Studies on the hybrid origin of Guinea yam and its evolution

Yu Sugihara

TABLE OF CONTENTS

ABSTRACT

CHAPTER 1: GENEARL INTRODUCTION

Page 4: THE GENUS *DIOSCOREA*

Page 9: DOMESTICATION OF YAM

CHAPTER 2: HYBRID ORIGIN OF GUINEA YAM AS REVEALED BY GENOME ANALYSIS

Page 10: INTRODUCTION

Page 12: RESULTS

Page 12: GENETIC DIVERSITY OF GUINEA YAM

Page 17: PHYLOGENOMIC ANALYSIS OF AFRICAN YAM

Page 20: HYBRID ORIGIN OF GUINEA YAM

Page 25: EVOLUTIONARY HISTORY OF GUINEA YAM

Page 28: EXTENSIVE INTROGRESSION AT THE SWEETIE LOCUS

Page 30: DISCUSSION

Page 30: HOMOPLOID HYBRIDIZATION AS THE TRIGGER OF DOMESTICATION

Page 30: USE OF WILD SPECIES TO IMPROVE GUINEA YAM

Page 32: MATERIALS AND METHODS

CHAPTER 3: GENEARL DISCUSSION

SUPPLEMENTARY DATA

ACKNOWLEDGEMENTS

REFERENCES

ABSTRACT

Yam is a collective name of tuber crops belonging to the genus *Dioscorea*. Yam is important not only as a staple food crop but also as an integral component of society and culture of the millions of people who depend on it. However, due to its regional importance, yam has long been regarded as an 'orphan crop' lacking a due global attention. Although this perception is changing with recent advances in genomics technologies, domestication processes of most yam species are still ambiguous. This is mainly due to the complicated evolutionary history of *Dioscorea* species caused by frequent hybridization and polyploidization, which is possibly caused by dioecy that imposed obligate outcrossing to the species of *Dioscorea*. White Guinea yam (Dioscorea rotundata) is an important staple tuber crop in West Africa. However, its origin remains unclear. In this study, we resequenced 336 accessions of white Guinea yam and compared them with the sequences of wild Dioscorea species using an improved reference genome sequence of D. rotundata. In contrast to a previous study suggesting that *D. rotundata* originated from a subgroup of *Dioscorea praehensilis*, our results suggest a hybrid origin of white Guinea yam from crosses between the wild rainforest species D. praehensilis and the savannah-adapted species D. abyssinica. We identified a greater genomic contribution from D. abyssinica in the sex chromosome of Guinea yam. The haplotype network of the chroloplast sequences of both diploid and triploid *D. rotundata* and its wild relatives showed that the female parent of *D*. rotundata was D. abyssinica and the male parent was D. praehensilis. We also found extensive introgression around the SWEETIE gene. Our findings point to a complex domestication scenario for Guinea yam and highlight the importance of wild species as gene donors for improving this crop through molecular breeding.

CHAPTER 1: GENERAL INTRODUCTION

THE GENUS DIOSCOREA

The genus *Dioscorea*, which consists of approximately 630 species, is the largest one in the family Dioscreaceae of monocotyledons (WCSP, 2020). It is widely distributed in the tropical and temperate regions and occurs in diverse environments from forests to grasslands (Maurin et al., 2016; Viruel et al., 2016; Wilkin et al., 2005). Several studies have been conducted on the phylogenetic relationships of species in *Dioscorea*. Previously, intrageneric taxa have been proposed based on morphological characters (Burkill, 1960). However, diagnostic keys and delineation of taxa varied according to the authors. Recently, phylogenetic analyses have been conducted based on chloroplast DNA (cpDNA) sequences and nuclear gene sequences (Noda et al., 2020). Noda et al. (2020) provided a large-scale phylogenetic tree containing 183 species and proposed dividing *Dioscorea* into two subgenera (*Dioscorea* and *Helmia*), with 11 major clades and 27 sections/species groups.

Dioscorea likely originated in the Laurasian Palaearctic between the Late Cretaceous and the Early Eocene (Fig. 1.1). In the Eocene and Oligocene, *Dioscorea* expanded to the southern region by long-distance dispersal or migration by land bridges. In the Oligocene and Miocene, main *Dioscorea* lineages experienced divergence events on a world-wide scale. In the Miocene and Pliocene, some lineages dispersed into new areas. The number of biogeographical speciation events seems to have decreased after the Quaternary period began (Couto et al., 2018; Maurin et al., 2016; Viruel et al., 2016).

The majority of *Dioscorea* species are perennial herbaceous climbers with simple or compound leaves and reproduce sexually and/or clonally (Fig. 1.2). Flowers in *Dioscorea* are mostly dioecious with male and female flowers borne on separate individuals, and multiple sex-determination systems (XY or ZW) were reported in the genus (Cormier et al., 2019; Tamiru et al., 2017; Terauchi & Kahl, 1999). Most species produce winged seeds and capsular, six - seeded fruits, while some species have wingless seeds, samaroid or berry fruits (Caddick et al., 2002; Noda et al., 2020). In addition to sexual reproduction, *Dioscorea* species propagate clonally by bulbils, rhizomes or tubers. Bulbils are aerial tubers that are formed in the axils of leaves or bracts

of some *Dioscorea* species (Fig. 1.2f). They are mainly consumed as food, but also used as folk medicine in many cultures (Ikiriza et al., 2019). Bulbils are generally brown-colored and have small tubercles over their surface, but their shape and size vary in the different species (Murty & Purnima, 1983). *D. bulbifera* (also known as aerial yam) is the major bulbil-producing species and is characterized by considerable bulbil shape diversity (Terauchi et al., 1991). Rhizomes and tubers represent morphologically diverse structures that serve as underground starch storage organs (Fig. 1.3). Because these storage organs serve as food sources for various wild animals, they have evolved defense traits. For example, *D. praehensilis* has crown roots with spines to protect tubers from burrowing or digging animals (Fig. 1.3c). Some species of the African clade have thick corky barks covering the pachycaul structure that may provide protection against fire and herbivores (Maurin et al., 2016). In addition, *Dioscorea* species produce diverse secondary metabolites such as saponins, alkaloids, and tannins that serve a variety of functions including defense against herbivores (Coursey, 1967). Chemical components of some species have medicinal values (Dutta, 2015; Liu et al., 2008).

Fig. 1.1 Biogeographical origin and distribution of *Dioscorea* species (Viruel et al., 2016). **a** *Dioscorea* likely originated in the Laurasian Palaearctic in the Late Cretaceous and the Early Eocene (1) and then dispersed from Asia to South America (2). **b** In the Oligocene and Miocene, *Dioscorea* mainly expanded to the southern region. **c** Some lineages dispersed into new areas in the Miocene and Pliocene, but speciation events decreased in the Quaternary. **d** Geographical distribution in the present era. (Maps are based on C. R. Scotese's PALEOMAP project; www.scotese.com).

Fig. 1.2 Morphological diversity of the above-ground parts of *Dioscorea* species a *D. tokoro*, b *D. quinqueloba*,c *D. rotundata*, d a stem of *D. mangenotiana* with thorns, e flowers of *D. japonica*, f a bulbil of *D. bulbifera*.

Fig. 1.3 Rhizomes and tubers of *Dioscorea* species. a rhizomes of *D. tokoro*, b Tukuneimo group (left top),
Ichoimo group (left bottom), Nagaimo group (right) in *D. polystachya*, c *D. praehensilis*, d *D. minutiflora*, e *D. rotundata* (left), *D. cayenensis* (right), f *D. mangenotiana*, g *D. abyssinica*.

DOMESTICATION OF YAM

Yam is a collective name of tuber crops belonging to the genus *Dioscorea*. In 2018, the global yam production was around 72.6 million tons (FAOSTAT, 2018). The major yam species include *Dioscorea rotundata*, *D. alata*, *D. trifida*, *D. polystachya*, and *D. esculenta* (Arnau et al., 2010). White Guinea yam (*D. rotundata*) is the most important yam worldwide, accounting for ~92.5% of the total world yam production (FAOSTAT, 2018). Guinea yam is mainly grown in West and Central Africa, especially in Côte d'Ivoire, Ghana, Togo, Benin, Nigeria, and Cameroon, the region known as the 'yam belt'. By contrast, greater yam (*D. alata*) that originated in Asia is the most widely distributed species in the world. Yam is a staple crop in many tropical countries, and it also plays important roles in society and culture of the people in the major yam-growing regions (Coursey, 1972; Obidiegwu et al., 2020; Obidiegwu & Akpabio, 2017). However, due to its localized importance, yam has been regarded as an 'orphan crop' and received considerably less research attention compared to the major crop species.

Yams of different *Dioscorea* species are believed to be independently domesticated in different continents: *D. rotundata* and *D. cayenensis* in West and Central Africa, *D. alata* in Southeast Asia, and *D. trifida* in South America. However, our knowledge of their origins has been limited until recently. This is mainly due to the frequent hybridization and polyploidization of many species including *D. rotundata* (Chaïr et al., 2010; Girma et al., 2014; Scarcelli et al., 2006, 2017; Sugihara et al., 2020; Terauchi et al., 1992) and *D. alata* (Chaïr et al., 2016; Sharif et al., 2020). The recent population genomics studies have started unveiling the domestication processes of the major species (Scarcelli et al., 2019; Sharif et al., 2020; Sugihara et al., 2020).

CHAPTER 2: HYBRID ORIGIN OF GUINEA YAM AS REVEALED BY GENOME ANALYSIS

INTRODUCTION

Yams (*Dioscorea* spp.) are major starchy tuber crops that are widely consumed in the tropics. Ten yam species are cultivated worldwide, including *D. alata* in Southeast Asia, *D. trifida* in South America, and *D. rotundata* in West and Central Africa (Hancock, 2012). *D. rotundata*, also known as white Guinea yam, is the most important species in West and Central Africa, an area that accounted for 92.5% of global yam production in 2018 (FAOSTAT, 2018). Beyond its nutritional and food value, Guinea yam is also important for the culture of West African people (Obidiegwu & Akpabio, 2017).

Despite the considerable importance of Guinea yam, its origin has been elusive. There are two types of Guinea yam: white Guinea yam (*D. rotundata*) and yellow Guinea yam (*D. cayenensis*). *D. cayenensis* is thought to be a triploid species of hybrid origin, with *D. rotundata* as the maternal parent and *D. burkilliana* as the paternal parent (Girma et al., 2014; Terauchi et al., 1992). In turn, the triploid *D. rotundata* is thought to be a hybrid between *D. rotundata* and *D. togoensis* (Girma et al., 2014). However, the origin of diploid *D. rotundata*, which represents the majority of Guinea yam (Girma et al., 2014), has been ambiguous. Two wild species are candidate progenitors of diploid *D. rotundata*: the savannah-adapted wild species *D. abyssinica* and the rainforest-adapted wild species *D. praehensilis* (Coursey, 1976a, 1976b; Girma et al., 2014; Magwé-Tindo et al., 2018; Scarcelli et al., 2006, 2017, 2019; Terauchi et al., 1992). The geographical distributions of *D. abyssinica* and *D. trotundata* might be a hybrid between the two species (Coursey, 1976b). However, other reports indicate that the origin of Guinea yam is ambiguous due to the small number of markers (Girma et al., 2014; Magwé-Tindo et al., 2018; Scarcelli et al., 2017; Terauchi et al., 1992) or introgression (Scarcelli et al., 2006, 2017) or incomplete lineage sorting (Scarcelli et al., 2017).

The whole-genome sequence of Guinea yam has been reported (Tamiru et al., 2017). A recent genome study involving 86 *D. rotundata*, 47 *D. praehensilis*, and 34 *D. abyssinica* accessions suggested that diploid *D. rotundata* was domesticated from *D. praehensilis* (Scarcelli et al., 2019). Here, we addressed this hypothesis using an expanded set of genomes from cultivated and wild *Dioscorea* species.

In this study, we generated an improved version of the Guinea yam reference genome and used it to analyze the genomes of 336 accessions of *D. rotundata* and its wild relatives. Based on these analyses, we attempted to reveal the history of Guinea yam domestication. Our results suggest that diploid *D. rotundata* was most likely derived from homoploid hybridization between *D. abyssinica* and *D. praehensilis*. By evaluating the genomic contributions of each parental species to *D. rotundata*, we revealed higher representation of the *D. abyssinica* genome in the sex chromosome of *D. rotundata* and a signature of extensive introgression in the *SWEETIE* gene on chromosome 17.

Fig. 2.1. The geographical distributions of African yams. Adapted from Scarcelli *et al.* (2017) and Scarcelli *et al.* (2019).

RESULTS

Genetic diversity of Guinea yam

We obtained DNA samples from 336 accessions of D. rotundata maintained at the International Institute of Tropical Agriculture (IITA), Nigeria, representing the genetic diversity of Guinea yam landraces and improved lines from West Africa. We subjected these samples to whole-genome resequencing on the Illumina sequencing platform. We aligned the resulting short reads to the newly assembled reference genome (material and method S1 and S2) and extracted SNP information for use in genetic diversity studies (Table S1, S2, and material and method S3). Based on admixture analysis by sNMF (Frichot et al., 2014), we defined five major clusters (Fig. 2.2A). When K = 2, cluster 1 was clearly separated from the other accessions. Principal component analysis (PCA) also separated cluster 1 from the rest of the clusters (Fig. 2.2B). Accessions in cluster 1 had significantly higher heterozygosity and ~10-times more unique alleles than those in the four remaining clusters (Fig. 2.3-2.4, and Table 2.1). Because flow cytometry analysis confirmed that all 10 accessions analyzed in cluster 1 were triploids (Table S1), we hypothesized that cluster 1 represents triploid D. rotundata, which was reported to be a hybrid between D. rotundata and D. togoensis (Girma et al., 2014). After removing the cluster 1 accessions, the nucleotide diversity of D. rotundata was estimated to be 14.83 x 10⁻⁴ (Table 2.2) which is approximately 1.5 times larger than that reported previously (Scarcelli et al., 2019), presumably because we used a larger number of samples with diverse genetic backgrounds in our study. Linkage disequilibrium (LD) of diploid D. rotundata showed a decay of $r^2 = 0.13$ in a 200-kb genomic region (Fig. 2.5), which is slower than that of cassava, another clonally propagated crop (Ramu et al., 2017).

Fig. 2.2. Genetic diversity and phylogenomics of Guinea yam and its wild relatives. (A) Ancestry proportions of each Guinea yam accession with 6,124,093 SNPs. "TDr96_F1" is the sample used as the reference genome. (B) PCA result of the 336 Guinea yam accessions. (C) Neighbor-joining tree of four African yam lineages reconstructed using *D. alata* as an outgroup based on 463,293 SNPs. The numbers indicate bootstrap values after 100 replications. The sequences of *D. rotundata* in the previous study (Scarcelli et al., 2019) were included in the tree. (D) Evolutionary relationship of three African wild yam lineages (*D. abyssinica*, Western *D. praehensilis*, Cameroonian *D. praehensilis*) as inferred by $\partial a \partial i$ (Gutenkunst et al., 2009) using 17,532 SNPs. *N*, *M*, and *T* represent the relative population size from N_{anc} , migration rate, and divergence time, respectively.

Fig. 2.3. Heterozygosity levels of samples in five clusters of *D. rotundata*. Heterozygosity level of an individual is defined as the ratio of number of heterozygous SNPs to the total number of mapped sites to the reference genome.

Fig. 2.4. Number of unique alleles in the five clusters of *D. rotundata*.

Table 2.1. Comparison of heterozygosity levels in the five clusters of *D. rotundata*. Heterozygosity level of an individual is defined as the ratio of number of heterozygous SNPs to the total number of mapped sites to the reference genome. The diagonal cell represents the mean \pm standard deviation of the heterozygosity levels of the samples in each cluster. The other cells represent *P*-values of the difference of the heterozygosity levels between the two clusters as calculated by two-tailed Student t test. Cluster 1 has a significantly higher heterozygosity level than the other clusters.

	Not assigned					
Not assigned	15.53×10 ⁻⁴ (±1.96×10 ⁻⁴)	Cluster 1				
Cluster 1 (n=28)	2.874×10 ⁻⁴²	21.98×10 ⁻⁴ (±1.68×10 ⁻⁴)	Cluster 2			
Cluster 2 (n=23)	0.5483	1.453×10 ⁻²²	15.29×10 ⁻⁴ (±0.84×10 ⁻⁴)	Cluster 3		
Cluster 3 (n=21)	0.01194	8.305×10 ⁻¹⁹	2.582×10-8	16.62×10^{-4} (±0.32×10^{-4})	Cluster 4	
Cluster 4 (n=24)	0.1188	4.358×10 ⁻²²	1.759×10-5	9.915×10-6	16.16×10 ⁻⁴ (±0.30×10 ⁻⁴)	Cluster 5
Cluster 5 (n=16)	0.1203	1.344×10 ⁻¹⁶	6.272×10 ⁻⁵	7.857×10-3	0.1972	16.30×10 ⁻⁴ (±0.37×10 ⁻⁴)

Table 2.2. Population genetics summary statistic in the 308 yam accessions

	After imputation
No. segregating site	5,229,368
No. singleton	1,227,900
$ heta_{\scriptscriptstyle W}$	14.98 x 10 ⁻⁴
$ heta_{\pi}$	14.83 x 10 ⁻⁴
Tajima's D	-0.0305

Fig. 2.5. LD decay of *D. rotundata*. Each white dot represents the average r^2 in each interval.

Phylogenomic analysis of African yam

Using the SNP information, we constructed a rooted neighbor-joining (NJ) tree (Saitou & Nei, 1987) based on 308 Guinea yam accessions sequenced in the present study (excluding cluster 1 triploid accessions), as well as 80 *D. rotundata*, 29 *D. abyssinica*, 21 Western *D. praehensilis*, and 18 Cameroonian *D. praehensilis* accessions that were sequenced in a previous study (Scarcelli et al., 2019) using two accessions of Asian species *D. alata* as an outgroup (Fig. 2.2C). Throughout the analyses described below, we used 388 *D. rotundata* accessions by combining our samples and those used previously (Scarcelli et al., 2019). According to this NJ tree, the *D. rotundata* accessions sequenced in this study are genetically close to the *D. rotundata* accessions reported previously (Scarcelli et al., 2019) (Fig. 2.2C). However, the NJ tree showed that *D. rotundata* is more closely related to *D. abyssinica* than to Western *D. praehensilis* (Fig. 2.2C), which is inconsistent with the previous finding (Scarcelli et al., 2019) that *D. rotundata* is most closely related to Western *D. praehensilis*.

To elucidate the evolutionary relationships of the three wild *Dioscorea* species that are closely related to *D. rotundata*, *D. abyssinica* (indicated as A), Western *D. praehensilis* (P), and Cameroonian *D. praehensilis* (C), we performed Diffusion Approximations for Demographic Inference ($\partial a \partial i$) analysis (Gutenkunst et al., 2009), which allows demographic parameters to be estimated based on an unfolded site frequency spectrum. First, we tested three phylogenetic models, {{A, P}, C}, {{P, C}, A}, and {{C, A}, P}, using 17,532 SNPs that were polarized using *D. alata* as an outgroup without considering migration among the species. Of the three models, {{A, P}, C} had the highest likelihood (Table 2.3).

This result is not consistent with the finding (Scarcelli et al., 2019) that {{P, C}, A} had the highest likelihood, as determined using a different method with fastsimcoal2 software (Excoffier et al., 2013). To exactly repeat the previous analysis, we tested these three models with fastsimcoal2 (Excoffier et al., 2013) using the previous reference genome (Tamiru et al., 2017), which indicated that {{A, P}, C} had the highest likelihood (Table 2.4). Taken together, our results are not consistent with the previous report (Scarcelli et al., 2019). However, they are consistent with the PCA result from the same report, which separated Cameroonian *D. praehensilis* from the other African yams in PC1 (Fig. 2A of Scarcelli et al., 2019).

Based on the assumption that {{A, P}, C} describes the true evolutionary relationship among the three wild *Dioscorea* species, we re-estimated the evolutionary parameters with $\partial a \partial i$, allowing symmetric migration (gene flow) among the species (Fig. 2.2D). Since the results indicated that Cameroonian *D. praehensilis* is distantly related to *D. rotundata* and was not likely involved in genetic exchange with *D. rotundata* (Fig. 2.2C), we focused on Western *D. praehensilis*, which we will refer to as *D. praehensilis* for brevity.

Model	$\log_{10}(L)$	No. parameters	AIC	Illustration of the model
{{A, P}, C} (without migration)	-15289.70	6	30591.40	-
{{P, C}, A} (without migration)	-15765.32	6	31542.64	-
{{C, A}, P} (without migration)	-15765.15	6	31542.29	-
{{A, P}, C} (with migration)	-12739.86	10	25499.72	Fig. 2.2D
{{A, R}, P} (with migration)	-10149.73	10	20319.47	-
{{P, R}, A} (with migration)	-10385.46	10	20790.92	-
$\{\{A, R\}, \{P, R\}\}\$ (with migration)	-10052.96	9	20123.91	Fig. 2.6C
 {{A, R}, {P, R}} With migration With population growth Fix the parameters except for population size 	-10046.73	6	20105.47	Fig. 2.8C

Table 2.3. Likelihood comparison in ∂a∂i

C: Cameroonian D. praehensilis

A: D. abyssinica

P: (Western) D. praehensilis

R: D. rotundata

 Table 2.4. Likelihood comparison in fastsimcoal2

Model	log ₁₀ (L)
{{A, P}, C} (without migration)	-172110.065
{{P, C}, A} (without migration)	-174281.072
{{C, A}, P} (without migration)	-173358.592

Hybrid origin of Guinea yam

We propose three hypotheses for the origin of Guinea yam (*D. rotundata*) based on the NJ tree (Fig. 2.2C) and $\partial a \partial i$ (Gutenkunst et al., 2009) (Fig. 2.2D). The first hypothesis is that *D. rotundata* was derived from *D. abyssinica* (Hypothesis 1 in Fig. 2.6A). The second is that *D. rotundata* was derived from *D. praehensilis* (Hypothesis 2 in Fig. 2.6A). However, in Hypotheses 1 and 2, the divergence time of *D. rotundata* from the wild species may not be sufficient to separate the three lineages, and there may be incomplete lineage sorting among the species. The third hypothesis is that *D. rotundata* originated as an admixture between *D. abyssinica* and *D. praehensilis* (Hypothesis 3 in Fig. 2.6A).

Before estimating the evolutionary parameters for the three hypotheses, we studied the allele frequencies of the 388 *D. rotundata* sequences, focusing on 144 SNPs that are positioned over the entire genome and are oppositely fixed in the two candidate progenitors (Fig. 2.6B and Fig. 2.7). If Hypothesis 1 or 2 is correct, the allele frequencies in these 144 SNPs should be highly skewed to either of the progenitors. However, the patterns of allele contributions from the two candidate species to *D. rotundata* were almost the same. This result suggests that Hypothesis 3, the admixture origin of Guinea yam, is most likely correct.

We tested the three hypotheses by $\partial a \partial i$ (Gutenkunst et al., 2009) with symmetric migration (gene flow) rates, using 15,461 SNPs polarized by *D. alata* (Fig. 2.6A), which showed that Hypothesis 3 had the highest likelihood and the lowest Akaike information criterion (AIC) (Fig. 2.6C and Table 2.3). This result supports the admixture hypothesis, that is, that *D. rotundata* was derived from crosses between *D. abyssinica* and *D. praehensilis*. The parameters estimated by $\partial a \partial i$ indicate that the hybridization between *D. abyssinica* and *D. praehensilis* was relatively recent in relation to the divergence between the two wild species. This analysis also indicated that the genomic contributions from *D. abyssinica* and *D. praehensilis* during the hybridization period were approximately 68% and 32%, respectively. Introgression generally results in highly asymmetric genomic contributions from the parental species, whereas hybridization shows symmetric genomic contributions (Folk et al., 2018). The intermediate genomic contributions revealed by this analysis support the hybridization rather than the introgression hypothesis. Our finding is in line with the proposal of hybrid origin of Guinea yam by D.G. Coursey in 1976 based on morphology (Coursey, 1976b) and supports his speculation that spontaneous hybridization between wild yams could have occurred at the artifactual "dump-heaps" created by people living in the savannah between the forest and the Sahara (Coursey, 1976a).

To evaluate the genetic distances of *D. rotundata* from the two parental species for each chromosome, we calculated F_{ST} values (Wright, 1951) (Fig. 2.6D and Table 2.5). The genetic distances from the two parents varied across the different chromosomes, and the overall genetic distance of *D. rotundata* from *D. abyssinica* was smaller than that from *D. praehensilis* (Table 2.5). Intriguingly, chromosome 11, to which we previously mapped the candidate locus for sex determination (Tamiru et al., 2017), had the shortest genetic distance from *D. abyssinica* and the longest genetic distance from *D. praehensilis* among all chromosomes, indicating that chromosome 11 of *D. rotundata* is highly skewed to *D. abyssinica* (Fig. 2.6D and Table 2.5). Similarly, interspecies divergence is different between the autosomes and sex chromosome of the dioecious plant species *Silene* (Hu & Filatov, 2016).

Fig. 2.6. Evidence for the hybrid origin of Guinea yam. (A) Hypotheses for the domestication of Guinea yam (*D. rotundata*). Hypothesis 1 assumes that *D. rotundata* diverged from *D. abyssinica*. Hypothesis 2 assumes that *D. rotundata* diverged from *D. praehensilis*. Hypothesis 3 assumes that *D. rotundata* was derived from a hybrid between *D. abyssinica* and *D. praehensilis*. D. *alata* was used as an outgroup. **(B)** Frequencies of individuals homozygous for *D. abyssinica* allele (A: indicated by yellow color), homozygous for *D. praehensilis* allele (P: indicated by blue color), and heterozygous for A and P (indicated by white color) among the 388 *D. rotundata* sequences as studied for 144 SNPs. **(C)** Evolutionary parameters related to the hybrid origin of Guinea yam as inferred by $\partial a \partial i$ (Gutenkunst et al., 2009) using 15,461 SNPs. *N*, *M*, and *T* represent the relative population size from *N*_{AP}, migration rate, and divergence time, respectively. *f*_A and *f*_p indicate the genomic contributions from *D. abyssinica* and *D. praehensilis* when the hybridization occurred, respectively. **(D)** *F*_{ST} between the wild and cultivated yams. This was conducted with 100-kb window and 20-kb step. Chromosome 11 of *D. rotundata* containing the sex-determining locus shows a lower distance to that of *D. rabyssinica* and *S. praehensilis*.

Fig. 2.7. F_{ST} between *D. abyssinica* and *D. praehensilis*. F_{ST} averages were calculated 100-kb window and 20-kb step. The red vertical lines represent the positions of the oppositely fixed SNPs in *D. abyssinica* and *D. praehensilis* as used in Fig. 2.6B.

Table 2.5. F_{ST} in each chromosome. Red and blue indicates the highest and lowest F_{ST} in all chromosomes, respectively. Chromosome 11 of *D. rotundata* containing the sex-determining locus shows a lower distance to that of *D. abyssinica*.

	A vs. P		Avs	A vs. R		P vs. R	
Chromosome	FST	± std	F _{ST}	± std	F _{ST}	± std	
All	0.162	0.217	0.082	0.120	0.123	0.157	
chrom_01	0.156	0.222	0.079	0.109	0.084	0.112	
chrom_02	0.122	0.187	0.055	0.078	0.098	0.121	
chrom_03	0.177	0.224	0.075	0.103	0.101	0.115	
chrom_04	0.173	0.218	0.111	0.150	0.100	0.130	
chrom_05	0.201	0.257	0.098	0.128	0.115	0.133	
chrom_06	0.116	0.168	0.065	0.092	0.075	0.102	
chrom_07	0.161	0.231	0.093	0.122	0.084	0.114	
chrom_08	0.165	0.209	0.120	0.161	0.085	0.109	
chrom_09	0.129	0.170	0.129	0.150	0.062	0.102	
chrom_10	0.152	0.205	0.129	0.169	0.077	0.102	
chrom_11	0.277	0.273	0.033	0.052	0.247	0.231	
chrom_12	0.160	0.213	0.063	0.096	0.134	0.140	
chrom_13	0.111	0.161	0.064	0.100	0.108	0.120	
chrom_14	0.141	0.184	0.120	0.163	0.107	0.133	
chrom_15	0.204	0.243	0.133	0.152	0.073	0.104	
chrom_16	0.192	0.248	0.050	0.074	0.174	0.182	
chrom_17	0.180	0.201	0.062	0.080	0.217	0.221	
chrom_18	0.169	0.210	0.074	0.103	0.188	0.205	
chrom_19	0.191	0.240	0.080	0.110	0.133	0.152	
chrom_20	0.070	0.109	0.057	0.088	0.126	0.143	

Evolutionary history of Guinea yam

In angiosperms, plastid genomes are predominantly inherited maternally (McCauley, 1995), making them useful for studying maternal lineages. To infer the maternal history of Guinea yam, we constructed a haplotype network of the whole plastid genome with all samples used in the NJ tree (Fig. 2.2C), as well as the triploid accessions in cluster 1 (Fig. 2.8A and material and method S6). According to this haplotype network, Cameroonian *D. praehensilis* has the largest genetic distance from *D. rotundata*. This result is in line with the phylogenomic trees of African yam (Fig. 2.2C and Fig. 2.2D). Strikingly, the plastid genomes of diploid and triploid *D. rotundata* are uniform and are very similar to that of Nigerian or Beninese *D. abyssinica*, although the latter has another plastid genome lineage distant from that of *D. rotundata*. The plastid genomes of *D. praehensilis* from Nigeria, Benin, and Ghana appear to be derived from Nigerian or Beninese *D. abyssinica*. These results indicate that *D. abyssinica* is an older lineage than *D. praehensilis* and that the places of origin of *D. rotundata*, a recent study (Scarcelli et al., 2019) hypothesized that the origin of *D. rotundata* was around north Benin, as supported by the current results. The plastid genomes of some wild species are identical to those of cultivated Guinea yams. Hybridization between cultivated yams and wild yams may account for this observation (Scarcelli et al., 2017).

The results of nuclear genome admixture (Fig. 2.6) and plastid haplotype network (Fig. 2.8A) analyses indicate that the maternal origin of diploid *D. rotundata* is *D. abyssinica* and its paternal origin is *D. praehensilis* (Fig. 2.8B). Hybridization between *D. abyssinica* and *D. praehensilis* is rare (Scarcelli et al., 2019), but such rare hybrids appear to have been domesticated by humans. The triploid *D. rotundata* shares its plastid haplotype with diploid *D. rotundata*, indicating that diploid *D. rotundata* served as the maternal parent and *D. togoensis* as the paternal parent. *D. cayenensis* is reported to have *D. rotundata* as the maternal parent and *D. burkilliana* as the paternal parent (Girma et al., 2014; Terauchi et al., 1992). All cultivated Guinea yams are hybrids containing *D. abyssinica* plastid genomes.

To explore the changes in population size, we re-inferred the demographic history of African yam by $\partial a \partial i$ (Gutenkunst et al., 2009), allowing migration (Fig. 2.8C and material and method S7). We used the same dataset as in Fig. 2.6C. By fixing the parameters predicted in Fig. 2.6C except for population size, we reestimated each population size at the start and end points after the emergence of these species, assuming an exponential increase/decrease in population size. According to this analysis, since the emergence of the wild progenitors of Guinea yam, the population size of *D. abyssinica* has been decreasing, while that of *D. praehensilis* has been increasing (Fig. 2.8C). This finding suggests that the *D. praehensilis* population was derived from *D. abyssinica*, which is consistent with the results of haplotype network analysis (Fig. 2.8A).

Fig. 2.8. Evolutionary scenario of African yam origins. (A) Haplotype network of the whole plastid genomes of 416 *D. rotundata* (including the triploid accessions), 68 wild relatives, and two *D. alata* accessions used as the outgroup. The number of vertical dashes represents the number of mutations. Western (Nigerian, Beninese, and Ghanaian) *D. praehensilis* and *D. rotundata* seem to have diverged from Nigerian and Beninese *D. abyssinica*. (B) Possible scenario of domestication of Guinea yam. The blue line represents paternal origin, and the red line represents maternal origin. (C) Changes in population sizes of *D. rotundata* and its wild relatives as inferred by $\partial a \partial i$ (Gutenkunst et al., 2009). The parameters except for that of population size were identical to those used in Fig. 2.6C. After the domestication of *D. rotundata*, the population size of *D. rotundata* has increased with migration from the wild progenitors.

Extensive introgression at the SWEETIE locus

To explore multiple introgression to *D. rotundata* from the two wild species, we analyzed the f_4 statistic (Reich et al., 2009) using four groups: a) *D. rotundata* cluster 2 and 5; b) *D. rotundata* cluster 4; c) *D. abyssinica*; and d) *D. praehensilis* (material and method S8). The f_4 statistic reveals the representation of two alternative discordant genealogies (Fig. 2.9A). The f_4 value is close to zero if the two groups (group a and b) of *D. rotundata* show a concordant genealogy in relation to *D. abyssinica* and *D. praehensilis*. By contrast, the f_4 value diverges from zero if the two groups of *D. rotundata* exhibit discordant genealogy and a large genetic distance to each other. We obtained the f_4 statistic f_4 (P_{25} , P_4 , P_p , P_A) for each SNP and performed sliding window analysis (Fig. 2.9B). The f_4 value was close to zero across the genome, indicating that overall, we cannot decide between topology 1 and 2. However, the genomic regions around the *SWEETIE* gene showed the lowest f_4 (P_{25} , P_4 , P_p , P_A) [$Z(f_4) = -5.66$], with overrepresentation of topology 2 in the *SWEETIE* gene (DRNTG 01731) (Table S3).

To explore the genealogical relationships around the *SWEETIE* gene, we constructed a Neighbor-Net (Huson & Bryant, 2006) around this locus (4.00 to 4.15 Mb on chromosome 17) (Fig. 2.9C). The Neighbor-Net showed that the locus of cluster 4 was close to that of *D. praehensilis*, while the loci of cluster 2 and 5 and some other accessions were close to that of *D. abyssinica*. These results indicate that the *SWEETIE* gene was introgressed from the wild species more than once. The *SWEETIE* gene encodes a membrane protein involved in the general control of sugar flux (Veyres et al., 2008a). The *Arabidopsis thaliana sweetie* mutant shows pronounced changes in the accumulation of sugar, starch, and ethylene along with significant changes in growth and development (Veyres et al., 2008b). We still do not know the effect of this introgression on the phenotype of Guinea yam, but this locus appears to be a target of selection.

Fig. 2.9. Signature of extensive introgression around the *SWEETIE* gene. (A) Topology of f_4 (P_{25} , P_4 , P_P , P_A) in cluster 2, 4, 5 and wild yams. Positive f_4 values represent the long internal branch of the upper tree (Topology 1). Negative f_4 values represent the long internal branch of the bottom tree (Topology 2). (B) f_4 values across the genome. This was conducted with 250-kb window and 25-kb step. Red dots indicates outliers of the sliding window which have $|Z(f_4)| > 5$. The locus around the *SWEETIE* gene shows extraordinarily negative f_4 values. (C) Neighbor-Net around the *SWEETIE* gene (4 ~ 4.15 Mb on chromosome 17). This was constructed by SplitsTree (Huson & Bryant, 2006) using a total of 458 SNPs.

DISCUSSION

Homoploid hybridization as the trigger of domestication

The importance of hybridization and polyploidization for crop domestication is well documented (Hughes et al., 2007; Salman-Minkov et al., 2016), including in bread wheat (Peng et al., 2011) and banana (Heslop-Harrison & Schwarzacher, 2007). Compared to allopolyploidy, only a limited number of homoploid hybridizations have been reported in plants (Rieseberg, 1991), and homoploid hybridizations have rarely contributed to the origin of crops (Zhang et al., 2019). Homoploid hybridization can increase genetic variation via recombination between distantly related species, and it often allows the hybrid to adapt to unexploited niches (Mallet, 2007). In the case of Guinea yam, the savannah-adapted wild species *D. abyssinica* and the rainforest-adapted wild species *D. praehensilis* are not suitable for agriculture; however, their hybrid, *D. rotundata*, could have been adopted for cultivation by humans. Gene combinations from different wild yams might have contributed to the domestication of Guinea yam. The current study provides an example of the origin of a crop through homoploid hybridization.

Use of wild species to improve Guinea yam

A project for the improvement of Guinea yam by crossbreeding has been initiated (AfricaYam: https://africayam.org). However, the current breeding projects depend predominantly on *D. rotundata* genetic resources. Systematic efforts are needed to introgress beneficial alleles from wild species into crops; these alleles will increase disease resistance and abiotic stress tolerance to improve crop resiliency and productivity (Warschefsky et al., 2014). Our study revealed that the two wild progenitor species (*D. abyssinica* and *D. praehensilis*) of Guinea yam contain much greater genetic diversity than *D. rotundata* (Fig. 2.6C), suggesting that these wild species could be useful sources for alleles of agricultural importance. However, the *D. abyssinica* and *D. praehensilis* accessions in IITA genebank account for only 1.6% of the total *Dioscorea* accessions maintained as of 2018 (Darkwa et al., 2020). Therefore, it will be important to collect and preserve wild *Dioscorea* species as genetic resources for improving Guinea yam. Our findings suggest that new alleles of loci such as the *SWEETIE* gene were introgressed from wild yams into cultivated Guinea yams multiple

times, which likely conferred plants with phenotypes preferred by humans. Many more alleles from wild species remain to be exploited for systematic breeding. Our findings highlight the need to consider how to effectively leverage the gene pools of wild species from different habitats for the rapid breeding of Guinea yam using genomic information.

MATERIALS AND METHODS

S1. Reference assembly

- S1.1 Whole-genome sequencing using Oxford Nanopore Technology
- S1.2 Quality control
- S1.3 De novo assembly
- S1.4 Polishing and removing duplicated contigs
- S1.5 Gene prediction and annotation
- S2. Generation of pseudo-chromosomes by anchoring contigs onto a linkage map
 - S2.1 Preparing the mapping population
 - S2.2 Whole-genome resequencing
 - S2.3 Quality control and alignment
 - S2.4 Identification of parental line-specific heterozygous markers
 - S2.5 Anchoring and ordering contigs
- S3. Genetic diversity analysis
 - S3.1 Whole-genome resequencing of Guinea yam accessions
 - S3.2 Quality control, alignment, and SNP calling
 - S3.3 Unsupervised clustering analysis
 - S3.4 Polymorphism and ploidy of nuclear genomes
- S4. Phylogenomic analysis of African yam
 - S4.1 Data preparation
 - S4.2 Neighbor-joining tree
 - S4.3 Inferring the evolutionary history of wild Dioscorea species using ∂a∂i
 - S4.4 Inferring the evolutionary history of wild Dioscorea species using fastsimcoal2
- S5. Test of hybrid origin
 - S5.1 Site frequency spectrum polarized by two candidate progenitors of Guinea yam
 - S5.2 Inferring the domestication history of Guinea yam using ∂a∂i
 - S5.3 Comparison of F_{ST} on each chromosome among three African yams

- S6. Haplotype network analysis of the whole plastid genome
- S7. Inferring the changes in population size
- S8. Exploring the possibility of extensive introgression from wild Dioscorea specie

S1. Reference assembly

S1.1 Whole-genome sequencing using Oxford Nanopore Technology

To generate version 2 of the *Dioscorea rotundata* reference genome sequence, we sequenced an F1 individual plant named "TDr96_F1" using the PromethION sequencer (Oxford Nanopore Technologies). "TDr96_F1" was the same individual plant used to obtain version 1 of the *D. rotundata* reference genome sequence (Tamiru et al., 2017). "TDr96_F1" DNA was extracted from fresh leaves as described (Tamiru et al., 2017). The DNA was subjected to size selection and purification with a gel extraction kit (Large Fragment DNA Recovery Kit; Zymo Research). The purified DNA was sequenced using PromethION at GeneBay, Yokohama, Japan (<u>http://genebay.co.jp</u>).

S1.2 Quality control

As a first step in our pipeline for genome assembly (Fig. SM1), we removed the lambda phage genome from raw reads with NanoLyse v1.1 (De Coster et al., 2018). We then filtered out reads with an average read quality score of less than 7 and those shorter than 1,000 bases with Nanofilt v2.2 (De Coster et al., 2018). This was followed by trimming of the first 75 bases to remove low-quality bases in all read that were retained. This generated 3,124,439 reads, corresponding to 20.89 Gbp of sequence (Table SM1).

Fig. SM1. Pipeline of genome assembly Ver. 2.

Table SM1. Summary of filtered ONT reads.

Summary	
Number of reads	3,124,439
Total base pairs (Gb)	20.89
Genome coverage	36.6x
Average fragment size (Kb)	6.7
Longest fragment	211,597
Shortest fragment	1,000
Fragment N50 (Kb)	8.0

- Raw reads were registered in DDBJ under accession number DRR196916.

- Genome coverage was estimated based on the expected genome size of D. rotundata (570Mb).

S1.3 De novo assembly

We assembled filtered long DNA sequence reads with Flye v2.4.2 (Kolmogorov et al., 2019), using 570 Mb as the estimated genome size of *D. rotundata* (Tamiru et al., 2017). This generated 8,721 contigs with N50 of 137,007 base pairs (Step 1 in Table SM2) and a total size of 636.8 Mb, which is larger than the expected *D. rotundata* genome size of 570 Mb. To evaluate the completeness of the gene set in the assembled contigs, we applied BUSCO analysis (Bench-Marking Universal Single Copy) v3.0.2 (Simão et al., 2015). For BUSCO analysis, we set "genome" as the assessment mode and used Embryophyta *odb9* as the database and obtained 40.7% complete BUSCOs (Step 1 in Table SM2).

	Step 1	Step 2	Step 3	Step 4
Total number of contigs	8,721	8,721	6,513	6,513
Total base-pairs (Mbp)	636.8	628.2	579.7	579.4
Average contig size (bp)	73,008	72,029	89,004	88,961
Longest contig (bp)	2,301,335	2,267,833	2,267,833	2,267,326
Shortest contig (bp)	171	171	171	171
N50 (bp)	137,007	134,605	152,963	152,929
Complete BUSCOs (%)	40.7	89.9	89.3	90.1
Complete and single-copy BUSCOs (%)	39.9	83.9	84.9	85.7
Complete and duplicated BUSCOs (%)	0.8	6.0	4.4	4.4
Fragmented BUSCOs (%)	8.2	3.2	3.2	3.1
Missing BUSCOs (%)	51.1	6.9	7.5	6.8

Table SM2. Summary of the reference assembly.
S1.4 Polishing and removing duplicated contigs

To correct the assembled contigs, we repeatedly polished them with Illumina short reads (Table SM3) using Pilon v1.23 (Walker et al., 2014) until there was no further change in the % of complete BUSCOs. We aligned Illumina jump reads as single reads to the assembled contigs using the bwa mem command in BWA v0.7.17 (Li & Durbin, 2009) and sorted the BAM files with SAMtools v1.9 (Li et al., 2009). The BAM files were used to run Pilon with the option "--diploid". We polished the contigs six times. The percentage of complete BUSCOs was 89.9% after the first polishing step (Step 2 in Fig. SM1). To remove duplicated contigs, we used Purge Haplotigs v1.0.2 (Roach et al., 2018), which removes duplicated contigs based on depth and the number of matching bases (Step 3 in Fig. SM1). In Purge Haplotigs, the percent cutoff of aliment coverage was set to 95%. Finally, we polished the contigs again. The percentage of complete BUSCOs was 90.1% after the second polishing process (Step 4 in Fig. SM1). Comparing the features in the old reference genome with the new reference genome, the number of missing bases ("N") was drastically reduced (Table SM4).

Name	Sequence Platform	Total size (Gb)	Genome coverage	Accession No.
Fragment (PE)	Illumina Miseq	16.77	29.4x	DRR027644
MP jump reads (as Single)				
for 2k	Illumina Hiseq 2500	6.43	11.3x	DRR027645
for 3k	Illumina Hiseq 2500	7.56	13.3x	DRR027646
for 4k	Illumina Hiseq 2500	6.18	10.8x	DRR027647
for 5k	Illumina Hiseq 2500	7.20	12.6x	DRR027648
for 6k	Illumina Hiseq 2500	7.27	12.8x	DRR027649
for 8k	Illumina Hiseq 2500	6.79	11.9x	DRR027650

Table SM3. Sequence list used for polishing.

- All values are calculated after quality control.

- Genome coverage was estimated based on the expected genome size of D. rotundata (570 Mb).

Feature	Ver. 1	Ver. 2
Number of scaffolds*	4,723	6,513
Total scaffold* size (Mbp)	594.23	579.41
Longest scaffold* (Mbp)	13.61	2.28
N50 (Mbp)	2.12	0.15
Total 'N' bp	90,097,902	953
Complete BUSCOs (%)	90.7	90.1

Table SM4. Comparison of the old (Tamiru et al., 2017) and new reference assemblies.

*In Version 2, contigs were used instead of scaffolds.

S1.5 Gene prediction and annotation

For gene prediction, we used 20 RNA-Seq data sets representing 15 different organs and three different flowering stages in male and female plants (Table SM5). Total RNA was used to construct cDNA libraries using a TruSeq RNA Sample Prep Kit V2 (Illumina) according to the manufacturer's instructions. The extracted RNA was sequenced on the Illumina platforms NextSeq500 and HiSeq4000. In the quality control step, we filtered the reads and discarded reads shorter than 50 bases and those with an average read quality below 20 and trimmed poly(A) sequences with FaQCs v2.08 (Lo & Chain, 2014). Quality trimmed reads were aligned to the newly assembled contigs with HISAT2 v2.1 (Kim et al., 2015) with the options "--no-mixed -no-discordant --dta". Transcript alignments were assembled with StringTie v1.3.6 (Pertea et al., 2015) separately for each BAM file. These GFF files were integrated with TACO v0.7.3 (Niknafs et al., 2017) with the option "--filter-min-length 150", generating 26,609 gene models within the new assembly (Table SM6). Additionally, coding sequences (CDSs) that were predicted using the previous reference genome (Tamiru et al., 2017) were aligned to the newly assembled contigs with Spaln2 v2.3.3 (Iwata & Gotoh, 2012). Consequently, 8,889 CDSs that did not overlap with the new gene models were added to the new gene models (Table SM6). Finally, gene models shorter than 75 bases were removed, and InterProScan v5.36 (Jones et al., 2014) was used to predict ORFs (open reading frames) and strand information for each gene model. We predicted 35,498 genes, including 66,561 transcript variants (Table SM6). For gene annotation, the predicted gene models were searched in the Pfam protein family database using InterProScan (Jones et al., 2014) and with the blastx command in BLAST+ (Camacho et al., 2009) with the option "-evalue 1e-10", using the Viridiplantae database from UniProt as the target database. The resulting gene models and annotations were uploaded to ENSEMBL (http://plants.ensembl.org/Dioscorea_rotundata/Info/Index).

Sample name	Fastq size	è			
	Original	Filtered	Sequence	Comment	Accession No.
	(Gbp)	(Gbp)	plation		
01_Flowers-rachis-top	4.36	4.28	NextSeq500	Top 2 cm of inflorescence	DRR063119
02_Flowers-rachis-lower	4.96	4.87	NextSeq500	Lower 2 cm of inflorescence	DRR063118
03_Flower-bud	3.52	3.46	NextSeq500	Flower bud	DRR063116
04_Axillary-bud	4.31	4.23	NextSeq500	Axillary bud	DRR063115
05_Leaf	3.26	3.18	NextSeq500	Leaf	DRR045127
06_Petiole	4.47	4.38	NextSeq500	Petiole	DRR063121
07_Pulvinus	4.66	4.58	NextSeq500	Pulvinus	DRR063120
08_Rachis	4.59	4.51	NextSeq500	Rachis	DRR063117
09_Stem	3.45	3.36	NextSeq500	Young_stem	DRR045129
10_Spine	4.51	4.43	NextSeq500	Spine	DRR063123
11_Root	3.62	3.54	NextSeq500	Root	DRR063122
12_Tuber-head	4.72	4.65	NextSeq500	Tuber (head)	DRR063126
13_Tuber-middle	4.06	4.00	NextSeq500	Tuber (middle)	DRR063125
14_Tuber-tail	4.48	4.40	NextSeq500	Tuber (tail)	DRR063124
15_fem_Y917-1	4.12	4.08	HiSeq4000	TDr97_00917 female flower early stage 1	DRR208398
16_fem_Y917-2	4.27	4.23	HiSeq4000	TDr97_00917 female flower early stage 2	DRR208399
17_fem_Y917-3	4.43	4.37	HiSeq4000	TDr97_00917 female flower early stage 3	DRR208400
18_mal_Y777-1	4.48	4.42	HiSeq4000	TDr97_00777 male flower early stage 1	DRR208401
19_mal_Y777-2	3.43	3.40	HiSeq4000	TDr97_00777 male flower early stage 2	DRR208402
20_mal_Y777-3	4.13	4.09	HiSeq4000	TDr97_00777 male flower early stage 3	DRR208403

Table SM5. Summary of RNA-seq data used for gene prediction.

Table SM6	. Sumr	nary of gei	ne prediction.
-----------	--------	-------------	----------------

	Contigs (6,513)	Pseudo Chrom. (01~20)
No. genes	35,498	30,344
(Total transcript variants)	(66,561)	(57,637)
ORF status		
Complete	22,423	19,502
5' partial	1,225	1,018
3' partial	10,385	8,594
Internal	559	465
No ORF	906	765
Prediction software		
TACO (12)	26,609	23,335
Spaln2 (13)	8,889	7,009

S2. Generation of pseudo-chromosomes by anchoring contigs onto a linkage map

S2.1 Preparing the mapping population

To develop the chromosome-scale TDr96_F1 genome sequence from the assembled contigs, we generated an F1 population containing 156 individuals by crossing two *D. rotundata* breeding lines: TDr04/219 as the female parent (P1) and TDr97/777 as the male parent (P2).

S2.2 Whole-genome resequencing

We extracted each DNA sample from dried *D. rotundata* leaves as described (Tamiru et al., 2017). Libraries for PE short reads were constructed using an Illumina TruSeq DNA LT Sample Prep Kit (Illumina). The PE library was sequenced on the Illumina Hiseq4000 platform. A summary of sequence and alignment information is provided in Table S4.

S2.3 Quality control and alignment

We used FaQCs v2.08 (Lo & Chain, 2014) to remove unpaired reads and adapters. We then filtered out reads shorter than 75 bases or those whose average read quality score was 20 or lower with prinseq-lite v0.20.4 lite (Schmieder & Edwards, 2011). We also trimmed bases whose average read quality score was below 20 from the 5' end and the 3' end using the sliding window approach (the window size was five bases, and the step size was one base) in prinseq-lite (Schmieder & Edwards, 2011). Subsequently, we aligned the filtered reads of P1, P2, and F1 progenies to the newly assembled contigs (material and method S1) using the bwa mem command in BWA (Li & Durbin, 2009). After sorting the BAM files, we only retained properly paired and uniquely mapped reads using SAMtools (Li et al., 2009).

S2.4 Identification of parental line-specific heterozygous markers

SNP-type heterozygous markers

SNP-based genotypes for P1, P2, and F1 progenies were obtained as a VCF file. The VCF file was generated as follows: (i) SAMtools v1.5 (Li et al., 2009) mpileup command with the option "-t DP,AD,SP -B -Q 18 -C

50"; (ii) BCFtools v1.5 (Li, 2011) call command with the option "-P 0 -v -m -f GQ,GP"; (iii) BCFtools (Li, 2011) view command with the options "-i 'INFO/MQ \geq 40, INFO/MQ0F \leq 0.1, and AVG(GQ) \geq 10"; and (iv) BCFtools (Li, 2011) norm command with the option "-m+any" (Fig. SM2). We rejected the variants with low read depth (<10) or low genotype quality scores (<10) in the two parents. We regarded variants with low read depth (<8) or low genotype quality scores (<5) in F1 progenies as missing and only retained the variants with low missing rates (<0.3).

Subsequently, only bi-allelic SNPs were selected by the BCFtools (Li, 2011) view command with the option "-m 2 -M 2 -v snps". Referring to the genotypes in the VCF file, heterozygous genotypes called by unbalanced allele frequency (out of 0.4-0.6 in two parents, and out of 0.2-0.8 in F1 progenies) were regarded as missing, and filtering for missing rate (<0.3) was applied again. Finally, a binomial test was performed to reject SNPs affected by segregating distortion in the F1 progenies. This binomial test assumes that the probability of success rate is 0.5 based on the two-side hypothesis, and we regarded variants having *p*-value less than 0.2 as segregation distortion.

Fig. SM2. Flowchart of SNP-type heterozygous marker selection.

Presence/absence-type heterozygous markers

A VCF file was generated to search for positions with contrasting read depth between the two parental plants P1 and P2 using the following commands: (i) SAMtools (Li et al., 2009) mpileup command with the option "-B -Q 18 -C 50"; (ii) BCFtools (Li, 2011) call command with the option "-A"; and (iii) BCFtools (Li, 2011)

view command with the options "-i 'MAX(FMT/DP) \geq 8 and MIN(FMT/DP) \leq 0' -g miss -V indels". This means that one of the parents (P1 or P2) has enough read depth (\geq 8) and another parent has no reads aligned on that region (A in Fig. SM3). Subsequently, we converted continuous positions in the VCF file to a feature that provides the start and end coordinate information of a region using the BEDTools v.2.26 (Quinlan & Hall, 2010) merge command with the option "-d 10 -c 1 -o count". We only retained sufficiently wide features (\geq 50 bp) in the BED file (the 1st BED). To reject false positives whereby low-depth regions are erroneously regarded as absent regions, we focused on both the boundary regions around each feature and the features themselves. For boundary regions, the 2nd BED file including expanded (twice-sized) features of each feature given in the 1st BED was generated with the BEDTools (Quinlan & Hall, 2010) slop command with the option "-b 0.5 –pct".

Using the depth value in each feature given in the 1st BED, presence/absence-based genotypes for parental plants P1 and P2 and F1 progenies were determined. To verify the rejection of false-positive features, we also referred to the depth values in the boundary regions around each feature. Verified features were only accepted as presence/absence markers. The depth values in each feature were calculated with the SAMtools (Li et al., 2009) bedcov command with the option "-Q 0". Also, the depth values in the boundary regions were obtained by subtracting the depth values of the 2nd BED from that of the 1st BED (B in Fig. SM3). For P1 and P2, we regarded genotypes having depth \geq 8 as present genotypes, meaning the heterozygosity of present and absent, while those having depth \leq 2 were classified as absent genotypes, meaning the homozygosity of absent. For F1 progenies, we classified markers with depth > 0 and = 0 as present and absent markers, respectively. Finally, we applied the same binomial test for SNP-type heterozygous markers as that used for presence/absence-type heterozygous markers.

Α

(continued)

Fig. SM3. Flowchart of presence/absence-type heterozygous marker selection.

В

Integration of SNP-type and presence/absence-type heterozygous markers

To develop parental line-specific linkage maps, we integrated SNP-type and P/A-type (presence/absence-type) heterozygous markers. Two types of markers were defined: Type-1 markers and Type-2 markers. If an SNP-type marker was heterozygous in P1 but homozygous in P2 or if a P/A-type marker was present in P1 and absent in P2, it was classified as a Type-1 marker (P1-heterozygous marker set). Conversely, if a SNP-type marker was homozygous and heterozygous in P1 and P2, respectively, or if a P/A-type marker was absent in P1 but present in P2, it was classified as a Type-2 marker (P2-heterozygous marker set).

S2.5 Anchoring and ordering contigs

Pruning and flanking markers based on Spearman's correlation coefficients

Distance matrices of Spearman's correlation coefficients (ρ) were calculated for every marker pair in each contig in each marker set (P1-heterozygous marker set and P2-heterozygous marker set). According to the histogram of absolute ρ calculated from each contig, most markers on the same contigs were correlated with each other (Fig. SM4). Therefore, we pruned correlated flanking markers to remove redundant markers (Fig. SM5). Accordingly, we obtained 11,389 markers for linkage mapping (Table SM7).

Fig. SM4. Histogram of absolute ρ values calculated from each contig.

Fig. SM5. The process used to prune correlated flanking markers.

Table	SM7 .	Summary	of the	anchoring	markers.

	Type1	Type2	Type1 + Type2
Total anchoring markers to generate linkage groups	7,020	4,369	11,389
- SNP	4,607	3,435	8,042
- P/A	2,413	934	3,347
Total base pairs of linkage group having markers (Mbp)	434.7	328.4	495.2
Total anchored base pairs estimated from genome size (%)	75.5	56.7	85.5

Linkage mapping

The markers obtained as described in the previous section were converted to genotype-formatted data. Based on this genotype-formatted data, genetic linkage maps were constructed using MSTmap (Wu et al., 2008) with the following parameters: "population_type DH; distance_function kosambi; cut_off_p_value 0.00000000001; no_map_dist 15.0; no_map_size 0; missing_threshold 25.0; estimation_before_clustering no; detect_bad_data no; objective_function ML" for each marker set. After trimming the orphan linkage groups, we solved the complemented-phased duplex linkage groups caused by coupling-type and repulsion-type markers in the pseudo-testcross method. Finally, two parental-specific linkage maps were constructed. These two linkage maps were designated as P1-map (constructed using Type-1 markers) and P2-map

(constructed using Type-2 markers) (Fig SM6 and Fig SM7). The linkage groups were visualized by R/qtl (Broman et al., 2003). The numbering of linkage groups is the same as that used in the previous reference genome (Tamiru et al., 2017).

Fig. SM6. P1-map created using P1 heterozygous markers. (A) Contig positions in the P1-map. (B) Estimated recombination fractions (upper-left triangle) against LOD score (lower-right triangle) plotted by R/qtl (Broman et al., 2003).

Fig. SM7. P2-map created using P2 heterozygous markers. (A) Contig positions in the P2-map. (B) Estimated recombination fractions (upper-left triangle) against LOD score (lower-right triangle) plotted by R/qtl (Broman et al., 2003).

Integration of two parental-specific linkage maps into the chromosome-scale physical genome sequence

Based on a matrix derived from the contigs shared between the P1- and P2-maps, i.e., linkage groups (Table SM8), the contigs were anchored and linearly ordered as pseudo-chromosomes. During the anchoring and ordering process, we identified contigs whose markers were allocated to different linkage groups. Such contigs were further divided into sub-contigs to ensure that they were not allocated to different pseudo-chromosomes. We divided the contigs at the proper positions as described previously (Tamiru et al., 2017). During this procedure, 34 genes including 61 transcript variants were cut and removed. Finally, a previously described method (Tamiru et al., 2017) was followed to generate the pseudo physical genome sequence composed of 20 pseudo-chromosomes. To compare the newly generated pseudo-chromosomes with the ones we constructed previously (Tamiru et al., 2017), we generated a dot plot with D-Genies (Cabanettes & Klopp, 2018) (Fig. SM8) and counted the anchored base pairs in the new pseudo-chromosomes (Table SM9). The resulting reference including unanchored contigs, uploaded **ENSEMBL** genome, was to (http://plants.ensembl.org/Dioscorea rotundata/Info/Index).

 Table SM8. A matrix of the number of shared contigs between the P1-map and P2-map. Linkage groups

 (lg) 21-28 do not have shared contigs.

			r -																							_
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	lg24	lg25	lg26	lg27	lg28
P1-map	1	5	2	1	2	0	3	2	0	0	3	2	1	0	1	0	5	0	2	0	1	0	0	0	0	0
	2	0	120	0	1	2	2	3	0	1	1	1	0	0	0	0	1	0	1	2	0	0	0	0	0	0
	3	0	2	3	1	0	3	9	0	1	0	0	0	0	0	0	1	0	1	2	0	0	0	0	2	2
	4	0	0	0	84	2	0	1	0	0	0	0	0	0	3	0	1	0	0	0	0	0	0	0	0	0
	5	0	1	0	3	135	2	3	0	1	1	2	2	0	4	1	0	1	1	2	0	0	0	0	0	0
	6	0	0	0	0	3	128	2	0	1	1	2	0	0	1	0	2	0	0	2	0	0	0	0	0	0
	7	0	2	0	1	2	2	199	0	1	1	3	0	0	0	1	1	0	0	3	0	0	0	0	0	0
	8	0	0	0	1	1	4	1	24	0	0	0	0	0	0	1	4	1	2	1	0	9	0	0	0	0
	9	0	1	0	0	2	4	4	0	71	4	1	0	0	2	1	5	1	0	1	0	0	0	0	0	0
	10	0	1	0	0	0	0	1	0	0	- 93	1	1	0	1	1	0	1	0	0	0	0	6	0	0	0
	11	0	0	0	0	0	0	1	0	0	0	8	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	12	0	0	0	0	2	0	1	0	0	2	2	75	1	0	1	2	0	5	0	0	0	0	0	0	0
	13	0	0	0	0	0	0	1	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0
	14	0	0	0	2	1	1	1	0	0	2	0	0	1	66	0	0	1	0	1	1	0	0	0	0	0
	15	Ő	Ő	Ő	0	0	0	0	Ő	1	0	1	Ő	0	2	42	2	0	Ő	1	0	Ő	Ő	0	Ő	Ő
	16	Ő	1	0	Ő	2	Ő	2	0	2	Ő	1	1	0	0	0	126	1	1	0	0	0	0	0	0	0
	17	Ő	0	Ő	1	2	1	1	Ő	0	Ő	1	0	1	1	1	2	60	0	0	Ő	Ő	Ő	0	Ő	Ő
	18	0	1	0	0	0	2	1	0	Ő	1	2	1	0	0	0	0	0	118	0	0	0	0	0	0	0
	19	ŏ	1	ŏ	ő	ő	ĩ	2	ŏ	ő	0	2	0	4	ŏ	ŏ	Ő	0	1	100	ő	ő	Ő	ő	ő	ŏ
	20	1	8	0	0	5	1	4	0	Ő	5	6	2	3	2	0	4	1	1	0	39	Ő	0	3	0	0
	1921	0	0	0	0	0	0	1	ő	ő	0	0	0	1	0	ő	0	0	0	0	0	0	0	0	ő	0
	1921		0	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1g22		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1g25		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

P2-man

Fig. SM8. Dot plot of the new pseudo-chromosomes (Ver. 2) against the previously generated pseudochromosomes (Ver. 1) (Tamiru et al., 2017).

Table SM9. Comparison of the old (Ver. 1) (Tamiru et al., 2017) and new (Ver. 2) pseudo-chromosomes.

Feature	Ver. 1	Ver. 2
Number of Pseudo Chr.	21	20
Total size of Pseudo Chr. (Mbp)	456.67	491.97
Total not 'N' Mbp	406.1	487.31
Total size of Pseudo Chr. / Total scaffold* (%)	76.9	84.9
Complete BUSCOs (%)	82.8%	82.3%

*In version2, contigs were used instead of scaffolds.

S3. Genetic diversity analysis

S3.1 Whole-genome resequencing of Guinea yam accessions

For genetic diversity analysis, we selected 333 accessions of *D. rotundata* maintained at IITA, Nigeria, representing the genetic diversity of Guinea yam landraces and improved lines of West Africa. We extracted DNA from dried leaves of each *D. rotundata* accession as described (Tamiru et al., 2017). Libraries for PE short reads were constructed using an Illumina TruSeq DNA LT Sample Prep Kit (Illumina). The PE library was sequenced on the Illumina Nextseq500 or Hiseq4000 platform. Finally, P1 (TDr04/219) and P2 (TDr97/777) parents used to anchor the contigs and the reference individual "TDr96_F1" were added to the 333 accessions. Therefore, we used a total of 336 accessions for this analysis. A summary of the sequences and alignments is provided in Table S1.

S3.2 Quality control, alignment, and SNP calling

We used FaQCs v2.08 (Lo & Chain, 2014) and prinseq-lite v0.20.4 lite (Schmieder & Edwards, 2011) for quality control. We used the same parameters provided in material and method S2.3, but both paired and unpaired reads were aligned to the new reference genome using the bwa mem command in BWA (Li & Durbin, 2009) with option "-a". After sorting the BAM files, the VCF file was generated using the SAMtools (Li et al., 2009) mpileup command with the option "-t DP,AD,SP -B -Q 18 -C 50", and variants were called by the BCFtools (Li, 2011) call command with the option "-P 0 -v -m -f GQ,GP". Low-quality variants were rejected using the BCFtools (Li, 2011) view command with the options "-i 'INFO/MQ≥40, INFO/MQ0F≤0.1, and AVG(GQ)≥5". We regarded variants with low read depth (<8) or low genotype quality score (<5) as missing, filtered out SNPs with high missing rates (\geq 0.3) across all samples, and only retained bi-allelic SNPs on the pseudo-chromosomes.

S3.3 Unsupervised clustering analysis

Through the pipeline described in material and method S3.2, 6,124,093 SNPs were retained in 336 Guinea yam accessions. The VCF file including 336 Guinea yam accessions was converted into a GDS file with the gdsfmt v1.20 R package implemented in the SNPRelate v1.18 (Zheng et al., 2012) R package. We then ran

SNPRelate (Zheng et al., 2012) without filtering for principal component analysis (PCA). Moreover, we used sNMF v1.2 (Frichot et al., 2014) for admixture analysis of the 336 Guinea yam accessions. To choose the best K value, we launched sNMF (Frichot et al., 2014) for each K value from 2 to 20 (Fig. SM9). We could not find the best K value based on the cross-entropy criterion, so we defined five clusters for convenience.

Fig. SM9. Cross-entropy values from K=1 to K=20 for admixture analysis.

S3.4 Polymorphism and ploidy of nuclear genomes

Heterozygosity level and unique alleles

First, we calculated the heterozygosity level in each accession (Fig. 2.2). We defined the heterozygosity level as follows:

$$(Heterozygosity \ level) = \frac{S}{L}$$

where S is the number of heterozygous SNPs and L is the total number of mapped sites in an accession. The heterozygosity levels of each cluster were statistically compared by two-tailed Student t test (Table 2.1). Second, we counted the unique alleles in each cluster (Fig. 2.3). An allele was considered unique if it only existed in a cluster even when the allele was a singleton in all accessions.

Flow cytometry

Ploidy level was estimated by flow cytometry using a Partec Ploidy Analyzer (Sysmex Partec, Gorlitz, Germany). Fully developed fresh young leaves were sampled and chopped with a razor blade (ca. 5 x 5 mm) in 0.4 mL nuclear extraction buffer (solution A of a High-resolution kit; Sysmex Partec, Gorlitz, Germany). The suspension was filtered through a nylon filter (50- μ m mesh), and the extracted nuclei were stained with 4',6-diamino-2-phenylindole solution. After 5 min of incubation at room temperature, the sample was examined in a ploidy analyzer at a rate of 5–20 nuclei/s. The DNA index (DI) of each accession was calculated based on the relative amount of DNA in nuclei at the G1 stage compared to the internal standard. Rice (*Oryza sativa* L.) was used as an internal standard for calibration of the measurements. Flow cytometry was repeated two or three times with different leaf samples to confirm the DI of each accession. The ploidy levels of each accession were determined by comparing their DI with that of the diploid accession "TDr1673", for which the chromosome number was confirmed microscopically to be 2n = 40. (Table S1)

Summary statistics of population genetics

After removing the triploid accessions of cluster 1, we imputed missing genotypes using BEAGLE v4.1 (Browning & Browning, 2007) with default options. We then calculated the summary statistics of population genetics (Table 2.2). First, we counted segregating sites and singletons in 308 Guinea yam accessions. We also estimated Watterson's θ ($\hat{\theta}_W$) (Watterson, 1975), pairwise nucleotide diversity ($\hat{\theta}_{\pi}$) (Nei & Tajima, 1981), and Tajima's *D* (Tajima, 1989) in the same dataset. We defined $\hat{\theta}_W$ as follows:

$$\hat{\theta}_W = \frac{S}{a * \bar{L}}$$

where *a* is equal to:

$$a = \sum_{i=1}^{n-1} \frac{1}{i}$$

and \overline{L} is the number of average mapped sites in a population and *n* is the number of sequences. We also defined $\hat{\theta}_{\pi}$ as:

$$\widehat{\theta}_{\pi} = \frac{1}{\overline{L}} \frac{n}{n-1} \frac{\sum_{i < j} k_{ij}}{n(n-1)/2}$$

where \overline{L} is the number of average mapped sites in a population, *n* is the number of sequences, and k_{ij} is the number of nucleotide differences between the *i*th and *j*th sequences.

We also calculated LD decay of 308 Guinea yam accessions (Fig. 2.5). The SNPs whose minor allele frequencies less than 0.05 were removed from the above SNP set used to calculate θ . LD decay was calculated with 200-kb window and 100-kb step. Ten SNPs were randomly sampled within a window, and all possible combinations of r^2 were calculated using the sampled SNPs within a window.

S4. Phylogenomic analysis of African yam

S4.1 Data preparation

For phylogenomic analysis of African yam, we used 308 Guinea yam accessions sequenced in the present study (excluding cluster 1 triploid accessions), as well as 80 *D. rotundata*, 29 *D. abyssinica*, 21 Western *D. praehensilis*, and 18 Cameroonian *D. praehensilis* accessions that were sequenced in a previous study (Scarcelli et al., 2019) using two accessions of the Asian species *D. alata* as an outgroup (Table SM9). Of the samples sequenced in the previous study (Scarcelli et al., 2019) , we only used sequences whose species labels matched a species predicted by admixture analysis in the previous study (Scarcelli et al., 2019) . Also, we removed the sequences that were labeled as hybrids in the previous study (Scarcelli et al., 2019) . Two sequences of *D. alata* downloaded from NCBI were used as the outgroup (Table SM9). Subsequently, read quality control, alignment, and SNP calling of these 458 sequences were conducted using the pipeline described in material and method S3.2. Except for the Neighbor-joining (NJ) tree (Saitou & Nei, 1987) (material and method S4.2), we only used SNPs with a missing rate < 0.3 in each targeted species. When the markers were polarized by comparison with the *D. alata* outgroup, the SNPs at positions where the alleles of *D. alata* were not completely fixed or where either of the *D. alata* sequences was missing were filtered out.

S4.2 Neighbor-joining tree

Before constructing the NJ tree (Saitou & Nei, 1987), we only retained SNPs at positions with no missing data across all five species (*D. rotundata*, *D. abyssinica*, Western *D. praehensilis*, Cameroonian *D. praehensilis*, and *D. alata*). When we converted the VCF file including the remaining SNPs to a multi-FASTA file, heterozygous SNPs were converted to IUPAC code to characterize them as ambiguous markers. To construct the NJ tree (Saitou & Nei, 1987), we ran MEGA X v10.1.8 (Kumar et al., 2018) using the 463,293 remaining SNPs. In MEGA X (Kumar et al., 2018), the bootstrap value was set to 100 and the other parameters were set as default. Finally, the NJ tree was drawn with GGTREE v2.0.4 (Yu et al., 2017).

S4.3 Inferring the evolutionary history of wild Dioscorea species using $\partial a \partial i$

To elucidate the evolutionary relationships of the three wild *Dioscorea* species, *D. abyssinica* (indicated as A), Western *D. praehensilis* (P), and Cameroonian *D. praehensilis* (C), which are closely related to *D. rotundata*, we performed $\partial a \partial i$ analysis (Gutenkunst et al., 2009). This technique allows evolutionary parameters to be estimated based on an unfolded site frequency spectrum. The joint unfolded site frequency spectrum was calculated based on the 17,532 polarized SNPs and was projected down to 25 chromosomes in each species.

First, three phylogenetic models, {{A, P}, C}, {{P, C}, A}, and {{C, A}, P}, were tested without considering migration among the species. The parameter bounds of each population size ranged from 10^{-3} to 100, and those of each divergence time ranged from 0 to 3, as suggested in the $\partial a \partial i$ manual (<u>https://dadi.readthedocs.io/en/latest/</u>). The grid size was set to (40, 50, 60). The maximum iteration for an inference was set to 20. Randomly perturbing the initial values using the 'perturb_params' function in $\partial a \partial i$ (Gutenkunst et al., 2009), the parameters were inferred 100 times. Under these conditions, the {{A, P}, C} model had the highest likelihood out of the three models (Table 2.3).

Based on the assumption that {{A, P}, C} represents the true evolutionary relationship among the three wild *Dioscorea* species, the evolutionary parameters were re-estimated by $\partial a \partial i$ (Gutenkunst et al., 2009), allowing symmetric migration among the species. The parameter bounds of each symmetric migration rate ranged from 0 to 20, as also suggested in the $\partial a \partial i$ manual. The parameters were inferred 100 times by $\partial a \partial i$ (Gutenkunst et al., 2009) with different initial parameters, and the best parameter set was selected based on Akaike information criterion.

S4.4 Inferring the evolutionary history of wild Dioscorea species using fastsimcoal2

To complement our results and to exactly replicate the conditions used in the previous report (Scarcelli et al., 2019), fastsimcoal2 (Excoffier et al., 2013), which was used in the previous study (Scarcelli et al., 2019), was also used to test these three models ({{A, P}, C}, {{P, C}, A}, and {{C, A}, P}). Until the SNP calling step, we basically followed our own pipeline in material and method S3.2 based on the reference genome version 1 including the unanchored contigs (Tamiru et al., 2017) to be consistent with the previous study (Scarcelli et al., 2019). The misclassified samples excluding hybrids were genetically re-classified by admixture analysis following the methods used in the previous study (Scarcelli et al., 2019). The threshold of missing rate across all samples was set to 0.25, as proposed in the previous study (Scarcelli et al., 2019). We obtained 87,671

SNPs using our pipeline, fewer than the number of SNPs analyzed in the previous coalescent simulation (Scarcelli et al., 2019). Therefore, we skipped the down-sampling of the SNPs to 100,000, unlike in the previous study (Scarcelli et al., 2019). For the other steps and the parameter bounds for the coalescent simulation by fastsimcoal2 (Excoffier et al., 2013), we followed the method used in the previous study exactly (Scarcelli et al., 2019) using the same version of fastsimcoal2 (Excoffier et al., 2013).

S5. Test of hybrid origin

S5.1 Site frequency spectrum polarized by two candidate progenitors of Guinea yam

We focused on the allele frequencies of 388 *D. rotundata* sequences, including 80 from the previous study (Scarcelli et al., 2019), at the SNPs positioned over the entire genome that are oppositely fixed in the two candidate progenitors. The SNP set was generated as described in material and method S4.1. Based on this SNP set, 144 SNPs were oppositely fixed in the two candidate progenitors across all pseudo-chromosomes; the allele frequencies of these 144 SNPs were calculated and plotted.

S5.2 Inferring the domestication history of Guinea yam using $\partial a \partial i$

To infer the domestication history of Guinea yam, we used $\partial a \partial i$ (Gutenkunst et al., 2009). Using the 15,461 polarized SNPs generated by following the method in material and method S4.1, three phylogenetic models, {{A, R}, P}, {{P, R}, A}, and {{A, R}, {P, R}} (hypothesis 1, 2, and 3 in Fig. 2A, respectively) were tested, considering symmetric migration among the species. The parameter bound for the admixed proportion from *D. abyssinica* ranged from 0 to 1. The other parameter bounds were the same as in material and method S4.3. The maximum iteration for an inference was set to 20. The parameters were inferred 100 times by $\partial a \partial i$ (Gutenkunst et al., 2009).

S5.3 Comparison of F_{ST} on each chromosome among three African yams

 F_{ST} (Wright, 1951) among the three species (*D. abyssinica*, [Western] *D. praehensilis*, and *D. rotundata*) was calculated in each chromosome. We estimated F_{ST} using the formula:

$$F_{ST} = \frac{H_T - H_S}{H_T}$$

where H_T and H_S are the expected heterozygosity in the total population and sub-divided population, respectively, which are equal to:

$$H_T = 2\frac{f_{A1} + f_{A2}}{2} \left(1 - \frac{f_{A1} + f_{A2}}{2}\right)$$
$$H_S = \frac{2f_{A1}(1 - f_{A1}) + 2f_{A2}(1 - f_{A2})}{2} = f_{A1}(1 - f_{A1}) + f_{A2}(1 - f_{A2})$$

where f_{A1} and f_{A2} are the allele frequencies in each population (Wright, 1951). Finally, the calculated F_{ST} were averaged in each chromosome.

S6. Haplotype network analysis of the whole plastid genome

The sample set used to construct the haplotype network of the whole plastid genome was the same as that used to construct the NJ tree (material and method S4.2). We aligned the 458 whole-genome sequences, together with the whole plastid genome of *D. rotundata* (Tamiru et al., 2017), to the newly improved reference genome of *D. rotundata*. We followed the pipeline described in material and method S3.2 for quality control and alignment. Because the plastid genome is haploid, the "--ploidy" option was set to 1 in the BCFtools call command (Li, 2011) when SNPs were called. Singleton SNPs were removed as unreliable markers. SNPs with more than one low-quality genotype (GQ<127) across the samples were also removed as unreliable markers. We did not allow any missing data. Finally, a haplotype network was constructed using the retained 250 SNPs by the median joining network algorithm (Bandelt et al., 1999) implemented in PopART (Leigh & Bryant, 2015).

S7. Inferring the changes in population size

To explore the changes in population sizes, the demographic history of African yams was re-inferred by $\partial a \partial i$ (Gutenkunst et al., 2009) allowing migration. By fixing the parameters predicted in material and method S5.2 except for population sizes, we re-estimated each population size at the start and end points after the emergence of these species, assuming an exponential increase/decrease in population size. The parameter bounds of population sizes ranged from 10^{-3} to 100, and the maximum iteration for an inference was set to 20. The parameters were inferred by $\partial a \partial i$ 100 times (Gutenkunst et al., 2009).

S8. Exploring the possibility of extensive introgression from Dioscorea species

To explore the possibility of multiple introgressions from both parental wild yams, the f_4 statistic (Peter, 2016; Reich et al., 2009) was applied to the four clusters of *D. rotundata* excluding the cluster 1 triploid accessions. Here, calculation of the f_4 statistic requires four populations: P_{R1} is the first cluster of *D. rotundata*, P_{R2} is the second cluster of *D. rotundata*, P_P is a population of (Western) *D. praehensilis*, and P_A is a population of *D. abyssinica*. We estimated $\hat{f}_4(P_{R1}, P_{R2}, P_P, P_A)$ with the following formula using sliding window analysis with a window size of 250 kb and a step size of 25 kb:

$$\hat{f}_4(P_{R1}, P_{R2}, P_P, P_A) = (\hat{p}_{R1} - \hat{p}_{R2})(\hat{p}_P - \hat{p}_A)$$

where \hat{p}_i is the observed allele frequency in a window in population P_j.

In most windows, \hat{f}_4 is close to zero, which means that the window has a concordant genealogy because the two clusters of D. rotundata have a small genetic distance (B in Fig. SM10). However, if these two clusters of D. rotundata have a large genetic distance and if one or both populations have a small genetic distance from a wild Dioscorea species, then \hat{f}_4 skews from 0. Therefore, a locus having a skewed \hat{f}_4 has a discordant genealogy (C or D in Fig. SM10). For P_P (the population of D. praehensilis) and P_A (the population of D. abyssinica), the samples sequenced in the previous study (Scarcelli et al., 2019) were used (Table SM9), and the dataset was prepared as described in material and method S4.1. As the first screening, all possible combinations of the clusters of *D. rotundata*, excluding accessions in cluster 1, were used for P_{R1} and P_{R2} (Fig. SM11). In this analysis, we identified an extensive introgression around the SWEETIE gene (4.00 to 4.15 Mb on chromosome 17). Because clusters 2 and 5 have the same genealogy pattern around the SWEETIE gene, we merged them into one population (P₂₅) and used this as P_{R1}. Because cluster 4 has the opposite genealogy pattern to P₂₅ around the *SWEETIE* gene, we used P₄ as P_{R2}. As a result, $\hat{f}_4(P_{25}, P_4, P_P, P_A)$ was calculated for the second screening (Fig. 4). If a locus had $|Z(f_4)| > 5$, we regarded it as an outlier (red dots in Fig. 4B). To reveal the relationships of the D. rotundata accessions around the SWEETIE gene, a Neighbor-Net was constructed by SplitsTree v5.1.4 (Huson & Bryant, 2006) using 308 D. rotundata accessions excluding the accessions in cluster 1, 29 D. abyssinica accessions, and 21 D. praehensilis accessions. A total 458 SNPs from the 4.00–4.15 Mb region on chromosome 17 were converted to multi-FASTA format. At that time, heterozygous genotypes were converted to IUPAC codes.

A Equation for f4

Fig. SM10. Schematic explaining how f_4 behaved in this study. "A" represents the population of *D. abyssinica.* "P" represents the population of *D. praehensilis.* "R1" represents the first populations of *D. rotundata.* "R2" represents the second populations of *D. rotundata.* This figure was adapted from (38).

Fig. SM11. f_4 in all possible combinations of clusters excluding cluster 1. Population P_i represents a population of the cluster *i*.

CHAPTER 3: GENERAL DISCUSSION

Population genomics and cytogenetics studies have revealed important domestication processes in *Dioscorea* species, but many questions still remain. For example, we still do not know the key traits and the genes involved in yam domestications, although some studies have identified genes showing signature of selection in *D. rotundata* including *SWEETIE* gene in our study (Akakpo et al., 2017; Scarcelli et al., 2019; Sugihara et al., 2020). *D. abyssinica* and *D. praehensilis*, the wild relatives of *D. rotundata*, are subjected to an on-going practice of 'ennoblement'. Additionally, it has been shown that the cultivars introduced by 'ennoblement' are indeed hybrids between the cultivated and wild yams (Chaïr et al., 2010; Scarcelli et al., 2006). These findings probably indicate that the wild species cannot directly be domesticated to become cultivars and that hybridization was necessary to generate white Guinea yam cultivars. Similar interspecific hybridization was also reported in *D. alata* (Chaïr et al., 2016). Consequently, analyzing hybridization is important to understand what attributes characterize *D. rotundata* and other cultivated yams. Probably, *D. rotundata* was established as a cultivar as a result of heterosis derived from the hybridization between *D. abyssinica* and *D. praehensilis*.

Understanding the genomes of crop wild relatives would facilitate efficient breeding programs. Crop wild relatives are expected to have potentially beneficial alleles that are not available in the cultivars. The farmers unconsciously introduce these beneficial alleles to the cultivars presumably by 'ennoblement'. Since the genomic regions containing the beneficial alleles should be affected by selective sweeps, population genomics analyses may be able to identify these regions (Akakpo et al., 2017; Scarcelli et al., 2019; Sugihara et al., 2020). Currently, there is no evidence that these candidate selective sweeps affected any phenotypes. However future functional studies of the identified genes would reveal their impact on the change of traits in the crops.

Another standing question is how many times the domestication processes occurred in the various cultivated *Dioscorea* species. A recent study hypothesized multiple domestication processes of *D. alata* in separate regions (Sharif et al., 2020). The cultivated yam landraces from Southern Ethiopian are phylogenetically close to the cultivated gene pools of *D. rotundata*, but they were clearly separate from Nigerian *D. rotundata* (Tamiru et al., 2007). Although the model-based population genetics/genomics is needed to infer the detailed

demographic history, this result may suggest independent domestication processes of *D. rotundata* in Ethiopia (or East Africa) and Nigeria.

The importance of hybridization and polyploidization for the domestication of *Dioscorea* species has been discussed. Some of these events appear to have played an important role in yam domestication. In recent years, our knowledge of yam domestication has dramatically improved thanks to the advances in sequencing technologies and statistical methods for population genomics analysis. These developments also allowed us to identify, among others, the transition of the sex-determination system in the section Enantiophyllum. Future studies should further unravel the complex evolutionary history of *Dioscorea* species including hybridization, polyploidization, and sexual/asexual propagation.

SUPPLEMENTARY DATA

Table S1. All sequence information of Guinea yam accessions

							_	-			
DRR208801, DRR208919		HiSeq4000,NextSeq500	20.26	86.6	0.16	10.16	12.52	14.19	22	TDr2041B	DRS_046
DRR208800, DRR208918		HiSeq4000,NextSeq500	15.91	86.7	0.18	7.99	10.86	12.53	N	TDr2608A	DRS_045
DRR208799,DRR208917		HiSeq4000,NextSeq500	15.23	86.7	0.14	7.65	10.14	11.67	N	TDr1935A	DRS_044
DRR208798		HiSeq4000	10.31	79.7	0.05	4.76	6.29	7.43	2	TDr1922C	DRS_043
DRR208797,DRR208916		HiSeq4000,NextSeq500	15.68	86.8	0.15	7.89	12.01	13.90	2	TDr1899A	DRS_042
DRR208796, DRR208915	cluster5	HiSeq4000,NextSeq500	16.36	86.5	0.09	8.20	10.03	11.35	2	TDr1850A	DRS_041
DRR208795, DRR208914	cluster3	HiSeq4000,NextSeq500	14.77	85.9	0.10	7.35	9.77	11.26	2	TDr1829A	DRS_040
DRR208794, DRR208913	cluster1	HiSeq4000,NextSeq500	15.11	87.6	0.26	7.67	10.05	11.35	ω	TDr1807A	DRS_039
DRR208793, DRR208912		HiSeq4000,NextSeq500	18.22	86.7	0.08	9.16	11.14	12.60	2	TDr1805A	DRS_038
DRR208792		HiSeq4000	11.35	79.8	0.05	5.25	7.02	8.14	2	TDr1798A	DRS_037
DRR208791, DRR208911	cluster1	HiSeq4000,NextSeq500	14.82	87.5	0.27	7.52	9.96	11.44	ω	TDr1775A	DRS_036
DRR208790, DRR208910	cluster4	HiSeq4000,NextSeq500	16.85	87.7	0.10	8.56	10.98	12.63	22	TDr1804A	DRS_035
DRR208789,DRR208909	cluster4	HiSeq4000,NextSeq500	22.07	87.7	0.09	11.22	14.06	16.32	2	TDr1763C	DRS_034
DRR208788,DRR208908	cluster4	HiSeq4000,NextSeq500	16.09	87.9	0.08	8.19	9.96	11.42	2	TDr1760A	DRS_033
DRR208787, DRR208907		HiSeq4000,NextSeq500	14.16	85.7	0.14	7.03	10.51	11.77	2	TDr2029A	DRS_032
DRR208786, DRR208906		HiSeq4000,NextSeq500	14.93	86.5	0.15	7.48	11.59	13.02	2	TDr1735A	DRS_031
DRR208785, DRR208905	cluster4	HiSeq4000,NextSeq500	19.23	88.2	0.16	9.83	12.38	13.95	2	TDr1732A	DRS_030
DRR208784, DRR208904		HiSeq4000,NextSeq500	17.73	87.1	0.15	8.95	11.23	12.61	2	TDr3872A	DRS_029
DRR208783		HiSeq4000	11.06	80.3	0.04	5.15	6.65	7.64	2	TDr1711A	DRS_028
DRR208878		HiSeq4000	24.13	86.1	0.22	12.04	15.10	16.91	2	TDr1709A	DRS_027
DRR208782, DRR208903		HiSeq4000,NextSeq500	17.58	88.7	0.15	9.04	11.93	13.51	2	TDr1707A	DRS_026
DRR208781, DRR208902	cluster4	HiSeq4000,NextSeq500	15.87	88.2	0.12	8.11	11.14	12.58	2	TDr1686A	DRS_025
DRR208780, DRR208901		HiSeq4000,NextSeq500	17.22	86.9	0.17	8.68	11.55	13.69	2	TDr1663A	DRS_024
DRR208779,DRR208900	cluster5	HiSeq4000,NextSeq500	12.89	86.0	0.16	6.42	10.36	12.24	2	TDr1655A	DRS_023
DRR208778,DRR208899		HiSeq4000,NextSeq500	13.80	86.5	0.13	6.92	10.86	12.68	2	TDr1653A	DRS_022
DRR208777,DRR208898	cluster2	HiSeq4000,NextSeq500	16.23	87.0	0.15	8.18	10.56	12.42	2	TDr1650B	DRS_021
DRR208776,DRR208897	cluster3	HiSeq4000,NextSeq500	14.42	86.4	0.15	7.22	10.83	12.64	2	TDr1649A	DRS_020
DRR208775, DRR208896		HiSeq4000,NextSeq500	22.31	87.8	0.17	11.34	13.62	15.29	2	TDr1631C	DRS_019
DRR208774		HiSeq4000	11.65	77.7	0.05	5.24	7.00	8.08	2	TDr1628A	DRS_018
DRR208773,DRR208895	cluster2	HiSeq4000,NextSeq500	13.96	86.8	0.15	7.02	10.81	12.71	2	TDr1622A	DRS_017
DRR208772,DRR208894	cluster1	HiSeq4000,NextSeq500	15.02	86.6	0.43	7.54	11.74	13.80	ω	TDr1598A	DRS_016
DRR208771,DRR208893	cluster2	HiSeq4000,NextSeq500	15.92	87.0	0.16	8.02	12.78	15.02	22	TDr1585C	DRS_015
DRR208770,DRR208892		HiSeq4000,NextSeq500	15.02	87.1	0.15	7.58	11.78	14.01	22	TDr1585A	DRS_014
DRR208769,DRR208891	cluster3	HiSeq4000,NextSeq500	19.57	87.4	0.15	9.91	11.47	12.81	2	TDr1576A	DRS_013
DRR208877		HiSeq4000	20.14	85.6	0.11	9.99	12.56	14.22	2	TDr1858C	DRS_012
DRR208768,DRR208890	cluster3	HiSeq4000,NextSeq500	14.59	86.7	0.18	7.33	11.17	13.22	22	TDr1543A	DRS_011
DRR208767, DRR208889	cluster3	HiSeq4000,NextSeq500	16.58	86.6	0.17	8.32	11.18	13.31	N	TDr1533A	DRS_010
DRR208766, DRR208888		HiSeq4000,NextSeq500	14.77	89.0	0.14	7.62	11.21	13.23	22	TDr3782A	DRS_009
DRR208765, DRR208887		HiSeq4000,NextSeq500	15.46	87.2	0.14	7.81	10.19	12.30	N	TDr1510A	DRS_007
DRR208764, DRR208886		HiSeq4000,NextSeq500	16.19	86.6	0.16	8.13	11.10	13.47	22	TDr1509A	DRS_006
DRR208763, DRR208885	cluster2	HiSeq4000,NextSeq500	16.99	86.9	0.13	8.55	11.70	13.65	N	TDr1499A	DRS_004
DRR208762, DRR208884		HiSeq4000,NextSeq500	18.78	87.3	0.16	9.50	13.18	15.28	2	TDr2284A	DRS_003
DRR208761		HiSeq4000	11.51	79.0	0.05	5.27	7.02	8.09	2	TDr1489A	DRS_002
DRR208876		HiSeq4000	18.53	86.4	0.12	9.28	11.32	12.70	2	TDr2946A	DRS_001
DRR027644	-	MiSeq	33.74	90.3	0.04	17.66	21.34	16.77		TDr96_F1	TDr96_F1
DRR063127, DRR208406, DRR045130-7, DRR063111	àAlix -	MiSeq,HiSeq4000,NextSeq500,G	62.90	89.8	0.94	32.72	43.48	50.20		TDr97_777	TDr97_777
DRR208404, DRR208405, DRR063085		MiSeq, HiSeq4000, GAIIx	49.93	89.7	0.32	25.95	33.10	38.26		TDr04_219	TDr04_219
Accession No.	Cluster	oequerice prationin	Debui	(%)	(Gbp)	(Gbp)	(Gbp)	(Gbp)		III A halle	Naille
Appendix No	Chieter	Serilence nlatform	Denth	Coverane	I Inmanned	Alianad	Filtered	Orining	Phidv level	IITA name	Name
				nformation	Aligned barn i		i size	Fast		Sample	

DRR208835,DRR208963	cluster2	HiSeq4000,NextSeq500	18.02	87.1	0.14	9.10	10.91	12.18	2	TDr3357A	DRS_098
DRR208834,DRR208962		HiSeq4000,NextSeq500	15.17	86.4	0.17	7.60	10.45	11.77	N	TDr1772A	DRS_097
DRR208833,DRR208961	cluster5	HiSeq4000,NextSeq500	16.77	86.5	0.14	8.40	10.73	11.97	2	TDr2090B	DRS_096
DRR208832,DRR208960		HiSeq4000,NextSeq500	18.86	86.8	0.13	9.49	11.25	12.58	N	TDr3955C	DRS_095
DRR208831,DRR208959		HiSeq4000,NextSeq500	18.29	87.0	0.08	9.22	10.95	12.26	2	TDr3863A	DRS_094
DRR208958		HiSeq4000,NextSeq500	25.16	88.5	0.15	12.90	14.92	16.92	2	TDr3842A	DRS_093
DRR208830,DRR208957		HiSeq4000,NextSeq500	18.29	88.0	0.14	9.32	13.01	14.56	2	TDr3828B	DRS_092
DRR208956		HiSeq4000,NextSeq500	14.39	85.5	0.12	7.13	8.83	10.51	2	TDr3719A	DRS_091
DRR208829,DRR208955		HiSeq4000,NextSeq500	17.93	87.4	0.16	9.08	13.52	15.57	2	TDr3678A	DRS_090
DRR208883		HiSeq4000	15.11	85.6	0.09	7.50	9.07	10.12	2	TDr2503A	DRS_089
DRR208954	cluster5	HiSeq4000,NextSeq500	12.86	83.3	0.09	6.21	7.84	9.68	2	TDr3624B	DRS_088
DRR208953		HiSeq4000,NextSeq500	20.42	85.7	0.16	10.14	13.22	17.05	2	TDr3576A	DRS_087
DRR208828,DRR208952		HiSeq4000,NextSeq500	18.43	87.8	0.16	9.37	13.13	15.07	2	TDr2276A	DRS_086
DRR208827	cluster5	HiSeq4000	11.71	82.7	0.05	5.61	6.63	7.58	2	TDr3527A	DRS_085
DRR208826,DRR208951	cluster1	HiSeq4000,NextSeq500	18.59	88.7	0.49	9.55	14.55	16.08	з	TDr3519A	DRS_084
DRR208825,DRR208950		HiSeq4000,NextSeq500	13.47	85.7	0.11	6.69	9.46	12.45	2	TDr3447B	DRS_083
DRR208824,DRR208949		HiSeq4000,NextSeq500	11.01	80.8	0.05	5.15	6.42	9.71	2	TDr3436A	DRS_082
DRR208882		HiSeq4000	13.58	84.7	0.11	6.66	8.49	9.57	2	TDr3470A	DRS_081
DRR208823,DRR208948	cluster3	HiSeq4000,NextSeq500	20.05	87.3	0.19	10.14	12.10	13.81	2	TDr3325A	DRS_080
DRR208822,DRR208947	cluster2	HiSeq4000,NextSeq500	16.65	88.8	0.14	8.57	11.79	13.00	2	TDr2577A	DRS_079
DRR208821,DRR208946	cluster1	HiSeq4000,NextSeq500	16.52	87.9	0.43	8.41	11.59	12.84	з	TDr4067A	DRS_078
DRR208945	cluster4	HiSeq4000,NextSeq500	16.69	87.6	0.08	8.47	9.98	11.13	2	TDr2975A	DRS_077
DRR208881		HiSeq4000	13.88	84.5	0.09	6.80	8.21	9.19	2	TDr2968A	DRS_076
DRR208944		HiSeq4000,NextSeq500	18.83	88.4	0.10	9.64	10.98	12.16	2	TDr2965A	DRS_075
DRR208820,DRR208943		HiSeq4000,NextSeq500	17.69	87.6	0.07	8.98	10.50	11.67	2	TDr2948A	DRS_074
DRR208819,DRR208942		HiSeq4000,NextSeq500	22.79	87.0	0.08	11.48	13.87	15.55	2	TDr1684A	DRS_073
DRR208818,DRR208941		HiSeq4000,NextSeq500	19.57	86.9	0.13	9.86	11.77	13.04	2	TDr2713A	DRS_072
DRR208940	cluster5	HiSeq4000,NextSeq500	13.56	86.7	0.07	6.81	7.72	8.56	2	TDr2674A	DRS_071
DRR208939		HiSeq4000,NextSeq500	13.02	85.9	0.09	6.48	7.89	8.88	2	TDr2636B	DRS_070
DRR208938		HiSeq4000,NextSeq500	13.94	87.2	0.09	7.04	8.03	8.89	2	TDr2575A	DRS_069
DRR208817,DRR208937	cluster1	HiSeq4000,NextSeq500	18.93	88.7	0.57	9.73	14.91	16.37	з	TDr2554A	DRS_068
DRR208880	cluster3	HiSeq4000	15.80	85.5	0.12	7.83	10.03	11.24	2	TDr2533C	DRS_067
DRR208816,DRR208936	cluster4	HiSeq4000,NextSeq500	19.70	88.6	0.15	10.11	14.08	15.47	2	TDr3569A	DRS_066
DRR208815,DRR208935		HiSeq4000,NextSeq500	20.28	87.1	0.15	10.23	12.46	13.74	2	TDr2491A	DRS_065
DRR208814,DRR208934		HiSeq4000,NextSeq500	19.56	87.3	0.16	9.89	12.08	13.41	2	TDr2453A	DRS_064
DRR208813,DRR208933		HiSeq4000,NextSeq500	15.22	86.7	0.06	7.64	9.03	10.11	2	TDr2439A	DRS_063
DRR208812	cluster3	HiSeq4000	12.01	83.2	0.05	5.79	6.72	7.61	2	TDr2435A	DRS_062
DRR208811,DRR208932	cluster1	HiSeq4000,NextSeq500	16.63	87.9	0.38	8.47	11.17	12.28	з	TDr2427B	DRS_061
DRR208931		HiSeq4000,NextSeq500	14.89	86.5	0.07	7.47	8.92	10.38	2	TDr2425B	DRS_060
DRR208930		HiSeq4000,NextSeq500	15.11	83.6	0.10	7.31	9.46	11.15	2	TDr2973A	DRS_059
DRR208810,DRR208929		HiSeq4000,NextSeq500	17.96	86.8	0.13	9.03	11.21	12.62	2	TDr2484A	DRS_058
DRR208928	cluster3	HiSeq4000,NextSeq500	13.46	82.2	0.08	6.41	7.70	8.95	2	TDr2320A	DRS_057
DRR208809,DRR208927		HiSeq4000,NextSeq500	17.36	86.5	0.19	8.70	10.36	11.63	2	TDr2262C	DRS_056
DRR208808,DRR208926	cluster4	HiSeq4000,NextSeq500	18.96	88.2	0.18	9.69	12.29	13.88	N	TDr3311B	DRS_055
DRR208879	cluster2	HiSeq4000	14.42	85.5	0.14	7.15	9.52	10.71	2	TDr2210A	DRS_054
DRR208807,DRR208925		HiSeq4000,NextSeq500	15.51	86.2	0.08	7.75	9.81	11.41	N	TDr2207A	DRS_053
DRR208806,DRR208924	cluster1	HiSeq4000,NextSeq500	14.98	87.6	0.36	7.60	10.44	11.86	ω	TDr2167A	DRS_051
DRR208805,DRR208923	cluster1	HiSeq4000,NextSeq500	15.33	87.7	0.42	7.79	11.43	12.97	ω	TDr2161C	DRS_050
DRR208804,DRR208922		HiSeq4000, NextSeq500	15.46	86.9	0.20	7.79	9.93	11.28	N	TDr2159A	DRS_049
DRR208803,DRR208921	cluster1	HiSeq4000,NextSeq500	15.44	87.6	0.41	7.84	11.47	13.17	з	TDr2155A	DRS_048
DRR208802,DRR208920	cluster3	HiSeq4000, NextSeq500	15.93	86.5	0.10	7.98	10.17	11.61	22	TDr2121A	DRS_047

		HiSeq4000	12.88	82.2	0.05	6.13	7.98	8.85		TDr1717	TDr_011
		HiSeq4000	12.68	84.4	0.06	6.20	8.20	9.48		TDr1707	TDr_010
ŝ	cluste	HiSeq4000	10.44	81.0	0.03	4.90	6.53	7.41		TDr1669	TDr_009
		HiSeq4000	10.94	84.4	0.05	5.35	6.27	7.36		TDr1628	- TDr_008
	cluste	HiSeq4000	11.17	81.3	0.16	5.27	7.14	8.48		TDr1615	TDr_007
912	cluste	HiSeq4000	12.44	82.6	0.07	5.96	8.18	9.47		TDr1598	TDr_006
ä :	cluste	HiSeq4000	13.14	81.6	0.22	6.22	7.73	8.77		TDr1577	TDr 005
510		HiSen4000	11 81	84.1	0.02	л V. OO	7.51	8 65		TDr1550	TDr 004
5	-	HiSeq4000	10.24	82.5	0.04	4.90	5.83	6.84		1 Dr2262	TD- 002
ä	cluste	HiSeq4000	12.66	81.8	0.05	6.00	7.47	8.93	ı	TDr1492	TDr_001
		HiSeq4000	15.59	84.6	0.06	7.64	9.54	10.57		TDrDanacha	DRS_338
		HiSeq4000	14.28	86.0	0.04	7.11	8.65	9.43		TDrAkwuchi	DRS_337
	1	HiSeq4000	15.84	85.9	0.05	7.89	9.66	10.56		TDr99/02562	DRS_336
		HiSeq4000	15.07	86.3	0.05	7.53	9.39	10.27		TDr96/01818	DRS_335
		HiSeq4000	13.88	86.3	0.04	6.94	8.64	9.43		TDr96/00629	DRS_334
		HiSeq4000	14.89	85.9	0.05	7.41	8.89	9.64		TDr89/02677	DRS_333
		HiSeq4000	12.05	85.5	0.04	5.97	7.05	7.70		TDr89/02475	DRS_332
		HiSeq4000	16.24	85.6	0.05	8.05	9.96	10.88		TDr10/00021	DRS_331
		HiSeq4000	16.93	84.3	0.05	8.27	10.42	11.39		TDr10/00459	DRS_330
		HiSeq4000	16.41	84.6	0.05	8.04	10.35	11.47		TDr10/00360	DRS_329
		HiSeq4000	15.25	84.8	0.04	7.49	9.27	10.16		TDr10/00344	DRS_328
		HiSeq4000	13.53	83.5	0.05	6.55	8.29	9.13		TDr10/00179	DRS_327
		HiSeq4000	13.90	84.6	0.04	6.81	8.28	8.99	ı	TDr10/00048	DRS_326
		HiSeq4000	14.90	84.0	0.06	7.26	9.28	10.25		TDr10/00013	DRS_325
		HiSeq4000	15.74	84.4	0.05	7.70	10.00	11.07		TDr00/02405	DRS_324
	1	HiSeq4000	12.98	82.3	0.05	6.19	7.92	8.64	ı	TDr97/00632	DRS_322
		HiSeq4000	16.30	85.4	0.05	8.06	10.42	11.44		TDr89/02157	DRS_320
		HiSeq4000	13.84	85.6	0.05	6.86	8.48	9.25		TDrHembakwase	 DRS_318
		HiSeq4000	11.73	82.8	0.05	5.63	7.13	7.85		TDrLagos	DRS 312
		HiSea4000	13.27	83.3	0.04	6.41	8.23	8.97		TDr10/00125	DRS 307
		HiSea4000	13.35	84.2	0.06	6.51	8.63	9.56		TDrGhongi	DRS 297
		HiSeq4000	16.05	83.1	0.05	7.73	9.72	10.65	ı	TDr10/00077	DRS 293
	-	HiSen4000	17 54	850	90.0	864	11 27	12.34		TDrOnnia	DBS 282
574		HiSen4000	14 16	85.1	0.05	6 Q 8	a 10	9.90		TDr9347	DBS 250
50	Chiefe	HiSen4000	14 34	84 A	0.05	7.03	8 57	0 33	•	TDr9110	
		HISEq4000	14.98	85.3	0.04	F 90	9.14	9.97		TDrOinidanua	DBS 330
			12.04	04.4	0.03	1 d	7.04	0.41		TD:0000000	
		HiSeq4000	15.83	85.3	0.04	7.82	9.84	10.73		TDr09/00799	DRS_211
		HISeq4000	13.57	83.7	0.04	0.58	8.25	9.01		10109/00362	DHS_208
		HISeq4000	16.74	84.2	0.05	8.17	10.54	11.57	,	Threadengu	
		HISeq4000	19.00	80.2	0.07	9.39	11.98	13.01	,	I DrF aketsa	DHS_109
		HISeq4000	15.99	86.1	0.04	7.98	9.99	10.92		1Dr608	DHS_165
	- 00	HiSeq4000, NextSeq500	15.53	86.4	0.14	7.77	10.05	11.49	2	TDr2042A	DRS_106
915	00 cluste	HiSeq4000, NextSeq500	14.87	86.1	0.17	7.41	9.80	11.13	22	TDr4180A	DRS_104
	- 00	HiSeq4000,NextSeq500	15.14	87.4	0.15	7.67	9.61	10.98	2	TDr4155A	DRS_103
		HiSeq4000	13.06	83.7	0.05	6.33	7.53	8.63	2	TDr2826A	DRS_102
975	00 cluste	HiSeq4000,NextSeq500	18.57	87.1	0.18	9.37	11.67	13.31	N	TDr4100A	DRS_101
or4	00 cluste	HiSeq4000,NextSeq500	17.45	87.8	0.19	8.88	11.91	13.73	2	TDr3623C	DRS_100
2	00 cluste	HiSeq4000,NextSeq500	16.59	86.8	0.21	8.35	11.46	13.05	N	TDr4017A	DRS_099

DRR208624		HiSeq4000	14.32	84.6	0.06	7.02	8.46	9.35	TDr08/00617	TDr_063	
DRR208623		HiSeq4000	12.49	84.7	0.07	6.13	7.27	8.83	TDr08/00207	TDr_062	
DRR208622		HiSeq4000	15.80	85.1	0.06	7.79	9.16	10.10	TDr07/00732	TDr_061	
DRR208621		HiSeq4000	13.44	85.1	0.09	6.63	8.09	8.98	TDr08/00122	TDr_059	
DRR208620		HiSeq4000	14.21	85.2	0.06	7.02	8.61	9.46	TDr08/00108	TDr_058	
DRR208619		HiSeq4000	12.08	81.2	0.08	5.69	6.98	8.19	TDr08/00092	TDr_057	
DRR208618		HiSeq4000	13.16	84.9	0.05	6.48	7.64	8.47	TDr09/01932	TDr_056	
DRR208617		HiSeq4000	12.57	83.8	0.05	6.10	7.10	8.49	TDr07/00157	TDr_055	
DRR208616		HiSeq4000	11.37	80.3	0.06	5.29	6.74	7.87	TDr05/00632	TDr_054	
DRR208615		HiSeq4000	19.53	85.1	0.08	9.63	11.09	12.86	TDr05/00589	TDr_053	
DRR208614		HiSeq4000	12.32	84.4	0.05	6.03	7.27	8.13	TDr00/00362	TDr_052	
DRR208613		HiSeq4000	9.82	78.5	0.07	4.47	5.64	8.52	TDr09/00064	TDr_051	
DRR208612	cluster3	HiSeq4000	11.52	79.7	0.08	5.32	7.16	9.89	TDr3002	TDr_050	
DRR208611	cluster1	HiSeq4000	17.64	86.9	0.28	8.88	11.33	13.14	TDr2973	TDr_049	
DRR208610		HiSeq4000	14.90	82.9	0.06	7.15	8.76	10.01	TDr2965	TDr_048	
DRR208609		HiSeq4000	11.83	80.8	0.09	5.54	8.13	10.09	TDr2936	TDr_047	
DRR208608	cluster4	HiSeq4000	11.40	82.0	0.07	5.42	7.46	9.33	TDr2770	TDr_046	
DRR208607	cluster2	HiSeq4000	12.40	84.8	0.05	6.09	7.00	8.06	TDr2694	TDr_045	
DRR208606		HiSeq4000	10.10	81.4	0.10	4.76	6.15	10.14	TDr2724	TDr_044	
DRR208605		HiSeq4000	13.03	84.9	0.06	6.41	7.79	9.63	TDr2701	TDr_043	
DRR208604	cluster3	HiSeq4000	22.16	85.8	0.10	11.02	12.64	14.48	TDr2687	TDr_042	
DRR208603	cluster3	HiSeq4000	10.89	78.7	0.09	4.97	6.47	9.63	TDr2683	TDr_041	
DRR208602	cluster1	HiSeq4000	11.74	82.6	0.18	5.62	8.00	10.16	TDr2681	TDr_040	
DRR208601	cluster5	HiSeq4000	11.10	82.2	0.04	5.29	6.59	7.65	TDr2674	TDr_039	
DRR208600	cluster3	HiSeq4000	13.41	82.1	0.05	6.38	8.43	9.37	TDr2645	TDr_038	
DRR208599	cluster4	HiSeq4000	14.20	86.3	0.10	7.10	8.34	9.62	TDr2581	TDr_037	
DRR208598	cluster5	HiSeq4000	9.43	80.6	0.04	4.40	5.58	6.51	TDr2502	TDr_036	
DRR208597	cluster4	HiSeq4000	10.24	84.7	0.04	5.02	5.83	6.94	TDr2458	TDr_035	
DRR208596		HiSeq4000	12.80	82.3	0.06	6.11	7.96	9.57	TDr2439	TDr_034	
DRR208595	cluster2	HiSeq4000	9.80	81.6	0.04	4.63	5.57	6.70	TDr2432	TDr_033	
DRR208594	cluster2	HiSeq4000	15.86	85.2	0.06	7.83	9.01	10.33	TDr2406	TDr_032	
DRR208593	cluster2	HiSeq4000	10.37	79.6	0.04	4.78	6.26	7.70	TDr2363	TDr_031	
DRR208592		HiSeq4000	14.36	87.1	0.12	7.24	8.37	9.61	TDr2349	TDr_030	
DRR208591		HiSeq4000	14.86	86.4	0.07	7.43	8.47	9.78	TDr2080	TDr_029	
DRR208590		HiSeq4000	14.16	84.9	0.05	6.96	8.28	9.65	TDr2211	TDr_028	
DRR208589	cluster1	HiSeq4000	13.66	85.7	0.21	6.78	8.65	9.84	TDr2110	TDr_027	
DRR208588	cluster4	HiSeq4000	11.69	82.4	0.06	5.58	7.51	8.55	TDr2104	TDr_026	
DRR208587		HiSeq4000	10.10	80.0	0.05	4.68	6.44	7.64	TDr2090	TDr_025	
DRR208586	cluster4	HiSeq4000	14.03	85.6	0.06	6.95	8.59	10.16	TDr2059	TDr_024	
DRR208585		HiSeq4000	14.23	81.8	0.08	6.75	8.75	10.79	TDr2050	TDr_023	
DRR208584		HiSeq4000	11.35	83.7	0.03	5.50	6.63	7.88	TDr2038	TDr_022	
DRR208583	cluster1	HiSeq4000	13.16	86.1	0.21	6.56	8.27	9.44	TDr2028	TDr_021	
DRR208582	cluster1	HiSeq4000	11.58	84.8	0.17	5.69	7.36	8.50	TDr2015	TDr_020	
DRR208581	cluster2	HiSeq4000	12.60	82.3	0.05	6.01	7.20	8.22	TDr1949	TDr_019	
DRR208580	cluster2	HiSeq4000	13.64	83.1	0.05	6.57	8.09	9.87	TDr1939	TDr_018	
DRR208579	cluster3	HiSeq4000	14.27	82.5	0.06	6.82	8.61	10.02	TDr1937	TDr_017	
DRR208578	cluster1	HiSeq4000	13.06	85.7	0.21	6.48	8.32	9.56	TDr1876	TDr_016	
DRR208577	cluster4	HiSeq4000	10.71	82.8	0.05	5.14	6.33	8.01	TDr1825	TDr_015	
DRR208576		HiSeq4000	10.02	80.1	0.03	4.65	6.87	7.81	TDr1799	TDr_014	
DRR208575	cluster1	HiSeq4000	13.34	85.9	0.23	6.64	8.55	10.00	TDr1769	TDr_013	
DRR208574		HiSeq4000	12.79	82.2	0.05	6.09	7.76	8.62	TDr1763	TDr_012	
DRR208675	ı	HiSeq4000	18.07	86.6	0.14	9.07	10.57	11.82		TDr3881	TDr_114
-----------	----------	-----------	-------	------	------	-------	-------	-------	---	---------------	---------
DRR208674	•	HiSeq4000	16.19	86.7	0.13	8.13	9.68	11.07		TDr3814	TDr_113
DRR208673		HiSeq4000	16.21	86.3	0.15	8.10	9.65	10.92		TDr3663	TDr_112
DRR208672	cluster4	HiSeq4000	14.86	86.6	0.17	7.46	9.02	10.20		TDr3610	TDr_111
DRR208671	cluster1	HiSeq4000	11.89	85.7	0.25	5.90	7.71	8.67		TDr3592	TDr_110
DRR208670	cluster1	HiSeq4000	11.88	85.8	0.30	5.91	7.71	8.82		TDr3579	TDr_109
DRR208669	cluster4	HiSeq4000	14.81	86.6	0.15	7.43	8.88	10.02	,	TDr3569	TDr_108
DRR208668		HiSeq4000	14.63	85.4	0.21	7.24	8.74	10.00		TDr3567	TDr_107
DRR208667	cluster1	HiSeq4000	13.48	85.9	0.29	6.71	8.82	9.88		TDr3519	TDr_106
DRR208666		HiSeq4000	14.38	86.3	0.14	7.19	8.42	9.58		TDr3430	TDr_105
DRR208665		HiSeq4000	16.81	86.1	0.13	8.39	9.98	11.17		TDr3408	TDr_104
DRR208664	cluster2	HiSeq4000	17.41	85.5	0.13	8.63	10.24	11.48		TDr3357	TDr_103
DRR208663		HiSeq4000	18.36	85.5	0.20	9.10	11.02	12.57		TDr3010	TDr_102
DRR208662	cluster4	HiSeq4000	15.96	86.9	0.18	8.03	9.61	10.98		TDr1686	TDr_101
DRR208661		HiSeq4000	10.82	79.3	0.06	4.97	6.51	7.49		TDr0836	TDr_100
DRR208660		HiSeq4000	15.09	85.0	0.09	7.43	9.83	11.21		TDr08/00841	TDr_099
DRR208659		HiSeq4000	12.99	85.1	0.04	6.41	7.54	8.32		TDr08/00896	TDr_098
DRR208658		HiSeq4000	9.99	85.2	0.04	4.93	5.61	6.68		TDr08/00974	TDr_097
DRR208657	•	HiSeq4000	13.45	85.4	0.04	6.66	7.81	9.05		TDr08/00197	TDr_096
DRR208656	•	HiSeq4000	11.78	85.6	0.08	5.84	6.64	7.82		TDr08/00115	TDr_095
DRR208655		HiSeq4000	10.93	82.7	0.05	5.23	6.10	7.24		TDr08/00023	TDr_094
DRR208654		HiSeq4000	8.14	79.4	0.03	3.74	4.60	5.53		TDr05/00389	TDr_093
DRR208653	•	HiSeq4000	13.16	83.8	0.08	6.39	7.33	8.65		TDr05/00432	TDr_092
DRR208652	•	HiSeq4000	11.41	80.9	0.06	5.35	7.32	8.32		TDr05/00046	TDr_091
DRR208651		HiSeq4000	16.48	86.3	0.08	8.24	9.62	11.01		TDr89/02665	TDr_090
DRR208650		HiSeq4000	10.23	84.8	0.04	5.03	5.79	6.40		TDrHembakoase	TDr_089
DRR208649		HiSeq4000	15.26	82.2	0.08	7.27	9.16	10.90		TDrAlumaco	TDr_088
DRR208648		HiSeq4000	13.23	86.6	0.04	6.64	7.98	8.96	,	TDr08/00146	TDr_087
DRR208647		HiSeq4000	12.07	83.1	0.06	5.81	7.56	8.47		TDr12/00474	TDr_086
DRR208646		HiSeq4000	13.12	86.2	0.06	6.55	7.87	8.72		TDr11/01041	TDr_085
DRR208645		HiSeq4000	19.40	88.2	0.07	9.92	11.78	13.32		TDr11/00799	TDr_084
DRR208644		HiSeq4000	10.93	82.7	0.06	5.24	6.40	7.23		TDr08/00161	TDr_083
DRR208643		HiSeq4000	7.81	82.3	0.04	3.73	4.25	5.02		TDr11/00263.1	TDr_082
DRR208642		HiSeq4000	8.29	78.9	0.02	3.79	4.71	5.88		TDr99/02789	TDr_081
DRR208641		HiSeq4000	13.18	83.2	0.03	6.36	7.59	8.54		TDr09/00350	TDr_080
DRR208640		HiSeq4000	13.09	82.5	0.04	6.26	8.19	9.28		TDr09/00248	TDr_079
DRR208639		HiSeq4000	8.14	79.3	0.03	3.74	4.51	5.53		TDr09/00134	TDr_078
DRR208638		HiSeq4000	12.16	82.8	0.05	5.83	7.12	8.29		TDr09/00125	TDr_077
DRR208637		HiSeq4000	11.01	82.9	0.04	5.28	6.38	7.66		TDr09/00114	TDr_076
DRR208636		HiSeq4000	12.50	83.7	0.06	6.06	7.55	8.73		TDr09/00108	TDr_075
DRR208635		HiSeq4000	13.71	85.6	0.05	6.80	8.12	8.88		TDr09/00104	TDr_074
DRR208634		HiSeq4000	12.23	83.7	0.05	5.93	7.01	7.81		TDr09/00091	TDr_073
DRR208633		HiSeq4000	12.44	84.1	0.05	6.06	7.31	8.13		TDr09/00070	TDr_072
DRR208632		HiSeq4000	10.49	84.2	0.07	5.12	5.97	6.89		TDr09/00056	TDr_071
DRR208631		HiSeq4000	14.26	83.9	0.08	6.94	8.59	9.46		TDr09/00028	TDr_070
DRR208630		HiSeq4000	11.51	83.3	0.05	5.55	6.64	7.32		TDr09/00023	TDr_069
DRR208629		HiSeq4000	9.99	84.5	0.04	4.89	5.79	6.51		TDr08/01024	TDr_068
DRR208628		HiSeq4000	23.16	86.3	0.10	11.58	14.04	15.31		TDr08/01344	TDr_067
DRR208627	ı	HiSeq4000	20.95	85.7	0.15	10.40	13.18	14.54		TDr96/02433	TDr_066
DRR208626		HiSeq4000	20.96	85.9	0.09	10.42	12.80	14.08		TDr09/00325	TDr_065
DRR208625		HiSeq4000	16.58	85.7	0.55	8.23	10.44	11.50		TDr08/00799	TDr_064

DRR208726	cluster5	HiSeq4000	17.54	85.2	0.11	8.66	10.03	11.19	TDr3338	TDr_166
DRR208725		HiSeq4000	13.44	85.9	0.06	6.69	7.66	8.55	TDr3294	TDr_165
DRR208724		HiSeq4000	14.35	85.2	0.09	7.08	8.14	9.10	TDr3003	TDr_164
DRR208723	cluster2	HiSeq4000	15.08	85.2	0.04	7.44	8.55	9.49	TDr2467	TDr_163
DRR208722		HiSeq4000	14.58	83.8	0.06	7.08	8.50	9.63	TDr2366	TDr_162
DRR208721	cluster5	HiSeq4000	14.82	84.9	0.05	7.29	8.41	9.38	TDr08/01090	TDr_161
DRR208720		HiSeq4000	13.47	85.6	0.06	6.68	7.67	8.54	TDr08/01287	TDr_160
DRR208719		HiSeq4000	13.65	84.9	0.08	6.72	7.74	8.68	TDr96/01724	TDr_159
DRR208718		HiSeq4000	14.86	86.5	0.08	7.45	8.63	9.60	T Dr09/00155	TDr_158
DRR208717		HiSeq4000	16.77	85.7	0.09	8.33	9.73	10.88	TDr08/00764	TDr_157
DRR208716		HiSeq4000	15.66	85.1	0.06	7.72	8.91	9.98	TDr07/000732	TDr_156
DRR208715	cluster1	HiSeq4000	15.73	86.3	0.26	7.87	10.13	11.25	TDr2859	TDr_155
DRR208714		HiSeq4000	16.91	86.0	0.14	8.42	9.74	10.78	TDr1956	TDr_154
DRR208713	cluster3	HiSeq4000	19.25	85.4	0.21	9.52	11.26	12.77	TDr2365	TDr_153
DRR208712		HiSeq4000	18.15	86.6	0.33	9.11	11.18	12.72	TDrUfenyi	TDr_152
DRR208711		HiSeq4000	21.39	85.9	0.26	10.65	12.87	14.49	TDrAme	TDr_151
DRR208710		HiSeq4000	17.65	86.2	0.17	8.82	10.56	12.03	TDr08/01046	TDr_150
DRR208709		HiSeq4000	11.20	83.0	0.09	5.39	6.27	7.26	TDr09/00324	TDr_149
DRR208708		HiSeq4000	12.73	84.4	0.08	6.22	7.30	8.31	TDr09/00280.1	TDr_148
DRR208707		HiSeq4000	18.70	85.8	0.15	9.30	11.50	13.21	TDr09/00220	TDr_147
DRR208706		HiSeq4000	13.39	85.0	0.12	6.59	7.72	8.76	TDr09/00124	TDr_146
DRR208705		HiSeq4000	12.62	83.9	0.10	6.13	7.28	8.34	TDr09/00123	TDr_145
DRR208704		HiSeq4000	13.80	85.6	0.09	6.85	7.96	9.15	T Dr09/00061	TDr_144
DRR208703		HiSeq4000	14.28	84.1	0.12	6.96	8.24	9.41	TDr09/00055	TDr_142
DRR208702		HiSeq4000	11.29	84.3	0.07	5.51	6.50	7.43	T Dr09/00050	TDr_141
DRR208701		HiSeq4000	10.72	83.3	0.09	5.18	6.07	6.96	TDr08/00989	TDr_140
DRR208700		HiSeq4000	11.44	84.4	0.06	5.59	6.42	7.29	T Dr08/01464	TDr_139
DRR208699		HiSeq4000	11.18	83.8	0.08	5.43	6.30	7.14	T Dr08/00091	TDr_138
DRR208698	cluster5	HiSeq4000	15.59	85.1	0.12	7.68	8.85	10.03	TDr3006	TDr_137
DRR208697	cluster2	HiSeq4000	15.52	85.3	0.11	7.67	9.05	10.29	TDr3507	TDr_136
DRR208696	cluster1	HiSeq4000	12.50	85.6	0.24	6.20	8.17	9.23	TDr2975	TDr_135
DRR208695	cluster1	HiSeq4000	16.33	86.5	0.32	8.18	11.01	12.48	TDr2974	TDr_134
DRR208694	cluster4	HiSeq4000	14.72	85.7	0.16	7.30	9.12	10.55	TDr2698	TDr_133
DRR208693		HiSeq4000	13.07	85.7	0.13	6.49	7.63	8.75	TDr2564	TDr_132
DRR208692	cluster1	HiSeq4000	13.72	85.8	0.29	6.82	9.06	10.27	TDr2355	TDr_131
DRR208691	cluster4	HiSeq4000	15.48	86.2	0.16	7.73	9.61	11.08	TDr2342	TDr_130
DRR208690	cluster1	HiSeq4000	13.16	85.7	0.30	6.53	8.72	9.97	TDr2297	TDr_129
DRR208689	cluster1	HiSeq4000	12.59	85.5	0.23	6.23	8.29	9.38	TDr2249	TDr_128
DRR208688		HiSeq4000	14.75	85.8	0.14	7.33	8.85	10.08	TDr2126	TDr_127
DRR208687		HiSeq4000	14.59	85.5	0.15	7.23	8.67	9.82	TDr2048	TDr_126
DRR208686	cluster4	HiSeq4000	13.43	86.0	0.17	6.69	8.20	9.48	TDr3322	TDr_125
DRR208685		HiSeq4000	16.61	86.1	0.11	8.29	9.73	10.93	TDr1928	TDr_124
DRR208684	cluster5	HiSeq4000	17.37	85.2	0.18	8.58	10.34	11.62	TDr1905	TDr_123
DRR208683	cluster1	HiSeq4000	11.80	85.6	0.22	5.85	7.55	8.66	TDr1958	TDr_122
DRR208682		HiSeq4000	15.57	84.7	0.11	7.64	9.05	10.29	TDr2331.1	TDr_121
DRR208681	cluster2	HiSeq4000	13.84	85.1	0.10	6.83	7.86	9.01	TDr2931	TDr_120
DRR208680		HiSeq4000	13.05	85.2	0.10	6.44	7.66	8.97	TDr1569	TDr_119
DRR208679		HiSeq4000	13.76	84.9	0.12	6.77	7.95	9.12	TDr09/00131	TDr_118
DRR208678		HiSeq4000	14.73	85.4	0.18	7.29	8.60	9.84	TDr08/00756	TDr_117
DRR208677		HiSeq4000	17.72	85.5	0.18	8.78	10.49	11.86	TDr08/00641	TDr_116
DRR208676	cluster4	HiSeq4000	16.51	86.9	0.15	8.31	9.98	11.29	TDr4028	TDr_115

TDr_200	TDr_199	TDr_198	TDr_197	TDr_196	TDr_195	TDr_194	TDr_193	TDr_192	TDr_191	TDr_190	TDr_189	TDr_188	TDr_187	TDr_186	TDr_185	TDr_184	TDr_183	TDr_182	TDr_181	TDr_180	TDr_179	TDr_178	TDr_177	TDr_176	TDr_175	TDr_174	TDr_173	TDr_172	TDr_171	TDr_170	TDr_169	TDr_168	TDr_167
TDr87/00211	TDr09/00280.1	TDr94/01108	TDr08/00292	TDr08/01051	TDr08/010161	TDr08/00882	TDr09/00107	TDr08/00001	TDr09/00385	TDr11/00787	TDr11/00263.2	TDr95/18544	TDr11/00271	TDr09/00216	TDr08/01919	TDr08/00083	TDr09/00364	TDr09/00043	TDr09/00082	TDr11/01036	TDr2032	TDr3882	TDr2331.2	TDr2009	TDr4100	TDr3447	TDr3682	TDr2984	TDr2630	TDr3643	TDr3965	TDr3647	TDr3327
9.64	11.04	10.10	10.60	9.79	8.65	10.05	10.73	11.28	10.35	10.80	9.07	8.96	8.66	8.75	8.24	9.46	9.62	9.02	9.89	10.84	11.31	10.82	9.39	10.11	8.01	8.74	9.72	11.08	8.74	10.61	11.68	10.31	10.46
8.60	9.73	9.00	9.48	8.74	7.60	8.98	9.54	9.96	9.20	9.63	8.09	8.02	7.68	7.80	7.36	8.39	8.61	7.98	8.79	9.62	10.02	9.66	8.36	9.05	7.17	7.75	8.74	9.72	7.71	9.47	10.48	9.19	9.35
7.46	8.31	7.72	8.21	7.58	6.51	7.78	8.19	8.37	7.93	8.38	6.90	6.90	6.52	6.69	6.40	7.06	7.45	6.81	7.55	8.16	8.45	8.22	7.18	7.88	6.20	6.54	7.58	7.93	6.49	7.98	9.05	7.90	8.01
0.06	0.09	0.08	0.10	0.05	0.08	0.07	0.06	0.15	0.05	0.07	0.04	0.08	0.04	0.05	0.06	0.10	0.07	0.04	0.06	0.07	0.08	0.06	0.05	0.07	0.05	0.05	0.05	0.13	0.06	0.11	0.08	0.09	0.09
86.5	85.2	85.4	88.3	85.0	85.9	85.9	85.0	86.8	85.8	87.3	86.1	85.8	86.5	84.9	85.7	85.0	85.0	85.6	85.5	86.9	85.3	85.2	84.5	85.2	84.6	85.1	85.1	83.2	85.7	85.0	85.5	87.4	85.3
14.88	16.83	15.60	16.04	15.38	13.08	15.65	16.63	16.65	15.94	16.56	13.83	13.87	13.01	13.61	12.89	14.33	15.12	13.74	15.24	16.22	17.09	16.65	14.66	15.95	12.66	13.27	15.38	16.44	13.08	16.19	18.26	15.61	16.20
HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000	HiSeq4000
																								cluster3	cluster5		cluster2			cluster5	cluster2		cluster2
DRR208760	DRR208708	DRR208758	DRR208757	DRR208756	DRR208755	DRR208754	DRR208753	DRR208752	DRR208751	DRR208750	DRR208749	DRR208748	DRR208747	DRR208746	DRR208745	DRR208744	DRR208743	DRR208742	DRR208741	DRR208740	DRR208739	DRR208738	DRR208737	DRR208736	DRR208735	DRR208734	DRR208733	DRR208732	DRR208731	DRR208730	DRR208729	DRR208728	DRR208727

Figures/tables	No. analyzed SNPs	Triploid <i>D. rotundata</i> (in cluster 1)	Dioploid <i>D. rotundata</i> (not in cluster 1)	Samples in Scarcelli <i>et al</i> . 2019
Fig. 2.2A and B, Fig. 2.3 and 2.4, Table 2.1	6,124,093	yes	yes	_
Table 2.2	5,229,368	no	yes	-
Fig. 2.2C	463,293	no	yes	C/A/P/R
Fig. 2.2D	17,532	no	no	C/A/P
Table 2.4	87,671	no	no	C/A/P
Fig. 2.6B	144	no	yes	A/P/R
Fig. 2.6C and 2.8C	15,461	no	yes	A/P/R
Fig. 2.6D (A vs. R)	649,679	no	yes	A/R
Fig. 2.6D (P vs. R)	579,405	no	yes	P/R
Fig. 2.7 (A vs. P)	362,125	no	no	A/P
Fig. 2.8A	250	yes	yes	C/A/P/R
Fig. 2.9B	2,343,307	no	yes	A/P
Fig. 2.9C	458	no	yes	A/P

 Table S2. For each Figure and Table, the number of SNPs studied, use of triploid *D. rotundata* samples

 (cluster 1), and use of Scarcelli's samples are indicated.

C: Cameroonian D. praehensilis

A: D. abyssinica

P: (Western) D. praehensilis

R: D. rotundata

Table S3. List of genes in the five outlier loci (chromosome 14, 15, 17, and 19) showing extreme f_4 (P_{25} ,

P_4, P_P, P_A) values ($|Z(f_4) > 5|$) in Fig. 2.9.

Chromosome	Start	End	GeneID	Annotation
chrom_14	468088	469472	DRNTG_17186.1	(TrEMBL)Predicted protein(HORVV:F2DKZ3)
chrom_14	484029	484961	DRNTG_28166.1	(TrEMBL)Uncharacterized protein(ENSVE:A0A444CGI1)
chrom_14	485725	490867	DRNTG_28165.1	(TrEMBL)Endoplasmic reticulum metallopeptidase 1(ANACO:A0A199W086)
chrom_14	492377	496008	DRNTG_28164.1	Auxin response factor 18(ORYSJ:Q653H7)
chrom_14	496093	496525	DRNTG_28163.1	
chrom_14	501391	506132	DRNTG_28162.1	Protein ENHANCED DISEASE RESISTANCE 2(ARATH:F4JSE7)
chrom_14	507961	513788	DRNTG_28161.1	Clathrin interactor EPSIN 2(ARATH:Q67YI9)
chrom_14	514348	516233	DRNTG_28160.1	Mitochondrial import inner membrane translocase subunit PAM16 like 2(ARATH:Q93VV9)
chrom_14	516747	519058	DRNTG_28159.1	Cytokinin riboside 5'-monophosphate phosphoribohydrolase LOG4(ARATH:Q9LFH3)
chrom_14	520890	523855	DRNTG_28157.1	Protein CNGC15c(MEDTR:A0A072VMJ3)
chrom_14	521076	521734	DRNTG_28158.1	Protein CNGC15c(MEDTR:A0A072VMJ3)
chrom 14	527056	529173	DRNTG 28156.1	Phytochrome-associated serine/threonine-protein phosphatase(PEA:Q8LSN3)
chrom 14	531504	532632	DRNTG 11714.1	•
chrom 14	544864	552211	DRNTG 11716.1	Phenvlalanine ammonia-Ivase 3(PETCR:P45729)
chrom 14	550860	554840	DRNTG 11717.1	Phenvlalanine ammonia-lvase 3(PETCR:P45729)
chrom 14	565849	567237	DRNTG 11718.1	(TrEMBL)Uncharacterized protein(SETIT:K3ZZF5)
chrom 14	581692	585798	DRNTG 11720.1	E3 ubiquitin-protein ligase WAV3(ARATH:Q9LTA6)
chrom 14	586418	589346	DBNTG 11721.1	General transcription factor IIH subunit 2(ABATH:Q9ZVN9)
chrom 14	589956	591825	DBNTG 117221	Probable mannitol dehydrogenase(FBAAN:097BF1)
chrom 14	607695	608572	DBNTG 25842 1	-
chrom 14	612414	613708	DBNTG 25841 1	(TrEMBI) Uncharacterized protein/MUSAM·M0SPY3)
chrom 14	624755	628872	DBNTG 25840 1	Phenylalanine ammonia-lyase 3(PETCB:P45729)
chrom 14	632310	633887	DBNTG 25839.1	Phenylalanine ammonia-lyase (BROFI:0/2609)
chrom_14	648000	640003	DRNTG 25937.1	
chrom 14	681229	685056	DRNTG 20830.1	
chrom_14	605533	606140	DRNTG 12014.1	Forredovin-NADP reductors, ombrue isozuma, oblacaplastic (OPVS I:022877)
chrom_14	606340	700706	DRNTG_12014.1	Soring tRNA ligges autoplasmic(ARATH-020230)
chrom 14	690349	F 42082	DRNTG_12015.1	Adapasing kingase, Cytoplashiic(ARATH.Q39230)
chrom_14	536676	542965	DRIVIG_11715.1	
chrom_14	571194	000507	DRNTG_11719.1	Synaptotagrinin-3(ARATH:Q7XA06)
chrom_14	604820	008527	DRNTG_25843.1	Advanting (income (ADATI LOOL 200)
chrom_14	537225	041558	DRNTG_25838.1	Adenosine kinase 2(ARATH:Q9L2G0)
chrom_14	717990	/2040/	DRNTG_12016.1	Adenosine kinase T(ARATH:Q95F85)
chrom_15	19356271	1935/116	DRNTG_00821.1	•
cnrom_15	19362481	19363591	DRNTG_00822.1	
chrom_15	19603544	19604222	DRNTG_00824.1	ADP, ATP carrier protein, mitochondriai (Fragment)(SOLTU:P27081)
cnrom_15	19367597	19459040	DRNTG_00823.1	•
cnrom_17	3877215	3877734	DRNTG_07493.1	
chrom_17	3884570	3885375	DRNTG_07491.1	(TrEMBL)Acyl-coenzyme A thioesterase 13 (Fragment)(9ARAE:AUA1D1Y/U4)
cnrom_17	3896927	3897383	DRNTG_07490.1	
chrom_17	3918976	3920856	DRN1G_07489.1	Cytochrome c-type biogenesis CcmH-like mitochondrial protein(ORYSJ:Q6K/S7)
chrom_17	3924485	3925384	DRN IG_07488.1	Cytochrome c-type biogenesis CcmH-like mitochondrial protein(ORYSI:B8AFK5)
chrom_17	3959026	3959941	DRN1G_07487.1	-
cnrom_17	3967202	3969537	DHNIG_07486.1	505 ribosomai protein L1, chioroplastic(SPIOL:Q9LE95)
cnrom_17	3969570	3969827	DRNIG_07485.1	-
cnrom_17	3978228	39/9444	DRNIG_07484.1	24-metnylenesterol G-methyltransterase 2(ORYSJ:082427)
cnrom_17	3986569	3989639	DRN IG_07482.1	Cytochrome c-type biogenesis ComH-like mitochondrial protein(ORYSJ:Q6K7S7)
cnrom_1/	3986754	3989091	DRN IG_07483.1	Optiochrome c-type biogenesis ComH-like mitochondrial protein(ORYSJ:Q6K7S7)
cnrom_17	4026863	4027853	DRNIG_07481.1	Cytochrome c-type biogenesis ComH-like mitochondrial protein(OHYSI:B8AFK5)
cnrom_17	4106911	4108859	DRNIG_01733.1	Non-specific lipid-transfer protein CW18(HUHVU:Q43871)
cnrom_17	4108922	4112102	DRNIG_01734.1	Mitochondriai arginine transporter BAC2(ARATH:Q9CA93)
chrom_17	3875895	3883658	DRNIG_07492.1	Putative E3 ubiquitin-protein ligase LIN-1(LOTJA:C6L7U1)
chrom_17	4095647	4096298	DRNIG_01732.1	
chrom_17	4053722	4106059	DRNTG_01731.1	Protein SWEETIE(ARATH:F4HRS2)
cnrom_19	8230520	8231387	DRNIG_01547.1	•
chrom_19	8307448	8308110	DRNTG_01549.1	•
chrom_19	8314683	8319901	DHNIG_01550.1	•
chrom_19	8319680	8322207	DRNTG_01551.1	Giycerol-3-phosphate acyltransferase RAM2(MEDTR:K7PEY4)
chrom_19	8306157	8311914	DRNTG_01548.1	EID1-like F-box protein 3(ARATH:Q93ZT5)
chrom_19	17790629	17791141	DRNTG_03384.1	Mannose-specific lectin(GALNI:P30617)
chrom_19	17801425	17802462	DRNTG_03385.1	Inorganic phosphate transporter 1-11(ORYSJ:Q94DB8)
chrom_19	17850805	17857145	DRNTG_03386.1	(IrEMBL)uncharacterized protein LOC103722397 isoform X1(PHODC:A0A2H3ZB91)
chrom_19	17964831	17971340	DRNTG_03389.1	Remorin 4.1(ORYSJ:Q7XII4)
chrom_19	17858513	17859406	DRNTG_03387.1	
chrom_19	17914955	17927446	DRNTG_03388.1	Auxin response factor 12(ORYSI:Q258Y5)

Samp	ble	Fastq siz	0	AI	igned bam into	ormation				
Name	IITA name	Original F	-iltered (Ghn)	Aligned Ur (Ghn)	nmapped Cc (Gbn)	overage (%)	Depth	Sequence platform	Comment	Accession No.
TDr04_219	TDr04_219	38.26	33.10	17.15	0.32	82.8	35.73	MiSeq, HiSeq4000, GAIlx	MP2 family Mono parent	DRR208404, DRR208405, DRR063085
TDr97_777	TDr97_777	25.47	22.71	11.20	0.29	79.4	24.35	MiSeq,HiSeq4000,NextSeq500,GAIIx	MP2 family Male parent	DRR063127, DRR208406, DRR045130-7, DRR063111
MP2_001	MP2_001	8.20	7.14	4.20	1.00	76.9	9.43	HiSeq4000		DRR208407
MP2_002	MP2_002	6.42	5.61	3.45	0.64	73.2	8.13	HiSeq4000		DRR208408
MP2_003	MP2_003	5.95	5.11	2.92	0.87	71.6	7.03	HiSeq4000	ı	DRR208409
MP2_004	MP2_004	7.13	6.24	3.90	0.70	74.8	8.99	HiSeq4000		DRR208410
MP2_005	MP2_005	9.75	8.49	4.59	1.56	75.2	10.53	HiSeq4000		DRR208411
MP2_006	MP2_006	7.90	7.01	4.39	0.76	77.2	9.80	HiSeq4000		DRR208412
MP2_007	MP2_007	7.50	6.57	4.11	0.75	75.8	9.35	HiSeq4000		DRR208413
MP2_008	MP2_008	7.52	6.60	3.93	0.81	74.3	9.13	HiSeq4000		DRR208414
MP2_009	MP2_009	7.36	6.48	4.12	0.62	76.3	9.33	HiSeq4000		DRR208415
MP2_010	MP2_010	6.49	5.72	3.66	0.55	75.2	8.39	HiSeq4000		DRR208416
MP2_011	MP2_011	5.98	5.28	3.41	0.49	77.1	7.63	HiSeq4000		DRR208417
MP2_012	MP2_012	8.25	7.31	4.69	0.77	76.9	10.53	HiSeq4000		DRR208418
MP2_013	MP2_013	9.33	8.05	4.81	1.00	76.2	10.89	HiSeq4000		DRR208419
MP2_014	MP2_014	9.84	8.65	5.56	0.81	78.0	12.32	HiSeq4000		DRR208420
MP2_015	MP2_015	11.21	9.80	6.29	0.93	78.5	13.82	HiSeq4000		DRR208421
MP2_010	MP2_016	3.89	2.96	0.80 1 48	0.36	67.0	3.83	HiSeq4000 HiSeq4000		
MP2_018	MP2_018	12.70	11.17	7.04	1.10	78.3	15.53	HiSeq4000	·	DRR208424
MP2_019	MP2_019	5.00	4.31	2.32	0.41	74.2	5.38	HiSeq4000		DRR208425
MP2_020	MP2_020	10.13	9.04	6.04	0.78	78.1	13.34	HiSeq4000		DRR208426
MP2_023	MP2_023	4.98	3.90	2.10	0.35	71.4	5.08	HiSeq4000		DRR208427
MP2_024	MP2_024	10.08	8.74	5.10	1.27	75.4	11.68	HiSeq4000		DRR208428
MP2_025	MP2_025	4.80	3.53	1.91	0.38	70.2	4.70	HiSeq4000		DRR208429
MP2_026	MP2_026	8.36	7.38	4.88	0.66	77.5	10.86	HiSeq4000		DRR208430
MP2_027	MP2_027	5.35	3.86	2.05	0.37	71.6	4.93	HISeq4000		DHH208431
MP2_028	MP2_028	8.11	7.08	4.45	0.72	76.4	10.05	HiSeq4000		DRR208432
MP2_029	MP2_029	9.89	8.61	5.03	1.08	75.4	11.52	HiSeq4000		DHR208433
MP2_031	MP2_U31	10.33	9.08	6.04	0.79	78.5	13.30	HISeq4000		DHH208434
MP2_032	MP2_032	16.56	12.57	6.45	1.21	78.9	14.12	HiSeq4000		DRR208435
MP2_U33	MP2_033	7.32	0.41	4.19	0.62	17.5	9.34			
MP2_034	MP2_034	8.05	6.99	4.40	0.79	75.0	10.12	HISeq4000		DHH208437
MP2_035	MP2_035	9.06	7.95	4.96	0.83	77.3	11.07	HiSeq4000		DHR208438
MP2_037	MP2_037	9.70	8.41	5.16	0.99	77.3	11.53	HiSeq4000		DRR208439
MP2_039	MP2_039	7.54	6.58	4.00	0.82	75.4	9.17	HISeq4000		DHH208440
MP2_043	MP2_043	9.15	7.93	4.24	0.71	77.3	9.46	HiSeq4000		DRR208441
MP2_044	MP2_044	9.75	8.60	5.28	0.95	76.9	11.85	HiSeq4000		DRR208442
MP2_047	MP2_047	8.95	7.64	4.04	0.76	77.1	9.03	HiSeq4000		DRR208443
MP2_048	MP2_048	8.27	7.24	3.94	0.69	77.4	8.80	HiSeq4000		DRR208444
MP2_050	MP2_050	11.17	9.77	5.67	1.35	76.2	12.85	HiSeq4000		DRR208445
MP2_052	MP2_052	9.98	8.75	5.18	1.13	75.1	11.90	HiSeq4000		DRR208446
MP2_053	MP2_053	11.85	9.88	4.74	2.21	72.0	11.37	HiSeq4000		DRR208447
MP2_054	MP2_054	10.38	6.95	3.67	0.70	77.1	8.21	HiSeq4000		DRR208448
MP2_055	MP2_055	12.74	10.66	5.55	1.85	74.8	12.81	HiSeq4000		DRR208449

Table S4. Summary of sequence alignment of mapping population.

DRR208498		HiSeq4000	18.96	79.0	1.28	8.68	13.47	15.43	MP2_168	MP2_168
DRR208497		HiSeq4000	10.70	74.7	1.31	4.63	8.39	9.67	MP2_167	MP2_167
DRR208496		HiSeq4000	14.09	76.7	1.21	6.27	10.49	12.03	MP2_166	MP2_166
DRR208495		HiSeq4000	12.73	77.4	1.62	5.71	10.46	12.11	MP2_162	MP2_162
DRR208494		HiSeq4000	9.99	77.1	1.10	4.46	7.71	8.93	MP2_161	MP2_161
DRR208493		HiSeq4000	10.23	77.2	0.73	4.57	7.33	8.43	MP2_160	MP2_160
DRR208492		HiSeq4000	11.10	77.2	1.16	4.97	8.47	9.82	MP2_159	MP2_159
DRR208491		HiSeq4000	10.77	77.8	0.79	4.85	7.67	8.84	MP2_158	MP2_158
DRR208490		HiSeq4000	9.08	76.0	0.84	4.00	6.64	7.64	MP2_157	MP2_157
DRR208489		HiSeq4000	9.79	76.2	1.00	4.32	7.49	8.67	MP2_156	MP2_156
DRR208488		HiSeq4000	11.82	77.5	1.23	5.31	9.01	10.40	MP2_155	MP2_155
DRR208487		HiSeq4000	10.38	75.8	1.42	4.56	8.41	9.78	MP2_154	MP2_154
DRR208486		HiSeq4000	14.02	78.8	1.29	6.41	10.66	12.30	MP2_152	MP2_152
DRR208485		HiSeq4000	10.63	78.0	0.90	4.80	7.85	8.96	MP2_151	MP2_151
DRR208484		HiSeq4000	7.65	71.5	1.22	3.17	6.31	7.47	MP2_150	MP2_150
DRR208483		HiSeq4000	12.71	78.0	0.78	5.74	8.64	9.80	MP2_149	MP2_149
DRR208482		HiSeq4000	12.75	78.4	0.76	5.79	8.80	9.96	MP2_147	MP2_147
DRR208481		HiSeq4000	12.07	77.1	1.41	5.39	9.44	10.87	MP2_146	MP2_146
DRR208480		HiSeq4000	11.56	76.5	1.17	5.13	8.99	10.35	MP2_145	MP2_145
DRR208479		HiSeq4000	11.83	77.5	0.79	5.31	8.14	9.30	MP2_144	MP2_144
DRR208478		HiSeq4000	9.24	75.3	0.91	4.03	6.94	7.99	MP2_143	MP2_143
DRR208477		HiSeq4000	9.67	73.3	2.49	4.11	9.12	10.72	MP2_142	MP2_142
DRR208476		HiSeq4000	9.69	72.2	1.22	4.05	7.61	9.22	MP2_141	MP2_141
DRR208475		HiSeq4000	10.65	76.9	0.90	4.74	7.74	8.91	MP2_140	MP2_140
DRR208474		HiSeq4000	11.65	75.9	0.83	5.12	8.27	9.41	MP2_139	MP2_139
DRR208473		HiSeq4000	10.28	77.3	0.76	4.61	7.42	8.51	MP2_138	MP2_138
DRR208472		HiSeq4000	12.86	76.5	1.15	5.70	9.51	10.99	MP2_137	MP2_137
DRR208471		HiSeq4000	10.14	76.2	1.48	4.48	8.20	9.56	MP2_136	MP2_136
DRR208470		HiSeq4000	9.63	77.0	0.71	4.29	6.87	7.97	MP2_133	MP2_133
DRR208469		HiSeq4000	11.69	77.2	0.99	5.23	8.56	9.93	MP2_132	MP2_132
DRR208468		HiSeq4000	12.34	78.2	0.85	5.59	8.69	10.02	MP2_131	MP2_131
DRR208467		HiSeq4000	11.10	76.8	0.75	4.94	7.78	9.04	MP2_130	MP2_130
DRR208466		HiSeq4000	13.30	77.4	1.32	5.97	10.05	11.75	MP2_129	MP2_129
DRR208465		HiSeq4000	12.11	77.1	1.01	5.41	8.91	10.17	MP2_128	MP2_128
DRR208464		HiSeq4000	13.76	78.0	0.99	6.22	9.94	11.45	MP2_127	MP2_127
DRR208463		HiSeq4000	9.89	76.1	1.00	4.36	7.46	8.65	MP2_126	MP2_126
DRR208462	ı	HiSeq4000	10.82	77.7	0.86	4.87	8.04	9.25	MP2_125	MP2_125
DRR208461		HiSeq4000	9.89	75.5	1.15	4.33	7.65	9.07	MP2_122	MP2_122
DRR208460		HiSeq4000	12.96	76.1	1.45	5.72	10.04	11.64	MP2_121	MP2_121
DRR208459		HiSeq4000	7.69	75.9	0.55	3.38	5.53	6.52	MP2_117	MP2_117
DRR208458		HiSeq4000	8.64	75.5	0.66	3.78	6.14	7.17	MP2_116	MP2_116
DRR208457		HiSeq4000	8.75	70.9	0.94	3.60	6.62	7.80	MP2_114	MP2_114
DRR208456		HiSeq4000	7.57	75.0	0.79	3.29	5.71	6.79	MP2_113	MP2_113
DRR208455		HiSeq4000	12.39	76.0	1.28	5.46	9.50	11.23	MP2_064	MP2_064
DRR208454		HiSeq4000	6.71	76.3	0.51	2.96	5.43	7.03	MP2_063	MP2_063
DRR208453		HiSeq4000	15.04	79.0	0.95	6.88	10.38	12.07	MP2_061	MP2_061
DRR208452		HiSeq4000	7.97	76.0	0.79	3.51	7.05	8.31	MP2_060	MP2_060
DRR208451		HiSeq4000	13.47	78.2	0.89	6.10	9.54	11.14	MP2_058	MP2_058
DRR208450		HiSeq4000	9.72	72.2	1.24	4.06	7.41	8.68	MP2_057	MP2_057

DRR208547		HiSeq4000	12.73	77.5	0.97	5.71	9.13	10.39	MP2_229	MP2_229
DRR208546	•	HiSeq4000	11.05	76.8	0.90	4.92	7.86	9.03	MP2_228	MP2_228
DRR208545		HiSeq4000	17.48	78.7	1.15	7.97	12.43	14.19	MP2_227	MP2_227
DRR208544		HiSeq4000	10.25	74.2	1.09	4.41	7.74	8.97	MP2_225	MP2_225
DRR208543		HiSeq4000	13.95	77.1	1.05	6.23	9.85	11.19	MP2_224	MP2_224
DRR208542	•	HiSeq4000	10.93	75.7	1.02	4.79	7.90	9.13	MP2_222	MP2_222
DRR208541	ı	HiSeq4000	11.63	76.2	0.92	5.13	8.28	9.33	MP2_221	MP2_221
DRR208540	ı	HiSeq4000	9.55	76.1	0.78	4.21	6.90	7.81	MP2_220	MP2_220
DRR208539		HiSeq4000	9.57	74.8	0.70	4.15	6.57	7.57	MP2_219	MP2_219
DRR208538		HiSeq4000	11.99	75.4	1.10	5.24	8.52	9.62	MP2_218	MP2_218
DRR208537		HiSeq4000	11.88	75.4	1.10	5.19	8.64	9.92	MP2_216	MP2_216
DRR208536		HiSeq4000	12.43	78.0	0.81	5.62	8.76	9.92	MP2_215	MP2_215
DRR208535		HiSeq4000	10.53	76.1	0.96	4.64	7.69	8.64	MP2_214	MP2_214
DRR208534		HiSeq4000	11.73	78.0	1.02	5.30	8.77	10.05	MP2_213	MP2_213
DRR208533		HiSeq4000	11.98	78.4	1.02	5.44	8.70	9.81	MP2_211	MP2_211
DRR208532		HiSeq4000	14.16	78.2	1.12	6.41	10.28	11.54	MP2_208	MP2_208
DRR208531		HiSeq4000	9.16	74.1	1.43	3.94	7.29	8.72	MP2_206	MP2_206
DRR208530		HiSeq4000	13.76	77.5	1.22	6.18	10.10	11.71	MP2_205	MP2_205
DRR208529		HiSeq4000	11.22	77.2	1.48	5.02	9.21	10.55	MP2_204	MP2_204
DRR208528		HiSeq4000	9.12	76.8	0.76	4.06	6.73	7.58	MP2_203	MP2_203
DRR208527		HiSeq4000	8.88	74.4	1.87	3.83	7.71	9.03	MP2_202	MP2_202
DRR208526		HiSeq4000	10.06	75.4	0.86	4.39	7.17	8.36	MP2_201	MP2_201
DRR208525		HiSeq4000	9.08	75.8	0.61	3.99	6.22	7.00	MP2_200	MP2_200
DRR208524		HiSeq4000	8.25	74.8	0.69	3.58	5.90	6.66	MP2_199	MP2_199
DRR208523		HiSeq4000	10.74	78.2	0.74	4.86	7.48	8.72	MP2_198	MP2_198
DRR208522		HiSeq4000	8.92	76.6	0.66	3.96	6.22	7.35	MP2_197	MP2_197
DRR208521		HiSeq4000	13.76	78.2	0.96	6.23	9.85	11.11	MP2_196	MP2_196
DRR208520	•	HiSeq4000	12.06	77.5	0.86	5.41	8.56	9.63	MP2_193	MP2_193
DRR208519	•	HiSeq4000	8.16	74.8	0.64	3.54	5.71	6.76	MP2_192	MP2_192
DRR208518	•	HiSeq4000	8.67	74.9	0.85	3.76	6.22	7.46	MP2_191	MP2_191
DRR208517		HiSeq4000	7.67	77.4	0.58	3.44	5.35	6.41	MP2_190	MP2_190
DRR208516		HiSeq4000	7.80	73.9	0.75	3.34	5.69	6.63	MP2_189	MP2_189
DRR208515		HiSeq4000	10.12	76.4	0.83	4.48	7.11	8.36	MP2_188	MP2_188
DRR208514		HiSeq4000	6.83	72.4	0.72	2.86	4.97	5.86	MP2_187	MP2_187
DRR208513		HiSeq4000	7.70	76.0	0.59	3.39	5.37	6.37	MP2_186	MP2_186
DRR208512		HiSeq4000	7.30	72.4	0.97	3.06	5.49	6.46	MP2_185	MP2_185
DRR208511	ı	HiSeq4000	11.47	77.0	0.74	5.12	7.74	8.89	MP2_183	MP2_183
DRR208510		HiSeq4000	10.42	78.2	0.71	4.72	7.16	8.34	MP2_182	MP2_182
DRR208509		HiSeq4000	7.26	72.6	0.91	3.05	5.45	6.41	MP2_181	MP2_181
DRR208508		HiSeq4000	8.17	74.8	0.86	3.54	6.10	7.09	MP2_180	MP2_180
DRR208507		HiSeq4000	5.79	73.5	0.42	2.47	3.89	4.55	MP2_179	MP2_179
DRR208506		HiSeq4000	7.07	73.2	0.66	3.00	5.10	5.89	MP2_178	MP2_178
DRR208505		HiSeq4000	6.93	71.7	1.00	2.88	5.38	6.33	MP2_177	MP2_177
DRR208504		HiSeq4000	15.60	77.4	1.21	7.00	11.51	13.09	MP2_175	MP2_175
DRR208503		HiSeq4000	11.95	77.7	1.26	5.37	9.28	10.70	MP2_174	MP2_174
DRR208502		HiSeq4000	11.28	74.9	1.31	4.90	8.86	10.20	MP2_173	MP2_173
DRR208501		HiSeq4000	12.97	75.6	1.08	5.68	9.60	11.50	MP2_172	MP2_172
DRR208500		HiSeq4000	13.94	77.3	1.83	6.24	11.31	13.20	MP2_170	MP2_170
DRR208499		HiSeq4000	14.62	77.7	1.40	6.58	11.15	12.87	MP2_169	MP2_169

MP2_248	MP2_247	MP2_246	MP2_245	MP2_242	MP2_241	MP2_240	MP2_239	MP2_237	MP2_236	MP2_235	MP2_234	MP2_233	MP2_232	MP2_231
MP2_248	MP2_247	MP2_246	MP2_245	MP2_242	MP2_241	MP2_240	MP2_239	MP2_237	MP2_236	MP2_235	MP2_234	MP2_233	MP2_232	MP2_231
6.45	6.97	6.86	5.90	8.82	10.28	6.92	7.08	6.46	5.82	8.71	6.96	9.57	11.06	10.31
5.60	6.01	5.98	5.15	7.65	8.87	6.00	6.14	5.55	4.95	7.54	6.02	8.46	9.64	8.99
3.62	3.70	3.77	3.32	4.62	4.73	3.70	3.77	3.27	3.06	4.21	3.42	5.23	6.00	5.62
0.57	0.65	0.70	0.51	0.85	1.60	0.78	0.73	0.80	0.56	1.25	0.89	1.07	1.04	0.96
76.7	74.3	76.6	76.3	75.3	74.7	74.4	75.0	74.2	73.8	73.9	73.4	76.8	77.1	77.6
8.14	8.61	8.50	7.50	10.58	10.92	8.59	8.66	7.61	7.16	9.82	8.05	11.76	13.41	12.50
HiSeq4000														
DRR208562	DRR208561	DRR208560	DRR208559	DRR208558	DRR208557	DRR208556	DRR208555	DRR208554	DRR208553	DRR208552	DRR208551	DRR208550	DRR208549	DRR208548

Г

SRR8451321	D.praehensilis:Cameroon:Cameroonian D.praehensilis	7.05	72.8	0.11	2.97	3.87	3.90	P5381	ns040_P5381
SRR8451322	D.praehensilis:Cameroon:Cameroonian D.praehensilis	5.66	70.5	0.05	2.31	2.99	3.01	P5378	ns039_P5378
SRR8451313	D.praehensilis:Cameroon:Cameroonian D.praehensilis	5.34	70.2	0.32	2.17	3.08	3.10	P5369	ns038_P5369
SRR8451314	D.praehensilis:Cameroon:Cameroonian D.praehensilis	7.29	73.2	0.15	3.09	4.17	4.21	P5358	ns037_P5358
SRR8451315	D.praehensilis:Cameroon:Cameroonian D.praehensilis	7.52	63.5	0.20	2.77	4.02	4.06	P5350	ns036_P5350
SRR8451316	D.praehensilis:Cameroon:Cameroonian D.praehensilis	6.02	70.6	0.10	2.46	3.30	3.33	P5344	ns035_P5344
SRR8451317	D.abyssinica:Ghana	13.71	82.0	0.06	6.51	7.55	7.67	A5067	ns034_A5067
SRR8451318	D. abyssinica:Ghana	14.41	80.7	0.11	6.74	7.95	8.09	A5066	ns033_A5066
SRR8451319	D.abyssinica:Ghana	4.55	72.4	0.54	1.91	2.77	2.81	A5061	ns032_A5061
SRR8451320	D.abyssinica:Ghana	14.82	82.5	1.66	7.09	10.10	10.28	A5059	ns031_A5059
SRR8451352	D. abyssinica:Ghana	16.14	82.9	0.10	7.75	9.23	9.39	A5048	ns030_A5048
SRR8451351	D. abyssinica:Ghana	6.46	75.0	0.04	2.80	3.27	3.32	A5047	ns029_A5047
SRR8451350	D. abyssinica:Ghana	5.12	74.4	0.04	2.21	2.56	2.61	A5045	ns028_A5045
SRR8451349	D. abyssinica:Ghana	4.38	65.7	0.04	1.67	1.95	1.98	A5068	ns027_A5068
SRR8451347	D.abyssinica:Benin	6.57	76.7	0.03	2.92	3.27	3.33	A3009	ns025_A3009
SRR8451346	D.abyssinica:Benin	11.49	79.3	0.05	5.28	6.13	6.22	A537	ns024_A537
SRR8451345	D.abyssinica:Benin	10.69	82.0	0.06	5.08	5.64	5.72	A467	ns023_A467
SRR8451343	D.abyssinica:Benin	12.40	85.2	0.12	6.12	7.42	7.54	A67	ns021_A67
SRR8451375	D.abyssinica:Benin	4.60	77.3	0.02	2.06	2.31	2.35	A62	ns020_A62
SRR8451376	D.abyssinica:Benin	3.52	70.8	0.02	1.44	1.63	1.66	A52	ns019_A52
SRR8451379	D. abyssinica: Nigeria	8.68	74.5	0.67	3.75	5.49	5.54	A5705	ns018_A5705
SRR8451380	D. abyssinica: Nigeria	7.08	69.6	1.17	2.85	4.91	4.95	A5704	ns017_A5704
SRR8451377	D.abyssinica:Nigeria	8.17	65.3	0.37	3.09	4.49	4.53	A5703	ns016_A5703
SRR8451378	D. abyssinica: Nigeria	6.79	74.9	0.29	2.95	3.93	3.96	A5702	ns015_A5702
SRR8451383	D. abyssinica: Nigeria	9.62	78.6	0.37	4.38	5.95	5.99	A5701	ns014_A5701
SRR8451384	D.abyssinica:Nigeria	8.05	77.0	0.32	3.59	4.76	4.79	A5700	ns013_A5700
SRR8451381	D. abyssinica: Nigeria	5.89	71.8	0.15	2.45	3.22	3.25	A5699	ns012_A5699
SRR8451382	D. abyssinica: Nigeria	9.48	80.2	0.15	4.41	5.66	5.70	A5697	ns011_A5697
SRR8451458	D.abyssinica:Nigeria	8.17	74.9	0.22	3.55	4.61	4.75	A5696	ns010_A5696
SRR8451459	D.abyssinica:Nigeria	7.37	78.4	0.42	3.35	4.52	4.55	A5695	ns009_A5695
SRR8451371	D. abyssinica: Nigeria	8.72	77.3	0.04	3.91	4.84	4.87	A5694	ns008_A5694
SRR8451434	D.abyssinica:Nigeria	10.01	78.3	0.15	4.54	5.89	5.93	A5693	ns007_A5693
SRR8451437	D. abyssinica: Nigeria	7.20	68.4	1.73	2.85	5.49	5.53	A5691	ns006_A5691
SRR8451438	D. abyssinica: Nigeria	10.24	68.5	0.37	4.06	5.72	5.79	A5690	ns005_A5690
SRR8451439	D. abyssinica: Nigeria	7.09	75.2	0.34	3.09	4.19	4.22	A5689	ns004_A5689
SRR7062294	D.alata	15.54	43.1	1.37	3.88	11.15	11.58		alata2
ERR1019033	D. alata	38.59	48.0	1.24	10.73	23.95	28.11		alata1
			(%)	(Gbp)	(Gbp)	(Gbp)	(Gbp)		
Accession No.	Comment	Depth	Coverage	Unmapped	Aligned	Filtered	Original	Name in Scarcelli et al. 2019	Name
			n information	Aligned ban		size	Fastq	Sample	

ns079_P4928	ns078_P4921	ns077_P4920	ns076_P4919	ns075_P4918	ns073_P2990	ns070_P464	ns069_P323	ns068_P462	ns067_P457	ns066_P425	ns065_P424	ns064_P5729	ns063_P5728	ns062_P5723	ns061_P5720	ns059_P5716	ns058_P5713	ns057_P5710	ns056_P5708	ns055_P5746	ns054_P5318	ns051_P5448	ns050_P5441	ns049_P5438	ns048_P5434	ns047_P5430	ns046_P5427	ns045_P5424	ns044_P5420	ns043_P5417	ns042_P5413	
P4928	P4921	P4920	P4919	P4918	P2990	P464	P323	P462	P457	P425	P424	P5729	P5728	P5723	P5720	P5716	P5713	P5710	P5708	P5746	P5318	P5448	P5441	P5438	P5434	P5430	P5427	P5424	P5420	P5417	P5413	
3.77	4.73	6.04	5.46	2.45	2.88	5.29	4.22	4.33	4.21	1.63	3.46	7.31	3.75	3.63	3.87	2.56	3.24	3.89	6.19	3.80	5.04	4.73	4.13	3.64	2.80	3.34	4.25	5.30	2.25	4.61	3.78	
3.71	4.65	5.93	5.36	2.40	2.84	5.21	4.15	4.26	4.13	1.60	3.40	7.25	3.71	3.61	3.84	2.53	3.21	3.86	6.13	3.77	4.99	4.69	4.09	3.61	2.77	3.31	4.22	5.26	2.23	4.58	3.75	
2.99	3.73	4.63	4.04	1.82	2.56	4.65	3.70	3.68	3.46	1.44	3.03	4.58	2.65	2.17	2.99	1.91	2.34	2.61	4.22	2.66	3.07	3.66	3.04	2.36	2.10	2.41	3.24	3.74	1.65	3.44	2.82	
0.24	0.31	0.53	0.45	0.27	0.03	0.05	0.05	0.08	0.12	0.02	0.04	1.01	0.34	0.93	0.17	0.03	0.22	0.48	0.39	0.43	0.62	0.09	0.23	0.62	0.06	0.10	0.05	0.42	0.15	0.19	0.16	
78.4	79.5	80.3	79.4	72.6	77.6	80.6	80.5	79.7	74.5	69.5	79.1	72.5	64.3	68.9	73.5	63.0	67.2	70.0	64.5	65.3	67.7	73.6	73.7	70.6	61.8	63.5	72.9	74.4	65.9	74.1	73.5	
6.57	8.11	9.95	8.79	4.33	5.70	9.96	7.94	7.98	8.01	3.57	6.61	10.89	7.11	5.44	7.02	5.23	6.02	6.42	11.30	7.02	7.83	8.58	7.12	5.76	5.86	6.56	7.66	8.68	4.31	8.01	6.62	
D.praehensilis:Ghana :Western D.praehensilis	D.praehensilis:Ghana:Western D.praehensilis	D.praehensilis:Ghana:Western D.praehensilis	D.praehensilis:Ghana:Western D.praehensilis	D.praehensilis:Ghana:Western D.praehensilis	D.praehensilis:Benin:Western D.praehensilis	D.praehensilis:Nigeria:Western D.praehensilis	D.praehensilis:Cameroon:Cameroonian D.praehensilis																									
SRR8451407	SRR8451412	SRR8451413	SRR8451414	SRR8451415	SRR8451409	SRR8451436	SRR8451435	SRR8451429	SRR8451428	SRR8451427	SRR8451426	SRR8451433	SRR8451432	SRR8451431	SRR8451430	SRR8451457	SRR8451454	SRR8451455	SRR8451452	SRR8451453	SRR8451450	SRR8451449	SRR8451469	SRR8451468	SRR8451465	SRR8451464	SRR8451467	SRR8451466	SRR8451461	SRR8451460	SRR8451463	

Γ

ACKNOWLEDGEMENTS

The author thanks the collaborators, Kwabena Darkwa, Hiroki Yaegashi, Satoshi Natsume, Motoki Shimizu, Akira Abe, Akiko Hirabuchi, Kazue Ito, Kaori Oikawa, Muluneh Tamiru-Oli, Atsushi Ohta, Ryo Matsumoto, Agre Paterne, David De Koeyer, Babil Pachakkil, Shinsuke Yamanaka, Satoru Muranaka, Hiroko Takagi, Ben White, Robert Asiedu, Hideki Innan, Asrat Asfaw, Patrick Adebola, Aoi Kudoh, Ryohei Terauchi for carrying out the research.

This study was carried out mainly at Iwate Biotechnology Research Center (IBRC) under the AfricaYam Project funded by the Bill and Melinda Gates Foundation (BMGF) as well as the EDITS-Yam project funded by JIRCAS, Japan. The author also thanks Yoshitaka Takano, Kentaro Yoshida and Sophien Kamoun for valuable comments on the thesis.

REREFENCES

- Akakpo, R., Scarcelli, N., Chaïr, H., Dansi, A., Djedatin, G., Thuillet, A.-C., Rhoné, B., François, O., Alix, K., & Vigouroux, Y. (2017). Molecular basis of African yam domestication: Analyses of selection point to root development, starch biosynthesis, and photosynthesis related genes. *BMC Genomics*, *18*(1), 782. https://doi.org/10.1186/s12864-017-4143-2
- Arnau, G., Abraham, K., Sheela, M. N., Chair, H., Sartie, A., & Asiedu, R. (2010). Yams. In *Root and Tuber Crops* (pp. 127–148). Springer, New York, NY. https://link.springer.com/chapter/10.1007/978-0-387-92765-7 4
- Bandelt, H. J., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. *Molecular Biology and Evolution*, 16(1), 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
- Broman, K. W., Wu, H., Sen, Ś., & Churchill, G. A. (2003). R/qtl: QTL mapping in experimental crosses. *Bioinformatics*, 19(7), 889–890. https://doi.org/10.1093/bioinformatics/btg112
- Browning, S. R., & Browning, B. L. (2007). Rapid and Accurate Haplotype Phasing and Missing-Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype Clustering. *The American Journal of Human Genetics*, 81(5), 1084–1097. https://doi.org/10.1086/521987
- Burkill, I. H. (1960). The organography and the evolution of Dioscoreaceae, the family of the yams. *Journal of the Linnean Society*, *56*, 319–412.
- Cabanettes, F., & Klopp, C. (2018). D-GENIES: Dot plot large genomes in an interactive, efficient and simple way. *PeerJ*, *6*, e4958. https://doi.org/10.7717/peerj.4958
- Caddick, L. R., Wilkin, P., Rudall, P. J., Hedderson, T. A. J., & Chase, M. W. (2002). Yams reclassified: A recircumscription of Dioscoreaceae and Dioscoreales. *TAXON*, 51(1), 103–114. https://doi.org/10.2307/1554967
- Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. *BMC Bioinformatics*, 10(1), 421. https://doi.org/10.1186/1471-2105-10-421

- Chaïr, H., Cornet, D., Deu, M., Baco, M. N., Agbangla, A., Duval, M. F., & Noyer, J. L. (2010). Impact of farmer selection on yam genetic diversity. *Conservation Genetics*, 11(6), 2255–2265. https://doi.org/10.1007/s10592-010-0110-z
- Chaïr, H., Sardos, J., Supply, A., Mournet, P., Malapa, R., & Lebot, V. (2016). Plastid phylogenetics of Oceania yams (Dioscorea spp., Dioscoreaceae) reveals natural interspecific hybridization of the greater yam (D. alata). *Botanical Journal of the Linnean Society*, 180(3), 319–333. https://doi.org/10.1111/boj.12374
- Cormier, F., Lawac, F., Maledon, E., Gravillon, M.-C., Nudol, E., Mournet, P., Vignes, H., Chaïr, H., & Arnau, G. (2019). A reference high-density genetic map of greater yam (Dioscorea alata L.). *Theoretical and Applied Genetics*, 132(6), 1733–1744. https://doi.org/10.1007/s00122-019-03311-6
- Coursey, D. G. (1967). Yams. An account of the nature, origins, cultivation and utilisation of the useful members of the Dioscoreaceae. In *Tropical agricultural series* (pp. 108–129). London: Longmans, Green and Co. Ltd.
- Coursey, D. G. (1972). The Civilizations of the Yam: Interrelationships of Man and Yams in Africa and the Indo-Pacific Region. *Archaeology & Physical Anthropology in Oceania*, 7(3), 215–233.
- Coursey, D. G. (1976a). The origins and domestication of yams in Africa. In Origins of African Plant Domestication (J. R. Harlan, J. M. J. D. Wet, A. B. L. Stemler, Eds, pp. 383–408). De Gruyter Mouton.
- Coursey, D. G. (1976b). Yams: Dioscorea spp. (Dioscoreaceae). In *Evolution of Crop Plants* (N. W. Simmonds, ed, pp. 70–74). Longman Group.
- Couto, R. S., Martins, A. C., Bolson, M., Lopes, R. C., Smidt, E. C., & Braga, J. M. A. (2018). Time calibrated tree of Dioscorea (Dioscoreaceae) indicates four origins of yams in the Neotropics since the Eocene. *Botanical Journal of the Linnean Society*, *188*(2), 144–160. https://doi.org/10.1093/botlinnean/boy052
- Darkwa, K., Olasanmi, B., Asiedu, R., & Asfaw, A. (2020). Review of empirical and emerging breeding methods and tools for yam (Dioscorea spp.) improvement: Status and prospects. *Plant Breeding*, *139*(3), 474–497. https://doi.org/10.1111/pbr.12783

- De Coster, W., D'Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: Visualizing and processing long-read sequencing data. *Bioinformatics*, 34(15), 2666–2669. https://doi.org/10.1093/bioinformatics/bty149
- Dutta, B. (2015). Food and medicinal values of certain species of Dioscorea with special reference to Assam. 5.
- Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M. (2013). Robust Demographic Inference from Genomic and SNP Data. *PLOS Genetics*, 9(10), e1003905. https://doi.org/10.1371/journal.pgen.1003905
- FAOSTAT. (2018). Food and Agriculture Organization of the United Nations. http://www.fao.org/statistics/
- Folk, R. A., Soltis, P. S., Soltis, D. E., & Guralnick, R. (2018). New prospects in the detection and comparative analysis of hybridization in the tree of life. *American Journal of Botany*, 105(3), 364– 375. https://doi.org/10.1002/ajb2.1018
- Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G., & François, O. (2014). Fast and Efficient Estimation of Individual Ancestry Coefficients. *Genetics*, 196(4), 973–983. https://doi.org/10.1534/genetics.113.160572
- Girma, G., Hyma, K. E., Asiedu, R., Mitchell, S. E., Gedil, M., & Spillane, C. (2014). Next-generation sequencing based genotyping, cytometry and phenotyping for understanding diversity and evolution of guinea yams. *Theoretical and Applied Genetics*, *127*(8), 1783–1794. https://doi.org/10.1007/s00122-014-2339-2
- Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., & Bustamante, C. D. (2009). Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data. *PLOS Genetics*, 5(10), e1000695. https://doi.org/10.1371/journal.pgen.1000695

Hancock, J. F. (2012). Plant evolution and the origin of crop species (ed. 3). CABI Publishing.

- Heslop-Harrison, J. S., & Schwarzacher, T. (2007). Domestication, Genomics and the Future for Banana. Annals of Botany, 100(5), 1073–1084. https://doi.org/10.1093/aob/mcm191
- Hu, X.-S., & Filatov, D. A. (2016). The large-X effect in plants: Increased species divergence and reduced gene flow on the Silene X-chromosome. *Molecular Ecology*, 25(11), 2609–2619. https://doi.org/10.1111/mec.13427

- Hughes, C. E., Govindarajulu, R., Robertson, A., Filer, D. L., Harris, S. A., & Bailey, C. D. (2007). Serendipitous backyard hybridization and the origin of crops. *Proceedings of the National Academy* of Sciences, 104(36), 14389–14394. https://doi.org/10.1073/pnas.0702193104
- Huson, D. H., & Bryant, D. (2006). Application of Phylogenetic Networks in Evolutionary Studies. *Molecular Biology and Evolution*, 23(2), 254–267. https://doi.org/10.1093/molbev/msj030
- Ikiriza, H., Ogwang, P. E., Peter, E. L., Hedmon, O., Tolo, C. U., Abubaker, M., & Abdalla, A. A. M. (2019). Dioscorea bulbifera, a highly threatened African medicinal plant, a review. *Cogent Biology*, 5(1), 1631561. https://doi.org/10.1080/23312025.2019.1631561
- Iwata, H., & Gotoh, O. (2012). Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features. *Nucleic Acids Research*, 40(20), e161. https://doi.org/10.1093/nar/gks708
- Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.-Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: Genome-scale protein function classification. *Bioinformatics*, 30(9), 1236–1240. https://doi.org/10.1093/bioinformatics/btu031
- Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. *Nature Methods*, 12(4), Article 4. https://doi.org/10.1038/nmeth.3317
- Kolmogorov, M., Yuan, J., Lin, Y., & Pevzner, P. A. (2019). Assembly of long, error-prone reads using repeat graphs. *Nature Biotechnology*, 37(5), Article 5. https://doi.org/10.1038/s41587-019-0072-8
- Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. *Molecular Biology and Evolution*, 35(6), 1547– 1549. https://doi.org/10.1093/molbev/msy096
- Leigh, J. W., & Bryant, D. (2015). popart: Full-feature software for haplotype network construction. *Methods in Ecology and Evolution*, 6(9), 1110–1116. https://doi.org/10.1111/2041-210X.12410
- Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. *Bioinformatics*, 27(21), 2987–2993. https://doi.org/10.1093/bioinformatics/btr509

- Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*, 25(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352
- Liu, X.-T., Wang, Z.-Z., Xiao, W., Zhao, H.-W., Hu, J., & Yu, B. (2008). Cholestane and spirostane glycosides from the rhizomes of Dioscorea septemloba. *Phytochemistry*, 69(6), 1411–1418. https://doi.org/10.1016/j.phytochem.2007.12.014
- Lo, C.-C., & Chain, P. S. G. (2014). Rapid evaluation and quality control of next generation sequencing data with FaQCs. *BMC Bioinformatics*, *15*(1), 366. https://doi.org/10.1186/s12859-014-0366-2
- Magwé-Tindo, J., Wieringa, J. J., Sonké, B., Zapfack, L., Vigouroux, Y., Couvreur, T. L. P., & Scarcelli, N. (2018). Guinea yam (Dioscorea spp., Dioscoreaceae) wild relatives identified using whole plastome phylogenetic analyses. *TAXON*, 67(5), 905–915. https://doi.org/10.12705/675.4

Mallet, J. (2007). Hybrid speciation. Nature, 446(7133), Article 7133. https://doi.org/10.1038/nature05706

- Maurin, O., Muasya, A. M., Catalan, P., Shongwe, E. Z., Viruel, J., Wilkin, P., & van der Bank, M. (2016).
 Diversification into novel habitats in the Africa clade of Dioscorea (Dioscoreaceae): Erect habit and elephant's foot tubers. *BMC Evolutionary Biology*, *16*(1), 238. https://doi.org/10.1186/s12862-016-0812-z
- McCauley, D. E. (1995). The use of chloroplast DNA polymorphism in studies of gene flow in plants. *Trends in Ecology & Evolution*, *10*(5), 198–202. https://doi.org/10.1016/S0169-5347(00)89052-7
- Murty, Y. S. & Purnima. (1983). Morphology, anatomy and development of bulbil in some dioscoreas. Proceedings / Indian Academy of Sciences, 92(6), 443–449. https://doi.org/10.1007/BF03053017
- Nei, M., & Tajima, F. (1981). DNA POLYMORPHISM DETECTABLE BY RESTRICTION ENDONUCLEASES. *Genetics*, 97(1), 145–163. https://doi.org/10.1093/genetics/97.1.145
- Niknafs, Y. S., Pandian, B., Iyer, H. K., Chinnaiyan, A. M., & Iyer, M. K. (2017). TACO produces robust multisample transcriptome assemblies from RNA-seq. *Nature Methods*, *14*(1), Article 1. https://doi.org/10.1038/nmeth.4078

- Noda, H., Yamashita, J., Fuse, S., Pooma, R., Poopath, M., Tobe, H., & Tamura, M. N. (2020). A Largescale Phylogenetic Analysis of *Dioscorea* (Dioscoreaceae), with Reference to Character Evolution and Subgeneric Recognition. *Acta Phytotaxonomica et Geobotanica*, 71(2), 103–128. https://doi.org/10.18942/apg.201923
- Obidiegwu, J. E., & Akpabio, E. M. (2017). The geography of yam cultivation in southern Nigeria: Exploring its social meanings and cultural functions. *Journal of Ethnic Foods*, 4(1), 28–35. https://doi.org/10.1016/j.jef.2017.02.004
- Obidiegwu, J. E., Lyons, J. B., & Chilaka, C. A. (2020). The Dioscorea Genus (Yam)—An Appraisal of Nutritional and Therapeutic Potentials. *Foods*, 9(9), Article 9. https://doi.org/10.3390/foods9091304
- Peng, J. H., Sun, D., & Nevo, E. (2011). Domestication evolution, genetics and genomics in wheat. *Molecular Breeding*, 28(3), 281–301. https://doi.org/10.1007/s11032-011-9608-4
- Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T.-C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. *Nature Biotechnology*, 33(3), Article 3. https://doi.org/10.1038/nbt.3122
- Peter, B. M. (2016). Admixture, Population Structure, and F-Statistics. *Genetics*, 202(4), 1485–1501. https://doi.org/10.1534/genetics.115.183913
- Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. *Bioinformatics*, 26(6), 841–842. https://doi.org/10.1093/bioinformatics/btq033
- Ramu, P., Esuma, W., Kawuki, R., Rabbi, I. Y., Egesi, C., Bredeson, J. V., Bart, R. S., Verma, J., Buckler, E.
 S., & Lu, F. (2017). Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. *Nature Genetics*, 49(6), Article 6. https://doi.org/10.1038/ng.3845
- Reich, D., Thangaraj, K., Patterson, N., Price, A. L., & Singh, L. (2009). Reconstructing Indian population history. *Nature*, 461(7263), Article 7263. https://doi.org/10.1038/nature08365
- Rieseberg, L. H. (1991). Homoploid Reticulate Evolution in Helianthus (asteraceae): Evidence from Ribosomal Genes. *American Journal of Botany*, 78(9), 1218–1237. https://doi.org/10.1002/j.1537-2197.1991.tb11415.x

- Roach, M. J., Schmidt, S. A., & Borneman, A. R. (2018). Purge Haplotigs: Allelic contig reassignment for third-gen diploid genome assemblies. *BMC Bioinformatics*, 19(1), 460. https://doi.org/10.1186/s12859-018-2485-7
- Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution*, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
- Salman-Minkov, A., Sabath, N., & Mayrose, I. (2016). Whole-genome duplication as a key factor in crop domestication. *Nature Plants*, 2(8), Article 8. https://doi.org/10.1038/nplants.2016.115
- Scarcelli, N., Chaïr, H., Causse, S., Vesta, R., Couvreur, T. L. P., & Vigouroux, Y. (2017). Crop wild relative conservation: Wild yams are not that wild. *Biological Conservation*, 210, 325–333. https://doi.org/10.1016/j.biocon.2017.05.001
- Scarcelli, N., Cubry, P., Akakpo, R., Thuillet, A.-C., Obidiegwu, J., Baco, M. N., Otoo, E., Sonké, B., Dansi, A., Djedatin, G., Mariac, C., Couderc, M., Causse, S., Alix, K., Chaïr, H., François, O., & Vigouroux, Y. (2019). Yam genomics supports West Africa as a major cradle of crop domestication. *Science Advances*, 5(5), eaaw1947. https://doi.org/10.1126/sciadv.aaw1947
- Scarcelli, N., Tostain, S., Vigouroux, Y., Agbangla, C., Daïnou, O., & Pham, J.-L. (2006). Farmers' use of wild relative and sexual reproduction in a vegetatively propagated crop. The case of yam in Benin. *Molecular Ecology*, 15(9), 2421–2431. https://doi.org/10.1111/j.1365-294X.2006.02958.x
- Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. *Bioinformatics*, 27(6), 863–864. https://doi.org/10.1093/bioinformatics/btr026
- Sharif, B. M., Burgarella, C., Cormier, F., Mournet, P., Causse, S., Van, K. N., Kaoh, J., Rajaonah, M. T., Lakshan, S. R., Waki, J., Bhattacharjee, R., Badara, G., Pachakkil, B., Arnau, G., & Chaïr, H. (2020). Genome-wide genotyping elucidates the geographical diversification and dispersal of the polyploid and clonally propagated yam (Dioscorea alata). *Annals of Botany*, *126*(6), 1029–1038. https://doi.org/10.1093/aob/mcaa122
- Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics*, 31(19), 3210–3212. https://doi.org/10.1093/bioinformatics/btv351

- Sugihara, Y., Darkwa, K., Yaegashi, H., Natsume, S., Shimizu, M., Abe, A., Hirabuchi, A., Ito, K., Oikawa, K., Tamiru-Oli, M., Ohta, A., Matsumoto, R., Agre, P., Koeyer, D. D., Pachakkil, B., Yamanaka, S., Muranaka, S., Takagi, H., White, B., ... Terauchi, R. (2020). Genome analyses reveal the hybrid origin of the staple crop white Guinea yam (Dioscorea rotundata). *Proceedings of the National Academy of Sciences*, *117*(50), 31987–31992. https://doi.org/10.1073/pnas.2015830117
- Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics*, *123*(3), 585–595. https://doi.org/10.1093/genetics/123.3.585
- Tamiru, M., Becker, H. C., & Maass, B. L. (2007). Genetic Diversity in Yam Germplasm from Ethiopia and Their Relatedness to the Main Cultivated Dioscorea Species Assessed by AFLP Markers. *Crop Science*, 47(4), 1744–1753. https://doi.org/10.2135/cropsci2006.11.0719
- Tamiru, M., Natsume, S., Takagi, H., White, B., Yaegashi, H., Shimizu, M., Yoshida, K., Uemura, A.,
 Oikawa, K., Abe, A., Urasaki, N., Matsumura, H., Babil, P., Yamanaka, S., Matsumoto, R.,
 Muranaka, S., Girma, G., Lopez-Montes, A., Gedil, M., ... Terauchi, R. (2017). Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. *BMC Biology*, *15*(1), 86. https://doi.org/10.1186/s12915-017-0419-x
- Terauchi, R., Chikaleke, V. A., Thottappilly, G., & Hahn, S. K. (1992). Origin and phylogeny of Guinea yams as revealed by RFLP analysis of chloroplast DNA and nuclear ribosomal DNA. *Theoretical* and Applied Genetics, 83(6), 743–751. https://doi.org/10.1007/BF00226693
- Terauchi, R., & Kahl, G. (1999). Mapping of the Dioscorea tokoro genome: AFLP markers linked to sex. *Genome*, 42(4), 752–762. https://doi.org/10.1139/g99-001
- Terauchi, R., Terachi, T., & Tsunewaki, K. (1991). Intraspecific variation of chloroplast DNA in Dioscorea bulbifera L. *Theoretical and Applied Genetics*, *81*(4), 461–470. https://doi.org/10.1007/BF00219435
- Veyres, N., Aono, M., Sangwan-Norree, B. S., & Sangwan, R. S. (2008a). Has Arabidopsis SWEETIE protein a role in sugar flux and utilization? *Plant Signaling & Behavior*, 3(9), 722–725. https://doi.org/10.4161/psb.3.9.6470
- Veyres, N., Danon, A., Aono, M., Galliot, S., Karibasappa, Y. B., Diet, A., Grandmottet, F., Tamaoki, M., Lesur, D., Pilard, S., Boitel-Conti, M., Sangwan-Norreel, B. S., & Sangwan, R. S. (2008b). The Arabidopsis sweetie mutant is affected in carbohydrate metabolism and defective in the control of

growth, development and senescence. *The Plant Journal*, 55(4), 665–686. https://doi.org/10.1111/j.1365-313X.2008.03541.x

- Viruel, J., Segarra-Moragues, J. G., Raz, L., Forest, F., Wilkin, P., Sanmartín, I., & Catalán, P. (2016). Late Cretaceous–Early Eocene origin of yams (Dioscorea, Dioscoreaceae) in the Laurasian Palaearctic and their subsequent Oligocene–Miocene diversification. *Journal of Biogeography*, 43(4), 750–762. https://doi.org/10.1111/jbi.12678
- Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A., Zeng, Q.,
 Wortman, J., Young, S. K., & Earl, A. M. (2014). Pilon: An Integrated Tool for Comprehensive
 Microbial Variant Detection and Genome Assembly Improvement. *PLOS ONE*, 9(11), e112963.
 https://doi.org/10.1371/journal.pone.0112963
- Warschefsky, E., Penmetsa, R. V., Cook, D. R., & von Wettberg, E. J. B. (2014). Back to the wilds: Tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. *American Journal of Botany*, 101(10), 1791–1800. https://doi.org/10.3732/ajb.1400116
- Watterson, G. A. (1975). On the number of segregating sites in genetical models without recombination. *Theoretical Population Biology*, 7(2), 256–276. https://doi.org/10.1016/0040-5809(75)90020-9

WCSP. (2020). World Checklist of Selected Plant Families. http://wcsp.science.kew.org

- Wilkin, P., Schols, P., Chase, M. W., Chayamarit, K., Furness, C. A., Huysmans, S., Rakotonasolo, F.,
 Smets, E., & Thapyai, C. (2005). A Plastid Gene Phylogeny Of the Yam Genus, Dioscorea: Roots,
 Fruits and Madagascar. *Systematic Botany*, *30*(4), 736–749.
 https://doi.org/10.1600/036364405775097879
- Wright, S. (1951). THE GENETICAL STRUCTURE OF POPULATIONS. *Annals of Eugenics*, 15(1), 323–354. https://doi.org/10.1111/j.1469-1809.1949.tb02451.x
- Wu, Y., Bhat, P. R., Close, T. J., & Lonardi, S. (2008). Efficient and Accurate Construction of Genetic Linkage Maps from the Minimum Spanning Tree of a Graph. *PLOS Genetics*, 4(10), e1000212. https://doi.org/10.1371/journal.pgen.1000212
- Yu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T. T.-Y. (2017). ggtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. *Methods in Ecology* and Evolution, 8(1), 28–36. https://doi.org/10.1111/2041-210X.12628

- Zhang, B.-W., Xu, L.-L., Li, N., Yan, P.-C., Jiang, X.-H., Woeste, K. E., Lin, K., Renner, S. S., Zhang, D.-Y., & Bai, W.-N. (2019). Phylogenomics Reveals an Ancient Hybrid Origin of the Persian Walnut.
 Molecular Biology and Evolution, 36(11), 2451–2461. https://doi.org/10.1093/molbev/msz112
- Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. *Bioinformatics*, 28(24), 3326–3328. https://doi.org/10.1093/bioinformatics/bts606