.

73



Table 4.1: Statistics of three real datasets.

Dataset #drugs #side effects #drug-drug pairs
#drug-drug-

side effects (DDIs)
Avg. #side effects/
#drug-drug pairs Sparsity

TWOSIDES 557 964 49,677 3,606,046 72.58 97.6%
CADDDI 587 969 21,918 373,976 17,06 99.77%
JADERDDI 545 922 36,929 222,081 6.01 99.83%

Table 4.2: Comparison of performances of the methods on the real DDI
datasets.

Method TWOSIDES CADDDI JADERDDI
AUC AUPR AUC AUPR AUC AUPR

MRGNN 0.8452 ± 0.0036 0.8029 ± 0.0039 0.9226 ± 0.0015 0.7113 ± 0.0031 0.9049 ± 0.0009 0.3698 ± 0.0019
Decagon 0.8639 ± 0.0029 0.8094 ± 0.0024 0.9132 ± 0.0014 0.6338 ± 0.0029 0.9099 ± 0.0012 0.4710 ± 0.0027
SpecConv 0.8785 ± 0.0025 0.8256± 0.0022 0.8971 ± 0.0055 0.6640 ± 0.0014 0.8862 ± 0.0025 0.5162 ± 0.0047
HPNN 0.9044 ±0.0003 0.8410 ± 0.0007 0.9495 ± 0.0004 0.7020 ± 0.0018 0.9127 ± 0.0004 0.5198 ± 0.0016
SBM 0.9337 ± 0.0002 0.8583 ± 0.0004 0.9588 ± 0.0006 0.8170 ± 0.0008 0.9428 ± 0.0006 0.5963 ± 0.0018
CentSmoothie 0.9348 ± 0.0002 0.8749 ± 0.0013 0.9846 ± 0.0001 0.8230 ± 0.0019 0.9684 ± 0.0004 0.6044 ± 0.0025
SPARSEO 0.9511 ± 0.0002 0.8811 ± 0.0001 0.9824 ± 0.0009 0.8773 ± 0.0014 0.9692 ± 0.0007 0.7230 ± 0.0008
SPARSEL 0.9517 ± 0.0001 0.8815 ± 0.0002 0.9859 ± 0.0007 0.8797 ± 0.0010 0.9694 ± 0.0011 0.7276 ± 0.0017
SPARSE 0.9524 ± 0.0001 0.8820 ± 0.0002 0.9837 ± 0.0010 0.8843 ± 0.0012 0.9698 ± 0.0008 0.7348 ± 0.0018

4.4.2 Real data

Data description

We used three real-world datasets for DDI, namely TWOSIDES [Tatonetti
et al., 2012], CADDDI, and JADERDDI. To our knowledge, TWOSIDES is the
largest benchmark dataset for DDI. The other two datasets, i.e. CADDDI and
JADERDDI, were generated from Canada Vigilance Adverse Reaction Reports
and Japanese Adverse Drug Event Reports, respectively, in the same manner
as the way that TWOSIDES was generated from the adverse events reported
to U.S. Food and Drug Administration (FDA) [Nguyen et al., 2022a]. For all
datasets, we only chose small molecular drugs, which can be found in Drug-
Bank. Also, we focused on drugs appearing in more than five interactions (hy-
peredges) in each dataset. For each drug, we used a feature (binary) vector,
with a size of 2,329, consisting of 881 substructures and 1,448 interacting pro-
teins. Table 4.1 shows summary statistics of the three real benchmark datasets,
TWOSIDES, CADDDI, and JADERDDI.
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Table 4.3: Number of overlaps with DDIs in drugs.com for the top 400 predic-
tions.

Method #overlaps
SPARSE 98
CentSmoothie 71
HPNN 48

Predictive performance experiments

Compared methods: For our method, we used SPARSE and two variants SPARSEO

and SPARSEL. We further used five methods as competing methods against
SPARSE. These competing methods were CentSmoothie [Nguyen et al., 2022a],
the traditional similarity-based hypergraph neural network (HPNN) [Feng et al.,
2019], two DDI graph-based graph neural networks: Decagon [Zitnik et al.,
2018] and SpecConv [Kipf and Welling, 2016], and, a molecular graph-based
graph neural network, MRGNN [Xu et al., 2019]. Decagon and CentSmoothie
provide available codes, and we ran them with the recommended settings. For
MLNN, MGRNN, SpecConv, HPNN, and SBM, we implemented them and did
a grid search for finding the best hyperparameter values.

Results – Cross-validation predictive performance: Table 4.2 shows AUC and
AUPR results of all competing methods. From this table, SPARSE and two vari-
ants (SPARSEL and SPARSEO) achieved the highest performances, followed by
CentSmoothie, SBM, and HPNN. On the other hand, the performances of Spec-
Conv, Decagon, and MRGNN were significantly lower. Amazingly, SPARSEO

(SPARSE without any sparsity prior) achieved still better performance over
CentSmoothie, particularly in AUPR. There was only one case (CADDDI), where
the AUC of SPARSE was slightly smaller than that of CentSmoothie. We then
ran a t-test over the prediction results of these two methods, to examine the
significance of the difference between CentSmoothie and SPARSE. The resul-
tant p-value of t-test was 0.057, indicating that the performance advantage of
CentSmoothie over SPARSE was NOT significant, under the regular signifi-
cance level of 0.05. Also, it has to be noted that AUPR is more useful than AUC
for imbalanced data [Saito and Rehmsmeier, 2015], which can be often seen
practically. We emphasize that DDI is a typical example of this situation. In
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Table 4.4: Top 10 new (unknown) predictions with potentially associated latent
features of proteins and extracted proteins.

No. Drug A Drug B Side effect

Observable
features

associated
with latent

features

Extracted proteins
of drugs from

DrugBank
References

1 ciprofloxacin mefenamic acid abdominal distension cytochrome
enzymes - Venkataraman et al.

[2014]

2 naratriptan oxycodone abnormal ECG
serotonin

transporters
and receptors

- Baldo [2018], Ritter
et al. [2019]

3 naratriptan tramadol abnormal ECG
serotonin

transporters
and receptors

- Baldo [2018]

4 naratriptan sertraline abnormal ECG
serotonin

transporters
and receptors

5-
hydroxytryptamine

receptor 1B (and
1D) and

sodium-dependent
serotonin

transporter

Ritter et al. [2019]

5 naratriptan paroxetine abnormal ECG
serotonin

transporters
and receptors

5-
hydroxytryptamine

receptor 1B (and
1D) and

sodium-dependent
serotonin

transporter

Ritter et al. [2019]

6 trihexyphenidyl thiothixene abnormal EEG dopamine
receptors - Ritter et al. [2019]

7 carisoprodol orphenadrine abnormal vision Not clear - Downs et al. [2019]
8 buspirone orphenadrine abnormal vision Not clear - Ritter et al. [2019]
9 oxycodone orphenadrine abnormal vision Not clear - Ritter et al. [2019]

10 carisoprodol zaleplon abnormal vision Not clear - Fagiolini et al.
[2004]

fact, the AUPR performance gap between SPARSEO and CentSmoothie reached
around 1%, 5% and 12% in TWOSIDES, CADDDI and JADERDDI, respectively.
The performance gap in JADERDDI is especially sizable. This might be caused
by the high sparsity of JADERDDI (see Table 4.1).

These results suggest that the latent interaction assumption in SPARSE is
more reasonable and suitable for DDI prediction than CentSmoothie and the
other competing methods. Among SPARSE, SPARSEL and SPARSEO, SPARSE
achieved the highest performance. Note that the performance gap between
SPARSE and SPARSEL in AUPR became clearer for more sparse data: for ex-
ample, only around 0.1 % for TWOSIDES, while the gap reached around 1% for
CADDDI and JADERDDI. Hence, we can see that with more sparse data, the
horseshoe prior had the advantage over Laplace prior and also the case with
no sparsity prior.
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Algorithm 1 Extracting potentially associated drug features

Input: Learned parameters B ∈ R
KD×KD×KS
0+ , Hd = {hd(u)} ∈ R

|VD|×KD
0+ ,

Hs = {hs(u)} ∈ R
|VS|×KS
0+ , drug features matrix Fd = {fd(u)} ∈ R

|VD|×KO
0+ , a

predicted triple (u, v, t), hyperparameter T
Output: Associated drug features for the triple

//Extract drug features for each latent feature
for k ∈ 1...KD do

ak = {j|Correlation(Hd
.,k, Fd

.,j)in top T}
end for
//Calculate non-zeros latent interactions. ⊙ is the pairwise dot product, ⊗ is the
outer product.
ss = B⊙ (hd(u)⊗ hd(v)⊗ hs(t)
tt = {(i, j, k)|ssi,j,k > 0}
//Extract potentially associated drug features for the triple
Re← ∅
for (i, j, k) ∈ tt do

Re ← Re ∪ {(Non-zero features of fd(u) ∈ ai,
Non-zero features of fd(v) ∈ ak)}
end for
Return Re

Results – Unknown DDI prediction performance: We evaluated the predictive
ability of unknown DDIs. That is, we first trained a model by using the whole
TWOSIDES data (the largest dataset), then predicted the scores of unknown
triples (drug-drug-side effect), and finally sorted the predicted triples in the
descending order of the scores.

We focused on the top 400 predictions of each method and checked the
overlap with the DDIs stored in drugs.com [Drugs.com, 2021, Thelwall et al.,
2017], a commonly used web checker for DDIs. Table 4.3 shows the number of
overlaps between the DDIs in drugs.com and the top 400 predictions. SPARSE
found 98 overlapped DDIs with drugs.com, this number being the highest and
followed by CentSmoothie with 71 and HPNN with 48.

77



Case studies: interpretation of top 10 unknown predictions

SPARSE is an SBM with latent features for drugs, side effects, and interac-
tions. In particular, the model has connections between latent drug features
and latent interactions. Thus from the trained model, we can extract the drug
features which are most associated with each drug latent feature and further ex-
tract the drug features most associated with each latent interaction through the
corresponding latent drug feature. This means that we can retrieve drug fea-
tures of a DDI if we can connect the DDI with the latent interactions. Algorithm
1 shows the pseudocode of this procedure (with T=20 in our cases). SPARSE
is a sparse model, which allows only a limited number of latent interactions
and eventually allows to extract only a limited number of drug features. This
is a sizable advantage of SPARSE for understanding the biological / chemical
background behind predicted DDIs.

For case studies, we extracted drug features (such as protein / pathway
names) of the top unknown DDI predictions by using SPARSE, which was
trained by the entire TWOSIDES. Table 4.4 shows the top 10 predictions (out of
the 400 predictions in the experiment of the previous section) with the observ-
able features associated with latent drug features (5th column from the right-
hand side. In this column, "Not clear" means that to our current understand-
ing of the potential DDI mechanisms, we could not explain the corresponding
low-level (molecular level) background, although our algorithm could find as-
sociated drug features.), the target protein of the corresponding drug using
DrugBank (6th column), and the corresponding reference to each DDI (7th col-
umn). The top predictions are likely to be similar to each other, since the similar
triples are likely to have similar scores. In fact the top predictions in Table 4.4
have large overlaps, but from the table, we could find the following four points:

1) The 4th and 5th predictions show the cases, where SPARSE could spec-
ify target proteins precisely, confirming the high credibility of these predictions
and more importantly, approving the high ability of SPARSE for detecting un-
known DDIs.

2) The 1st, 2nd, 3rd, and 6th predictions show the cases, where SPARSE
could identify possible interacting protein groups (4th column), not necessarily
directly associated with the drugs, indicating that SPARSE allows suggesting
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novel interactions as well as potential target proteins.
3) The validity of the 7th, 8th, 9th, and 10th predictions might be understood

by high-level views, like the connection between vision and dizziness/seda-
tion. This result implies that SPARSE can predict probable interactions, which
however cannot be straightforwardly inferred from low-level data.

4) Entirely, we could find relevant references for all top 10 predictions [Baldo,
2018, Fagiolini et al., 2004, Rho et al., 1997, Venkataraman et al., 2014], giving
plausibility of these predictions and at the same time an additional layer of ev-
idence for the usefulness of SPARSE in practical settings. We discuss below a
case for a potential biological mechanism extracted from SPARSE:
Naratriptan, Sertraline, and abnormal ECG: Sertraline belongs to the selective
serotonin reuptake inhibitor class antidepressants. Members of this class in-
hibit the reuptake of the neurotransmitter serotonin into cells [Ritter et al.,
2019]. Through this inhibition, sertraline increases serotonin levels outside of
the cells and allows serotonin to remain longer at its site of action. Naratriptan
is known to cause heart-related side effects through serotonin receptor agonism
at serotonin type 1 receptors [Dodick et al., 2004, Ritter et al., 2019]. Therefore,
the predicted side effect can be a direct consequence of sertraline increasing the
level of endogenous serotonin and naratriptan acting at serotonin receptors in
the heart, with the resulting changes visible in electrocardiogram recordings.

4.5. Discussion

In this chapter, we have proposed SPARSE to learn the latent representa-
tions of drugs, side effects, and interactions, through hypergraph neural net-
works. SPARSE addresses three important issues of state-of-the-art DDI pre-
diction which have not been addressed by any other methods. Extensive em-
pirical validation using both synthetic and real data showed that SPARSE out-
performed all current, cutting-edge methods for DDI prediction, verifying the
effectiveness of multiple types of latent interaction assumptions and the spar-
sity control setting of SPARSE.
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Chapter 5

Concluding remarks and Future
directions

5.1. Summary

We provided a systematic survey for data resources with corresponding
tasks and methods for drug side effect studies and established novel models
for predicting side effects of drug-drug interactions with high prediction per-
formances.

The classifications for data resources in drug side effects were presented in
Chapter 2. Basically, these data resources can be divided into clinical and non-
clinical data. Clinical data contains important personal context information
such as drug side effects, diseases, dosages of treatments, and demographic in-
formation. Non-clinical data contains more detailed information about drugs
and biological systems with chemical, and physical properties of drugs, drug-
protein interactions, and biological pathways. We also summarized the com-
monly used drug descriptors to represent drug properties from the data re-
sources. In addition to traditional physical and chemical descriptors, biological
descriptors of drugs were also used to better describe drug information.

There were three main tasks in drug side effect studies: creating drug side
effect benchmark data, drug side effect prediction, and drug side effect mecha-
nism analysis. We did comparisons on the existing methods for predicting the
side effects of single drugs, the results showed the prominence of deep learning
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models with high prediction performance.
A new deep learning model for predicting drug-drug interactions was es-

tablished in Chapter 3. Existing work normally considered drug-drug interac-
tion data in the form of a graph with only drug nodes but lacked the side effect
relationship expression. We for the first time proposed a new representation
of drug-drug interaction data in the form of a hypergraph with both drug and
side effect nodes and each hyperedge is a triple of two interacting drugs with a
corresponding side effect to leverage the side effect relationships. We then pro-
posed a deep learning model to learn drugs and side effects altogether with an
assumption that the side effect representation is close to the combination of the
two corresponding drug properties, which is reflected by the midpoint. The as-
sumption was formulated in the CentSmoothie framework that outperformed
existing cutting-edge methods in terms of prediction accuracy.

We further developed a model namely SPARSE in Chapter 4 that could learn
multiple combinations of drug properties while CentSmoothie can learn only
one combination. In addition, SPARSE could handle sparsity data of drug-drug
interactions by using a suitable sparsity control. The empirical experimental re-
sults showed that SPARSE outperformed CentSmoothie and achieved the high-
est prediction in comparison with all other methods. Moreover, SPARSE could
extract relevant proteins for explaining the predicted drug-drug interactions,
implying the prominent for supporting the safety of the drug development pro-
cess.

5.2. Future directions

We describe some potential directions to improve our models.

Higher-order of drug interactions prediction

In our current work, we only consider the side effects of single drugs or
drug-drug interactions. However, side effects can be caused by the interactions
of more than two drugs. Generalizing SPARSE to address these high-order
drug interactions is a possible future work. A remaining challenge is the lim-
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itation of the known high-order drug interactions, which is to our knowledge,
there is no available benchmark data for drug interactions with at least three
drugs. The lack of data is a barrier to applying computational methods, espe-
cially deep learning models.

Personalized drug-drug interaction prediction

The actual outcomes of medications depend on each individual. The gen-
eral prediction model might capture some common patterns of the popula-
tions, but when applied to each individual, the actual result might be differ-
ent. Therefore, an important objective of medication is to personalize the treat-
ments. Developing a personalized drug-drug interaction prediction is a chal-
lenge to overcome. By integrating personal data, for example, genotype and
phenotype profiles, there are chances to develop such personalized prediction
models. However, due to the high cost of collecting large-scale genetic data
and the strict policy in using and publishing, such a direction still needs a lot
of effort.
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