タンパク質のサイトゾル送達を可能とする 脂質ナノ粒子の調製

2022

平井 勇祐

目次

3

序論

第一章	負電荷タ	マンパク質をサイトゾルに送達可能な脂質ナノ粒子の調製	5
	第一節	NLS-(-30)GFP を内封する LNP の調製	6
	第二節	LNP による NLS-(-30)GFP の細胞内送達能の評価	12
	第三節	時間および濃度依存的な LNP による NLS-(-30)GFP のサイトゾル送達	18
	第四節	NLS-(-30)GFP-LNP の細胞内取り込み機構の解明	20
	第五節	LNP のサイトゾルへのカーゴ送達におけるエンドソーム成熟の必要性	22
	第一章 0)考察	23
第二章	細胞内。	タンパク質の標的化を目的とした抗体内封脂質ナノ粒子の調製	26
	第一節	抗体内封脂質ナノ粒子の調製	27
	第二節	LNP による IgG の細胞内送達能の評価	31
	第三節	抗体内封脂質ナノ粒子の抗体送達メカニズム解析	35
	第四節	抗体内封脂質ナノ粒子調製におけるポリグルタミン酸の重要性	37
	第五節	LNP に封入された抗体がサイトゾルに送達されていることの確認	41
	第六節	LNP による細胞内タンパク質を認識する抗体の送達	43
	第七節	機能性抗体導入による細胞機能の制御	47
	第二章の)考察	49
総括			51
実験の音	ß		53
引用文南	引用文献		
謝辞			70

略号一覧

α -MEM	lpha -minimum essential medium
BS	bovine serum
CLSM	confocal laser scanning microscopy
CPZ	chlorpromazine
DDS	drug delivery system
DIC	differential interference contrast
DLS	dynamic light scattering
EIPA	5-(N-ethyl-N-isopropyl)amiloride
EGFP	enhanced green fluorescent protein
(-30)GFP	super-negatively charged green fluorescent protein
hIgG-AF488	Alexa Fluor 488-labeled human immunoglobulin G
hIgG-AF594	Alexa Fluor 594-labeled human immunoglobulin G
IgG	immunoglobulin G
LNP	lipid nanoparticle
NLS	nuclear localization signal
MWCO	molecular wight cut off
NPC	nuclear pore complex
PBS(-)	phosphate buffered saline without containing Ca^{2+} and Mg^{2+}
polyE	poly-L-glutamic acid
PdI	polydispersity index
SDS-PAGE	sodium dodecyl sulfate-polyacrylamide gel electrophoresis
TEM	transmission electron microscopy

序論

抗体をはじめとするタンパク質は、その生体における多彩な効果から、種々の疾患に対しての貴 重な医薬品シーズとなりうる⁽¹⁾。しかしながら、タンパク質は親水性の高分子であり、単独で細胞膜 を透過することができない。このため、タンパク質医薬の機能発現の場は細胞外に限局されている。 タンパク質を細胞内に送達可能な Drug Delivery System (DDS)の確立は、タンパク質医薬品の適 用範囲を細胞外から細胞内に拡大でき、新薬創出を加速すると期待される^(2,3)。

細胞内分子を標的とするタンパク質以外に、細胞内特にサイトゾルに送達されなければ機能を発 揮できない高分子として、核酸(プラスミド DNA、RNA 干渉を誘導する small interfering RNA (siRNA) やメッセンジャーRNA (mRNA) など)が挙げられる⁽⁴⁾。近年、siRNA 送達による RNA 干渉治療薬として、トランスサイレチン型家族性アミロイドポリニューロパチーの治療薬である ONPATTROTM、SARS-CoV-2 に対する mRNA ワクチン製剤である ComirnatyTM、SpikevaxTM が臨 床応用され、バイオ医薬品の適用範囲が拡大している^(5,6)。これら核酸のサイトゾル送達を可能とす る DDS 技術として用いられているのが、lipid nanoparticle (LNP) 技術である。LNP は核酸医薬を 高効率に内封化し、血中での核酸の分解を保護することで半減期を向上させ、また高いエンドソー ム脱出能を有する機能性脂質 (pH 応答性脂質)を搭載することで核酸分子のサイトゾルへの送達を 増強する脂質ナノ粒子製剤である⁽⁵⁻⁷⁾。LNP 技術の台頭により、医薬ニーズを解消する核酸医薬品の 開発が精力的に行われており、医薬業界に革命的な影響を与えると予想される。一方で、LNP 技術 は、何も核酸医薬に限定される必要は無い。つまり、他のバイオ医薬品の DDS 技術としても LNP 技術が応用できれば、より一層のブレイクスルーとなると考えられる。そこで、本研究では、細胞内 分子を標的化するタンパク質をサイトゾルに送達可能な脂質ナノ粒子製剤の開発を行った。

第一章では、LNP 技術がタンパク質の細胞内送達に応用できるかどうかを確認するために、表面 電荷を負にアレンジした組み換え緑色蛍光タンパク質である(-30)GFP をモデルタンパク質として 選択し、これを内封する LNP を調製した^(8,9)。調製した LNP を細胞に添加し、共焦点レーザー顕微 鏡による(-30)GFP の局在を観察することでサイトゾルへの送達能を評価した。

第二章では、細胞内分子を標的化する抗体(Immunoglobulin G, IgG)を内封する LNP を調製した。IgG の等電点は塩基性側であるため、LNP 調製を行う際の低 pH 溶液中で負に帯電しておらず、 内封化が困難であると予想された⁽¹⁰⁾。そこで、タンパク質と高分子電解質を混合することで、液-液 相分離による高濃度にタンパク質を含有する液滴形成技術に着目した⁽¹¹⁾。抗体の場合、酸性アミノ 酸ポリマーであるポリグルタミン酸(polyE)と抗体を低 pH 溶液中で混合することにより、負電荷 を帯びた高濃度抗体液滴が形成される⁽¹²⁾。この負電荷液滴を脂質でパッケージングすることにより、 IgG を内封する脂質ナノ粒子を調製した。調製した抗体内封脂質ナノ粒子を細胞に添加し、共焦点 レーザー顕微鏡による抗体分子の局在を観察することで、細胞内に送達された抗体が、細胞内標的 分子を認識できるかどうか検討した。

第一章

負電荷タンパク質をサイトゾルに送達可能な脂質ナノ粒子の調製

タンパク質の細胞内導入技術の確立は、タンパク質医薬品の適用範囲を拡大できるため、盛んに 研究が行われ、臨床への応用が待望されている⁽³⁾。そこで本章では、核酸医薬の細胞内導入技術とし て用いられている lipid nanoparticle (LNP) 技術を、タンパク質の細胞内導入技術として応用でき るかどうか検討を行った。

筆者は以前、pH 応答性脂質の一種である charge-reversible 脂質を使った small interfering RNA (siRNA)をがん細胞内へ導入可能な LNP 調製を行い、RNA 干渉誘導による標的遺伝子の発現を 低下させることに成功している⁽¹³⁾。pH 応答性脂質は核酸溶液である酸性緩衝液と混合されること で正電荷を帯び、負電荷高分子である核酸と静電的相互作用を介し、脂質粒子内に核酸を内包する 役割を担う⁽⁷⁾。つまり、LNP 技術をタンパク質送達に応用するためには、タンパク質の表面電荷を 負に調整する必要がある。そこで、細胞内へのタンパク質の送達効率を confocal laser scanning microscopy (CLSM) にて評価するため、モデルタンパク質としてネットチャージが-30 になるよ うに遺伝子組み換えされた緑色蛍光タンパク質 ((-30)GFP)を選択した⁽⁸⁾。また、サイトゾルに (-30)GFP が送達されたことを評価しやすくするため、核移行配列 (NLS)を付加した NLS-(-30)GFP を設計し、これをモデルタンパク質とした^(14, 15)。

第一章では、charge-reversible 脂質を含む脂質組成で NLS-(-30)GFP を封入する LNP (NLS-(-30)GFP-LNP)を調製し、ヒト子宮頸がん (HeLa) 細胞のサイトゾルにまで NLS-(-30)GFP を送 達できることを CLSM 観察により明らかとした。LNP による NLS-(-30)GFP の送達効率は、LNP 添加後のインキュベート時間および濃度依存的であることが確認された。さらに、エンドサイトー シス阻害剤を用いた検討により、NLS-(-30)GFP-LNP はクラスリン介在性エンドサイトーシスおよ びマクロピノサイトーシスにより細胞内移行することが示唆された。また、エンドソーム酸性化阻 害剤を用いた実験により、NLS-(-30)GFP-LNP によるサイトゾルへの NLS-(-30)GFP の送達には、 エンドソームの成熟に伴うエンドソーム管腔内の pH の低下 (酸性化)が重要であることが示され た。

第一節 NLS-(-30)GFP を内封する LNP の調製

pH 応答性脂質の一種である charge-reversible 脂質(dioleoylglycerophosphate-diethylenediamine (DOP-DEDA))を主要構成脂質とする LNP は、先行研究において siRNA のがん細胞内への効率 的な送達を可能とすることが明らかとされた⁽¹³⁾。siRNA などの核酸分子の代わりに、負電荷モデル タンパク質である NLS-(-30)GFP(protein net charge = -25)を LNP 内に封入することにより、タ ンパク質のサイトゾルへの送達が可能になるのではないかと考えた(**Figure 1**)。

NLS-(-30)GFP を内封する LNP (NLS-(-30)GFP-LNP) を調製する際に用いる脂質を Figure 2 にまとめた。核酸を送達可能な LNP の調製において最も重要な脂質は、pH 応答性脂質である。pH 応答性脂質は、一般的に酸性 pH 条件下で正電荷を帯び、一方で中性 pH 条件下では荷電しないよう に設計されている⁽¹⁶⁾。つまり、LNPの調製を行う低 pH 条件下において、pH 応答性脂質は正電荷 を帯びており、内封したい負電荷分子と静電的相互作用を生み出し、LNP 内への封入・保持を高め ることができる。また、LNP が細胞内にエンドサイトーシスにより取り込まれた後、pH 応答性脂 質はエンドソーム成熟に伴う管腔内の pH 低下に伴い正に帯電し、エンドソーム内の酸性脂質との 相互作用を高め、エンドソーム膜の破壊または脂質膜融合を誘発し、内封した負電荷分子のサイト ゾルへの送達を可能とする^(17, 18)。さらに、細胞培養条件や血中における中性 pH 条件下において、 pH 応答性脂質は正電荷を帯びていないため、非特異的な細胞との相互作用による細胞傷害や非特異 的な血清タンパク質の吸着を回避しやすく臨床での有用性が高い⁽¹⁹⁾。一方で、charge-reversible 脂 質は他の pH 応答性脂質と同様に、pH 変化に伴い親水基の電荷状態を変えることができるが、両ア ミンの pK。は約 6、10 であるため生理的 pH 条件下においても電荷を失わない(実効電荷反転型) 特徴を有するユニークな脂質である(Figure 2 上段)⁽¹³⁾。また、ヘルパー脂質として合成リン脂質 である dipalmitoyl-sn-glycerol-3-phosphatidylcholine (DPPC)、ナノ粒子の安定性および膜融合活性 を高める役割を担う cholesterol、ナノ粒子同士の凝集性を抑制するために polyethylene glycol (PEG) 化脂質を構造脂質として選択した⁽²⁰⁻²²⁾。

Figure 1. A strategy of cytosolic delivery of NLS-(-30)GFP using charge-reversible lipid-based carrier

Figure 2. Structure of lipids for preparation of NLS-(-30)GFP-LNP. Dioleoylglycerophosphatediethylenediamine (DOP-DEDA) as a pH-sensitive, charge-reversible lipid; Dipalmitoyl-*sn*-glycerol-3phosphatidylcholine (DPPC); Cholesterol; 1,2-dimylystoyl-*rac*-glycerol-3-methylpolyoxyethylenepolyethyleneglycol chain, molecular weight 5000 (DMG-PEG5k).

LNP 調製時の脂質組成は、siRNA 送達において活性の高かった脂質組成を参考に、DOP-DEDA/DPPC/Cholesterol = 45/10/45 (モル比)とした⁽¹³⁾。また、DMG-PEG5k は、脂質全体量に 対して 1 mol%となるように加えた。これら脂質を *tert*-butyl alcohol (*t*-BuOH) に溶解し、脂質溶 液とした。また、LNP に内封したい NLS-(-30)GFP は、1 mM クエン酸緩衝液に溶解しタンパク質 溶液とした。これら溶液を 40°Cで 30 分加温後、任意の混合比でピペッティング操作により混合し、 その後、余分な有機溶媒を除去するため超純水にて透析処理を行い、NLS-(-30)GFP-LNP を調製し た (**Figure 3**)。

Figure 3. Scheme of NLS-(-30)GFP-LNP preparation. The lipids (at a molar ratio of DOP-DEDA/DPPC/Cholesterol = $45/10/45 + 1 \mod \%$ DMG-PEG5k) dissolved in *tert*-butyl alcohol (*t*-BuOH) and NLS-(-30)GFP dissolved in 1 mM citrate buffer were heated at 40 °C for 30 min. Then, the solutions were mildly mixed by pipetting for 30 times. The mixture was then dialyzed against ultrapure water (MilliQ) to remove the *t*-BuOH.

まず始めに、NLS-(-30)GFP を溶解しておく 1 mM クエン酸緩衝液の pH によって生じる LNP の物性の差について検討した。1 mM クエン酸緩衝液の pH を 4.5、5.0、5.5、6.0 に調整し、NLS-(-30)GFP-LNP を調製後、粒子径および polydispersity index (PdI) を Zetasizer Nano S により測 定した (**Table 1**)。ただし、NLS-(-30)GFP と脂質の混合質量比は、NLS-(-30)GFP : lipids = 1 : 10 (w/w)、脂質溶液と NLS-(-30)GFP 溶液の混合体積比は NLS-(-30)GFP : lipids = 5 : 1 に固定して LNP 調製を行った。その結果、pH 4.5 の NLS-(-30)GFP 溶液では、他の条件と比較して粒子径お よび PdI が大きくなった。粒子径および PdI が一番小さく、DOP-DEDA が十分に正電荷に荷電し、 NLS-(-30)GFP を高効率に内封化が期待される 1 mM クエン酸溶液 pH 5.0 をタンパク質溶液とし て用いることとした。

Table 1. Effect o	f pH of the citrate	e buffer on NLS-(–30))GFP-LNP formulation.
-------------------	---------------------	----------------------	------------------------

Mass ratio	1 mM citrate buffer pH	Size (d.nm)	PdI
	4.5	243 ± 42	0.272 ± 0.07
4 40	5.0	172 ± 12	0.156 ± 0.04
1:10	5.5	181 ± 12	0.198 ± 0.05
	6.0	180 ± 36	0.201 ± 0.1

Lipids were composed of DOP-DEDA, DPPC and cholesterol at 45 : 10 : 45 molar ratio and 1 mol% DMG-PEG5k was added. Results are represented as the mean \pm standard deviation (SD) of more than three independent experiments. Lipid concentration of 25 mM and protein/lipid mass ratio of 1 : 10 were employed. Results are presented as the mean \pm standard deviation (SD) of more than three independent experiments.

次に、NLS-(-30)GFP 溶液と脂質溶液の混合体積比によって生じる LNP の物性の差について検 討した。脂質溶液に対する NLS-(-30)GFP 溶液の体積比が、3、5、7、10 倍となるように LNP を 調製後、粒子径および PdI を測定した (**Table 2**)。ただし、NLS-(-30)GFP と脂質の混合質量比は、 NLS-(-30)GFP : lipids = 1 : 10 (w/w)に固定し LNP 調製を行った。その結果、体積比が NLS-(-30)GFP 溶液/脂質溶液 = 5 : 1 以上で均一なナノ粒子が調製できることが分かった。最終 LNP 溶 液量が少ない方が、細胞実験等の検討に都合が良いため、LNP 調製時の混合体積比は、NLS-(-30)GFP 溶液/脂質溶液 = 5 : 1 に決定した。

Mass ratio	NLS-(-30)GFP/lipid [v/v]	Size (d.nm)	Pdl
	3 : 1	1081 ± 479	0.308 ± 0.05
4 40	5 : 1	172 ± 12	0.156 ± 0.04
1:10	7 : 1	176 ± 47	0.202 ± 0.06
	10 : 1	135 ± 5	0.183 ± 0.04

Table 2. Effect of volume ratios of aqueous/organic phases on NLS-(-30)GFP-LNP formulation.

Lipids were composed of DOP-DEDA, DPPC and cholesterol at 45 : 10 : 45 molar ratio and 1 mol% DMG-PEG5k was added. Results are represented as the mean \pm SD of more than three independent experiments. Lipid concentration of 25 mM and protein/lipid mass ratio of 1 : 10 were employed.

さらに、NLS-(-30)GFP と脂質の混合質量比に着目し、脂質濃度を 25 mM に固定し、NLS-(-30)GFP:lipids = 1:10 - 50 の範囲で NLS-(-30)GFP-LNP を調製し、粒子径および PdI を測定 した (**Table 3**)。その結果、NLS-(-30)GFP に対する脂質の量が多い、つまり NLS-(-30)GFP の濃 度が低い方が、粒子直径の小さい均一なナノ粒子を調製できることが明らかとなった。

Table 3. Physicochemical characterization of NLS-(-30)GFP-LNP by mixing NLS-(-30)GFP with lipids at various mass ratios.

Mass ratio	NLS-(-30)GFP (µM)	lipid (mM)	Size (d.nm)	PdI	
1 : 10	10.3		172 ± 12	0.156 ± 0.04	
1 : 20	5.2		154 ± 32	0.134 ± 0.09	
1 : 30	3.4	25	116 ± 20	0.164 ± 0.08	
1 : 40	2.6		98 ± 8	0.154 ± 0.05	
1 : 50	2.1		92 ± 11	0.126 ± 0.01	

The lipid mixture was composed of DOP-DEDA, DPPC, and cholesterol at a 45 : 10 : 45 molar ratio, and 1 mol% DMG-PEG5k was added. The mass ratios denote NLS-(-30)GFP-LNP/total lipids (w/w). Results are presented as the mean \pm standard deviation (SD) of more than three independent experiments.

最後に、NLS-(-30)GFP-LNP の粒子形態観察を Cryo-TEM によって解析した。NLS-(-30)GFP と脂質の混合質量比により、LNP の粒子径に変化があったため、差の大きかった質量比1:10 およ び1:50 の NLS-(-30)GFP-LNP (各々NLS-(-30)GFP-LNP(1:10)、NLS-(-30)GFP-LNP(1:50) と示す)の観察を行った (Figure 4 (A), (B))。dynamic light scattering (DLS)の結果に相関し、NLS-(-30)GFP-LNP(1:50)の方が粒子径のより小さな粒子が確認された。さらに質量比に関係なく調製 される NLS-(-30)GFP-LNP は、球形で多重膜構造を有することが明らかとなった。一方で、NLS-(-30)GFP を含まない条件で LNP 形成を行った場合、単一膜で形成される粒子径の小さなリポソー ム様の粒子が確認された(Figure 4 (C))。この結果は、過去の核酸内封 LNP の形態観察と同様に、 多重膜の間に核酸分子がサンドイッチされる形で封入されるという報告に類似する⁽²³⁾。つまり、 NLS-(-30)GFP-LNP の調製において、NLS-(-30)GFP の存在が、charge-reversible 脂質との相互作 用を生み出すことで多重膜構造を構築し、LNP 内に封入されている可能性が示された。

Figure 4. Size distribution and Cryo-TEM observation of NLS-(-30)GFP-LNP formulations. (A) NLS-(-30)GFP-LNP(1 : 10), (B) NLS-(-30)GFP-LNP(1 : 50) and (C) LNP formed without using NLS-(-30)GFP. (a) Size distribution of LNP analyzed by DLS. (b) The morphology of LNP was observed by Cryo-TEM technology. (c) The magnified image of (b). Scale bar is 50 nm (A, B) and 100 nm (C).

第二節 LNP による NLS-(-30)GFP の細胞内送達能の評価

第一節において、NLS-(-30)GFP-LNP の調製条件を確立し、脂質とNLS-(-30)GFP の混合質量 比を変えることで粒子径の異なる LNP が形成されることが明らかとなった。そこで、混合質量比を 変更した NLS-(-30)GFP-LNP による NLS-(-30)GFP の細胞内およびサイトゾルへの送達能につい て、NLS-(-30)GFP の細胞内局在を共焦点レーザー走査型顕微鏡 (CLSM) にて観察することで評 価することとした。サイトゾルに送達された NLS-(-30)GFP は核移行シグナルにより核に集積し易 く、核内の NLS-(-30)GFP のシグナルからサイトゾルに NLS-(-30)GFP が送達された細胞を判別 できる (Figure 5, 6)。

Figure 5. Observation of intracellular localization of NLS-(-30)GFP after LNP prescription to HeLa cells. (A) Schematic illustration of the signals from endosome-trapped and cytosol-released NLS-(-30)GFP. (B) CLSM analysis of cytosolic delivery of NLS-(-30)GFP using NLS-(-30)GFP-LNP(1 : 10). Nuclear staining with Hoechst 33,342 (left). NLS-(-30)GFP signals (middle left). Merged image (middle right). Differential interference contrast (DIC) image (right). Scale bar, 50 µm. The magenta arrowheads indicate cells with NLS-(-30)GFP delivered into nuclei. The white arrowheads indicate cells without localization of NLS-(-30)GFP in nuclei.

HeLa 細胞に LNP 化を行わない NLS-(-30)GFP、NLS-(-30)GFP-LNP(1:10)および NLS-(-30)GFP-LNP(1:50)を各々NLS-(-30)GFP 濃度にして 2.5 μ M となるように血清培地に懸濁し、 6 時間インキュベーションを行い、NLS-(-30)GFP の細胞内局在を観察した(Figure 6)。NLS-(-30)GFP 処理では、NLS-(-30)GFP が主に核周辺に点状の弱いシグナルとして観察され、これは NLS-(-30)GFP がエンドソームに滞留していることを意味する。一方で NLS-(-30)GFP-LNP 処理 では、細胞内の NLS-(-30)GFP の輝度が高く、LNP 化により細胞内導入効率が向上することが示 唆された。また、NLS-(-30)GFP の輝度が高く、LNP 化により細胞内導入効率が向上することが示 すん、細胞内の NLS-(-30)GFP の輝度が高く、LNP 化により細胞内導入効率が向上することが示 すれた。また、NLS-(-30)GFP-LNP(1:10)では NLS-(-30)GFP の核内でのシグナルが強く、サ イトゾルへのカーゴ送達効率が NLS-(-30)GFP-LNP(1:50)よりも高いことが示された。また、そ れぞれのサンプルで 400 個以上の細胞の内、核内に NLS-(-30)GFP のシグナルが確認される細胞数 をカウントし、その割合を算出したところ、NLS-(-30)GFP-LNP(1:10)では約 60%の細胞でサイ トゾルにまで NLS-(-30)GFP が送達されたことが確認された。上記のことから、NLS-(-30)GFP-LNP はタンパク質の細胞内導入を促進するナノキャリアであり、さらに適切な混合質量比を選択す ることにより NLS-(-30)GFP のサイトゾルへの送達能を高められることが明らかとなった。

Figure 6. Cytosolic delivery of NLS-(-30)GFP using LNP. (A) CLSM observation of cytosolic appearance of NLS-(-30)GFP after treatment of NLS-(-30)GFP alone (left), NLS-(-30)GFP-LNP(1 : 10) (center) and (1 : 50) (right) for 6 h. NLS-(-30)GFP concentration = 2.5 μ M. Scale bar, 50 μ m. (B) Percentage of cells bearing cytosolic NLS-(-30)GFP signals. Results are presented as the mean \pm SD (n = 3). n.s., not significant; ***P < 0.001 (one-way analysis of variance (ANOVA) followed by Turkey-Kramer's honestly-significance test).

LNP 内へのカーゴ分子の搭載は、カーゴ分子の負電荷性が重要である。NLS-(-30)GFP は表面電荷が強い負電荷であるため核酸の様に LNP 内に効率的に封入ができ、サイトゾルにまで送達できたと考えられる⁽²⁴⁾。そこで、表面電荷が弱い負電荷 (protein net charge -9) である NLS 配列を付加した enhanced green fluorescent protein (NLS-EGFP, pI = 5.6) が LNP system により送達できるかどうか検討を行った⁽²⁵⁾。NLS-EGFP と脂質の混合質量比1:10 にて LNP 調製を行ったところ、直径 140 nm で PdI = 0.153 の脂質ナノ粒子が形成された (Table 4)。この粒子を HeLa 細胞と 6 時間 インキュベーションし、CLSM による NLS-EGFP の細胞内局在観察を行ったが、核内にそのシグナルが確認される細胞はほとんどなかった (Figure 7 (A))。つまり、NLS-EGFP は負電荷が不十分であり、効率的に LNP 内に封入されることがなく、細胞内およびサイトゾルへの送達効率が低いこと が示唆された。

NLS-(-30)GFP-LNP は脂質組成に PEG 脂質を 1 mol%含み、粒子表面に提示される PEG 分子が LNP 同士の凝集を抑制することにより分散性を高め、粒子の安定性を向上させると考えられる⁽²⁶⁾。 そこで PEG 脂質を含まない脂質組成 (PEG(-)) で LNP を調製し、粒子物性および NLS-(-30)GFP の細胞内送達能を評価した。想定されるように PEG 脂質を含まない NLS-(-30)GFP-LNP (NLS-(-30)GFP-LNP(1:10)(PEG(-))は、2 μ m 以上の粒子直径を示し、凝集し易い傾向にあった (**Table 4**)。さらに NLS-(-30)GFP-LNP(1:10)(PEG(-))は HeLa 細胞内への送達活性も低く、PEG 脂質の 組み込みは LNP 形成に重要な役割を担うことが示された (**Figure 7 (B**))。

LNP によるカーゴ分子のサイトゾルへの送達には、pH 応答性脂質の特性が重要である⁽¹⁶⁾。そこ で、DOP-DEDA の構造に類似し、pH に依存した電荷反転性の特徴を持たない中性リン脂質である 1,2-dioleoyl-*sn*-glycero-3-phosphoethanolamine (DOPE, p*K*_a of ethanolamine 9.5) をコントロール 脂質として選択した。DOPE はリポソームや LNP において細胞膜との膜融合活性を高める膜融合 性脂質として頻用されている^(27, 28)。DOP-DEDA の代わりに DOPE を 45 mol%含む LNP (NLS-(-30)GFP-LNP(1:10)(DOPE)) を調製したところ、粒子直径が 700 nm 以上、PdI = 0.32 と不均 一で大きな脂質ナノ粒子が形成された (Table 4)。また、CLSM 観察による HeLa 細胞のサイトゾル への NLS-(-30)GFP の送達効率を評価してみたが、NLS-(-30)GFP-LNP(1:10)(DOPE)はサイト ゾル内に NLS-(-30)GFP を送達する活性は低かった (Figure 7 (C))。

Lipid composition	Protein	Mass ratio	Size (d.nm)	PdI
DOP-DEDA/DPPC/cholesterol	NLS-		170 10	
(45/10/45) + 1 mol% DMG-PEG5k	(-30)GFP		172 ± 12	0.156 ± 0.04
DOP-DEDA/DPPC/cholesterol	NLS-		140 + 5	0 152 + 0 2
(45/10/45) + 1 mol% DMG-PEG5k	EGFP	Protein/Lipids	140 ± 5	0.153 ± 0.2
DOP-DEDA/DPPC/cholesterol	NLS-	(1 : 10)	2144 + 795	0 526 ± 0 2
(45/10/45) (no DMG-PEG5k)	(-30)GFP		2144 ± 700	0.526 ± 0.3
DOPE/DPPC/cholesterol	NLS-		715 + 107	0 224 + 0 02
(45/10/45) + 1 mol% DMG-PEG5k	(-30)GFP		7 15 ± 107	0.324 ± 0.02

 Table 4. Effect of charges in cargo protein, PEG decoration and DOP-DEDA in LNP formulation.

Lipid concentration of 25 mM and NLS-(-30)GFP/lipid massa ratio of 1 : 10 were employed. Results are represented as the mean \pm SD of more than three independent experiments.

Figure 7. CLSM of the cells treated with protein-encapsulating LNP (left) and percentages of cells having cytosolic/nuclear localization of the proteins 6 h after treatment. (A) NLS-EGFP alone and NLS-EGFP-LNP(1 : 10); (B) NLS-(-30)GFP-LNP(1 : 10)(PEG(-)); (C) NLS-(-30)GFP-LNP(1 : 10)(DOPE). Percentages of cells bearing cytosolic GFP signals were shown in the right. Results are presented as the mean \pm SD (n = 3). n.s., not significant; ***P < 0.001 (ANOVA followed by Tukey-Kramer's honestly significant difference test).

以上の検討から、LNP 形成における送達したい分子の負電荷ネットチャージ、PEG 脂質の組み込 み、charge-reversible 脂質の親水基構造の重要性が示された。また、特に NLS-(-30)GFP-LNP(1: 10)が負電荷タンバク質の送達に有望であることが確認された。そこで、NLS-(-30)GFP-LNP(1:10) 内への NLS-(-30)GFP の内封効率を算出することとした。NLS-(-30)GFP-LNP(1:10)を超遠心 (100,000 ×g、4°C、1時間)し、LNP に封入されていない上清中の NLS-(-30)GFP を除去した。 その後、除いた上清量と同量の 2% sodium dodecyl sulfate (SDS) 溶液をペレットに加え溶解し、タ ンバク質を sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)で分離後、 Coomassie Brilliant Blue 染色 (CBB 染色)により NLS-(-30)GFP のバンドを定量した。なお、超 遠心を行わないサンプルも同様に 2% SDS 溶液に調製し、SDS-PAGE で分離後、CBB 染色により 定量される NLS-(-30)GFP 量を 100%とし、内封率を算出した (Figure 8)。その結果、NLS-(-30)GFP-LNP(1:10)内に、NLS-(-30)GFP は約 80%封入されていることが明らかとなった。以 降の検討では、NLS-(-30)GFP-LNP(1:10)を本研究の LNP 調製条件として利用することとした。

Figure 8. Evaluation of NLS-(-30)GFP encapsulation efficacy on NLS-(-30)GFP-LNP(1:10) formulation.

第三節 時間および濃度依存的な LNP による NLS-(-30)GFP のサイトゾル送達

第二節から、LNP 化が NLS-(-30)GFP のサイトゾルへの送達効率を高められることを確認した。 そこで第三節では、NLS-(-30)GFP-LNP(1:10)を使って、時間および濃度による NLS-(-30)GFP の細胞内導入量に差があるかどうか評価した。

まず、時間依存的な送達効率の検討のため、HeLa 細胞に NLS-(-30)GFP-LNP(1:10)を NLS-(-30)GFP 濃度にして 2.5 μ M となるように血清培地に懸濁し、1、3、6 時間インキュベーション を行い、NLS-(-30)GFP の細胞内局在を観察した(Figure 9 (A))。1 時間処理の結果から、輝度の低 い点状のシグナルが多く観察され、また核内に局在するシグナルがほとんどみられないことから、 サイトゾルにまで到達した NLS-(-30)GFP が少ないことが確認された。一方で NLS-(-30)GFP-LNP 処理時間を 3 時間、6 時間と長くすることで、点状のシグナルの輝度の増強およびサイトゾル に送達される NLS-(-30)GFP の量が有意に増加することが確認された(Figure 9 (A) (B))。

次に、LNP 添加量依存的な送達効率の検討のため、HeLa 細胞に NLS-(-30)GFP-LNP(1:10)を NLS-(-30)GFP 濃度にして 0.1、0.5、1.0、2.5、5.0、10 μ M となるように血清培地に懸濁し、6 時 間インキュベーションを行い、NLS-(-30)GFP の細胞内局在を観察した(Figure 9 (C))。その結果、 NLS-(-30)GFP-LNP(1:10)の濃度依存的なサイトゾルへの NLS-(-30)GFP の送達量の増加が確認 された(Figure 9 (D))。また、この濃度範囲における細胞毒性を WST-8 assay により評価したとこ ろ、顕著な毒性を示さないことが明らかとなった(Figure 10)。

以上の検討から、NLS-(-30)GFP-LNP(1:10)による NLS-(-30)GFP の細胞内およびサイトゾル への送達量は、細胞とのインキュベート時間および添加量・濃度依存的に顕著に増加することが確 認された。

Figure 9. Time- and concentration-dependence in cytosolic delivery of NLS-(-30)GFP-LNP(1 : 10). (A) CLSM observation of cytosolic appearance of NLS-(-30)GFP after treatment of NLS-(-30)GFP-LNP(1 : 10) (2.5 μ M as NLS-(-30)GFP concentration) for 1, 3 and 6 h. (C) CLSM observation of cytosolic appearance of NLS-(-30)GFP after treatment of NLS-(-30)GFP-LNP(1 : 10) (0.1, 0.5, 1.0, 2.5, 5.0 or 10 μ M as NLS-(-30)GFP concentration) for 6 h. (B, D) Percentage of cells bearing cytosolic NLS-(-30)GFP signals. Results are presented as mean \pm SD (n = 3). ***P < 0.001 (ANOVA followed by Tukey-Kramer's honestly-significant difference test for (B)).

Figure 10. Non-cytotoxicity by NLS-(-30)GFP-LNP treatment. Cell viability was analyzed by WST-8 assay after treatment with NLS-(-30)GFP-LNP(1 : 10) (0, 2.5, 5.0, 10 and 20 μ M as NLS-(-30)GFP concentration) for 6 h.

第四節 NLS-(-30)GFP-LNP の細胞内取り込み機構の解明

一般的に、LNP などのナノ粒子は、細胞内へエンドサイトーシス経路により取り込まれる^(24, 29)。 そこで第四節では、NLS-(-30)GFP-LNP(1:10)もエンドサイトーシスにより細胞内へ移行するの かどうかを、エンドサイトーシス阻害条件下で評価した。

まず、エンドサイトーシスはエネルギー依存的な経路であり、細胞を 4°C条件で培養することでエ ンドサイトーシスを遮断することができる⁽³⁰⁾。そこで、HeLa 細胞を 37°Cまたは 4°C条件下で 30 分 間インキュベート後、NLS-(-30)GFP-LNP(1:10)を NLS-(-30)GFP 濃度にして 2.5 μ M となるよ うに血清培地に懸濁し、37°Cまたは 4°C条件下で 6 時間インキュベーションを行い、NLS-(-30)GFP の細胞内局在を観察した(Figure 11(A))。その結果、4°C条件下では細胞内およびサイトゾルへの NLS-(-30)GFP の送達効果が無くなることが明らかとなった (Figure 11 (A))。つまり、NLS-(-30)GFP-LNP はエンドサイトーシス経路にて細胞内に取り込まれる必要性があることが示唆され た。

次に、NLS-(-30)GFP-LNP(1:10)はどのエンドサイトーシス経路で細胞内移行するのかに関し てエンドサイトーシス阻害剤を用いて評価した。用いたエンドサイトーシス阻害剤は、pitstop2(ク ラスリン介在性エンドサイトーシス阻害剤)、5-(*N*-ethyl-*N*-isopropyl)amiloride (EIPA)、wortmannin (マクロピノサイトーシス阻害剤)の3種である⁽³¹⁻³³⁾。HeLa 細胞を血清を含まない培地でそれぞれ の阻害剤存在下で30分間インキュベート後、NLS-(-30)GFP-LNP(1:10)をNLS-(-30)GFP 濃度 にして2.5 μ M となるようにそれぞれの阻害剤を含む血清培地に懸濁し、1時間インキュベーショ ンを行い、フローサイトメトリーにより細胞内に移行したNLS-(-30)GFP 蛍光量を定量した(Figure 11 (C))。その結果、どの阻害剤でも細胞内移行量が低下したことから、NLS-(-30)GFP-LNP(1:10) の細胞内移行は、クラスリン介在性エンドサイトーシスおよびマクロピノサイトーシスによること が示唆された。この結果は、他のLNP システムの細胞内移行経路と同様であり、その一般性が確認 された⁽²⁴⁾。

Figure 11. Endocytosis uptake of NLS-(-30)GFP-LNP. (A) CLSM observation of cytosolic appearance of NLS-(-30)GFP after treatment with NLS-(-30)GFP-LNP(1 : 10) (2.5 μ M as NLS-(-30)GFP concentration) for 6 h at 37 °C or 4 °C. Scale bar, 50 μ m. (B) Percentages of cells bearing cytosolic NLS-(-30)GFP signals in (A). (C) Total cellular uptake of NLS-(-30)GFP after treatment with endocytosis inhibitors: 30 μ M of pitstop2 (a clathrin-mediated endocytosis inhibitor), 80 μ M of EIPA (a macropinocytosis inhibitor) and 0.5 μ M of wortmannin (a macropinocytosis related phosphatidylinocitol-3-kinase (PI3K) inhibitor). Cells were incubated with NLS-(-30)GFP-LNP(1 : 10) (2.5 μ M as NLS-(-30)GFP concentration) for 1 h. Results are presented as mean \pm SD (n = 3). **P < 0.01; ***P < 0.001 (ANOVA followed by unpaired t-test for (B) and by Dunnett's post hoc test (C) vs. non-inhibitor).

第五節 LNP のサイトゾルへのカーゴ送達におけるエンドソーム成熟の必要性

第四節において、NLS-(-30)GFP-LNP はエンドサイトーシスにより細胞内移行し、さらに第三節 において時間依存的なサイトゾルへの送達活性が示されたため、NLS-(-30)GFP-LNP によるサイ トゾルへのカーゴ送達は、エンドソームの成熟化が重要であると考えられる。pH 応答性脂質は、酸 性 pH 環境下で正に帯電し、生体膜との相互作用を生み出すことで膜傷害活性を発揮するように設 計されている⁽¹⁶⁾。そこで、エンドソームの酸性化を阻害する塩化アンモニウム(NH₄Cl)処理によ り、NLS-(-30)GFP-LNP のカーゴ送達活性への影響を評価した⁽³⁴⁾。

HeLa 細胞を 25 mM の NH₄Cl 下で 30 分処理後、NLS-(-30)GFP-LNP(1:10)を NLS-(-30)GFP 濃度にして 2.5 μ M となるように NH₄Cl を含む血清培地に懸濁し、6 時間インキュベーションし、 NLS-(-30)GFP の細胞内局在を観察した(Figure 12 (A))。NH₄Cl 処理サンプルでは Lysotracker に よる酸性オルガネラが確認できなくなり、エンドソームの酸性化を阻害できていることが示唆され た。この条件下で、観察される NLS-(-30)GFP のシグナルは、肥大化した点状シグナルとして観察 され、さらに NH₄Cl 未処理サンプルと比較して、核内への NLS-(-30)GFP の集積が有意に減少す ることが定量的に確認された(Figure 12 (B))。つまり、charge-reversible 脂質のエンドソーム成熟に 伴うプロトン化が、NLS-(-30)GFP のサイトゾルへの送達のトリガーとなることが示唆された。

Figure 12. Importance of endosome acidification in the cytosolic release of NLS-(-30)GFP. (A) CLSM observation of the cytosolic appearance of NLS-(-30)GFP after treatment with NLS-(-30)GFP-LNP(1 : 10) (equivalent to 2.5 μ M NLS-(-30)GFP) for 6 h in the presence and absence of NH₄Cl, an inhibitor of endosomal acidification. Scale bar, 50 μ m. (B) Percentage of cells bearing cytosolic NLS-(-30)GFP signals in (A). Results are presented as mean \pm SD (n = 3). ***P < 0.001 (ANOVA followed by unpaired t-test for (B)).

第一章の考察

核酸医薬をサイトゾルに送達する DDS 技術である pH 応答性脂質を用いた LNP 技術について多 数報告がなされており、一部の RNA 干渉製剤やワクチン製剤が臨床応用されている^(5,6)。しかしな がら、核酸医薬以外の高分子への応用は進んでおらず、中でもタンパク質を LNP 技術によりサイト ゾルへ送達する検討に関する報告は少ない^(35,36)。これは、核酸送達用に開発された脂質を利用する ことを考えた場合、LNP 内に封入する高分子が負電荷であることが必要だからである。そこで、筆 者は核酸の代わりに表面電荷を負に調整したタンパク質を LNP 内に封入し、この LNP を細胞に添 加することで、負電荷タンパク質をサイトゾルへ送達できることを共焦点レーザー顕微鏡 (CLSM) による観察から明らかとした⁽⁹⁾。

本研究では、siRNA の細胞内導入を可能とする pH 応答性脂質の一種である charge-reversible 脂 質 (DOP-DEDA)を用いて、負電荷モデルタンパク質として NLS-(-30)GFP を内封する LNP (NLS-(-30)GFP-LNP) を調製した。第一節の結果から、得られた NLS-(-30)GFP-LNP は、粒子径が 200 nm 以下で PdI が 0.2 以下の薬物送達ナノキャリアとして十分な物性であった⁽³⁷⁾。また、Cryo-TEM による粒子形態の観察により、NLS-(-30)GFP が存在することで、多重膜構造の LNP が調製され ることが分かった。さらに、この多重膜構造の間隔は約 5 nm 程度であり、GFP の流体力学半径が 約 2.3 nm であることから、NLS-(-30)GFP が脂質膜間にパッケージングされていることが示唆さ れた^(23,38)。

第二節における DOPE との比較検討から、DOP-DEDA の pH 応答性の特性が LNP 内へのカー ゴ分子の封入および細胞内への送達に重要であることが確認された。これは、LNP 調製時の酸性 pH 条件下で DOP-DEDA の親水基が正電荷を帯び、NLS-(-30)GFP と静電的相互作用することで、 LNP 内への保持能を高めた結果、細胞内への送達量を増加できたためと考えられる。さらに PEG 脂 質を LNP 脂質組成に組み込むことで、調製される粒子の安定性を高められる報告があるように、 NLS-(-30)GFP-LNP においても DMG-PEG 脂質を組み込むことで粒子形成を安定化できることが 確認された⁽²⁶⁾。つまり、PEG 脂質を構成脂質に加えることで、粒子の凝集を抑制できる。また、NLS-(-30)GFP-LNP は、NLS-(-30)GFP を脂質ナノ粒子内に約 80%の効率でパッケージングできてお り、一方でカーゴとなるタンパク質の表面電荷が負電荷で一様でない NLS-EGFP の場合、LNP に よるタンバク質の内封およびサイトゾル送達は困難であった。以上の検討から、LNP 調製において、 pH 応答性脂質・PEG 脂質・カーゴの負電荷性が重要であることが示唆された。さらに、LNP のサ イトゾルへのカーゴ送達活性は、脂質とカーゴの混合質量比に影響されることが明らかとなった。 本研究では、脂質の混合量が少ない NLS-(-30)GFP-LNP(1:10)は、サイトゾルにまで NLS-(-30)GFP を高効率(全体の約 90%の細胞)に送達できた。脂質量が少ないほどカーゴ送達活性が 高まる明確な理由については今後の検討課題であるが、筆者の解釈を以下に述べる。筆者が報告し た核酸内封 LNP の調製時には、脂質の混合比が高い条件で検討を行い、PEG 脂質を含まずとも 110 nm 程度で安定な LNP を調製できた⁽¹³⁾。つまり、脂質の混合量が多いほど、LNP のパッケージング 力が上がり、安定な LNP を調製できる。しかし、安定な LNP はエンドソーム脱出後のサイトゾル へのカーゴ放出が効率的に進まず、サイトゾルに拡散するカーゴ量が少ない。一方で脂質の混合量 の少ない不安定な LNP は、PEG 脂質を含まない脂質組成では粒子形態を維持することが出来ない が(Table 4)、不安定な粒子であるため細胞内でのカーゴの放出が起こり易く、サイトゾルへのカー ゴ送達量が高まることが理由として考えられた。これらの結果から、本章で適正化した LNP は、負 電荷タンパク質を高効率に内封し、さらに内封した負電荷タンパク質をサイトゾルに放出する活性 を示すことが明らかとなった。

LNP は細胞内にエンドサイトーシス経路で取り込まれ、エンドソーム成熟における pH 低下に応 答して膜傷害活性を発揮し、カーゴである核酸をサイトゾルに送達することが報告されている⁽²⁴⁾。 第四節の結果から、NLS-(-30)GFP-LNP もクラスリン介在性エンドサイトーシスやマクロピノサイ トーシスを介したエンドサイトーシス経路により細胞内移行することが確認された。また、第三節、 第五節より、NLS-(-30)GFP-LNP は、時間依存的な NLS-(-30)GFP のサイトゾルへの導入量の増 加を示し、さらに塩化アンモニウムによるエンドソーム内 pH 低下を抑制する条件において、サイ トゾルへの導入量が劇的に減少することが明らかとなった。つまり、エンドサイトーシス後のエン ドソームの成熟化が DOP-DEDA を用いた NLS-(-30)GFP-LNP のサイトゾルへのカーゴ分子送達 活性に必須であることが確認された。

本研究で調製した LNP は、負電荷タンパク質を内包する脂質ナノ粒子であり、適切な混合比で LNP を調製することで、負電荷タンパク質をサイトゾルにまで送達できることを示した。この結果

は、LNP が核酸だけに限らず、負電荷を帯びたタンパク質の細胞内送達に応用できることを示す重 要な結果であり、LNP 技術はタンパク質医薬品の細胞内分子の標的を可能とする DDS 技術として 有望であると考えられる。よって、今後は分子標的薬として利用される抗体など、サイトゾルで治療 効果を発揮するタンパク質を LNP 技術により内封化し、サイトゾルまで送達することが期待され る。

第二章

細胞内タンパク質の標的化を目的とした抗体内封脂質ナノ粒子の調製

第一章にて、筆者は表面電荷を負に調整したタンパク質をLNP化することにより、内封した負電 荷タンパク質をサイトゾルにまで送達できることを明らかとした⁽⁹⁾。しかしながら、送達したタンパ ク質は蛍光タンパク質であり、細胞機能を制御可能なタンパク質のサイトゾルへの送達が望まれる。 そこで、抗体(IgG)に着目し、細胞内タンパク質を標的とする IgG を LNP 技術によりサイトゾル へ導入し、細胞の機能制御が可能であるかどうか検討することとした。

IgG は、分子標的薬として有用であり、標的分子の活性を阻害する重要なバイオ医薬である。しか し、IgG は親水性の高分子(150 kDa)であるため、細胞膜を透過できずその標的は細胞外に限局さ れている^(39,40)。つまり、IgG を細胞内に導入可能な LNP 技術の確立は市場価値が非常に高い。そこ で、IgG を pH 応答性脂質を含む脂質と単純に混合することで LNP 化することを考えたが、IgG の 等電点は塩基性側であるため、LNP 調製を行う際の酸性溶液中では負に帯電しておらず、LNP 内へ の封入が困難であると予想された⁽¹⁰⁾。第一章では、タンパク質の表面電荷を遺伝子組み換えにより負 電荷に調整した蛍光タンパク質を送達したが、抗体分子を同様の方法により負電荷に調整することは 難しい。また、既存の IgG をそのまま LNP 内に封入し、サイトゾルにまで導入できる方が望ましい。 そこで、IgG と酸性アミノ酸であるグルタミン酸のポリマー (polyE)を酸性緩衝液(10 mM クエン 酸溶液、pH = 5.0)中で混合することで、静電的相互作用および疎水性相互作用を介した液-液相分離 による高濃度に IgG を含有する液滴の形成技術に着目した⁽¹²⁾。この技術は、抗体医薬の濃縮方法と して臨床応用できる可能性が示され、IgG の投与量を改善できる⁽⁴¹⁾。またこの形成された液滴は、多 量の polyE が存在するため負電荷を帯びた液滴(IgG_polyE)となっていると予想される。筆者は、 この負電荷液滴と pH 応答性脂質を含む脂質溶液とを混合することで、抗体を内封する LNP である 抗体内封脂質ナノ粒子(IgG_polyE-LNP)を調製できると考えた。

第一節 抗体内封脂質ナノ粒子の調製

第一章では、pH応答性脂質として charge-reversible 脂質を用いてきたが、第二章では、内封した カーゴを脂質ナノ粒子内から放出し易い pH 応答性脂質である SS-cleavable and pH-responsible lipid COATSOME SS-OP (SS-OP)を選択した (Figure 13 上段)⁽⁴²⁾。SS-OP は足場脂質としてオレイン 酸を有しており、膜融合活性が高く、さらに還元環境に応答して分解産物として生成する還元型グル タチオンが、自己分解性リンカーを求核攻撃することにより自己分解し、LNP に内封した核酸医薬 の放出活性が高いことが報告されている⁽⁴²⁾。筆者は、SS-OP を IgG_polyE-LNP 調製に応用すること で、細胞内タンパク質を標的とする抗体の送達に効果的に働くと考えた。また、LNP のエンドソーム 脱出 に 重 要 な 膜 融 合 活 性 を 高 め ら れ る こ と が 知 ら れ て い る 1,2-dioleoyl-*sn*-glycero-3phosphoethanolamine (DOPE) と β -sitosterol をヘルパー脂質として脂質組成に組み込んだ (Figure 13 下段)^(27,43)。

第一章で述べたように、LNP に内包する高分子は核酸や NLS-(-30)GFP の様に表面電荷が負電荷 であることが望ましい^(9,13)。しかしながら、IgG は等電点が塩基性側で、LNP 調製時の酸性緩衝液中 では正電荷を帯びることから、LNP 内にパッケージングすることが困難であると考えられた⁽¹⁰⁾。そ こで筆者は、IgG と polyE を酸性緩衝液中で混合し、液-液相分離を介した負電荷液滴(IgG_polyE) を形成させる技術に着目した⁽¹²⁾。この負電荷液滴を SS-OP を含む脂質で LNP 化することで、IgG を 細胞のサイトゾルに効率的に送達可能な抗体内封脂質ナノ粒子 (IgG_polyE-LNP) を調製できるので はないかと考えた (Figure 14)。

Figure 13. Structure of lipids for preparation of LNP encapsulating IgG. SS-cleavable and pH-responsible lipid COATSOME SS-OP (SS-OP) as a pH-sensitive lipid; 1,2-dioleoyl-*sn*-glycerol-3-phosphoethanolamine (DOPE); β -sitosterol; 1,2-dimylystoyl-*rac*-glycerol-3-methylpolyoxyethylene-polyethyleneglycol chain, molecular weight 5000 (DMG-PEG5k).

Figure 14. A strategy of cytosolic delivery of IgG using SS-OP-based nanocarrier.

LNP 調製時の脂質組成は、第一章のタンパク質送達 LNP を参考に、SS-OP/DOPE/ β -sitosterol = 45/10/45 (モル比) とした⁽⁹⁾。また、DMG-PEG5k は、脂質全体量に対して 1.5 mol%となるよう に加えた。これら脂質を r-BuOH に溶解し、脂質溶液とした。また、内包したい IgG は 10 mg/mL で PBS(-)に溶解し、polyE は 0.75 mg/mL で 10 mM クエン酸緩衝液 (pH 5) に溶解し、それぞれ の溶液を準備した。脂質溶液および polyE 溶液を 40°Cで 30 分間加温後、白木らの報告を参考に、 抗体溶液と polyE 溶液を質量比で polyE : IgG = 1 : 5 となるようにピペッティング操作により混合 し、IgG_polyE を形成した⁽¹²⁾。その後、脂質溶液と液滴溶液を、脂質と IgG を任意の混合モル比で ピペッティング操作により混合した。ただし、脂質溶液と液滴溶液の混合体積比は lipid : droplet = 1 : 4 に固定して LNP を調製した。最後に、PBS(-)にて透析処理を行うことで余分な有機溶媒を除 去し、IgG_polyE-LNP を調製した (Figure 15)。

Figure 15. Scheme of IgG_polyE-LNP preparation. The lipids (at a molar ratio of SS-OP/DOPE/ β -sitosterol = 45/10/45 + 1.5 mol% DMG-PEG5k) dissolved in *t*-BuOH and polyE dissolved in 10 mM citrate buffer (pH 5) were heated at 40 °C for 30 min. IgG and polyE were mixed by pipetting 10 times for preparing negatively charged droplets (IgG_polyE). Then, IgG_polyE and lipids were mildly mixed by pipetting 15 times. The mixture was then dialyzed against PBS(–) to remove the *t*-BuOH for preparing IgG_polyE-LNP.

まず、前述の方法で IgG_polyE droplet が形成されることを確認した。抗体はヒト精製 IgG(hIgG) および Alexa Fluor 488 で蛍光標識した hIgG-AF488 を準備した。polyE 溶液を 40°Cで 30 分間加温 後、抗体と polyE を混合し、IgG_polyE droplet を形成後、底面に液滴が沈殿することを顕微鏡にて 観察した (Figure 16 (A)(B))。どちらのサンプルも、底面に数µmの液滴が観察され、特に hIgG-AF488 で調製した液滴は、抗体がその液滴内に存在することが確認された。この液滴を SS-OP を含 む脂質と混合し、透析処理を行った後、顕微鏡にて粒子の形態を確認した。この際、脂質に Rhodamine-PE (Rho-PE) を組み込み、脂質塊 (Rho-PE 陽性) と hIgG-AF488 の局在を評価した。 その結果、LNP 化することで、数µmの液滴が消失し、1µm以下の微粒子が確認された(Figure 16 (C))。また、その粒子は IgG-AF488 の蛍光を有し、さらに Rho-PE の蛍光と共局在しているこ とから、期待したように抗体を含有する脂質塊 (IgG_polyE-LNP) を形成させることに成功した (Figure 16 (C))。

Figure 16. Observation of IgG_polyE droplet and IgG_polyE-LNP by CLSM. (A, B) Human IgG (hIgG) or Alexa fluor 488 labeled hIgG (hIgG-AF488) were mixed with polyE in 10 mM citrate buffer (pH 5) at mass ratio of polyE : IgG = 1 : 5 and observed by CLSM. (C) After the droplets containing IgG-AF488 were mixed with lipids (SS-OP/DOPE/ β -sitosterol/DMG-PEG5k/Rhodamine-PE (Rho-PE) = 45/10/45/1.5/0.1 (molar ratio)) and dialyzed with PBS(–), the LNP sample were observed by CLSM. Scale bar, 5 µm.

第二節 LNP による IgG の細胞内送達能の評価

第一節において、IgG と polyE から形成される負電荷液滴を LNP 化することで、脂質塊に抗体が 含まれる微粒子(IgG_polyE-LNP)が形成できることを確認した。そこで、この微粒子が IgG を細 胞のサイトゾルにまで送達できるかどうかを共焦点顕微鏡により評価した。

HeLa 細胞に hIgG、hIgG_polyE droplet、または hIgG_polyE-LNP(抗体: 脂質 = 1:200 (モル 比))を各々IgG 濃度にして 1 μ M となるように血清培地に懸濁し、18 時間インキュベーションを 行い、IgG の細胞内局在を観察した(Figure 17 (A))。IgG 単体や液滴の処理では、細胞内にはエン ドソーム様の点状の hIgG-AF488 由来のシグナルが観察されるだけで、サイトゾルに移行していな いことが確認された。一方で、LNP 化サンブルの処理では、サイトゾル全体に AF488 のシグナルが 拡散している様子が確認された。しかし、観察されるシグナルが、タンパク質分解酵素などで分解さ れ生成した抗体断片または蛍光色素単体がサイトゾルに移行したもの由来であることが考えられた。 そこで、IgG_polyE-LNP 処理後、細胞をパラホルムアルデヒドで固定し、抗 hIgG 抗体 (anti-hIgG-IgG labeled with Alexa Fulor 594)を用いて免疫染色を行い、hIgG の細胞内局在を観察した(Figure 17 (B))。その結果、サイトゾルの hIgG-AF488 のシグナルと anti-hIgG-secondary antibody のシグ ナルが一部共局在したことから、一定量の hIgG-AF488 がサイトゾルへ送達されたことが示唆され た。

Figure 17. Cytosolic delivery of hIgG-AF488 using LNP. (A) CLSM observation of cytosolic appearance of hIgG-AF488 after treatment of IgG alone (middle left), IgG_polyE droplet (middle right) and IgG_polyE-LNP (right) for 18 h. (B) CLSM observation of cytosolic appearance of hIgG-AF488 after cellular treatment with IgG_polyE-LNP and staining with anti-hIgG-secondary antibody labeled with Alexa Fluor 594. hIgG-AF488 concentration = 1 μ M. IgG : lipid = 1 : 200 (molar ratio). Scale bar, 50 μ m.

次に、IgG_polyE-LNP による IgG のサイトゾル送達能が、抗体と脂質の混合比や LNP 処理時間 によって差があるかどうかを共焦点顕微鏡により評価した。

抗体と脂質の混合比により IgG のサイトゾルへの送達効率が変化するかどうか検討するため、 HeLa 細胞に IgG_polyE-LNP を抗体と脂質の混合モル比を抗体: 脂質 =1:100-500 で LNP を調 製し、IgG 濃度にして1 μ M となるように血清培地に懸濁し、18 時間インキュベーションを行い、 hIgG-AF488 の細胞内局在を観察した (Figure 18 (A))。第一章と同様に、カーゴに対する脂質の量 が多くなる程、抗体のサイトゾルへの導入効率が下がる傾向が観察された。明確な理由については 今後の検討課題であるが、第一章と同様に脂質の混合量によって、形成される LNP の安定性に差が あり、内包した分子の放出能が脂質量の少ない不安定な LNP の方が高いからだと考えられる。そこ で以降の検討では、比較的送達効率の高い抗体と脂質のモル比 1:200 にて IgG_polyE-LNP 調製を 行うこととした。

時間依存的な送達効率の検討のため、HeLa 細胞に IgG_polyE-LNP を IgG 濃度にして 1 μ M と なるように血清培地に懸濁し、1、3、6、9、12 時間インキュベーションを行い、hIgG-AF488 の細 胞内局在を観察した(Figure 18 (B))。1、3 時間処理の結果では、サイトゾルに抗体が移行したシグ ナルを観察することはできなかった。さらにインキュベート時間を延ばした 6 時間以降では、時間 依存的に IgG のサイトゾル送達量が増加する傾向が観察された。第一章の結果とも相関し、LNP 技 術によるサイトゾルへのタンパク質送達は、時間依存的にその送達量が増加することが確認された。

Figure 18. Cytosolic delivery of hIgG-AF488 using LNP. (A) CLSM observation of cytosolic appearance of hIgG-AF488 after treatment of IgG_polyE-LNP treatment with IgG : lipid = 1 : 100, 200, 300, 400 or 500 at molar ration for 18 h. hIgG-AF488 concentration = 1μ M. Scale bar, 50 μ m. (B) CLSM observation of cytosolic appearance of hIgG-AF488 after treatment of IgG_polyE-LNP treatment for 1, 3, 6, 9 or 12 h. hIgG-AF488 concentration = 1μ M. Scale bar, 50 μ m.
第三節 抗体内封脂質ナノ粒子の抗体送達メカニズム解析

第二節において、IgG_polyE-LNP はサイトゾルへの抗体送達活性を有することが示された。第一 章で述べたように、LNP のカーゴ送達メカニズムはエンドサイトーシス後のエンドソームからの脱 出である。そこで、IgG_polyE-LNP のサイトゾルへの抗体送達メカニズムも同様であるかどうか検 討した。

まず、4°C条件下でのLNPによる細胞内への抗体送達活性を検討した。HeLa 細胞を 37°Cまたは 4°C条件下で 30 分間インキュベート後、IgG_polyE-LNP を IgG 濃度にして 1 μ M となるように血 清培地に懸濁し、37°Cまたは 4°C条件下で 6 時間インキュベーションを行い、hIgG-AF488の細胞内 局在を観察した (Figure 19 (A))。その結果、4°C条件下では、細胞内移行およびサイトゾルへの hIgG-AF488 の移行はほとんど見られないことが明らかとなった。つまり、IgG_polyE-LNP はエンドサイ トーシス経路にて細胞内に移行することが示唆された。

次に、エンドサイトーシス阻害剤を用いて細胞内移行経路を同定した。用いたエンドサイトーシ ス阻害剤は、クロルプロマジン(CPZ、クラスリン介在性エンドサイトーシス阻害剤)、EIPA、 wortmannin(マクロピノサイトーシス阻害剤)、nystatin(カベオラ介在性エンドサイトーシス阻害 剤)の4種である^(32,33,44,45)。HeLa 細胞を血清を含まない培地でそれぞれの阻害剤存在下で 30 分間 インキュベート後、IgG_polyE-LNP を IgG 濃度にして 0.5 μ M となるようにそれぞれの阻害剤を 含む血清培地に懸濁し、1時間インキュベーションを行い、フローサイトメトリーにより細胞内に移 行した hIgG-AF488 の蛍光量を定量した(Figure 19 (B))。その結果、nystatin 以外の阻害剤で有意 な取り込み阻害効果が得られたことから、IgG_polyE-LNP もクラスリン介在性エンドサイトーシス およびマクロピノサイトーシスにより細胞内移行することが示唆された。

さらに、IgG のサイトゾルへの送達メカニズムがエンドソーム脱出によるものであることを評価 するため、Galectin-8-GFP (Gal-8-GFP)を用いた膜傷害活性の評価系で検討した。Gal-8 はサイト ゾル全体に一様に分布するタンパク質であるが、エンドソーム膜が傷害されるとエンドソーム管腔 側のβ-ガラクトシドを認識してエンドソーム内へと集積する^(46,47)。つまり、Gal-8-GFP が点状の輝 点として観察されれば、エンドソーム膜が傷害されたことを示唆するため、エンドソーム傷害ペプ チドや LNP をはじめとするエンドソーム脱出能を評価する系として汎用されている⁽⁴⁷⁾。そこで、 Gal-8-GFP を発現する HeLa 細胞に IgG_polyE-LNP を 18 時間インキュベーションし、Gal-8-GFP の集積を共焦点顕微鏡により観察した。その結果、LNP 処理により、Gal-8-GFP の点状のシグナル が増加することが確認された。つまり、IgG_polyE-LNP の IgG 送達メカニズムは、エンドサイトー シスされた LNP によるエンドソーム膜の傷害であることが示唆された (Figure 19 (C))。

Figure 19. The mechanism of intracellular and cytosolic delivery of IgG by IgG_polyE-LNP. (A) CLSM observation of hIgG-AF488 after treatment with IgG_polyE-LNP (1 μ M as IgG concentration) for 18 h at 37 °C or 4 °C. (B) Total cellular uptake of hIgG-AF488 after treatment with endocytosis inhibitors: 20 μ M of chlorpromazine (CPZ, a clathrin-mediated endocytosis inhibitor), 80 μ M of EIPA (a macropinocytosis inhibitor), 0.5 μ M of wortmannin (a macropinocytosis related phosphatidylinocitol-3-kinase inhibitor) and 20 μ M of nystatin (a caveolae-mediated endocytosis inhibitor). Cells were incubated with IgG_polyE-LNP (0.5 μ M as IgG concentration) for 1 h. Results are presented as the mean \pm SD (n = 3). n.s., not significant; **P < 0.01; ***P < 0.001 (ANOVA followed by Dunnett's post hoc test vs. dimethyl sulfoxide (DMSO)). (C) CLSM observation of rupture of endosomal/lysosomal membranes suggested by puncta of galectin-8-GFP signals after treatment with IgG_polyE-LNP (1 μ M as IgG concentration) for 18 h. The yellow arrowheads indicate the cells have rupture membranes.

第四節 抗体内封脂質ナノ粒子調製におけるポリグルタミン酸の重要性

第三節までの検討により、polyE と IgG で形成される負電荷液滴を LNP 化することで、IgG をサ イトゾルに送達可能な脂質ナノ粒子を調製できることを明らかとした。抗体内封脂質ナノ粒子の調 製は、polyE を用いて抗体を含む負電荷液滴を形成後、それを脂質パッケージングすることで調製し ているが、polyE の必要性について議論できていない。そこで、polyE を使わず、単純に IgG と脂質 を混合し得られる LNP (IgG-LNP) を調製し、IgG_polyE-LNP との比較を行うことで、抗体内封脂 質ナノ粒子調製における polyE の重要性について検討した。

まず始めに、IgG-LNP と IgG_polyE-LNP のサイトゾルへの IgG 送達活性を顕微鏡観察により比較した。HeLa 細胞に IgG-LNP および IgG_polyE-LNP を IgG 濃度にして 1 μ M となるように血清培地に懸濁し、18 時間インキュベーションを行い、hIgG-AF488 の細胞内局在を観察した (Figure 20 (A))。その結果、polyE を使わず IgG 単体を LNP 化する方法では、サイトゾルに送達される IgG 量が、負電荷液滴を LNP 化したサンプルと比較して明らかに少ないことが確認された。さらに、細胞内に移行した抗体量をフローサイトメトリーにて定量化し、IgG-LNP と IgG_polyE-LNP で差があるかどうか検討したところ、IgG_polyE-LNP の方が細胞内への抗体導入量が多いことが示された (Figure 20 (B))。

Figure 20. Evaluation of intracellular IgG delivery efficacy of LNP formulations. (A) CLSM observation of cytosolic delivery of hIgG-AF488 using LNP formulations. LNP formulation of hIgG-AF488 mixed with lipids (left). LNP formulation of hIgG-AF488 mixed with polyE (negatively charged droplet formulation) and then mixed with lipids (right). IgG concentration, 1 μ M. (B) The intracellular uptake amount of hIgG-AF488 were detected by flowcytometry after 18 h treatment of IgG-LNP or IgG_polyE-LNP. IgG concentration, 0.5 μ M. Results are presented as the mean \pm SD (n = 3). ***P < 0.001(ANOVA followed by unpaired t-test for (B)).

Figure 20 の検討から、polyE と負電荷液滴を形成した抗体をパッケージングした LNP の方が、細 胞内およびサイトゾルへの抗体の送達効率が高いことが示された。そこで、IgG-LNP と IgG_polyE-LNP の物性評価を行い、送達効率の差がなぜ生まれたのかを検討することとした。まず、動的光散 乱法 (Dynamic light scattering, DLS) により粒子径および多分散指数 (Polydispersity index, PdI) およびζ-電位の測定を行った(Table 5)。IgG-LNP は粒子径および PdI が IgG_polyE-LNP よりも 大きく、粒子形成が安定しないことが確認された。一方で、ζ-電位に大きな差は無く、粒子表面の 電荷が細胞内への送達効率に影響するわけでは無いことが示唆された。また、LNP 内への抗体の内 封率の差が、サイトゾルへの送達効率に影響する可能性が考えられたため、遠心分離(20,000×g、 4℃、1時間)により脂質ナノ粒子を沈殿させ、上清の抗体濃度から内封された抗体量を定量し、内 封率を算出した(Table 5)。polyEを用いて負電荷液滴を形成させ、脂質によりパッケージングする 方が内封率を高められると期待していたが、結果として polyE の有無で抗体の内封率には差が無い ことが示された。この理由に関しては、今後の検討が必要であるが、今回用いた脂質による LNP 作 製条件においては、近傍に存在する IgG が一定量の割合で LNP と複合体を形成しうるが、polyE が 同時に存在することで、IgG がより濃縮された形で LNP にパッケージ化され、結果的に粒子径の小 さな脂質ナノ粒子の調製と IgG のより効果的なサイトゾルへの送達が達成されたのではないかと考 えられる。

 Table 5. Measurement of size, polydispersity index (PdI), zeta-potential and IgG encapsulating efficacy of IgG-LNP

 or IgG polyE-LNP.

LNP	Size (d.nm)	PdI	ζ-potential (mV)	Encapsulation efficiency (%)
lgG-LNP	645 ± 143	0.605 ± 0.10	- 6.6 ± 3.1	34.3 ± 3.2
lgG_polyE-LNP	294 ± 42	0.392 ± 0.03	- 5.6 ± 0.8	33.5 ± 1.8

Lipids were composed of SS-OP, DOPE and β -sitosterol at 45 : 10 : 45 molar ratio and 1.5 mol% DMG-PEG5k was added. Results are represented as the mean \pm SD of more than three independent experiments.

抗体のサイトゾルへの移行を顕微鏡による定性的な評価ではなく、定量的に抗体の導入量を評価 するため、split luciferase NanoBiT 技術に着目した。この技術は、NanoLuc luciferase を大きな断片 である LargeBiT (LgBiT、18 kDa) と相補性を持つ高親和性 11 アミノ酸残基ペプチド HiBiT (VSGWRLFKKIS、 $K_d = 700 \text{ pM}$) に断片化したスプリット体技術である⁽⁴⁸⁾。本技術は、サイトゾ ルに送達させたいタンパク質などに HiBiT 配列を付加させ、LgBiT を発現させた細胞への送達活性 評価などに応用されている^(49,50)。そこで、筆者は HiBiT ペプチドを抗体 (抗 GFP 抗体) の重鎖の C 末端に組み込んだ IgG-HiBiT を作製し、SDS-PAGE により得られたタンパク質が抗体であるこ とを確認した (Figure 21 (A))。非還元条件下では 150 kDa 以上の位置にバンドが確認され、還元条 件下では重鎖と軽鎖の 2 本のバンドが確認された。また、HiBiT を有さない抗 GFP 抗体の重鎖と比 較して、IgG-HiBiT の重鎖はより高い位置にバンドが観察されることから、重鎖に HiBiT が融合し ていることが示唆された。また、IgG-HiBiT または抗 GFP 抗体を NanoGlo® HiBiT Lytic Detection System により発光量を定量化したところ、IgG-HiBiT が濃度依存的にルシフェラーゼ活性を回復す ることが確認された (Figure 21 (B))。

Figure 21. Preparation of anti-GFP-IgG with HiBiT tag (IgG-HiBiT) at C-terminal of the heavy chain. (A) Structure analysis of IgG-HiBiT were detected by SDS-PAGE and Coomassie brilliant blue staining. (B) The luminescence of the mixture of IgG or IgG-HiBiT with LgBiT and substrate were detected. The amount of IgG are 0, 0.1 and 1 pmol. The magenta data set (triangle symbol) is IgG-HiBiT and the cyan data set (rectangle symbol) is anti-GFP-IgG. cps, counts per second.

サイトゾル中に LgBiT を恒常発現する HeLa 細胞(HeLa-LgBiT)に、IgG-HiBiT をサイトゾル にまで送達することができれば、IgG-HiBiT と LgBiT の再会合によりルシフェラーゼの酵素活性を 回復することができるため、顕微鏡観察と比較してサイトゾルに移行した抗体量を発光量から定量 的に評価できる(Figure 22 (A))⁽⁵⁰⁾。IgG-HiBiT を内封する IgG-LNP または IgG_polyE-LNP を IgG 濃度にして 0.5 μ M となるように血清培地に懸濁し、HeLa-LgBiT 細胞と 18 時間インキュベ ーションした。その後、PBS(-)で3回洗浄し、トリプシン処理により細胞を回収後、NanoGlo® Live Cell Assay 試薬と混合して発光量を測定した(Figure 22 (B))。その結果、IgG_polyE-LNP の方が、 IgG-LNP と比較して有意にサイトゾルへの抗体の送達量が多いことが示された。これは顕微鏡観察 の結果(Figure 20 (A))と相関するものであり、抗体内封脂質ナノ粒子調製における polyE の重要 性が示唆された。

Figure 22. Cytosolic IgG-HiBiT delivery using IgG_polyE-LNP. (A) Schematic illustration of the split luciferase NanoBiT based quantification system of cytosol delivered IgG-HiBiT in LgBiT expressing cells. When IgG-HiBiT reaches to the cytosol, the split luciferase is reconstituted and shows the luciferase activity. (B) The luminescence of the luciferase in cytosol are measured after 18 h treatment of IgG-LNP or IgG_polyE-LNP at concentration of 0.5 μ M of IgG. cps, counts per second. Results are presented as the mean ± SD (n = 3). ***P < 0.001 (ANOVA followed by unpaired t-test).

第五節 LNP に封入された抗体がサイトゾルに送達されていることの確認

第四節から、IgG_polyE-LNP 内への抗体の内封率は約 30%であったことから、LNP に封入され ていない遊離 IgG (free-IgG) が存在することが分かった。ここまでの検討で、LNP によるエンド ソーム膜破壊活性により (Figure 19 (C))、free-IgG のみが単にサイトゾル移行した可能性が考えら れたため、本節では内封された抗体がサイトゾルに到達することを確認することとした。

まず、LNP に内封する抗体と内封させない抗体をそれぞれ別の蛍光標識を施し、それぞれの細胞 内局在を比較した。IgG_polyE-LNP を調製する際に、内封する hIgG を Alexa Fluor 594 で標識し (hIgG-AF594)、IgG_polyE-LNP を調製した。また、free-IgG として、hIgG-AF488 を hIgG-AF594 を LNP 化した IgG_polyE-LNP 溶液に加えた。このサンプルを HeLa 細胞に hIgG-AF488 および hIgG-AF594 がそれぞれ IgG 濃度にして 1 μ M となるように血清培地に懸濁し、18 時間インキュ ベーション後、IgG の細胞内局在を観察した (Figure 23 (A))。その結果、内封した hIgG-AF594 と 同様に free-IgG である hIgG-AF488 シグナルも、一部サイトゾルに到達することが確認された。本 LNP はエンドソーム膜傷害活性があるため (第三節)、free-IgG がエンドソーム内から微量漏れ出 すことにより、サイトゾルに移行したシグナルが観察されたと考えられる。つまり、free-IgG も LNP によるエンドソーム破壊を起点としてサイトゾルに移行する。

次に LNP 調製後の free-IgG を除去するため、内封率を算出する際と同様の遠心条件 (20,000× g、4°C、1 時間) で IgG_polyE-LNP を沈殿させ、上清を除くことで free-IgG を除去することとし た。遠心および上清の除去操作を 3 回繰り返し行うことで、free-IgG を除くことに成功した(上清 の最終抗体濃度を A_{280} の測定から 0 mg/mL であることを確認した)。free-IgG 除去後の IgG_polyE-LNP を血清培地で再懸濁後、HeLa 細胞に 18 時間インキュベーションを行い、IgG の細胞内局在を 観察した (Figure 23 (B))。その結果、free-IgG を除去した IgG_polyE-LNP サンプルでもサイトゾ ルへの抗体送達活性が確認されたことから、内包した IgG を LNP はサイトゾルに送達することが 示された。以上の検討から、IgG_polyE-LNP は内封出来ていない抗体および内封化した抗体をサイ トゾルにまで送達できることが明らかとなった。ただし、動物投与などを考えた場合、LNP と抗体 の動態が異なることが予想されるため、free-IgG の無い内封効率を高めた IgG_polyE-LNP の調製方 法の確立が望まれ、今後の課題として挙げられる。

Figure 23. Cytosolic IgG delivery using IgG_polyE-LNP. (A) CLSM observation of cytosolic appearance of hIgG-AF488 (non LNP formulation, free-IgG) and hIgG-AF594 (IgG_polyE-LNP formulation, encapsulating-IgG) after treatment of IgG_polyE-LNP for 18 h. Each IgG concentration, 1 μ M. (B) CLSM observation of cytosolic appearance of hIgG-AF488 with treatment of IgG_polyE-LNP after removing free-IgG by three times centrifugation (20,000 ×g, 4 °C, 1 h). IgG concentration before centrifugation (cfg), 1 μ M. Scale bar, 50 μ m.

第六節 LNP による細胞内タンパク質を認識する抗体の送達

ここまで、IgG と polyE から形成される負電荷液滴を LNP 化することで、IgG をサイトゾルにま で送達できることを確認してきた。次に、サイトゾルに存在するタンパク質を標的とする IgG を LNP により送達することで、その分子を認識できるかどうか検討することとした。また、第五節におい て、遠心分離による free-IgG を除去する方法では、沈殿した LNP の凝集塊が抗体の送達効率を低 減させる可能性があるため、以降の検討では、free-IgG を除去しない第五節以前の検討と同様に実 験を行った。

まず初めに、緑色蛍光タンパク質 (GFP) を認識する抗体 (anti-GFP-IgG) を IgG_polyE-LNP で 細胞内に導入することとした⁽⁵¹⁾。HRas は Ras タンパク質ファミリーの一種で、細胞膜に局在する タンパク質であり、これに GFP を融合した HRas-GFP を発現する HeLa 細胞を用いることとで GFP を細胞膜に局在させた⁽⁵²⁾。Alexa Fluor 594 で標識した anti-GFP-IgG (anti-GFP-IgG-AF594) を作 製し、これを IgG_polyE-LNP 化後、HRas-GFP 発現 HeLa 細胞に IgG 濃度にして 1 μ M となるよ うに血清培地に懸濁し、18 時間インキュベーションを行い、IgG の細胞内局在を観察した (Figure 24 (A))。その結果、HRas-GFP が存在する細胞膜付近に anti-GFP-IgG-AF594 のシグナルが集結す る様子が確認された。つまり、IgG_polyE-LNP で送達した anti-GFP-IgG は、サイトゾルで抗原を 認識できることが示唆された。

一方で、蛍光標識を施していない anti-GFP-IgG のサイトゾルへの送達についても検討した。未蛍 光標識 anti-GFP-IgG を IgG_polyE-LNP 化し、HRas-GFP 発現 HeLa 細胞に IgG 濃度にして 1 μ M となるように血清培地に懸濁し、18 時間インキュベーションを行った。その後、パラホルムアル デヒドで固定、および Alexa fluor 568 標識二次抗体 (anti-mouse IgG) を用いて免疫染色を行い、 IgG の細胞内局在を観察した (**Figure 24 (B)**)。その結果、蛍光標識抗体同様にサイトゾルの GFP を anti-GFP-IgG が認識していることが確認された。以上の結果より、IgG_polyE-LNP はサイトゾル に存在するタンパク質を標的とする IgG を、その認識能を維持したまま送達できることが示された。

Figure 24. Cytosolic delivery of anti-GFP-IgG using IgG_polyE-LNP. (A) CLSM observation of cytosolic appearance of anti-GFP-IgG-AF594 after treatment of IgG_polyE-LNP for 18 h to HRas-GFP expressing HeLa cells. IgG concentration = 1 μ M. (B) CLSM observation of cytosolic appearance of anti-GFP-IgG after treatment of IgG_polyE-LNP for 18 h. Then, the cells were fixed and stained with anti-mouse IgG-secondary antibody labeled with AF568. Scale bar, 50 μ m.

次に、内在性タンパク質を認識する抗体を導入するため、核膜孔複合体(nuclear pore complexes, NPC)に対する抗体(anti-NPC-IgG)を選択した⁽⁴⁶⁾。HeLa 細胞に IgG_polyE または IgG_polyE-LNP サンプルを IgG 濃度にして1 μ M となるように血清培地に懸濁し、18 時間インキュベーショ ンを行った。その後、免疫染色を行い、IgG の細胞内局在を観察した(Figure 25 (A))。その結果、 液滴の添加では、点状のシグナルが確認されるのみであったが、IgG_polyE-LNP 処理において、核 周囲に IgG のシグナルがリング状に確認された(yellow arrow heads in Figure 25 (A))。また、核を 横切るようにラインプロットを作成したところ、IgG_polyE droplet 添加では、核シグナル(シアン 色)から離れた位置に抗体シグナル(マゼンタ色)が確認されるのに対し、IgG_polyE-LNP 処理で は核シグナルの両端と抗体シグナル(マゼンタ色)が確認されるのに対し、IgG_polyE-LNP 処理で は核シグナルの両端と抗体シグナル(マゼンタ色)が確認されるのに対し、IgG_polyE-LNP 処理で いて 400 個程度の細胞を観察し、核周囲に抗体由来のシグナルがリング状に観察される細胞をカウ ントし、その割合を算出したところ、IgG_polyE-LNP 処理で約 20%の細胞に anti-NPC-IgG を送達 できていることが確認された(Figure 25 (C))。以上の検討から、IgG_polyE-LNP は、内在性のタン パク質を認識する抗体を導入できることが示された。

Figure 25. Cytosolic delivery of anti-NPC-IgG using IgG_polyE-LNP. (A) CLSM observation of cytosolic appearance of anti-NPC-IgG after treatment of IgG_polyE-LNP for 18 h to HeLa cells. IgG concentration, 1 μ M. Scale bar, 50 μ m. (B) The 2D intensity histogram of nuclear signals (Hoechst33,342, cyan line) and IgG signals (anti-mouse IgG-secondary IgG-AF568) from a to b. (C) Percentage of cells bearing cytosolic anti-NPC-IgG signals. Results are presented as the mean ± SD (n = 3). N.D., not detected; ***P < 0.001 (ANOVA followed by Turkey-Kramer's honestly-significance test).

第七節 機能性抗体導入による細胞機能の制御

最後に、細胞内のタンパク質を認識する活性のみでなく、認識したタンパク質の活性を阻害する ことで細胞機能に影響する IgG の送達を試みた。細胞はその生存のためにアポトーシスを負に制御 する機構を働かせている。そこで重要な役割を担うタンパク質が Akt であり、アポトーシスを誘導 するタンパク質の活性を抑制している(Figure 26 (A)左)⁽⁵³⁾。Akt の活性体であるリン酸化 Akt(pAkt) を認識し、その機能を阻害する IgG (anti-pAkt1-IgG) を、HeLa 細胞に導入することで、細胞のア ポトーシスを誘発できることが報告されている(Figure 26 (A)右)⁽⁵⁴⁾。本研究においても、anti-pAkt1-IgG を LNP 化によりサイトゾルへ送達し、アポトーシスを誘導できるか検討した。

アポトーシスの検出は、Caspase-3 および Caspase-7 の活性を測定できる Caspase-Glo® 3/7 Assay System により評価した。pAkt 阻害により、Caspase-3 および-7 がプロテアーゼ活性を発揮し、発 光前駆基質を発光基質へ変換する。その後、発光基質がルシフェラーゼによる酵素作用を受けるこ とにより発光を検出できる⁽⁵⁵⁾。このシグナルは caspase-3/7 活性に比例するため、発光量が多い方 がよりアポトーシスを誘導したことを示唆する。HeLa 細胞にコントロール IgG として hIgG、ま た anti-pAkt1-IgG (Cat#: 700392、Invitrogen)を内封する IgG_polyE-LNP を IgG 濃度にして 1 μ M となるように血清培地にそれぞれ懸濁し、24 時間インキュベーションを行った。その後、 Caspase-Glo® 3/7 Assay 試薬を加え 25°C、1 時間インキュベート後、発光量を定量した (Figure 26 (B))。その結果、コントロール抗体と比較して、anti-pAkt1-IgG を送達した群では、有意にアポト ーシスを誘導できることが確認された。また、細胞生存率を WST-8 assay により同様の実験条件で 検討を行ったところ、anti-pAkt1-IgG を送達する LNP 処理によって、有意な細胞増殖阻害効果を 得ることが出来た (Figure 26 (C))。つまり、IgG_polyE-LNP はタンパク質の活性を阻害可能な IgG をサイトゾルにまで導入でき、細胞機能を制御できる可能性を示した。

Figure 26. Cytosolic delivery of anti-pAkt1-IgG using IgG_polyE-LNP. (A) The scheme of apoptosis signals by introducing anti-pAkt-IgG into cells. Phosphorylated Akt (pAkt) inhibit the activity of apoptosis inducer proteins in normal cells (left side). When anti-pAkt-IgG are delivered into the cytosol, the activity of pAkt is inhibited and the apoptosis mechanism are induced. Then, caspase-3 and caspase-7 shows the protease activity (right side). (B) The luminescence intensity were measured after the treatment of control IgG (hIgG) or anti-pAkt1-IgG encapsulating LNP formulations (1 μ M at concentration of IgG) for 24 h by NanoGlo caspase-3/7 assay system. (C) The cell viability were measured after the treatment of hIgG or anti-pAkt1-IgG encapsulating LNP formulations (1 μ M at concentration of IgG) for 24 h by WST-8 assay. Results are presented as the mean \pm SD (n = 3). **P < 0.01, ***P < 0.001 (ANOVA followed by unpaired t-test).

第二章の考察

分子標的薬として汎用される抗体医薬は、現状の医療において非常に重要なシーズであり、アン メットメディカルニーズを解消するバイオ医薬である。しかしながら、抗体は親水性の高分子であ り、細胞膜を透過できない制約から、標的とするタンパク質は細胞外に限定されている^(39,40)。筆者 は、抗体をサイトゾルに送達できる DDS 技術の開発が、新たな疾患治療の応用に繋がると考え、抗 体を内封するナノ粒子の調製に着手した。第一章のように、核酸医薬の担体として用いられる LNP 技術を、抗体のサイトゾル送達に応用することを考え、ポリグルタミン酸 (polyE) と抗体からなる 負電荷液滴を脂質パッケージングするという新規 LNP 化技術により、抗体内封脂質ナノ粒子を調製 した。

第一節の検討から、polyE と抗体で形成される負電荷液滴を脂質ナノ粒子化することで、顕微鏡で 観察される液滴が小さくなり、また抗体と脂質がマージする輝点を確認できたことから、本手法に より抗体を脂質粒子内にパッケージングできることが示唆された。この抗体内封脂質ナノ粒子 (IgG_polyE-LNP)は、エンドサイトーシス経路で細胞内に移行し、エンドソーム膜との融合およ び破壊を行うことでサイトゾルへ抗体を送達できることを第三節までの検討で明らかとした。

第四節における抗体内封脂質ナノ粒子調製時の polyE の有無における粒子物性の比較検討から、 polyE を加え負電荷液滴を形成した後の脂質パッケージングにより、粒子径および多分散指数のよ り小さな粒子が調製できることが確認され、polyE はナノ粒子形成を安定化させると考えられる。 IgG_polyE-LNP は粒子物性を制御できているため、抗体の細胞内への導入量が増加し、サイトゾル への抗体送達量を高められたことから、脂質ナノ粒子による抗体送達に polyE は重要な役割を担う ことが示された。また、抗体を含むタンパク質をサイトゾルに送達する手法の一つとして、タンパク 質にグルタミン酸タグを修飾した融合タンパク質を用いる手法が報告されているが、共有結合的に 負電荷を付加するこれらの手法では、タンパク質本来の活性に悪影響することが懸念されるのに対 し、本手法では、静電的相互作用を介した抗体への負電荷の付与により、担体への内封、粒子形成を 安定化させることができるため、従来の方法に比べ応用の幅が広いと考えられる^(56,57)。

第六節以降では、サイトゾルに導入する抗体をサイトゾルに存在するタンパク質を標的とする抗体に変更し、その局在観察および阻害活性を評価した。特に、核膜孔複合体に対する抗体 (anti-NPC-

IgG)を導入した検討から、核周囲に抗体が集積する様子が観察され、IgG_polyE-LNP はインタク トな抗体を細胞内に導入し、内在性タンパク質を標的化できるという有力な結果が得られた。また、 第七節において、細胞内でアポトーシスシグナルを負に制御するリン酸化 Akt (pAkt) に対する抗体 (anti-pAkt1-IgG)を本手法により HeLa 細胞に導入することにより、pAkt 阻害による細胞内での アポトーシスの誘導に成功した。このように、IgG_polyE-LNP は種々の抗体をサイトゾルに送達で きる担体であり、送達された抗体は標的分子を認識および阻害する活性を失わないことから、新規 抗体送達技術として有用であることが示唆された。

本章では、抗体のサイトゾル送達担体として、核酸送達医薬として臨床応用されている LNP 技術 を選択した。筆者は、抗体の LNP 内への内封化を安定化するため、IgG と polyE で形成される負電 荷液滴を LNP 内にパッケージングするという新規抗体内封化手法を提案し、抗体をサイトゾルに導 入できる脂質ナノ粒子を調製した。本技術は、IgG を LNP にパッケージングし、サイトゾルにまで 送達できた点で新規性が非常に高いと言える。また、一般的にカチオン性脂質粒子やポリマーへの タンパク質搭載には、タンパク質への共有結合的な負電荷タグの修飾を行う必要があり汎用性に欠 けるが、本手法では、液-液相分離による負電荷液滴をカーゴとして応用することにより、従来の方 法よりも優れている^(56, 57)。

しかし、IgG_polyE-LNP は現状では粒子径 300 nm 程度と大きく、静脈からの全身投与が望めず、 in vivo で応用するには不十分である⁽³⁷⁾。また、抗体の内封効率が 30%程度であり、遊離の IgG がサ イトゾルに到達することが明らかとなった。第六節以降の検討では、LNP に内封される抗体の効果 のみでなく、遊離の抗体がサイトゾルに移行した影響が除外できない。遊離の抗体による影響を無 くすためにも、抗体の内封効率を高める必要性がある。これら課題を解決するため、LNP の調製方 法を見直す必要がある。本手法のように、ピペッティングによる LNP 調製法は、個人差やロット差 が生まれやすく、LNP 調製の自動化が必要である。つまり、臨床で応用されている LNP 調製法の ように、マイクロ流路デバイスを用いた脂質と負電荷液滴のミキシングシステムの開発が今後望ま れる⁽⁵⁸⁾。また、抗体送達に適した pH 応答性脂質の選択や脂質組成の検討、ミキシング時の液滴と 抗体の混合比や流速比などの最適化を行うことにより、抗体の内封効率を高めた in vivo 応用可能な IgG_polyE-LNP 調製の今後の研究が期待される。

総括

抗体などの生理活性タンパク質のサイトゾルへの送達技術の確立は、現状では標的とできない疾 患原因のタンパク質を標的化できるため、今後の医療に重要なインパクトを与えることが予想され る⁽⁵⁹⁾。本研究では、核酸医薬のサイトゾル送達技術である LNP 技術を応用し、タンパク質を脂質ナ ノ粒子に封入することで、サイトゾルにタンパク質を送達可能な LNP 技術の調製を行った。第一章 では、緑色蛍光タンパク質のサイトゾルへの送達に成功した。タンパク質の LNP への内封には、タ ンパク質の表面電荷を負に調整する必要性を見出した。さらに、サイトゾル送達効率の向上には、脂 質とカーゴの混合比が重要であることを明らかとした⁽⁹⁾。第二章では、蛍光タンパク質ではなく、生 理活性を示すタンパク質として抗体 (IgG) をサイトゾルに送達することを目標に、ポリグルタミン 酸と抗体で形成させる負電荷液滴 (臨床応用されている抗体濃縮方法) を pH 応答性脂質を含む脂 質と混和することで抗体内封脂質ナノ粒子 (IgG_polyE-LNP) を調製した。IgG_polyE-LNP は、抗 体をサイトゾルにまで送達することができ、さらに送達された抗体は、標的タンパク質を認識し、そ の機能を阻害できることも確認された。これらの検討は、特に細胞内タンパク質を標的とする抗体 医薬の確立につながる重要な知見になると予想される。タンパク質送達技術について近年多数報告 がなされているが、LNP 技術の様に臨床応用されているマテリアルでの送達例は乏しく、本研究は タンパク質の DDS 技術として、重要な知見を与えると考えられる^(60,61)。

本研究で開発した抗体のLNPへの内封化技術は、抗体分子に余分な修飾を施さずにインタクトな 抗体を細胞内に導入できる点から優れており、抗体をLNP技術でサイトゾルに送達する技術の確立 に向けた重要な第一歩である。ただし、調製されたIgG_polyE-LNPは粒子径および多分散指数が大 きく、また抗体の内封効率も低いため、in vivoへの応用には課題が残る。今後の研究として、マイ クロ流路デバイスを用いた自動化によるIgG_polyE-LNP 調製の最適化を優先し、粒子径の小さく、 抗体の内封効率を高めたLNP 調製法の確立が望まれる。続いて in vivo でサイトゾルへの抗体送達 を達成し、標的タンパク質の機能制御による新規疾患治療薬の開発に取り組んでいきたい。

また、本技術は疾患原因タンパク質の機能を制御する抗体分子のみを送達するのみでなく、従来 の方法を参考に核酸医薬もサイトゾルへ抗体と共に導入するといった応用例が考えられる。近年、

細胞内において、抗体のフラグメント結晶化可能領域(Fc 領域)を認識する受容体であり、さらに ユビキチンリガーゼ活性を有する TRIM21 が注目を集めている⁽⁶²⁾。TRIM21 は、細胞内に移行した IgG の Fc 領域を認識し、抗体が結合したタンパク質と抗体をユビキチン化することで、抗体-標的 タンパク質複合体をプロテアソーム分解することができる。この細胞内メカニズムを応用した技術 として Trim-Away が報告された⁽⁶³⁾。この方法では、サイトゾルタンパク質を認識する抗体と TRIM21 を同時にサイトゾルに導入し、特異的かつ迅速に標的タンパク質のノックダウンを可能と する。IgG_polyE-LNP の調製において、polyE を TRIM21 をコードする mRNA に一部置換し、従 来の LNP 技術のように mRNA を IgG と共にサイトゾルへ導入することが出来れば、TRIM21 の発 現に伴い、標的タンパク質のプロテアソーム分解が誘発され、機能阻害のみでなく標的タンパク質 のノックダウン効果を上乗せできると考えられる。

さらに本技術は、抗体医薬のサイトゾル送達技術としてのみでなく、液-液相分離したバイオ医薬 のサイトゾル送達技術に応用できる可能性もある。タンパク質と高分子電解質から形成される液-液 相分離について理解を深め、脂質ナノ粒子内に封入することで、あらゆるタンパク質のサイトゾル への送達が現実味を帯びてくる。コロナワクチンの成功例もある様に、mRNA 医薬は今後も医療の ニーズを解消することが期待されるが、抗体をはじめとするサイトゾルではフォールディングのう まくいかないタンパク質については、タンパク質そのものを運ぶ DDS 技術の開発が不可欠であり、 本手法はそのニーズに応え得る一つの手法であると考えられる。今後の研究により、タンパク質を LNP に内包するための液-液相分離の条件の確立や、脂質とのミキシング条件および脂質組成の適 正化が進めば、将来の医薬に大きく貢献すると考えられる。

実験の部

第一章の実験

NLS-(-30)GFP プラスミドの設計

核移行シグナル (SV40NLS; sequence, PKKKRKV) を融合した super-negatively charged GFP (NLS-(-30)GFP) をコードするプラスミド (pET-6×His-SV40NLS-(-30)GFP) を設計するため、 T4 PNK (New England Biolabs) による 5'末端のリン酸化後に一本鎖 DNA をアニーリングするこ とで、6×His-SV40NLS をコードする DNA 断片を作製した (**Table. 6**)。この DNA 断片を pET-6×His-(-30)GFP (a gifted from David Liu, Addgene plasmid # 62,936; RRID: Addgene_62936) 上 の制限酵素サイトである *Ncol と Nhel* 間に挿入することで pET-6×His-SV40NLS-(-30)GFP をク ローニングした。

Table. 6 Sequence of single strand DNA for DNA fragment coding 6 × His-SV40NLS

Sequence

5'- CATGGGTCATCACCACCACCATCACGGTGGCCCTAAGAAGAAACGTAAGGTCGGAGGCAGCC -3'

5'- CTAGCGCTGCCTCCGACCTTACGTTTCTTCTTAGGGCCACCGTGATGGTGGTGGTGATGACC -3'

NLS-(-30)GFP の発現・精製

E. coli BL21 (DE3)-competent cells (Nippon Gene) を pET-6×His-SV40NLS-(-30)GFP でトラ ンスフォーメーションした。この NLS-(-30)GFP 発現株を 100 mg/mL アンピシリンを含む 1 L の Luria-Bertani broth (LB 培地、Thermo Fisher Scientific) で OD₆₀₀ 値が 0.6 程度まで増殖させた。 その後、発現誘導のため isopropyl- β -D(-)-thiogalactopyranoside (Fujifilm Wako Pure Chemical Corporation) を 0.5 mM になるように加え、100 rpm、18°Cで 18 時間インキュベートした。NLS-(-30)GFP 発現菌体を JLA-9.100 rotor (Beckman Coulter) を用いて、4,000 rpm、4°Cで 10 分間遠 心分離し回収した。回収した菌体は- 80°Cの冷凍庫で保存した。 NLS-(-30)GFP 発現菌体を溶解液 (20 mM Tris-HCl、300 mM NaCl、10 mM imidazole、pH = 7.5) で再懸濁した。その後、氷上にてソニケーション (2 分間 ON-2 分間 OFF サイクル) を 5 回 っ繰り返し、菌体を破砕した。この溶解液を遠心分離 (20,000 ×g、4°C、30 分) し、上清を 0.45 μ m のフィルターでろ過した。ろ液を 2 mL の nickel-nitriloacetic acid (Ni-NTA) アガロース (Qiagen) に加え、4 度で 1 時間転倒混和することで NLS-(-30)GFP 吸着させた。NLS-(-30)GFP 吸着レジン を洗浄液 (20 mM Tris-HCl、300 mM NaCl、20 mM imidazole、pH = 7.5) で 2 回洗浄し、溶出液 (20 mM Tris-HCl、300 mM NaCl、20 mM imidazole、pH = 7.5) で 1 時間転倒混和することで NLS-(-30)GFP 吸着させた。NLS-(-30)GFP を含む溶液 を回収した。この溶液を AmiconUltra4 10k MWCO (Merck Millipore) にてリン酸緩衝生理食塩水 (PBS(-)) に置換した。さらにこの溶出液を HiTrap Q HP anion exchange column (Cytiva) に吸着させ、精製用緩衝液 (50 mM Tris-HCl、0.1 または 1 mM NaCl、1 mM dithiothreitol (DTT)、pH = 8) で NaCl の濃度グラジェントをかけることで精製した。精製した NLS-(-30)GFP 溶液を AmiconUltra4 10k MWCO にて PBS(-)に置換・濃縮し、タンパク質濃度を bicinchonic acid (BCA) assay (Thermo Fisher Scientific) にて決定した。

NLS-(-30)GFP を内包する LNP の調製方法

charge-reversible 脂質である dioleoylglycerophosphate-diethylenediamine (DOP-DEDA、a kind gift from Nippon Fine Chemical Co.)、dipalmitoylphosphatidylcholine (DPPC、NOF Corporation)、 cholesterol (Sigma Aldrich)、 1,2-dimyristoyl-*rac*-glycero-3-methylpolyoxyethyleneglycol chain, molecular weight 5000 (DMG-PEG5k、NOF Corporation)は 10 mM の濃度でクロロホルム (Fujifilm Wako Pure Chemical Corporation) に溶解 し -30 °C の冷凍庫にて保存した。DOP-DEDA/DPPC/cholesterol/DMG-PEG5k = 45/10/45/1 のモル比にてフラスコ内で混合し、1 mL の *tert*-butyl alcohol (*r*-BuOH、Fujifilm Wako Pure Chemical Corporation)を加えロータリーエバボレ ーターにてクロロホルムを蒸発させ脂質溶液を得た。この脂質溶液を-80°Cで凍結後、凍結乾燥機を 用いて*r*-BuOH 除去し、その後*r*-BuOH で脂質を再溶解させることで 25 mM 脂質溶液を作製した。 脂質溶液と NLS-(-30)GFP 溶液を別々に 40°Cの条件で 30 分間インキュベート後、30 回のビベッ ティングにより両溶液を混合した。その後、1,000 倍以上の体積量の超純水に対して 12-14k MWCO 透析膜(Spectrum Laboratories Inc.) で透析を行い NLS-(-30)GFP を内包する Lipid Nanoparticle (NLS-(-30)GFP-LNP)を調製した。調製した LNP は Zetasizer Nano S(Malvern)を使って粒子直 径および polydispersity index (PdI)を評価した。

NLS-(-30)GFP の LNP 内への内封率の算出方法

NLS-(-30)GFP-LNP を調製し、その半分量を終濃度 2% sodium dodecyl sulfate (SDS)溶液とな るように調製し 4°Cで保存した。一方で残りの半分量の NLS-(-30)GFP-LNP は超遠心分離(100,000 ×g、4°C、2 時間) し、ペレットを 2% SDS 溶液で再溶解した。得られた溶液を 10%アクリルアミ ドゲルにアプライし、sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)を行っ た。その後、Coomassie Brilliant Blue 染色にてタンパク質定量を行い、NLS-(-30)GFP の内封量を 以下の式 (Eq. 1) から算出した。ただし、P_{pellet} は超遠心後のペレットに存在した NLS-(-30)GFP の 総タンパク質量、P_{total} は超遠心を行っていない LNP サンプル中の総タンパク質量を指す。

NLS-(-30)GFP の内封率(%) = $P_{pellet}/P_{total} \times 100$ Eq. 1

cryogenic transmission electron microscopy (Cryo-TEM)による LNP 観察

NLS-(-30)GFP-LNP の形態観察を行うため、JEOL/JEM-2100F(G5)を用いて Cryo-TEM 観察を 行った。NLS-(-30)GFP-LNP 溶液を全脂質濃度で 20 mg/mL になるように濃縮し、このうちの 3– 5 µL を TEM 用銅グリッドに載せ、過剰量を除いた後に液体プロパンにて凍結固定を行った。その 後、凍結グリッドを JEOL/JEM-2100F(G5)に設置し、液体へリウム存在下の温度 4.2 K 条件下、加 速電圧 200 kV にて電子顕微鏡観察を行った。

細胞培養

ヒト子宮頸がん細胞(HeLa 細胞、Human epithelial carcinoma cell line、the European Collection of Authenticated Cell Cultures (ECACC) (93021013)) は 10% (v/v)非働化ウシ血清 (Invitrogen) を含む α -minimum essential medium (α - MEM) (α - MEM(+)) で培養した。HeLa 細胞は 5% CO₂・ 37℃条件で培養し、2-4日毎に継代培養した。

細胞生存試験(WST-8 assay)

細胞生存率は Cell Counting Kit-8 (CCK-8) (Dojindo)を用い、推奨のプロトコルに準拠して測定 した。HeLa 細胞を 96-well plate (Iwaki)に 10,000 cells/well で播種し、オーバーナイトでインキュ ベートした。細胞を PBS(-)で 2 回洗浄後、NLS-(-30)GFP-LNP を NLS-(-30)GFP 濃度で 0、2.5、 5、10、20 μ M となるように 10% (v/v)非働化ヒト血清を含む α -MEM 培地で希釈したサンプルを 添加し、37°C、5% CO₂条件下で 6 時間培養を行った。インキュベート後、細胞を 0.5 mg/mL ヘパ リンを含む PBS(-)で二回洗浄し、 α -MEM(+)と WST-8 試薬を加えて 1 時間インキュベートした。 インキュベート後、吸光度 (A_{450 nm} – A_{650 nm})から細胞生存率を算出した。

フローサイトメトリー

NLS-(-30)GFP-LNP の細胞内移行経路を評価するため、エンドサイトーシス阻害条件下での NLS-(-30)GFP の細胞の取り込み量をフローサイトメトリーにより評価した。HeLa 細胞を 24-well plate (Iwaki) に 80,000 cells/well で播種し、オーバーナイトでインキュベートした。細胞を PBS(-) で 2 回洗浄後、各種エンドサイトーシス阻害剤 (30 μ M Pitstop2 (クラスリン介在性エンドサイト ーシス阻害剤)、80 μ M 5-(*N*-ethyl-*N*-isopropyl)amiloride (EIPA、マクロピノサイトーシス阻害剤)、 500 nM wortmannin (マクロピノサイトーシス阻害剤))を含むα-MEM(-)を投与し、37°C、5% CO₂ 存在下で 30 分間インキュベートした。インキュベート後、各種阻害剤および NLS-(-30)GFP-LNP (NLS-(-30)GFP 濃度で 2.5 μ M 分)を含むα-MEM(+)に培地交換し、37°C、5% CO₂存在下で 1 時間インキュベートした。その後、細胞を 0.5 mg/mL ヘバリン含有 PBS(-)で 2 回洗浄したのちに、 0.01%トリプシンで 10 分間処理することにより細胞を懸濁させチューブに回収したこれを遠心分離 (800×g、5 分)し、ベレットになった細胞を PBS(-)で再懸濁した。これを 2 回繰り返して細胞を 洗浄した。得られた細胞を最終的に 500 μ L の PBS(-)で再懸濁し、Cell strainer (Corning) に細胞 溶液を通した後、Attune NxT flow cytometer (Invitrogen) により各サンプル当たり 10,000 個の細 胞について蛍光量を定量した。

LNP による NLS-(-30)GFP の細胞内送達後の局在の顕微鏡観察

HeLa 細胞を 35 mm glass-bottom dish(Iwaki)に 12,000 cells/dish で播種し、オーバーナイトで インキュベートした。細胞を PBS(-)で 2 回洗浄後、NLS-(-30)GFP-LNP(NLS-(-30)GFP 濃度で 0-10 μ M 分)を含む α -MEM(+)を細胞に投与し、37°C、5% CO₂存在下で 6 時間インキュベート した。インキュベート後、細胞を 0.5 mg/mL ヘパリン含有 PBS(-)で 2 回洗浄し、 α -MEM(+)培地 を添加して 37°C、5% CO₂存在下で 12 時間インキュベートした。その後、PBS(-)で 2 回洗浄し、5 μ g/mL Hoechst33,342(Thermo Fisher Scientific)で核染色を行い、PBS(-)で洗浄後 α -MEM(+) 培地を添加した。NLS-(-30)GFP の細胞内局在を共焦点レーザー顕微鏡 FV1000(Olympus)また は FV3000 laser scanning microscope (CLSM)(Olympus)にてライブセルイメージングを行った。 各サンプルにつき 400 個の細胞以上の細胞の観察を行い、サイトゾル全体に NLS-(-30)GFP のシグ ナルが観察される細胞をカウントし、その細胞割合を評価した。

時間依存性を評価する検討では、HeLa 細胞は NLS-(-30)GFP-LNP (NLS-(-30)GFP 濃度で 2.5 μ M 分)を含む α -MEM(+)培地を添加され、37 度、5% CO₂存在下で 1、3、6 時間インキュベート された。インキュベート後、細胞を 0.5 mg/mL へパリン含有 PBS(-)で 2 回洗浄し、 α -MEM(+)培 地を添加して 37℃、5% CO₂存在下で 12 時間インキュベートし、CLSM 観察を行った。

NLS-(-30)GFP-LNP による細胞内への NLS-(-30)GFP 送達がエネルギー依存的な経路であるか どうかを評価する検討では、NLS-(-30)GFP-LNP を添加する前に、HeLa 細胞を α -MEM(+)培地 で 4°C条件下において 30 分間プレインキュベートした。その後、NLS-(-30)GFP-LNP (NLS-(-30)GFP 濃度で 2.5 μ M 分)を含む α -MEM(+)に培地交換し、4°C条件下において 6 時間インキ ュベートした。インキュベート後、細胞を 0.5 mg/mL ヘパリン含有 PBS(-)で 2 回洗浄し、 α -MEM(+)培地を添加して 37°C、5% CO₂存在下で 12 時間インキュベートし、CLSM 観察を行った。

NLS-(-30)GFP-LNP による細胞内・サイトゾルへの NLS-(-30)GFP 送達活性が、エンドソーム の成熟つまり酸性化が重要であるかを評価する検討では、NLS-(-30)GFP-LNP を添加する前に、 HeLa 細胞をエンドソーム酸性化阻害剤である塩化アンモニウム (25 mM) を含む α -MEM(+)培地 で 30 分間プレインキュベートした。その後、25 mM の塩化アンモニウムおよび NLS-(-30)GFP-LNP (NLS-(-30)GFP 濃度で 2.5 μ M 分)を含む α -MEM(+)に培地交換し、37°C、5% CO₂存在 下で6時間インキュベートした。インキュベート後、細胞を 0.5 mg/mL へパリン含有 PBS(-)で2 回洗浄し、α-MEM(+)培地を添加して 37℃、5% CO₂存在下で 12時間インキュベートした。その 後、Lysotracker[™] Red DND-99 (Thermo Fisher Scientific) で酸性オルガネラの染色し、CLSM 観 察を行った。

統計解析

全ての統計解析は JMP Pro (ver. JMP 15.1.0; SAS Institute, Cray, NC, USA)を用いて行った。2 群間の比較には F 検定による分散が正しいことを確認したのちにスチューデントの t 検定を持ちい た。多群間の比較には一元配置分散分析の後に Dunnett の方法もしくは Tukey-Kramer の方法を用 いた。P 値が 0.05 よりも小さい場合に有意な差があるとみなした。

anti-GFP-IgG の発現・精製

anti-GFP-IgG の作製は、the Expi293TM Expression System (Thermo Fisher Scientific) にて行っ た。Expi293FTM細胞を 3,000,000 cells/mL となるように準備し、100 mL 三角フラスコに 25 mL 加 えた。anti-GFP-IgG をコードするプラスミド (a gifted from James Trimmer, Addgene antibody # 180,084; RRID: AB_2750819、25 μ g) (51)を、ExpiFectamineTM293 (Thermo Fisher Scientific) と 混合し、その推奨プロトコルに従いトランスフェクションした。トランスフェクション後の 20 時間 後に、ExpiFectamineTM293 Transfectin Enhancer 1 を 150 μ L および Enhancer 2 を 1.5 mL 加え 5 日間インキュベートした。培養液を 50 mL チューブに移し、3,200 ×g、4°C、20 分間遠心分離し、 上清を回収した。抗体が含まれる上清を 0.22 μ m のフィルターでろ過減菌した。さらにこの溶液を HiTrap Protein A High Performance (Cytiva) に吸着させ、精製用緩衝液 (0.1 M Glycine HCl pH = 2.7 in D-PBS) で pH グラジエントによりカラムから IgG を遊離させた。IgG を含むフラクション を回収し、透析を行うことで PBS(-)にバッファー交換した。回収した anti-GFP-IgG は 4°C条件で 保存した。

HiBiT 融合 IgG(IgG-HiBiT)プラスミドの設計

HiBiT 配列を anti-GFP-IgG の重鎖の C 末端に融合させたプラスミドを設計するため、HiBiT 配 列をコードする 2 本鎖 DNA フラグメントを eurofins に合成依頼し、作製した (**Table. 7**)。 anti-GFP-IgG プラスミドを、anti-GFP_Fw プライマーおよび anti-GFP_Rev プライマーを用いて PCR により 線状 DNA を複製した (**Table. 8**)。これら 5 種の DNA フラグメントを NEBuilder HiFi DNA assembly master mix を用いて、推奨のプロトコルに準拠して HiBiT 融合 IgG (IgG-HiBiT) プラスミドを作 製した。IgG-HiBiT は、anti-GFP-IgG の発現・精製の実験欄と同様に Expi293FTM 細胞を用いて発 現させ、HiTrap Protein A High Performance により精製した。

Table. 7 Sequence of double strand DNA for DNA fragment coding HiBiT peptide

Sequence

Table. 8 Sequence of primers

Name	Sequence
anti-GFP_Fw	5'- TGATCTAGACACGTGATTAATTAAGGATCCC -3'
anti-GFP_Rev	5'- TTTACCCGGAGTCCGGGA -3'

抗体への蛍光分子の標識

抗体がサイトゾルに送達されたことを共焦点レーザー顕微鏡にて確認を行うため、抗体に蛍光標 識を行った。Alexa Fluor 488 修飾のため、10 mg/mL hIgG (正常ヒト IgG、Fujifilm Wako Pure Chemical Corporation) 100 μ L に PBS(-) 345 μ L を加え、そこに 1 M NaHCO₃ 50 μ L を添加 し、溶液を塩基性にした後、10 mg/mL Alexa488-SDP ester (Thermo Fisher Scientific) と混合し、 遮光下、25°Cで 1 時間転倒混和した。その後 PD10 カラムにて抗体画分を分取し、Alexa Fluor 488 標識 hIgG (hIgG-AF488) を精製した。また、Alexa fluor 594 修飾のため、10 mg/mL IgG 100 μ L に PBS(-) 340 μ L を加え、そこに 1 M NaHCO₃ 50 μ L を添加した後、10 mg/mL Alexa594-NHS ester (Thermo Fisher Scientific) と混合し、遮光下、25°Cで 1 時間転倒混和した。その後 PD10 カ ラムにて抗体画分を分取し、Alexa Fluor 594 標識 IgG (IgG-AF594) を精製した。精製した蛍光標 識抗体は 4°Cで保存した。

IgG を内包する LNP(抗体内封脂質ナノ粒子)の調製方法

pH 応答性脂質である ss-cleavable and pH-activated lipid-like material (ssPalm)O-Phe (SS-OP、 NOF Corporation)、1,2-dioleoyl-*sn*-glycero-3-phosphoethanolamine (DOPE、NOF Corporation)、

β-sitosterol (Sigma Aldrich)、1,2-dimyristoyl-*rac*-glycero-3-methylpolyoxyethyleneglycol chain, molecular weight 5000 (DMG-PEG5k、NOF Corporation)は 10 mM の濃度でクロロホルム (Fujifilm Wako Pure Chemical Corporation) に溶解し-30 度の冷凍庫にて保存した。SS-OP/DOPE/βsitosterol/DMG-PEG5k = 45/10/45/1.5 のモル比にてフラスコ内で混合し、1 mL の rBuOH (Fujifilm Wako Pure Chemical Corporation)を加えロータリーエバボレーターにてクロロホルムを 蒸発させ脂質溶液を得た。この脂質溶液を-80°Cで凍結後、凍結乾燥機を用いて rBuOH 除去し、そ の後 rBuOH で脂質を再溶解させることで 10 mM 脂質溶液を作製した。rBuOH に溶解した脂質 溶液と 10 mM クエン酸溶液 (pH5) に溶解した poly-L-glutamic acid (polyE、mol wt 3,000-15,000) 溶液を別々に 40°Cの条件で 30 分間インキュベートした。その後、IgG と polyE を IgG : polyE = 5: 1 (質量比) となるようにビペッティング 10 回で混合し IgG-polyE 液滴を形成後、脂質溶液と液滴 溶液をビベッティング 15 回で混合した。その後、1,000 倍以上の体積量の PBS(-)に対して 12-14k MWCO 透析膜 (Spectrum Laboratories Inc.) で透析を行い IgG を内包する Lipid Nanoparticle (IgG_polyE-LNP)を調製した。調製した LNP は Zetasizer Nano ZS (Malvern) を使って粒子直径、 PdI、ζ-電位を評価した。

IgG の LNP 内への内封率の算出方法

IgG_polyE-LNP を PBS(-)で抗体濃度が 2 μ M となるように調整した(最終サンプル量 100 μ L)。これを 4°C、20,000×g、1 時間遠心分離することで LNP 画分を沈殿させた。上清 50 μ L を回 収し、Nanodrop にて抗体濃度を測定し、内封率を以下の式(Eq. 2)から逆算した。ただし、C_{IgG} は 2 μ M IgG を遠心後の上清の IgG 濃度、C_{LNP} は IgG_polyE-LNP を遠心後の上清の IgG 濃度を指 す。

$$IgG の内封率(%) = (C_{IgG} - C_{LNP}) / C_{IgG} \times 100$$
 Eq. 2

細胞培養

ヒト子宮頸がん細胞(HeLa 細胞、Human epithelial carcinoma cell line、the European Collection of Authenticated Cell Cultures (ECACC) (93021013))は 10% (v/v) 非働化ウシ血清 (Invitrogen)

を含む α -minimum essential medium (α -MEM) (α -MEM(+)) で培養した。HeLa 細胞は 5% CO₂・ 37°C条件で培養し、2-4日毎に継代培養した。

フローサイトメトリー

IgG_polyE-LNP の細胞内移行経路を評価するため、エンドサイトーシス阻害条件下での IgG-AF488 の細胞の取り込み量をフローサイトメトリーにより評価した。HeLa 細胞を 24-well plate (Iwaki) に 80,000 cells/well で播種し、オーバーナイトでインキュベートした。細胞を PBS(-)で 2 回洗浄後、各種エンドサイトーシス阻害剤 (20 μ M chlorpromazine (CPZ) (クラスリン介在性エ ンドサイトーシス阻害剤)、80 μ M EIPA (マクロビノサイトーシス阻害剤)、500 nM wortmannin (マクロビノサイトーシス阻害剤)、20 μ M nystatin(カペオラ介在性エンドサイトーシス阻害剤)) を含む α -MEM(-)を投与し、37°C、5% CO₂存在下で 30 分間インキュベートした。インキュベート 後、各種阻害剤および IgG_polyE-LNP (IgG 濃度で 0.5 μ M 分)を含む α -MEM(+)に培地交換し、 37°C、5% CO₂存在下で 1 時間インキュベートした。その後、細胞を PBS(-)で 2 回洗浄したのち に、0.01%トリプシンで 10 分間処理することにより細胞を懸濁させチューブに回収したこれを遠心 分離(800×g、5分)し、ベレットになった細胞を PBS(-)で再懸濁した。これを 2 回繰り返して細 胞を洗浄した。得られた細胞を最終的に 500 μ L の PBS(-)で再懸濁し、Cell strainer (Corning) に 細胞溶液を通した後、Attune NxT flow cytometer (Invitrogen) により各サンプル当たり 10,000 個 の細胞について蛍光量を定量した。

LNP による IgG の細胞内送達後の顕微鏡観察

HeLa 細胞を 35 mm glass-bottom dish(Iwaki)に 120,000 cells/dish で播種し、オーバーナイトで インキュベートした。細胞を PBS(-)で 2 回洗浄後、蛍光標識抗体を内封した IgG_polyE-LNP(IgG 濃度で 0 - 1 μ M 分)を含む α -MEM(+)を細胞に投与し、37°C、5% CO₂存在下で 18 時間インキ ュベートした。インキュベート後、細胞を PBS(-)で 2 回洗浄し、 α -MEM(+)培地を添加して 37°C、 5% CO₂存在下で 6 時間インキュベートした。その後、PBS(-)で 2 回洗浄し、5 μ g/mL Hoechst33,342(Thermo Fisher Scientific)で核染色を行い、PBS(-)で洗浄後 α -MEM(+)培地を添 加した。蛍光標識抗体の細胞内局在を共焦点レーザー顕微鏡 FV1000 (Olympus) または FV3000 CLSM (Olympus) にてライブセルイメージングを行った。

送達した IgG を免疫染色にて確認するため、細胞を 4%パラホルムアルデヒドを加え、10 分間、 25℃でインキュベートすることで細胞を固定した。その後、PBS(-)で洗浄し、0.1% Triton in PBS(-) で膜透過処理を行った。1% BSA in PBS-T で 30 分間、25℃でインキュベートし、ブロッキングを 行った後に、二次抗体 (**Table. 9**) in BSA in PBS-T を添加し、1 時間染色を行った。PBS-T にて 洗浄を行った後、PBS(-)を加え共焦点レーザー顕微鏡にて抗体の局在を確認した。

Secondary antibody	Company	Cat.#	Dilution ratio
anti-human IgG		A11014	1:200
(Alexa Fluor 594)	Thermo Fisher Scientific		
anti-mouse IgG		A11004	1:200
(Alexa Fluor 568)	Invitrogen		

Table. 9 The antibodies used in this study.

LNP 調製における抗体と脂質の混合比による抗体送達能を比較する検討では、HeLa 細胞に、 hIgG:lipid=1:100、1:200、1:300、1:400、1:500 のモル比で混合された IgG_polyE-LNP (IgG 濃度で1 μ M分)を含む α -MEM(+)培地を添加し、37°C、5% CO₂存在下で18時間インキュベー トした。インキュベート後、細胞を PBS(-)で2 回洗浄し、 α -MEM(+)培地を添加して 37°C、5% CO₂存在下で6時間インキュベートし、CLSM 観察を行った。

時間依存性を評価する検討では、HeLa 細胞に、IgG_polyE-LNP(IgG 濃度で1 μ M 分)を含む α -MEM(+)培地を添加し、37°C、5% CO₂存在下で1、3、6、9、12 時間インキュベートした。イ ンキュベート後、細胞を PBS(-)で2 回洗浄し、 α -MEM(+)培地を添加して CLSM 観察を行った。

IgG_polyE-LNP による細胞内への IgG 送達がエネルギー依存的な経路であるかどうかを評価す る検討では、LNP を添加する前に、HeLa 細胞を α -MEM(+)培地で 4°C条件下において 30 分間プ レインキュベートした。その後、IgG_polyE-LNP (IgG 濃度で 1 μ M 分) を含む α -MEM(+)に培 地交換し、4℃条件下において 6 時間インキュベートした。インキュベート後、細胞を PBS(-)で 2 回洗浄し、α-MEM(+)培地を添加し、CLSM 観察を行った。

LNP 添加後の Galectin-8-GFP の細胞内局在の顕微鏡観察

IgG_polyE-LNP によるサイトゾルへの抗体送達が、LNP のエンドソーム破壊活性によることを 評価するため、Galectin-8-GFP (Gal8-GFP) を強制発現させた HeLa 細胞を用いて検討した。HeLa 細胞を 35 mm glass-bottom dish (Iwaki) に 120,000 cells/dish で播種し、オーバーナイトでインキ ュベートした。GenScript により作製された Gal8-GFP をコードするプラスミドを、Lipofectamine LTX (Thermo Fisher Scientific) と混合し、その推奨プロトコルに従いトランスフェクションした。 トランスフェクション後 24 時間後の細胞を PBS(-)で 2 回洗浄した後に、hIgG を内封する IgG_polyE-LNP (IgG 濃度で 1 μ M 分)を含む α -MEM(+)を添加し、37°C、5% CO₂存在下で 18 時間インキュベートされた。インキュベート後、細胞を PBS(-)で 2 回洗浄し、 α -MEM(+)培地を 添加して、Gal8-GFP の蛍光を CLSM 観察した。

HRas-GFP 強制発現 HeLa 細胞への anti-GFP-IgG 送達実験

LNP による機能性抗体をサイトゾルに送達できているか検討を行うため、anti-GFP-IgG を細胞 内に導入し、GFP との共局在を CLSM にて確認を行う。HeLa 細胞を 35 mm glass-bottom dish (Iwaki) に 50,000 cells/dish で播種し、オーバーナイトでインキュベートした。HRas(G12V)-GFP をコード するプラスミドを、Lipofectamine LTX (Thermo Fisher Scientific) と混合し、その推奨プロトコル に従いトランスフェクションした。トランスフェクション後 24 時間後の細胞を PBS(-)で 2 回洗浄 した後に、anti-GFP-IgG を内封する IgG_polyE-LNP (IgG 濃度で 1 μ M 分)を含む α -MEM(+)を 添加し、37°C、5% CO₂存在下で 18 時間インキュベートした。インキュベート後、細胞を PBS(-) で 2 回洗浄し、 α -MEM(+)培地を添加して、HRas(G12V)-GFP および anti-GFP-IgG の蛍光を CLSM 観察することでそれらの局在を評価した。 一方で、蛍光標識を施していない anti-GFP-IgG の送達では、サンプルインキュベート後に細胞を 固定化し、二次抗体である anti-mouse-IgG-AF568 にて免疫染色を行い、CLSM にてその局在を観 察した。

anti-NPC-IgG 送達実験

LNP による機能性抗体をサイトゾルに送達できているか検討を行うため、anti-NPC-IgG (Mab414、Cat#: 902902、BioLegend)を細胞内に導入し、核膜孔複合体を認識しているかどうかを CLSM にて確認を行った。HeLa 細胞を 35 mm glass-bottom dish (Iwaki) に 120,000 cells/dish で播種し、オーバーナイトでインキュベートした。anti-NPC-IgG を内封する IgG_polyE-LNP (IgG 濃度で1 μ M 分)を含む α -MEM(+)を添加し、37°C、5% CO₂存在下で 18 時間インキュベートした。インキュベート後、細胞を PBS(-)で2 回洗浄し、5 μ g/mL Hoechst33,342 で核染色を行い、細胞を固定化後、二次抗体である anti-mouse-IgG-AF568 にて免疫染色を行い、CLSM にてその局在を観察した。各サンプルにつき 400 個程度の細胞を観察し、核周囲に anti-NPC-IgG を認識する二次抗体の蛍光シグナルが観察される細胞をカウントし、その細胞割合を評価した。

anti-pAkt1-IgG 送達による細胞のアポトーシス誘導評価

LNP による機能性抗体をサイトゾルに送達し、細胞機能を制御できるかどうか検討を行うため、 anti-phospho-AKT1(Ser473)-IgG (anti-pAkt1-IgG、Cat#: 700392、Invitrogen)を細胞内に導入し、 カスパーゼ-3 およびカスパーゼ-7 の活性を評価する。HeLa 細胞を 96-well white plate (Thermo Fisher Scientific) に 4,000 cells/well で播種し、オーバーナイトでインキュベートした。hIgG また は anti-pAkt1-IgG を内封する IgG_polyE-LNP (IgG 濃度で 1 μ M 分)を含む α -MEM(+)を添加 し、37°C、5% CO₂存在下で 24 時間インキュベートした。インキュベート後、培地量と同量の The Caspase-Glo[®] 3/7 Assay Reagent (Promega)を添加し、ピペッティング操作により混合した。その 後、1 時間、遮光下、25°Cで振盪し、発光量 (cps, counts per second)を VICTOR Nivo Multimode Microplate Reader (PerkinElmer) によって測定した。 また、細胞増殖抑制効果を検討するため、Cell Counting Kit-8 (CCK-8) (Dojindo)を用い、推奨 のプロトコルに準拠して測定した。HeLa 細胞を 96-well plate (Iwaki) に 4,000 cells/well で播種し、 オーバーナイトでインキュベートした。細胞を PBS(-)で 2 回洗浄後、IgG_polyE-LNP (IgG 濃度で 1 μ M 分)を含む α -MEM(+)を添加し、37°C、5% CO₂条件下で 24 時間インキュベートした。イ ンキュベート後、細胞を PBS(-)で 2 回洗浄し、 α -MEM(+)を加え、さらに 24 時間インキュベート した。その後、細胞を PBS(-)で 2 回洗浄し、 α -MEM(+)と WST-8 試薬を加えて 1 時間インキュ ベートした。インキュベート後、吸光度 (A_{450 nm} – A_{650 nm})から細胞生存率を算出した。

統計解析

全ての統計解析は JMP Pro (ver. JMP 15.1.0; SAS Institute, Cray, NC, USA)を用いて行った。2 群間の比較には F 検定による分散が正しいことを確認したのちにスチューデントの t 検定を持ちい た。多群間の比較には一元配置分散分析の後に Dunnett の方法もしくは Tukey-Kramer の方法を用 いた。P 値が 0.05 よりも小さい場合に有意な差があるとみなした。

引用文献

- 1. B. Leader, Q. J. Baca, D. E. Golan, Protein therapeutics: A summary and pharmacological classification. *Nat. Rev. Drug Discov.* **7**, 21–39 (2008).
- 2. S. Mitragotri, P. A. Burke, R. Langer, Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. *Nat. Rev. Drug Discov.* **13**, 655–672 (2014).
- 3. R. Goswami, T. Jeon, H. Nagaraj, S. Zhai, V. M. Rotello, Accessing Intracellular Targets through Nanocarrier-Mediated Cytosolic Protein Delivery. *Trends Pharmacol. Sci.* **41**, 743–754 (2020).
- 4. J. A. Kulkarni, *et al.*, The current landscape of nucleic acid therapeutics. *Nat. Nanotechnol.* **16**, 630–643 (2021).
- 5. A. Akinc, *et al.*, The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. *Nat. Nanotechnol.* **14**, 1084–1087 (2019).
- 6. Y. Suzuki, H. Ishihara, Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs. *Drug Metab. Pharmacokinet.* **41** (2021).
- P. R. Cullis, M. J. Hope, Lipid Nanoparticle Systems for Enabling Gene Therapies. *Mol. Ther.* 25, 1467–1475 (2017).
- 8. M. S. Lawrence, K. J. Phillips, D. R. Liu, Supercharging proteins can impart unusual resilience. *J. Am. Chem. Soc.* **129**, 10110–10112 (2007).
- 9. Y. Hirai, H. Hirose, M. Imanishi, T. Asai, S. Futaki, Cytosolic protein delivery using pH-responsive, charge-reversible lipid nanoparticles. *Sci. Rep.* **11**, 1–13 (2021).
- 10. 栗之丸隆章, 白木賢太郎, タンパク質沈殿-再溶解法による高濃度タンパク質医薬品の調製. 化学と生物 53, 368–373 (2015).
- 11. A. B. Kayitmazer, D. Seeman, B. B. Minsky, P. L. Dubin, Y. Xu, Protein-polyelectrolyte interactions. *Soft Matter* **9**, 2553–2583 (2013).
- 12. M. Mimura, K. Tsumura, A. Matsuda, N. Akatsuka, K. Shiraki, Effect of additives on liquid droplet of protein-polyelectrolyte complex for high-concentration formulations. *J. Chem. Phys.* **150** (2019).
- 13. Y. Hirai, *et al.*, Charge-reversible lipid derivative: A novel type of pH-responsive lipid for nanoparticle-mediated siRNA delivery. *Int. J. Pharm.* **585**, 119479 (2020).
- 14. D. Kalderon, B. L. Roberts, W. D. Richardson, A. E. Smith, A short amino acid sequence able to specify nuclear location. *Cell* **39**, 499–509 (1984).
- M. Ray, R. Tang, Z. Jiang, V. M. Rotello, Quantitative Tracking of Protein Trafficking to the Nucleus Using Cytosolic Protein Delivery by Nanoparticle-Stabilized Nanocapsules. *Bioconjug. Chem.* 26, 1004–1007 (2015).
- 16. X. Han, et al., An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12, 8–13 (2021).
- 17. M. Jayaraman, *et al.*, Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing In Vivo**. *Angew. Chemie* **124**, 8657–8661 (2012).
- 18. M. Schlich, *et al.*, Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. *Bioeng. Transl. Med.* **6**, 1–16 (2021).
- X. Hou, T. Zaks, R. Langer, Y. Dong, Lipid nanoparticles for mRNA delivery. *Nat. Rev. Mater.* 6, 1078–1094 (2021).
- 20. X. Cheng, R. J. Lee, The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. *Adv. Drug Deliv. Rev.* **99**, 129–137 (2016).
- 21. N. M. Belliveau, *et al.*, Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. *Mol. Ther. Nucleic Acids* **1**, e37 (2012).
- 22. J. A. Kulkarni, D. Witzigmann, J. Leung, Y. Y. C. Tam, P. R. Cullis, On the role of helper lipids in lipid nanoparticle formulations of siRNA. *Nanoscale* **11**, 21733–21739 (2019).
- 23. J. A. Kulkarni, *et al.*, On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA. *ACS Nano* **12**, 4787–4795 (2018).

- 24. J. Gilleron, *et al.*, Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. *Nat. Biotechnol.* **31**, 638–646 (2013).
- 25. B. P. Cormack, R. H. Valdivia, S. Falkow, FACS-optimized mutants of the green fluorescent protein (GFP). *Gene* **173**, 33–38 (1996).
- 26. Y. Y. C. Tam, S. Chen, P. R. Cullis, Advances in lipid nanoparticles for siRNA delivery. *Pharmaceutics* **5**, 498–507 (2013).
- 27. D. C. Litzinger, L. Huang, Phosphatodylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications. *BBA Rev. Biomembr.* **1113**, 201–227 (1992).
- K. J. Kauffman, *et al.*, Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. *Nano Lett.* 15, 7300–7306 (2015).
- 29. S. Behzadi, *et al.*, Cellular uptake of nanoparticles: Journey inside the cell. *Chem. Soc. Rev.* **46**, 4218–4244 (2017).
- 30. I. Nakase, *et al.*, Cellular uptake of arginine-rich peptides: Roles for macropinocytosis and actin rearrangement. *Mol. Ther.* **10**, 1011–1022 (2004).
- 31. L. Von Kleist, *et al.*, Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. *Cell* **146**, 471–484 (2011).
- 32. O. Meier, *et al.*, Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. *J. Cell Biol.* **158**, 1119–1131 (2002).
- 33. N. Araki, M. T. Johnson, J. A. Swanson, A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. *J. Cell Biol.* **135**, 1249–1260 (1996).
- 34. B. Poole, S. Ohkuma, Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. *J. Cell Biol.* **90**, 665–669 (1981).
- T. Wei, Q. Cheng, Y. L. Min, E. N. Olson, D. J. Siegwart, Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. *Nat. Commun.* 11, 1–12 (2020).
- 36. Y. Suzuki, *et al.*, Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition. *J. Control. Release* **330**, 61–71 (2021).
- 37. M. Danaei, *et al.*, Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. *Pharmaceutics* **10**, 1–17 (2018).
- 38. M. A. Hink, *et al.*, Structural dynamics of green fluorescent protein alone and fused with a single chain Fv protein. *J. Biol. Chem.* **275**, 17556–17560 (2000).
- 39. S. Jin, *et al.*, Emerging new therapeutic antibody derivatives for cancer treatment. *Signal Transduct. Target. Ther.* **7** (2022).
- 40. P. J. Carter, A. Rajpal, Designing antibodies as therapeutics. *Cell* **185**, 2789–2805 (2022). 41., JP2018065765A_抗体ポリグルタミン酸製剤の特許.pdf.
- 42. H. Tanaka, *et al.*, Self-Degradable Lipid-Like Materials Based on "Hydrolysis accelerated by the intra-Particle Enrichment of Reactant (HyPER)" for Messenger RNA Delivery. *Adv. Funct. Mater.* **30** (2020).
- 43. M. Herrera, J. Kim, Y. Eygeris, A. Jozic, G. Sahay, Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery. *Biomater. Sci.* 9, 4289–4300 (2021).
- 44. J. Rejman, A. Bragonzi, M. Conese, Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. *Mol. Ther.* **12**, 468–474 (2005).
- 45. T. Moriyama, J. P. Marquez, T. Wakatsuki, A. Sorokin, Caveolar Endocytosis Is Critical for BK Virus Infection of Human Renal Proximal Tubular Epithelial Cells. *J. Virol.* **81**, 8552–8562 (2007).
- 46. K. Sakamoto, *et al.*, Optimizing Charge Switching in Membrane Lytic Peptides for Endosomal Release of Biomacromolecules. *Angew. Chemie Int. Ed.* **59**, 19990–19998 (2020).
- 47. M. J. Munson, *et al.*, A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery. *Commun. Biol.* **4** (2021).
- 48. A. S. Dixon, *et al.*, NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells. *ACS Chem. Biol.* **11**, 400–408 (2016).

- 49. S. L. Y. Teo, *et al.*, Unravelling cytosolic delivery of cell penetrating peptides with a quantitative endosomal escape assay. *Nat. Commun.* **12** (2021).
- S. Okano, *et al.*, Split luciferase-based estimation of cytosolic cargo concentration delivered intracellularly via attenuated cationic amphiphilic lytic peptides. *Bioorganic Med. Chem. Lett.* 72, 128875 (2022).
- 51. N. P. Andrews, *et al.*, A toolbox of igg subclass-switched recombinant monoclonal antibodies for enhanced multiplex immunolabeling of brain. *Elife* **8**, 1–27 (2019).
- 52. J. S. Goodwin, K. R. Drake, C. L. Remmert, A. K. Kenworthy, Ras diffusion is sensitive to plasma membrane viscosity. *Biophys. J.* **89**, 1398–1410 (2005).
- 53. T. F. Franke, C. P. Hornik, L. Segev, G. A. Shostak, C. Sugimoto, PI3K/Akt and apoptosis: Size matters. *Oncogene* **22**, 8983–8998 (2003).
- 54. K. Dutta, P. Kanjilal, R. Das, S. Thayumanavan, Synergistic Interplay of Covalent and Non -Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. *Angew. Chemie* **133**, 1849–1858 (2021).
- 55. M. Brentnall, L. Rodriguez-Menocal, R. L. De Guevara, E. Cepero, L. H. Boise, Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. *BMC Cell Biol.* 14 (2013).
- 56. H. H. Wang, A. Tsourkas, Cytosolic delivery of inhibitory antibodies with cationic lipids. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 22132–22139 (2019).
- 57. R. Mout, *et al.*, General Strategy for Direct Cytosolic Protein Delivery via Protein-Nanoparticle Co-engineering. *ACS Nano* **11**, 6416–6421 (2017).
- A. K. K. Leung, Y. Y. C. Tam, S. Chen, I. M. Hafez, P. R. Cullis, Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems. *J. Phys. Chem. B* 119, 8698–8706 (2015).
- 59. B. Vogelstein, *et al.*, Cancer Genome Landscapes_Review_TOP. *Science (80-.).* **339**, 1546–1558 (2013).
- 60. J. Lv, Q. Fan, H. Wang, Y. Cheng, Polymers for cytosolic protein delivery. *Biomaterials* **218**, 119358 (2019).
- 61. Y. Li, Z. Ye, H. Yang, Q. Xu, Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs. *Acta Pharm. Sin. B* **12**, 2624–2639 (2022).
- D. Clift, *et al.*, A Method for the Acute and Rapid Degradation of Endogenous Proteins. *Cell* 171, 1692-1706.e18 (2017).
- 63. S. Du, *et al.*, Cell-Permeant Bioadaptors for Cytosolic Delivery of Native Antibodies: A "mixand-Go" Approach. *ACS Cent. Sci.* **6**, 2362–2376 (2020).

終わりに臨み、終始ご懇篤なるご指導ならびにご鞭撻を賜りました京都大学化学研究所 二木 史朗 教授に謹んで感謝の意を表します。

数々のご指導、ご助言をいただきました浅井 知浩 博士(静岡県立大学 教授)、今西 未来 博 士(京都大学化学研究所 准教授)、広瀬 久昭 博士(京都大学化学研究所 特定准教授)、川口 祥正 博士(京都大学化学研究所 助教)、河野 健一 博士(京都大学大学院薬学研究科 助教) に深く感謝いたします。

本研究において使用した charge-reversible 脂質をご提供いただいた日本精化株式会社に深く御礼 申し上げます。第一章における電子顕微鏡観察は、文部科学省委託事業ナノテクノロジープラット フォーム課題として京都大学微細構造解析プラットフォームの支援(課題番号 JPMX09A20KT0015) を受けて実施されました。関係者の皆様に感謝いたします。

研究のみならず研究室であらゆる面で支えて下さった京都大学化学研究所 生体機能設計化学研 究領域の皆様に心より陳謝いたします。

本研究の遂行にあたっては日本薬学会長井記念薬学研究奨励金の助成によるものであり、感謝し たします。また、本研究の一部は日本学術振興会 DC1 の援助によるものであり、感謝いたします。 最後に、私の研究活動を温かく見守り支えて下さった家族に、この場を借りて深く感謝申し上げ ます。