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Abstract

It is widely acknowledged that traditional financial assets and digital coins,
including cryptocurrencies, exhibit uncertainty and complexity in their price fluc-
tuations, and a comprehensive explanation of such behavior is necessary for var-
ious financial purposes such as risk management, policy making and portfolio
hedging. Although studies over the past few decades have uncovered the fluc-
tuation characteristics of stock and commodity markets, the complex behavior of
the rapidly developing cryptocurrency market has yet to be elucidated, especially
in the research field of nonlinear physics as well as behavioural finance theory.
Cryptocurrencies have attracted much attention from a wide range of community
but they function differently compared to the conventional ones. A study focusing
on their price fluctuations helps to determine what role they play in the financial
society. In particular, the clarification of distribution and correlation structure is
a key and important issue with significant implications for the financial commu-
nity and the academic field. Therefore, an analytical framework that takes into
account uncertainty and complexity is introduced, where the methods have the
power to shed light on various types of anomaly phenomena reported in empirical
studies. The framework provides both physical and economic interpretations for a
comprehensive understanding of fluctuations and other relevant phenomena that
follow.

We first focus on modelling the distribution of cryptocurrency price fluctua-
tions. By implementing a new approach to estimating the parameters of stable
distributions by flexibly designing the selection of Fourier points on the charac-
teristic function, the validity of the stable law model is verified. At the same time,
we show that a unified characterisation by both cubic and stable law is possible.

We also contribute to uncovering much of the non-linear correlation structure
of the cryptocurrency market. From a fractal correlation framework, the results
reveal outstanding traces of market efficiency, heterogeneous interactions among
scales, and asymmetric responses of volatility to price shocks. In addition, we
show that the fractal correlation can be applied to practical applications, by incor-
porating the fractal concept into the traditional approach of determining optimal
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portfolio allocation. The academic contributions of these studies are discussed
from the interdisciplinary perspectives of physics and finance.
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Chapter 1

Introduction

The behavior of price fluctuation of financial assets is commonly explained
by mathematical models that follow the theory based on the traditional Efficient
Market Hypothesis (EMH) proposed by Fama (1970). The EMH is a hypothesis
that states that share prices reflect all information, making it impossible for par-
ticipants to outperform the overall market through expert stock selection. There-
fore, in an “efficient” market, competition among market participants does not
result in excess profits beyond what would be expected. Although the EMH is a
cornerstone of modern financial theory that has contributed significantly to fields
such as modern portfolio theory, financial engineering, and computational finance,
the hypothesis is highly controversial and often disputed. While some researchers
put effort in support of the EMH, arguing that it is pointless to try predicting mar-
ket trends through fundamental and technical analysis, others point out that a
large body of dissension exists. For example, the hypothesis theory lacks sufficient
explanatory power for the real-world and cannot justify various empirical phe-
nomena including crashes, price inflation, and market turbulence (Fama, 1991;
Peters, 1994; Peng et al., 1994; Kristoufek, 2018). These studies pointed out that
the even the weak form of the hypothesis does not hold in the real market1. An-
other issue is that the EMH-based analysis often underestimates financial market
risk, making it more challenging to control risk and return of assets (Soros, 2015).
Market regularities are often observed empirically, however, are called “anoma-
lies” since they have no theoretical justification. Anomaly behaviors exist in the
market with heterogeneity that cannot be explained by conventional modern port-
folio theory or frameworks on market prices (Glosten and Milgrom, 1985; Easley

1There are three forms of market efficiency. The weak form requires that current stock prices
reflect all the data of past prices. The semi-strong form suggests that prices reflect all publicly
available information including new public information. The strong form states that prices reflect
all private and public information, so that no information that can be used to enjoy an advantage
on the market.
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CHAPTER 1. INTRODUCTION

et al., 1996; Avramov et al., 2006; Zhang et al., 2022).
The concept of Econophysics emerged from the field of nonlinear physics plays

an active role in analyzing such anomaly phenomena. In this discipline market
movements are analyzed as a dynamic and complex system, thus it is possible
to detect subtle but profound phenomena that cannot be captured by conven-
tional methods without requiring the assumptions of the EMH (Jovanovic and
Schinckus, 2016). Especially since the rise of cryptocurrencies, market analysis
based on a nonlinear physics approach is attracting renewed attention due to the
extreme volatility and heterogeneity observed in the market. The cryptocurrency
market is a fast-growing emerging market based on the block-chain technology,
which makes the market system completely different from the existing ones. The
absence of an issuing entity or central controller means that cryptocurrencies can
be traded with an unspecified number of counterparties, and speculative invest-
ment purposes are prevalent. Under such a unique system, traditional theories
of price fluctuation have difficulties to be applied towards detecting the nature
of price fluctuations. Another issue is that the time series of cryptocurrencies
have been confirmed to have significant correlated and self-repeating structures,
and their statistical laws are not yet clear (Peters, 1994; Fernández-Martínez
et al., 2019). Hence, there is a need to develop an analytical model that can ef-
fectively express the characteristics of cryptocurrencies using a nonlinear phys-
ical approach. Therefore, this research aims to construct a system of analytical
methods to understand the price fluctuations of the cryptocurrency market as a
complex system and to elucidate its characteristics. We believe it is necessary to
successfully handle its unique distributional statistical law and the correlation
structure of the time series by introducing the concept of the alternative Fractal
Market Hypothesis (FMH) of Peters (1994) as well as other innovations. The FMH
extends the widely acknowledged EMH, and compensates for scaling factors the
EMH fails to capture. Financial time series X (t) are allowed to exhibit properties
relevant to fractals that appear similar or self-repeating within sets of time series
when viewed at different scales (Thompson and Wilson, 2016):

{X (t) : t 2R} d=
n
¥°H

X (¥t) : t 2R
o

for ¥> 0.

This implies that market can be out of randomness, and due to the different val-
uations for information flows among investment horizons, market patterns exist.
In effect, the FMH is known to have power to justify sudden spikes in market
volatility and lack of market liquidity during crashes (Mandelbrot and Hudson,
2005; Mandelbrot, 1997). The decaying scaling exponent H is the widely known
Hurst exponent, that is often used to measure the “index of dependence” or “in-
dex of long-range dependence”. However, the self-similarity structure of finan-
cial time series is usually not uniform, but rather hierarchical composed with
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different scaling exponents among different fluctuation levels. The scaling expo-
nent of such an “mulitifractal” structure is expressed through the q-order fluc-
tuation, E[|X (t)|q] = c(q)tqh(q), where h(q) denotes the generalized Hurst expo-
nent (Thompson and Wilson, 2016). By utilizing the information of power-law
decaying exponents, much effort has been been devoted to further understanding
fractal patterns of large and small fluctuation nature.

The purpose of this study is to clarify the properties of price fluctuation phe-
nomena in the rapidly developing cryptocurrency market through approaches
from both perspectives based on behavioral finance theory and nonlinear physics.
First, we will discuss the distribution statistics of cryptocurrency prices. In partic-
ular, we focus on power laws, especially the stable distribution Lévy (1937), which
is a representative of power law class of distributions. Studies have found that
taking into account theoretical background of the Generalized Central Limit The-
orem (GCLT) (Gnedenko and Kolmogorov, 1954), the stable distribution well char-
acterizes the distribution of the return series (Mandelbrot, 1963; Mantegna and
Stanley, 1995; Xu et al., 2011; Kreżolek, 2012; Yuan et al., 2014; Chronis, 2016).
On the one hand, numerous research has confirmed that the tail portion generally
shows an power law decay with an cubic exponent (exponent of 3), and there are
solid financial theories that explain why such behavior can be observed (Clauset
et al., 2009; Begušić et al., 2018). To fill in this gap, we investigate whether both
arguments are not conflicting with each other and how they can be recognized
as a consistent behavior. When doing this investigation, it is necessary to esti-
mate the parameters of the stable distribution from the empirical data, but the
general estimation method has many restrictions and problems regarding the pa-
rameters. The lack of a general estimation method is also an issue we should
overcome Nolan (2003). We propose a more accurate and flexible parameter es-
timation method employing the chracteristic function. In particular, clarifying
the relationship between points on the Fourier space and parameters achieves to
sophisticate the estimation approach.

Then, the discussion of the correlation structure of cryptocurrency price fluc-
tuation follows. Utilizing advanced fractal correlation analysis methods based on
the concept of the FMH, we have conducted several empirical analyses. Specifi-
cally, we focus on the following phenomena and attempt to clarify their properties;
the impact of the COVID-19 shock on cryptocurrency markets in terms of autocor-
relations, the nature of ross-correlations between price and volatility fluctuations,
and the existence of asymmetry in their cross-correlations. Such asymmetry is
known as the “Leverage effect” in the field of behavioral finance (Black, 1976;
Bollerslev et al., 2009; Bentes, 2018). We investigate whether the leverage effect
has nonlinear properties such as multiscale and fractality. We also show that the
factors behind the leverage effect can be explained not only from the economic
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CHAPTER 1. INTRODUCTION

behavior perspective but also from the dynamical framework. Finally, we will ap-
ply several types of fractal correlation analysis, which pose important keys in the
above research, to portfolio theory, and work on social implementation with a view
to practical use.

1.1 Properties of the Cryptocurrency Market

Bitcoin (BTC) was first released in 2009 by an anonymous person named Satoshi
Nakamoto (Nakamoto, 2008), and have provided us with so many topics. Unlike
other assets, cryptocurrencies are built on the block-chain technology based on
the peer-to-peer network system that operates without a central bank or single
administrator, while avoiding duplicated transactions and allowing cross-border
electric payments open at all times. Another significant feature is that the system
provides assurances of anonymity, and contributes to an incredible well-founded
security (Böhme et al., 2015). Since this alternative system puts reliable transac-
tions into practical use without an intermediary, cryptocurrencies are expected to
prevail as an expedient medium of exchange.

It was not until 2013, when the BTC market underwent two price bubbles
within the same year, that BTC began to be recognized by specialists and experts,
increasing its awareness to a wider area. The year 2017 was a decisive year where
the skyrocketing increase of market prices took notice and attracted the attention
of a wide community including active online traders and academic researchers.
Market capitalization temporarily marked over an astounding 200 billion dollars
at its peak, however, prices turned to decline sharply at the beginning of 2018.
The extreme fluctuations raised the concerns of market volatility due to strict fi-
nancial regulators on cryptocurrency transactions in countries such as China and
Korea. Still, they are a booming economy with market capitalization on its ris-
ing trend reaching more than 1900 billion US dollars in total by January 2022,
attracting the attention of a wide community, including online traders, economic
actors. During the same period, competing cryptocurrencies such as Ethereum
(ETH), Ripple (XRP), Litecoin (LTC) have emerged and grown rapidly dominat-
ing more than half of the cryptocurrency market capitalization in recent years,
indicating that analyzing minor coins has also become important. Given these
idiosyncratic characteristics, modeling the fundamental features of BTC, along
with other cryptocurrencies, plays a crucial role in various types of financial anal-
yses. Thus, examining price fluctuations of new assets would provide us with some
guidance for implementing financial management as well as keys to understand
the phenomena occurring in financial systems.

Besides their rapid growth, research on cryptocurrency markets has become
more active. Researchers have discussed whether cryptocurrencies should be

9



1.1. PROPERTIES OF THE CRYPTOCURRENCY MARKET

classified as currencies, financial assets, an expedient medium of exchange, or
a technological-based product (Lo and Wang, 2014; Blau, 2017; Yermack, 2015;
Polasik et al., 2015; White et al., 2020), but they have not come to a complete
conclusion. Moreover, BTC is less correlated with conventional assets, commodi-
ties, and the U.S. dollar, making it useful as a diversified investment for hedging
purposes (Bouri et al., 2017b).

Numerous studies reveal that despite the unique system, cryptocurrency price
fluctuations are incredibly complex and also exhibit stylized facts similar to what
is recognized in stock and commodity markets, such as long-range dependence and
long memory in volatility (Bariviera et al., 2017; Bouri et al., 2018; Cheah et al.,
2018), fat-tails in price distribution, multifractality, and scaling properties (Jiang
et al., 2018; Takaishi, 2018; Zhang et al., 2019). Nevertheless, cryptocurrencies
tend to have more distinctive nonlinear dynamic characteristics, i.e., they tend
to be more volatile (Bariviera et al., 2017; Alvarez-Ramirez et al., 2018; Drożdż
et al., 2018), more inefficient, and more complex due to significant long-memory
and stronger multifractality both in price and volatility (Al-Yahyaee et al., 2018;
da Silva Filho et al., 2018; Telli and Chen, 2020). A in-depth study of Begušić
et al. (2018) reports that the distribution of BTC returns have slowly decaying
tails of power-law behavior with 2 < Æ < 2.5. This suggests that BTC returns, in
addition to being more volatile, exhibit heavier tails than stocks, where the ex-
ponent of stock returns is known to be around 3. The BTC returns do not follow
a random walk behavior and the market is significantly inefficient, but the effi-
ciency becomes higher in recent periods (Urquhart, 2016) and the market heads
to maturity (Drożdż et al., 2018). Although some studies suggest that market
efficiency holds for certain periods, the returns do not generally satisfy the effi-
cient market hypothesis (EMH) (Bariviera, 2017; Tiwari et al., 2018; Zhang et al.,
2018a). Jiang et al. (2018) investigate how the Hurst exponent varies through a
rolling window approach and conclude that the BTC market has a high degree of
inefficiency over time. Bariviera (2017) uses a dynamical approach of detrended
fluctuation analysis (DFA) proposed by Peng et al. (1994), which can be applied to
non-stationary data and provides more reliable estimates of the Hurst exponent
compared to the traditional rescaled range analysis (Hurst, 1957).

Other than these stylized facts, Bitcoin is uncorrelated with traditional assets
and is suggested as a useful hedging tool with similar abilities to gold (Dyhrberg,
2016a,b). A “hedge” is an asset that is uncorrelated or negatively correlated with
another asset or portfolio, whereas a “diversifier” is an asset that is positively
but not perfectly correlated with another asset or portfolio (Diniz-Maganini et al.,
2021). Bitcoin shows a property of a solid “safe-haven”, defined as an asset that
functions as a hedge not on average but in particular cases only, i.e., during the
periods of market stress (Bouri et al., 2017b). This property indicates that the
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CHAPTER 1. INTRODUCTION

combination of financial assets with Bitcoin could help reduce the correlation lev-
els and risks of a portfolio in times of market turmoil. Moreover, a vast application
of fractal and nonlinear theory-based methods to analyzing cryptocurrency time
series has shed light on the underlying physical mechanisms of their market dy-
namics.

1.2 Stable Distributions

In this section, we summarize the basis and properties of the stable distribu-
tion.

A fundamental theory of stochastic processes in various scientific fields is the
generalized central limit theorem (GCLT), which points out that the sum of inde-
pendent and identically distributed random variables converges only to the family
of stable distribution (Gnedenko and Kolmogorov, 1954).

Stable distribution, also known as Æ-stable distribution, or Lévy’s stable dis-
tribution, was first introduced by Lévy (1937), which is a family of parametric dis-
tribution with tails that are expressed as power-functions. According to Samorod-
nitsky and Taqqu (1994a), in the far tails the PDF can be written as,

f (x;Æ,Ø,∞,±)'
(

cÆ∞
ÆÆ (1+Ø) |x|°(1+Æ) for (x !+1)

cÆ∞
ÆÆ (1°Ø) |x|°(1+Æ) for (x !°1),

and the cumulative distribution function (CDF) written as,
(

P(X > x)' cÆ∞
Æ(1+Ø) |x|°Æ for (x !+1)

P(X < x)' cÆ∞
Æ(1°Ø) |x|°Æ for (x !°1),

where cÆ is a constant value [sin(ºÆ/2)°(Æ)]/º. Stable distribution is represented
by four parameters; the scaling exponent parameter Æ 2 (0,2] representing the
fatness of the tail, the skewness parameter Ø 2 [°1,1], the scaling parameter ∞> 0,
and the location parameter ± 2 R. Especially the parameters Æ and Ø determine
the shape of distribution, including various forms of widely-known distributions
such as the Gaussian and Cauchy distribution. Smaller value of Æ indicates fatter
tails and hence it is well known that the variance diverges for 0<Æ< 2, and also
the mean cannot be defined for 0<Æ∑ 1. Note that if Ø = 0, the distribution is
symmetric, if Ø> 0, right-tailed, and if Ø< 0, left-tailed.

The definition of stable distribution is that the linear combination of indepen-
dent random variables that follow a stable distribution with scaling exponent Æ
invariably becomes again a stable distribution with the same scaling exponent.
More particularly, when variables X1, X2 are i.i.d. copies of a random variable X

and a,b are positive constant numbers, X is said to be stable and follows a stable
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1.2. STABLE DISTRIBUTIONS

distribution if there is a positive constant number c and a real number d 2R that
satisfies

aX1 +bX2
d= cX +d,

also known for stability property. When a variable X follows a stable distribution,
the notation X

d= S(Æ,Ø,∞,±) is often used, where d= denotes equality in distribu-
tion (Samorodnitsky and Taqqu, 1994b). Variable X can be standardized accord-
ing to the following property:

X °±
∞

d= S(Æ,Ø,0,1). (1.2.1)

Another important property of stable distribution is the GCLT, which implies
that the only possible limit distributions for sums of i.i.d random variables is a
family of stable distribution. When Æ = 2, that is, when i.i.d. random variables
have finite variance, the limit distribution then becomes a Gaussian according to
the well-known classical Central Limit Theorem (CLT).

The PDF of stable distribution cannot be written in a closed form except for
some cases; Cauchy distribution (Æ= 1, Ø= 0), Lévy distribution (Æ= 1/2, Ø= 1),
and Gaussian distribution (Æ= 2). Alternatively, the features are expressed by
the characteristic function (CF), '(k), which is the Fourier transform of the PDF.
By taking the inverse Fourier transform of the CF, the PDF can be obtained as

f (x)= 1
2º

Z1

°1
e°ikx'(k)dk.

When variable X follows a stable distribution with S(Æ,Ø,∞,±), the CF is shown
as

'(k)= exp
©
i±k°∞Æ|k|Æ

°
1° iØsgn(k)!(k,Æ)

¢™
,

!(k,Æ)=
(

tan(ºÆ2 ) Æ 6= 1
° 2
º log |k| Æ= 1,

(1.2.2)

which corresponds to the one-parameterization form of S(Æ,Ø,∞,±;1) in Nolan
(2003). This is the most popular parameterization among many other forms of
the stable distribution owing to the simplicity of the form. Figure 1.1 shows the
standardized stable distributions with the one-parameterization form for differ-
ent parameters of Æ and Ø, as an example.

One-parameterization is preferred when one is interested in the basic proper-
ties of the distribution, but the CF takes a discontinuous form at Æ = 1. Nolan
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CHAPTER 1. INTRODUCTION

(a) stable distribution for the case of S(Æ,0,1,0)

(b) stable distribution for the case of S(0.5,Ø,1,0)

Figure 1.1: Standardized stable distributions with the one-parameterization
form for different parameters of Æ and Ø. (a) is the case of fixed Ø = 0, and (b)
is the case of fixed Æ= 0.5.
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1.3. FRACTAL CORRELATIONS

suggests the use of the zero-parameterization form S(Æ,Ø,∞,±0;0) with different
!(k,Æ) shown as

!(k,Æ)=
(
°

°
|∞k|1°Æ°1

¢
tan(ºÆ2 ) Æ 6= 1

° 2
º log |∞k| Æ= 1,

(1.2.3)

giving a more complex form, but provides a continuous form. The only difference
between the parameterization is the location parameter, which they are related
by

±0 =
Ω
±+Ø∞tan ºÆ

2 Æ 6= 1
±+Ø 2

º∞ log∞ Æ= 1 ,

±=
Ω
±0 °Ø∞tan ºÆ

2 Æ 6= 1
±0 °Ø 2

º∞ log∞ Æ= 1 . (1.2.4)

In this study, we employ the simple one-parameterization, as we are interested
in estimating the four parameters through the CF, and many existing estimation
methods comply with that form. However, since this CF does not have a con-
tinuous form at Æ = 1, arguments with different parameterizations may be more
appropriate for discussing distributions when we already know that Æ is 1, for
instance, the case of Cauchy distribution (Æ= 1,Ø= 0).

1.3 Fractal Correlations

In this section, we summarize the basis of the fractal analysis method ap-
plied to investigate long-range power-law (cross) correlations within and between
financial time series.

Based on the idea of FMH, the dynamical approach of detrended fluctuation
analysis (DFA) of Peng et al. (1994) has become a widely utilized tool in analyzing
fractal structures of a financial time series and scaling factors of its long-range
correlation in a nonlinear manner. Podobnik and Stanley (2008) developed the
detrended cross-correlation analysis (DCCA) to reveal power-law cross-correlation
features between simultaneously recorded bivariate series. By putting DFA and
DCCA techniques together, Zebende (2011) introduced the DCCA coefficient to
measure the degree of cross-correlation for each specific scale quantitatively. This
work promoted the development of the field into the investigation of multi-time
scale dependencies of highly complex financial series.2

2See the review literature of Wa̧torek et al. (2021) for more information and about multi-time
scale properties in cryptocurrency price fluctuations.
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Multifractal detrended fluctuation analysis (MFDFA) is a generalization of
the DFA algorithm, overcoming the limitations of the DFA by describing mul-
tifractal structures in terms of the generalized scaling exponents (Kantelhardt
et al., 2002). The analysis of financial series using the MFDFA has lead to a
breakthrough in the field of econophysics as an effective approach to detect inef-
ficiency, multifractality, and long-memory in a nonlinear way. Studies have ap-
plied the MFDFA and found evidence that cryptocurrency markets have strong
multifractality originating from correlations and fat-tails (da Silva Filho et al.,
2018; Takaishi, 2018; Al-Yahyaee et al., 2018; Shrestha, 2019; Stavroyiannis et al.,
2019).

The combination of DCCA and the MFDFA, the multifractal detrended cross-
correlation analysis (MFDCCA, MFDXA, MF-X-DFA) (Zhou, 2008), was developed
and implemented for the empirical studies of cryptocurrencies, stock prices, and
crude oil markets (Zhang et al., 2018a,b; Alaoui et al., 2019; Ghazani and Khos-
ravi, 2020). This method is a natural extension of the DCCA to multifrcatal-
ity, thus describing hierarchical fractal characteristics of cross-correlated non-
stationary series. A different generalization of the DFA, the asymmetric DFA
(A-DFA), was proposed by Alvarez-Ramirez et al. (2009) since financial assets
may show different behavior in reaction to trends. The multifractal version was
later proposed, namely, the asymmetric MFDFA (A-MFDFA) (Cao et al., 2013;
Lee et al., 2017), and the further extension to cross-correlations is known as the
multifractal asymmetric DCCA (MF-ADCCA) (Cao et al., 2014). The method of
MF-ADCCA is a versatile tool that takes into account both the asymmetric struc-
ture and the multifractal scaling properties between the two series. An empirical
study by Gajardo et al. (2018) applies the MF-ADCCA to price behaviors of BTC
and leading conventional currencies, suggesting the presence and asymmetry of
cross-correlations between them. Using the same approach, Kristjanpoller and
Bouri (2019) find evidence of asymmetric multifractality between the main cryp-
tocurrencies and the world currencies. These studies show that the MF-ADCCA
approach is powerful for uncovering complex systems in cryptocurrency markets 3.

The algorithm of the A-MFDFA method (Cao et al., 2013) starts by calculating
the profile, which is defined as X (t) = P

t

j=1(xj ° x̄) for t = 1, . . . , N, where x̄ is the
average over the entire return series {xt : t = 1, . . . , N}. Next, we divide the profile
X (t) and the original series xt into Ns = bN/sc non-overlapping segments of length
s. If N is not a multiple of s, a short part of the profile may remain. To consider
all the profile, the division is repeated starting from the other end of the data set,
making 2Ns segments for both series.

Let Sv = {sv,i, i = 1, . . . , s} be the vth segment series of length s. For each seg-

3For more technical information and further discussion relevant to the detrending based mul-
tifractal methods, see Wa̧torek et al. (2021)
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1.3. FRACTAL CORRELATIONS

ment v = 1, . . . ,2Ns, the local trend of the profile is calculated by fitting a least-
square degree-2 polynomial yv. In the same manner, the local least-square linear
fit of the series x̂Sv

(i) = aSv
+ bSv

i is estimated for each segment. The polynomial
fit yv is used to detrend the profile, and x̂Sv

is used to determine the direction of
the original series. Positive (upward) or negative (downward) trends depend on
the sign of the slope bSv

.
The residual variance for each segment is calculated as:

F
2(s,v) := 1

s

sX

i=1
{X [(v°1)s+ i]° yv(i)}2 for v = 1, . . . , Ns, (1.3.1)

F
2(s,v) := 1

s

sX

i=1
{X [N ° (v°Ns)s+ i]° yv(i)}2 for v = Ns +1, . . . ,2Ns. (1.3.2)

The upward and downward q-th order fluctuation functions are calculated by tak-
ing the average over all segments as:

F
+
q (s)=

(
1

M+

2NsX

v=1

1+sgn(bSv
)

2
£
F

2(s,v)
§q/2

)1/q

, (1.3.3)

F
°
q (s)=

(
1

M°

2NsX

v=1

1°sgn(bSv
)

2
£
F

2(s,v)
§q/2

)1/q

, (1.3.4)

for any real value q 6= 0, and

F
+
0 (s)= exp

(
1

2M+

2NsX

v=1

1+sgn(bSv
)

2
ln

£
F

2(s,v)
§
)

, (1.3.5)

F
°
0 (s)= exp

(
1

2M°

2NsX

v=1

1°sgn(bSv
)

2
ln

£
F

2(s,v)
§
)

, (1.3.6)

for q = 0. M
+ =P2Ns

v=1
1+sgn(bSv

)
2 and M

° =P2Ns

v=1
1°sgn(bSv

)
2 respectively represent the

numbers of segments with positive and negative trends under the assumption of
bSv

6= 0 for all v = 1, . . . ,2Ns, such that M
++M

° = 2Ns. Note that

Fq(s)=
(

1
2Ns

2NsX

v=1

£
F

2(s,v)
§q/2

)1/q

and F0(s)= exp

(
1

4Ns

2NsX

v=1
ln

£
F

2(s,v)
§
)

(1.3.7)

correspond to the MFDFA method, which is equivalent to the case of overall trend
in this study.

If the series xk is long-range power-law correlated, then the power-law rela-
tionship F

+
q (s) ª s

h
+(q), F

°
q (s) ª s

h
°(q), and Fq(s) ª s

h(q) are satisfied, where the
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generalized Hurst exponents are calculated by performing a log-log linear regres-
sion against time scale s. There might exist crossover scales s

§ separating regimes
with different scaling exponents due to different regulation mechanisms on fast
and slow time scales.

The order q decides which magnitude the fluctuation should be evaluated.
Generalized Hurst exponents for q > 0, which are dominated by large fluctuations
in the fluctuation function, reflect the behavior of larger fluctuations, while those
for q < 0 reflect the behavior of smaller fluctuations. If h(q) is independent of q,
then the series is monofractal since the scaling behavior of the residual variance
is identical for all segments. On the other hand, if the value differs depending on
q, the series is multifractal where small and large fluctuations are described by
different scaling exponents. It should be noticed that when q = 2, h(q) corresponds
to the Hurst exponent.

1.4 Modern Portfolio Theory

In this section, we summarize the basis of the Modern Portfolio Theory.
Modern Portfolio Theory (MPT) is a theoretical framework for portfolio con-

struction that aims to maximize the expected return of a portfolio for a given level
of risk, or equivalently minimize risk for a given level of expected return, by care-
fully choosing the proportions of various assets. It was first introduced by Harry
Markowitz in 1952 (Markowitz, 1952), who won a Nobel Prize in Economics in
1990 for his work in this area. The MPT also suggests that investors should fo-
cus on the risk-return trade-off when making investment decisions and that they
should optimize their portfolio based on their unique risk and return preferences.

Some of the essential features of the MPT are listed as follows:

• Mean-Variance Optimization (MV): A mathematical optimization technique
to find the optimal portfolio that maximizes expected returns while minimiz-
ing risk, which is achieved by quantitatively modeling the portfolio’s perfor-
mance and calculating the mean (expected returns) and variance (risk) of
each asset in the portfolio.

• Efficient Frontier: A graph that shows the optimal trade-off between risk
and return for a given set of assets. The efficient frontier represents the set
of portfolios that offer the highest expected return for a given level of risk,
or the lowest level of risk for a given expected return.

• Capital Asset Pricing Model (CAPM): A financial model that describes the
relationship between the expected return of an investment and the risk as-
sociated with that investment. The model is used to determine the expected
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1.4. MODERN PORTFOLIO THEORY

return given the risk-free rate, the expected market return, and the secu-
rity’s beta. The beta measures whether its volatility in relation to the overall
market is high or low.

• Correlation and Diversification: MPT emphasizes the importance of diversi-
fication in reducing portfolio risk. This is achieved by selecting assets with
low correlation, which means that their returns do not move in the same
direction. MPT uses the mathematical concept of correlation to measure the
relationship between assets and to identify the most diversified portfolios.

• Risk Measures: MPT uses various mathematical risk measures such as
standard deviation, variance, Sharpe ratio, tail risk, alpha, and beta to
quantify the risk of a portfolio. These measures are used to compare the
risk of different portfolios and to evaluate its performance over time.

The systematic and mathematical approach of the MPT for portfolio construc-
tion, with an emphasis on diversification, is widely acknowledged for its ability to
reduce portfolio risk and increase returns through optimization techniques. How-
ever, it also has some limitations, such as assuming that the MPT lies in the EMH
framework, that is, financial markets are efficient and all investors have access
to the same information making rational decisions, which may not align with re-
ality. Additionally, the MPT’s reliance on historical data and disregard for other
objectives such as social impact or market events can lead to misinterpretation of
financial market behaviors.

To overcome the disadvantages of the MPT, the necessity of an alternative ap-
proach rises. One possible remedy may be to introduce the hypothesis framework
of the FMH and allow for the existence of long-range correlations within risky
assets and the fractal characteristics of their components (Kristoufek, 2018; Kris-
toufek and Ferreira, 2018; Tilfani et al., 2019, 2020; Chun et al., 2020; Zhang
et al., 2022). The above work suggest the use of a fractal portfolio, which is a
diversified investment strategy that seeks to achieve returns by investing in a
variety of assets across multiple time frames. The belief that market movements
are fractal and exhibit self-similar patterns over different time scales is the key
to achieving the goal of reducing risk and increasing returns. The portfolio is de-
signed to perform well in a specific market condition at different time horizons,
such as short-term, medium-term, and long-term. By diversifying across different
assets and time scales, the portfolio will be less affected by market fluctuations,
i.e., market crashes and turbulence, and increase the likelihood of achieving pos-
itive returns over time. Therefore, the fractal portfolio is expected to be applied
to quantitative investment strategies. Some work have applied this idea to tra-
ditional MPT, elevating the concepts of CAPM (Kristoufek, 2018; Kristoufek and
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Ferreira, 2018; Tilfani et al., 2019, 2020) and MV (Chun et al., 2020; Zhang et al.,
2022) to heterogeneous time scale dimensions.

In this research, we investigate the idea of MV optimization and enhance the
model by incorporating the idea of different time scales into the risk measure to
achieve a more realistic portfolio allocation strategy. At the same time, we pro-
vide supporting evidence of such a FMH framework, that is, we demonstrate that
financial markets (as well as cryptocurrency markets) have a fractal pattern and
investors react differently based on time, sales and market conditions. Specif-
ically, we use information about fractality and multifractality from correlations
between and within risky assets to enhance portfolio performance. The use of
fractal optimization strategies illuminates the multiscale behaviors and hetero-
geneous properties that are not captured by the traditional MPT framework.

1.5 Outline of the thesis

We show here the outline of the thesis.
In Chapter 2, we first focus on developing the estimation procedure of sta-

ble distribution parameters so that the model can well describe fat-tail behaviors
and scaling phenomena in cryptocurrency price returns. The estimation approach
based upon the method of moments yields a simple procedure for estimating sta-
ble law parameters with the requirement of using momental points for the char-
acteristic function, but the selection of points is only poorly explained and has not
been elaborated. We propose a new characteristic function-based approach by in-
troducing a technique of selecting plausible points, which could bring the method
of moments available for practical use. Our method outperforms other state-of-
art methods that exhibit a closed-form expression of all four parameters of stable
laws. Finally, the applicability of the method is illustrated by using several data
of financial assets. Numerical results reveal that our approach is advantageous
when modeling empirical data with stable distributions.

In Chapter 3, we show that the behaviors of price fluctuations in emerging
cryptocurrency markets can be characterized by a non-Gaussian Lévy’s stable dis-
tribution with Æ' 1.4 under certain conditions on time intervals ranging roughly
from 30 minutes to 4 hours. Our arguments are developed under quantitative
valuation defined as a distance function using the Parseval’s relation in addition
to the theoretical background of the General Central Limit Theorem (GCLT). We
also discuss the model-fitting for returns by employing the method based on like-
lihood ratios. Even though the cubic power-law model is a better fitting model
than the Lévy’s stable model in the tail part of returns, the Lévy’s stable model
outperforms the fit for the entire and wider range of returns. Our approach can be
extended for further analysis of statistical properties and contribute to developing
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proper applications for financial modeling.
In Chapter 4, we investigate asymmetric multifractality and market efficiency

of the major cryptocurrencies during the COVID-19 pandemic while accounting
for different investment horizons. By applying the asymmetric multifractal de-
trended fluctuation analysis, we show that the outbreak affected the efficiency
property of price behaviors differently between short- and long-term horizons. Af-
ter the outbreak, the markets exhibited stronger multifractality in the short-term
but weaker multifractality in the long-term. We also analyze asymmetric mar-
ket patterns between upward and downward trends and between small and large
price fluctuations and confirm that the outbreak has greatly changed the level of
asymmetry in cryptocurrency markets.

In Chapter 5, we explore the price-volatility nexus in cryptocurrency mar-
kets and investigates the presence of asymmetric volatility effect between up-
trend (bull) and downtrend (bear) regimes. The conventional GARCH-class mod-
els have shown that in cryptocurrency markets, asymmetric reactions of volatility
to returns differ from those of other traditional financial assets. We address this
issue from a viewpoint of fractal analysis, which can cover the nonlinear interac-
tions and the self-similarity properties widely acknowledged in the field of econo-
physics. The asymmetric cross-correlations between price and volatility for Bit-
coin (BTC), Ethereum (ETH), Ripple (XRP), and Litecoin (LTC) during the period
from June 1, 2016 to December 28, 2020 are investigated using the MF-ADCCA
method and quantified via the asymmetric DCCA coefficient. The approaches take
into account the nonlinearity and asymmetric multifractal scaling properties, pro-
viding new insights in investigating the relationships in a dynamical way. We find
that cross-correlations are stronger in downtrend markets than in uptrend mar-
kets for maturing BTC and ETH. In contrast, for XRP and LTC, inverted reactions
are present where cross-correlations are stronger in uptrend markets.

In Chapter 6, we investigate the scale-dependent structure of asymmetric
volatility effect in six representative cryptocurrencies: Bitcoin, Ethereum, Ripple,
Litecoin, Monero, and Dash. By developing the dynamical approach of DFA-based
fractal regression analysis, we detect whether the volatility of price changes is
positively or negatively related to return shocks at different time scales. We find
that the asymmetric volatility phenomenon varies by scale and cryptocurrency,
and the structure is time-varying. Contrary to what is typically observed in eq-
uity markets, minor currencies show an “inverse” asymmetric volatility effect at
relatively large scales, where positive shocks (good news) have a greater impact
on volatility than negative shocks (bad news). The consequences are discussed in
the context of who is trading in the market and heterogeneity of the investors.

In Chapter 7, we develop a portfolio strategy making use of the fractal prop-
erties and scale-dependent structure of cryptocurrency time series. The mean-
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DCCA portfolio is known to consider the assets’ nonlinearity and fractal charac-
teristics by embedding the fractal correlation into the mean-variance criterion.
Recent researches find that this approach often performs well with certain strate-
gies under the assumption that scale preference of investors are constant. How-
ever, scale dependence may vary over time and reflect current market conditions.
We examine whether accounting for changes in investors’ scale preferences in re-
sponse to market conditions improves portfolio performance. Our results support
the potential effect of investor heterogeneity on portfolio risk reduction.
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Chapter 2

Estimation of Stable Laws

This chapter is corresponds to paper 1 in the author’s papers list.

2.1 Introduction

There are some challenges to overcome the analytic difficulties of stable dis-
tributions since the probability density function (PDF) is not always expressed in
a closed form in terms of elementary functions. This is because the Fourier inte-
gral of the characteristic function (CF) defining the PDF cannot be written in a
formula involving only elementary functions (Rocha et al., 2019), except for the
special cases of Cauchy, Lévy, and Gaussian distributions, which have a closed
formula of the PDF. Thus, the lack of closed form expression is a general issue
when discussing stable distribution. Numerically approximated expressions of
the PDF are known in symmetric cases based on hypergeometric functions, but
those in unrestricted asymmetric cases are often too complex for estimating the
parameters of the stable distribution (Crisanto-Neto et al., 2018). More practi-
cally, the estimation of all parameters is the most basic and necessary process for
any application, but it remains to be one of the most controversial issues when
attempting to detect stable laws. Numerous approaches have been studied for the
parameter estimation. The primary approaches include the approximate maxi-
mum likelihood estimation (DuMouchel, 1973; Brorsen and Yang, 1990; Mittnik
et al., 1999; Nolan, 2001), the bayesian based method (Koblents et al., 2016), the
quantile method (QM) (Fama and Roll, 1971; McCulloch, 1986), the fractional
lower order moment (FLOM) method (Ma and Nikias, 1995; Kuruoglu, 2001), the
method of log-cumulant (MLOC) (Nicolas and Anfinsen, 2001; Pastor et al., 2016),
the characteristic function-based (CF-based) method (Koutrouvelis, 1980; Press,
1972; Bibalan et al., 2017; Krutto, 2016, 2019), and their hybrid combinations.
Many of them tend to have different kinds of drawbacks, such as restrictions of
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parameter ranges, complex estimation algorithms, high computational costs, re-
quirements of larger datasets, and low accuracy. To the best of our knowledge,
the FLOM, MOLC, and QM and some class of the CF-based methods (Press, 1972;
Bibalan et al., 2017; Krutto, 2016, 2019) provide closed-form estimators of stable
laws.

The CF-based method is perhaps the largest classification group, including
a variety of methods and approaches developed under different techniques. In
particluar, Press (1972) presents the method of moments, which offers a simple
approach to estimate all four parameters of stable distribution using the char-
acteristic function evaluated at four arbitrary points. The biggest advantage of
this method is that it is likely to have less drawbacks compared to other primary
methods, but it carries a fundamental problem. Without appropriate points given,
the performance is poor, and unfortunately Press leaves unsolved the crucial idea
about the choice of points at which the CF should be evaluated. The selection of
the points has long been an open question, although several studies have made an
effort to improve the method of moments by reducing the use of points from four
to two and discussing their choice. Krutto (2016, 2019) provides some guidance
on how the two positive points should be chosen through empirical searches re-
lying on the cumulant function. Bibalan et al. (2017) focus on the absolute value
of the CF and suggest an algorithmic approach where a positive point is fixed for
each scaling parameter. They show accurate estimates within certain parame-
ter ranges, but their method fails to support a wider range of parameter spaces.
Thus, these approaches are not comprehensive, so that the method of detecting
more appropriate points related to the CF is required for practical uses.

In this chapter, we propose an effective and practical method for estimating
stable laws. We greatly improve the method of moments by introducing a new
technique for the selection of two positive points at which the CF is evaluated.
The technique is developed over the extension of both algorithmic and empirical
search approaches. The idea of empirical search plays a role in determining the
scaling related estimates, which take crucial responsibility for indicating statis-
tical values derived in the estimation process, whereas the concept of the algo-
rithmic approach yields various ideas of inferences based on the absolute value of
the CF. Our approach realizes the possibility of choosing different values of points
depending on the index parameter Æ, which is a new perspective. We assess and
compare the performance of our method to those of other methods in terms of the
Mean Squared Error (MSE) criterion and the Kolmogorov-Smirnov (KS) distance.
Our proposed method generally outperforms all the other state-of-art methods
that exhibit closed-form expressions for all four parameters of stable laws. It is
practically straightforward and assures that there is no restriction of parameter
ranges, except for Æ= 1 due to the discontinuous form of the one-parameterization
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CF. Finally, we apply our method to price fluctuation behaviors of several financial
assets to examine the appropriateness for practical uses.

This chapter is organized as follows. Section 2 shows preliminaries on stable
distribution and its basic properties. We follow in the next section to describe
the existing methods for estimating the parameters of stable laws. In section 4
we propose a new technique of the CF-based parameter estimation method. The
arguments for the selection of points at which the CF should be evaluated are
discussed. In section 5 we report the performance with the comparison to other
representative methods and present that our method provides accurate estimates
of stable distribution. The last section shows application to financial data and
confirms that our method is applicable for empirical studies.

2.2 Estimation Methods

This section gives an overview of the methods for the parameter estimation
of the stable distribution. We review two major methods, both of which are con-
sidered as an analytical approach that provides a closed-form expression of the
estimates— the quantile method and the characteristic function-based method
(CF-based method). Several different approaches are explained for the CF-based
method.

2.2.1 Quantile method

McCulloch (1986) proposes the use of five sample quantiles x0.05, x0.25, x0.5, x0.75,
and x0.95 as an informative measure for estimating the four parameters of stable
laws, known as the quantile method (QM). He improves the former method of
Fama and Roll (1971) by eliminating bias in estimates and relaxing estimation
restrictions. The idea is to calculate the functions ¡i(Æ,Ø) (i = 1,2,3,4), where the
relationships between the function values and the parameters are already studied
and known beforehand. The method first sets out to estimate Æ and Ø by using
the functions ¡1(Æ,Ø) and ¡2(Æ,Ø) independent of both ∞ and ± defined as

¡1(Æ,Ø)= x0.95 ° x0.05

x0.75 ° x0.25
(2.2.1)

¡2(Æ,Ø)= (x0.95 ° x0.5)° (x0.5 ° x0.05)
x0.95 ° x0.05

. (2.2.2)

Equation (2.2.1) refers to the measure of fat-tail behaviors with the focus on es-
timating Æ, and equation (2.2.2) is a measure of skewness effects with the focus
on estimating Ø. With empirical values of sample quantiles and employing linear
interpolation with tabular look-ups, the estimates Æ̂, Ø̂ are inversely obtained. To
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avoid Æ̂ being larger than 2, outside the parameter range, ¡̂1 = (x̂0.95°x̂0.5)°(x̂0.5°x̂0.05)
x̂0.95°x̂0.05

can be no larger than the upper range 2.439, which corresponds to the case of
Æ= 2 (note that Ø is not identified in this case).

Next, the scale and location parameter ∞ and ± can be estimated using the
functions defined as

¡3(Æ,Ø)= x0.75 ° x0.25

∞
(2.2.3)

¡4(Æ,Ø)= µ° x0.5

∞
+Øtan

≥ºÆ
2

¥
. (2.2.4)

The function ¡3(Æ,Ø) indicates the standardized form of sample sizes for the mid-
dle part of distribution. Since it does not depend on ∞ nor ±, the value can be
informed by tabular look-ups based on Æ and Ø, which the relations are studied
and known beforehand. After calculating ∞̂= x̂0.75°x̂0.25

¡̂3(Æ̂, Ø̂)
in equation (2.2.3), the loca-

tion parameter ± can be estimated from equation (2.2.4) using the values ¡̂4(Æ̂, Ø̂)
and ∞̂. The relations of the parameter values and the function value ¡4(Æ,Ø) are
again, studied and known beforehand. In the case of Æ= 1, ¡4(Æ,Ø) diverges and
we cannot obtain the estimates for ±. McCulloch therefore suggests a complicated
approach to overcome the discontinuity of the stable CF. The method improves
other issues and provides accurate estimates, however, it has parameter restric-
tions and can be applied only when Æ∏ 0.6.

2.2.2 Characteristic function-based method

The CF-based method relies on the use of a consistent estimator of the CF
'(k) for any fixed k. The advantage of this method essentially lies in the fact
that the stable CF can be expressed explicitly, making discussions straightforward
compared to methods based on other distribution forms. Under the assumption
that given data Xn (n = 1,2, . . . , N) are ergodic (Arnol’d and Avez, 1968), the CF is
obtained empirically by the following equation,

'̂ (k)=
1
N

NX

n=1
eikXn . (2.2.5)

There are several approaches for estimating parameters of stable laws that
take advantage of the explicit form of CF. Koutrouvelis (1980) proposed a regression-
type approach, which employs the iteration of two regression runs. Moreover, the
regression of the method requires different values of initial points k depending on
initial estimates of the parameters and sample sizes. The number of points neces-
sary for the regression also varies over initial conditions. Although the accuracy of
Ø is unsatisfactory in some cases, the method generally shows accurate estimates
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of Æ, and hence it is often suggested as a practical method for empirical analy-
sis (Wang et al., 2015; Kateregga et al., 2017). However, some studies compare
the method to McCulloch’s quantile method and report that the regression-type
method does not significantly improve the classical quantile method (Akgiray and
Lamoureux, 1989; Garcia et al., 2011), especially for Æ smaller than 1. Other
studies simplified the method by eliminating the iteration process and fixing the
initial points to some extent, but still leaves behind the issues of estimating when
Æ is small (Kogon and Williams, 1998; S. Borak, 2005). We do not consider the
regression-type approach in this study as the method generally relies on iteration
and the estimates cannot be written analytically.

Another approach is based on the method of moment (Press, 1972), which was
later remodeled and simplified with the use of two given points of the CF (Krutto,
2016; Bibalan et al., 2017; Krutto, 2019). Starting off with the CF with the points
k0 and k1, taking the absolute value cancels out the effect of parameters Ø and ±,
and we obtain

(
|'(k0;Æ,Ø,∞,±)| = exp(°∞Æ|k0|Æ)
|'(k1;Æ,Ø,∞,±)| = exp(°∞Æ|k1|Æ).

(2.2.6)

Taking the cumulant function, which is the natural logarithm of the CF, leads to
the same discussion neutralizing the effect of parameters Ø and ±. The equation
ln' = ln |'| + j(arg'+ 2nº) implies that the real part of the cumulant function
corresponds to the natural logarithm of the absolute value of CF, shown as

(
<

©
ln'(k0;Æ,Ø,∞,±)

™
= ln |'(k0;Æ,Ø,∞,±)| =°∞Æ|k0|Æ

<
©
ln'(k0;Æ,Ø,∞,±)

™
= ln |'(k1;Æ,Ø,∞,±)| =°∞Æ|k1|Æ,

(2.2.7)

for any value of k. We consider only the positive values for convenience, since
the CF is a symmetric function. By solving the above equations simultaneously,
parameters Æ and ∞ can be estimated shown as

Æ̂=
ln

°
°<

©
ln '̂ (k0)

™¢
° ln

°
°<

©
ln '̂ (k1)

™¢

lnk0 ° lnk1
, (2.2.8)

∞̂= exp
Ω lnk0 ln

°
°<

©
ln '̂ (k1)

™¢
° lnk1 ln

°
°<

©
ln '̂ (k0)

™¢

ln
°
°<

©
ln '̂ (k0)

™¢
° ln

°
°<

©
ln '̂ (k1)

™¢
æ

. (2.2.9)

Since the one-parameterization form in equation (1.2.2) is discontinuous at
Æ = 1, the estimation of the remaining parameters Ø and ± is divided into two
cases. When Æ 6= 1, the cumulant function of stable distributions with the points
k0,k1 > 0 are

8
<
:

ln'(k0;Æ,Ø,∞,±)=°∞Æk0
Æ+ i

£
±k0 +∞Æk0

ÆØtan
°
ºÆ
2

¢§

ln'(k1;Æ,Ø,∞,±)=°∞Æk1
Æ+ i

£
±k1 +∞Æk1

ÆØtan
°
ºÆ
2

¢§
.

(2.2.10)
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As we need the information of the parameters Ø and ±, we take the imaginary
part. Then the parameters Ø and ± are estimated by solving the above equations
simultaneously and using the estimates Æ̂ and ∞̂:

Ø̂=
k1=

©
ln '̂(k0)

™
°k0=

©
ln '̂(k1)

™

∞̂Æ̂ tan
°
ºÆ̂
2

¢
(k0

Æ̂
k1 °k1

Æ̂
k0)

(2.2.11)

±̂=
k1

Æ̂=
©
ln '̂(k0)

™
°k0

Æ̂=
©
ln '̂(k1)

™

k0k1
Æ̂°k1k0

Æ̂
. (2.2.12)

In the case of Æ= 1, the CF takes a discontinuous form and the cumulant functions
are written as

8
<
:

ln'(k0;1,Ø,∞,±)=°∞k0 + i
£
±k0 °Ø 2

º lnk0
§

ln'(k1;1,Ø,∞,±)=°∞k1 + i
£
±k1 °Ø 2

º lnk1
§
.

(2.2.13)

Then the parameters are estimated by solving the above equations simultane-
ously as well:

Ø̂= º

2
k1=

©
ln '̂(k0)

™
°k0=

©
ln '̂(k1)

™

∞̂k0k1 (lnk1 ° lnk0)
(2.2.14)

±̂=
k1=

©
ln '̂(k0)

™
lnk1 °k0=

©
ln '̂(k1)

™
lnk0

k0k1 (lnk1 ° lnk0)
. (2.2.15)

For simplicity, we express the estimates as a function of given points k0 and k1 as
follows:

Æ̂= FÆ(k0,k1) (2.2.16)
∞̂= F∞(k0,k1) (2.2.17)

Ø̂= FØ(k0,k1, Æ̂, ∞̂) (2.2.18)

±̂= F±(k0,k1, Æ̂), (2.2.19)

where Ø̂ and ±̂ additionally needs the information of the estimates Æ̂ and ∞̂. Some-
times, the estimates can possibly outrange the parameter spaces Æ 2 (0,2], Ø 2
[°1,1], and ∞> 0, especially when the true parameters are close to the borders. In
such cases, the parameters are set to the closet border, except for Æ and ∞, the es-
timates are set no lower than 0.01. Applications with other parameterizations use
slightly different forms of CF, but the stable parameters are estimated essentially
by the same procedure as explained above. For the zero-parameterization, which
is another common parameterization form, the CF is replaced to its correspond-
ing form shown in equations (1.2.3) and (1.2.4) for equations (2.2.6) and (2.2.10)
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(or (2.2.13)). For parameterization with a different definition of the scaling pa-
rameter written as c (= ∞Æ) (Nikias and Shao, 1995; Bibalan et al., 2017; Liu et al.,
2018), Bibalan et al. (2017) presents an alternative procedure for the estimation.
They first directly obtain the scaling parameter c from taking the absolute value
of the empirical CF, or the real part of the cumulant function as

ĉ =° ln |'̂(1)| =°<
©
ln '̂(1)

™
. (2.2.20)

Next Æ is estimated as shown in equation (2.2.8). Then, the scale parameter in
our criterion, ∞̂, is obtained as,

∞̂= exp
µ
ln ĉ

Æ̂

∂
. (2.2.21)

The remaining parameters Ø and ± are then estimated straightforwardly as sim-
ilar to the case of the one-parameterization form. By replacing ∞̂Æ̂ to ĉ in equa-
tions (2.2.11) and (2.2.12) (or equations (2.2.14) and (2.2.15)), and using the points
k0 and k1 give the estimates.

2.3 Proposed Approach

In this section, we make an improvement of the CF-based method by dis-
cussing how the points related to the CF should be chosen. We propose a tech-
nique that provides a flexible selection of the points. We also clarify the difference
of how the points are selected between our proposal and the procedures in other
existing CF-based methods.

2.3.1 Inference of point k1

Two positive points of the CF, k0 and k1(k0 6= k1), are ought to be selected to
identify all four parameter estimates. As mentioned before, the absolute value of
the CF in equation (2.2.6) is independent of the skew and location parameters for
any k, and provides information of Æ and ∞. When k = 1/∞ is satisfied, the absolute
value of the CF takes a constant value

ØØ'
°
1/∞

¢ØØ= e°1. (2.3.1)

The advantage of setting k = 1/∞ as one of the candidate points is to reduce any
estimation bias influenced by certain parameter values since we expect to get a
constant estimate which is independent of all four parameters. When ∞¿ 1, how-
ever, empirically obtained values can cause significant estimation errors for the
scale parameter in equation (2.3.1) (Krutto, 2019; Paulson et al., 1975). Therefore,
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CHAPTER 2. ESTIMATION OF STABLE LAWS

we first consider a temporary estimate of the scaling parameter, ∞̃, just in case the
data exhibits scale far from the standardized form (∞= 1).

Take the natural logarithm of equation (2.3.1). The temporary estimate can be
obtained by approximately solving the equation that numerically satisfies

ln
ØØ'̂

°
1/∞̃

¢ØØ'°1, (2.3.2)

using a simple one-dimensional search function (Brent, 2013), or any other op-
timization procedure. Our rough estimate ∞̃ is then used for standardizing, or
pre-standardizing, the candidate points. Specifically, point k1 is set to 1/∞̃, where
ln |'(k1)| empirically takes °1.

As explained above, pre-standardization is preferred especially when we sus-
pect that datasets have too large or small scales. Whenever a new set of points
is required for the parameter estimation process, we conduct pre-standardization.
Point k1 is replaced to 1/∞̌, where ∞̌ is the latest scaling parameter estimate avail-
able at that time.

2.3.2 Inference of point k0

For the argument of selecting point k0 > 0, which is perhaps the most im-
portant proposal in our study. We focus on the absolute value of the CF. Bibalan
et al. (2017) proposed to calculate the distance between two absolute values of CFs
with different index parameters Æ, the Gaussian case (Æ= 2) and the Cauchy case
(Æ= 1). They set k0 > 0 to the point which corresponds to the maximum distance
and the other point to k1 = 1. Although the absolute CF changes depending on
the index parameter Æ, their approach considers a fixed distance and essentially
chooses an identical point for any value of Æ 2 (1,2]. In addition, the distance they
consider does not account for the case of Æ 2 (0,1].

Our approach is an extension of Bibalan et al. (2017), and provides a more
generalized technique of selecting the points. We deal with the problem that the
distance between two absolute values of CFs can vary depending on the parame-
ters. The basic idea is to find the point where the absolute CF, |'(k;Æ)|, presents
the maximum sensitivity with respect to Æ. In other words, we discuss the point
where the distance between the absolute CF of index parameter Æ, |'(k;Æ,Ø,∞,±)|,
and the absolute CF of Æ+¢Æ, |'(k;Æ+¢Æ,Ø,∞,±)|, shows the largest distance.
Such a point is considered as k0 in our study.

To make our discussion more simple, we consider the absolute CF as a function
of variable ¥:

|'(k;Æ,Ø,∞,±)| = exp(°¥Æ),
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where ¥ = ∞k (k > 0) is a newly introduced variable which depends on ∞ and k.
The distance can be expressed as

ØØexp(°¥Æ+¢Æ)°exp(°¥Æ)
ØØ. The candidate point

for ¥0 = ∞k0, where the maximum distance is achieved, can be calculated by

d

d¥

ØØexp(°¥Æ+¢Æ)°exp(°¥Æ)
ØØ= 0, ¥> 0. (2.3.3)

Solving this equation for ¥ > 0 yields two solutions, ¥ 2 (0,1/∞) and ¥ 2 (1/∞,1).
For both points, the absolute value of CF shows the largest ratio of change in a
local sense. The smaller point ¥ 2 (0,1/∞) is employed, because the distance at the
smaller point tends to have larger values than that at the larger point ¥ 2 (1/∞,1),
which enables us to estimate Æ and ∞ in a more desirable and informative manner.
Another reason is that smaller |k| is preferred rather than larger |k|. As |k|! 0,
the asymptotic variance of the empirical cumulant function decreases (Krutto,
2019). With empirical CF obtained by i.i.d. distributed datasets, the relation

E

hØØ'N(k)
ØØ2

i
= |'(k)|2 + 1

N

°
1° |'(k)|2

¢
, (2.3.4)

holds (Kakinaka and Umeno, 2020a), which implies that as k becomes larger, the
empirical absolute CF |'N(k)| is likely to be subject to sample errors. Thus, the
smaller ¥= ∞k should be considered in this study.

The above discussion implies that k should be set close to zero (but not at zero
because then the CF takes a constant value and no information of the parameters
will be provided). But at the same time, the employed smaller point is standapart
from zero to some extent, so that the empirical CF will be more or less exposed by
sample errors. Therefore, the choice of points derived from equation (2.3.3) is un-
satisfactory, and hence the distance

ØØexp(°¥Æ+¢Æ)°exp(°¥Æ)
ØØ should be modified.

To reduce the effect of sample errors, we introduce a weight function w(¥) that
decreases monotonically as ¥ becomes larger (note that the introduced variable
¥= ∞k has a linear relationship with k).

Using the weight function w(¥), we now introduce a weighted distance
ØØexp(°¥Æ+¢Æ)°exp(°¥Æ)

ØØw(¥),

for ¥> 0. For convenience, we employ w(¥)= exp(°ø|¥|), where ø> 0, since the CF
exhibits an exponential form. This choice leads to the association of the weighted
distance with a statistical measure used for goodness-of-fit tests, developed by
Matsui and Takemura (2007). They propose the following test statistic based on
empirical CFs,

DN,∑ := N

Z1

°1

ØØ'̂(t)°exp(°|t|Æ)
ØØ2 h(t)dt,

h(t)= exp(°∑|t|), ∑> 0, (2.3.5)
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where h(t) is a monotonically decreasing weight function. DN,∑ denotes the weighted
L

2-distance between the empirical CF and the symmetric standardized stable CF
'(t;Æ,0,1,0). This weighted L

2-distance can be associated with the weighted dis-
tance we are considering now.

Taking the absolute value of a CF yields again a standardized form of a CF
with Ø= 0 and ±= 0:

exp(°¥Æ)= |'(k;Æ,Ø,∞,±)| ='(¥;Æ,0,1,0).

Thus, the absolute values of CF with index parameter Æ and Æ+¢Æ are equivalent
to the symmetric standardized stable CFs, '(¥;Æ,0,1,0) and '(¥;Æ+¢Æ,0,1,0),
respectively. The weighted L

2-distance between these CFs essentially coincides
DN,∑, when the weight function satisfies

w(¥)=
p

h(¥),

for ¥> 0. In this case, the difference between the CFs can be evaluated more ac-
curately with the background of a meaningful measurement. Following Matsui
and Takemura (2007), the asymptotic distribution of DN,∑ is numerically eval-
uated and the critical values of the test statistics are approximately obtained.
Through computational simulation, they provide evidence that the test is most
powerful when ∑= 5.0 (h(¥)= exp(°5|¥|)), especially for heavy tailed distributions.
Thus, our choice of the weight function is w(¥)= exp(°2.5|¥|), since ø= ∑/2. Other
weight functions such as w(¥) = exp(°|¥|) and w(¥) = exp(°¥2) (Paulson et al.,
1975; Heathcote, 1977) can be employed, but lacks a conclusive evidence for the
use of these alternatives.

With the weight function, the candidate points ¥> 0 are calculated by solving
the following equation:

g(Æ,¥)= d

d¥

©°
exp(°¥Æ+¢Æ)°exp(°¥Æ)

¢
·exp(°ø¥)

™

= 0, (2.3.6)

where ø= 2.5. Then we have

g(Æ,¥)= (Æ¥Æ°1 +ø)exp(°¥Æ°ø¥)

°
°
(Æ+¢Æ)¥Æ+¢Æ°1 +ø

¢
exp(°¥Æ+¢Æ°ø¥). (2.3.7)

For convenience, ¢Æ is set to 0.01 for all cases in this study. Equation g(Æ,¥) = 0
indicates the relationship between the index parameter Æ and point ¥ that ex-
hibits the maximum rate of a change, or the maximum sensitivity, of the absolute
CF with respect to Æ.
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2.3. PROPOSED APPROACH

Figure 2.1: The theoretical relationship between Æ and ¥ based on our proposed
selection approach, g(Æ,¥)= 0 in equation (2.3.6), is shown in the solid black line.
The blue plot shows the simulated results for the best point with the minimum
MSE for Æ and Ø over 100 simulations. We consider the MSE of Æ+ 1

10Ø because
the accuracy of Ø is generally worse roughly by ten times than the accuracy of Æ,
and also that Ø estimates are usually susceptible to Æ estimates (McCulloch, 1986;
Koutrouvelis, 1980; Bibalan et al., 2017). The simulation is implemented for each
value of Æ ranging within the parameter space of 0.2 to 1.95.

There could exist some relationship between Æ and ¥ since they are interre-
lated due to g(Æ,¥) = 0. When some estimate Æ̂ is given, the corresponding point
is obtained by computing ¥ that satisfies g(Æ̂,¥) = 0, and vice versa (the corre-
sponding parameter Æ of a given point ¥̂ can be calculated by computing the equa-
tion g(Æ, ¥̂) = 0). As we have discussed previously in this subsection, we focus
on the point closer (smaller) to zero out of the two candidates of the calculated
points from equation (2.3.6). Figure 2.1 ascertains whether our approach of equa-
tion (2.3.6) correctly estimates the parameters of stable distribution. The model
clearly characterizes the distinctive relationship between Æ and ¥, which are em-
pirically verified via simulation using synthetic data generated from random sta-
ble variables (Weron, 1996). This indicates that our selection of points is valid for
identifying desired points in the estimation process.

In practice, Æ is unknown. Hence the selection of point ¥0 = ∞k0 is undecidable,
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so that the parameters for the stable law cannot be estimated directly. To cope
with this problem, we first aim to get a rough estimate of Æ calculated by using
the temporary scale estimate ∞̃. The rough estimate is considered poor as the
estimation method, but it plays a role in starting off the estimation process with
reasonable initial values. The accuracy of both points (¥0 = ∞k0 and ¥1 = ∞k1) and
the parameters (Æ,Ø,∞,±) can be improved by alternating searches of Æ and ¥ from
our relation model g(Æ,∞) = 0 several times to get sophisticated estimates. With
estimates ¥0 and ¥1, the four parameters are ultimately calculated.

2.3.3 Estimation procedures

Here we present our proposed algorithm for the estimation of all four param-
eters of stable laws by utilizing the relationship between Æ and ¥. Regarding
the fact that empirically obtained estimates occur substantial errors induced by
∞ ¿ 1, we conduct a pre-standardization with k replaced to ¥ = ∞k. Using the
expressions of the estimates in equations (2.2.16) (2.2.17) (2.2.18) (2.2.19), our
algorithm is written as follows:

1. Compute a temporary estimate ∞̃temp from sample data Xn (n = 1,2, . . . , N)
that satisfies the equation,

ln

ØØØØØ
1
N

NX

n=1
e

iXn/∞

ØØØØØ

ØØØØØ
∞=∞̃temp

=°1.

2. Set
(

k̃0 = ª/∞̃temp

k̃1 = 1/∞̃temp,

where ª is any initial value of ª 2 (0,1).

3. Make a rough estimate of Æ and ∞ from

Æ̃= FÆ(k̃0, k̃1)
∞̃= F∞(k̃0, k̃1),

respectively, where FÆ(·, ·) and F∞(·, ·) are given in equations (2.2.16) and (2.2.17).

4. Compute ¥̃ that satisfies g(Æ̃,¥)
ØØ
¥=¥̃ = 0, where g(·, ·) is given in equation (2.3.7).

5. Recalculate the points associated with ¥̃,
(

k̃0 = ¥̃/∞̃
k̃1 = 1/∞̃,
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6. Estimate Æ and ∞ as

Æ̂= FÆ(k̃0, k̃1)
∞̂= F∞(k̃0, k̃1),

7. Compute ¥̃ that satisfies g(Æ̂,¥)
ØØ
¥=¥̂ = 0.

8. Recalculate the points associated with ¥̂,
(

k̂0 = ¥̂/∞̂
k̂1 = 1/∞̂,

9. Finally, we estimate the parameters Æ and ∞ as

Æ̂= FÆ(k̂0, k̂1)

∞̂= F∞(k̂0, k̂1),

10. Estimate the parameters Ø and ± from the functions FØ(·, ·, ·, ·) and F±(·, ·, ·)
given in equations (2.2.18) and (2.2.19), as

Ø̂= FØ(k̂0, k̂1, Æ̂, ∞̂)

±̂= F±(k̂0, k̂1, Æ̂),

which leads to the estimates of all four parameters of stable laws.

2.4 Numerical Assessments

In this section, we show numerical assessments for the estimation of stable
laws. We compare the performances of our proposal approach to other state-of-art
approaches using the MSE and the KS-distance. The comparison is studied for
three approaches. We focus on the approaches of characteristic function-based
methods presented by Bibalan et al. (2017) and Krutto (2019). We also com-
pare with the traditional QM method (McCulloch, 1986; Fama and Roll, 1971)
explained in subsection 3.1, to provide a benchmark with a well-known criterion.
Note that all three approaches above exhibit closed-form expressions for all four
estimates of stable parameters.

Bibalan et al. (2017) have shown that their approach generally outperforms
other methods that yield a closed-form expression, such as the FLOM, the QM,
and the MOLC. Krutto (2019) also compares the performances with several well-
known methods and concludes that the method gives accurate estimates. Since

34



CHAPTER 2. ESTIMATION OF STABLE LAWS

both of them belong to the family of the CF-based method, the selection of the
points k0 and k1 plays an important role. In Bibalan et al. (2017), k1 is set to 1.
Point k0 is always set to where the point shows the maximum distance between
the absolute Gaussian CF and the absolute Cauchy CF, by using the estimates of
∞Æ which they are calculated beforehand. It should be mentioned that the CF in
this case poses a alternative definition of the scaling parameter, so we eventually
obtain ∞ in the last procedure in equation (2.2.21). On the other hand, Krutto
(2019) suggests to employ two points that satisfies

(
ln |'̂(k0)| =°0.1
ln |'̂(k1)| =°0.5,

under empirical searches. We examine the performance for each parameter of sta-
ble distribution in addition to the fit with the entire estimated stable distribution.
We also refer to the effects of sample sizes for each estimation method. For all
the simulations in this chapter, we generate L = 500 synthetic data of N = 10000
i.i.d. random stable samples. Synthetic random data sequences following a sta-
ble distribution can be generated by algorithms constructed by Chambers et al.
(1976), Weron (1996), and Umeno (1998). Umeno (1998) generates random stable
variables based on the superposition of chaotic processes. The classical method of
Chambers et al. (1976) is widely known as the pioneer of all the methods, which
the algorithm was reorganized and corrected. Weron’s algorithm is our choice of
method, which is simple and is the fastest in calculation.

2.4.1 Performance of parameter estimates

The performance of the estimated parameters are examined by the MSE crite-
rion:

MSE(µ)= 1
L

LX

l=1

°
µ° µ̂l

¢
,

where µ and L = 500 is the parameter of stable laws and the number of times
the simulation is implemented, respectively. We calculate the MSE of all four
parameters and evaluate each parameter individually.

Table 2.1 shows the simulation results of the MSE associated with the es-
timate bias for each parameter. We consider the cases of parameters with Æ =
0.5,1.5,1.8 and Ø = 0,0.5, all with a standardized form of ∞ = 1 and ± = 0. Note
that for the QM, the method has parameter restrictions of Æ∏ 0.6 and hence the
cases with Æ smaller than 0.6 can not be implemented. Our proposed approach
generally provides the most accurate estimation with the smallest MSE. Espe-
cially for the index parameter Æ and ±, our approach significantly improves the
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accuracy of the estimates. For some cases as in large values of Æ = 1.8, however,
the method fails to show the best performance. One possible reason may be re-
lated to the argument that the CF-based method reflects the tail part of the PDF
in a more precise manner. This indicates that cases of lighter tails with Æ close to
2 may not benefit from the method compared to those of heavier tails with smaller
Æ. Another possible reason may be that the accuracy of calculating the empirical
CF for cases of Æ close to 2 is not as high as for those of smaller Æ. This is because
the CF is given by the Fourier transformation of the PDF, and cases of larger Æ
close to 2 have smaller sample variance but larger spectrum width.

2.4.2 Performance of the estimated distribution

Next, we examine the performance of estimating stable laws from a differ-
ent perspective; evaluation of the entire distribution. We use the KS distance
expressed as

D =max
x

|P(x)° P̂(x)|,

which represents the maximum distance between two distributions in terms of the
CDF. Here P(x) and P̂(x) denotes the empirically obtained CDF, and the theoreti-
cal estimated CDF, respectively. The standard density and distribution functions
of stable distributions are numerically derived approximately by implementing
the Fourier integral formulas (Zolotarev, 1986; Nolan, 1997), which are available
in package libstable that provides good approximation values (del Val et al., 2017).
KS distance is one of the most major standards for numerical assessments when
discussing stable laws. We set aside any issues related to numerical approxima-
tions of stable distributions, so that we can focus on the performance between
the methods. The root mean square (RMS) of the KS distance is used for the nu-
merical assessment to make the small differences of the comparison results more
apparent.

Figure 2.2 shows the simulation results of the KS distance for several cases of
stable distributions; S(Æ,0.1,1,0), S(1.7,Ø,1,0), S(1.3,0.2,∞,0), and S(0.7,°0.4,1,±).
The RMS of the KS distance is calculated for each case with various values of pa-
rameters ranging within parameter ranges. We find in Figure 2.2 (c) that the
estimation for the scaling parameter ∞ 6= 1 poses significant estimation errors.
This is caused by the effect of sample errors induced by the scaling parameter ∞
far from the standardized form, as shown in equation (2.3.1). On the other hand,
our proposed method achieves the smallest value of KS distances for all cases of
parameter combinations. This proves that we are also successful in improving the
estimation of the entire stable distribution.
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Table 2.1: Simulation results for the performance of all four stable law param-
eters. The comparison of the proposed method with other methods based on
Bibalan et al., Krutto, and QM are examined for different values of (Æ,Ø) with
a standardized form of (∞,±) = (1,0). Absolute values of bias are given below the
MSE in parentheses for all cases. The minimum value of MSEs among the meth-
ods are shown in bold for each case of parameters.

Æ

0.5 1.5 1.8
Ø Ø Ø

(£10°4) 0 0.5 0 0.5 0 0.5
Æ̂ proposed MSE 0.859 0.767 3.353 2.881 2.128 2.100

bias (1.047) (5.376) (9.776) (4.193) (1.567) (2.140)
Bibalan et al. 5.252 4.803 4.015 3.757 2.346 2.234

(8.435) (4.880) (2.793) (16.51) (2.994) (1.710)
Krutto 1.387 1.429 4.958 4.604 2.816 2.728

(13.48) (2.535) (18.95) (4.333) (0.231) (3.642)
QM — — 3.915 5.306 9.282 8.857

(—) (—) (4.732) (16.75) (16.63) (16.97)
Ø̂ proposed MSE 6.867 7.522 11.54 11.55 40.68 48.78

bias (13.78) (3.230) (0.629) (12.33) (24.90) (16.48)
Bibalan et al. 20.95 20.64 15.09 16.61 47.62 56.67

(19.32) (5.274) (17.51) (4.882) (36.72) (19.40)
Krutto 11.66 12.64 15.71 15.18 37.05 42.97

(0.736) (3.166) (9.488) (3.711) (7.387) (29.83)
QM — — 11.59 13.01 61.39 162.3

(—) (—) (6.575) (64.02) (3.764) (373.2)
∞̂ proposed MSE 15.95 13.20 1.444 1.396 0.842 0.857

bias (14.74) (20.28) (5.552) (3.004) (0.748) (9.113)
Bibalan et al. 13.66 13.29 1.450 1.386 0.845 0.854

(24.70) (44.02) (5.306) (3.741) (0.984) (9.016)
Krutto 31.33 32.42 1.910 1.841 0.895 0.938

(48.27) (25.64) (13.73) (4.923) (1.007) (9.917)
QM — — 1.613 1.989 1.483 1.518

(—) (—) (11.55) (27.58) (9.162) (20.74)
±̂ proposed MSE 10.80 14.25 8.401 10.27 3.147 3.428

bias (11.90) (33.02) (10.70) (1.020) (0.243) (2.800)
Bibalan et al. 30.86 35.41 10.72 13.43 3.497 3.965

(15.92) (20.27) (26.94) (8.638) (3.954) (3.118)
Krutto 61.87 88.23 9.796 12.00 3.151 3.275

(23.49) (56.67) (4.332) (10.58) (2.116) (4.712)
QM — — 9.394 11.68 3.710 3.815

(—) (—) (14.87) (46.61) (1.920) (32.97)
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(a) RMS of KS distances for S(Æ,0.1,1,0) (b) RMS of KS distances for S(1.7,Ø,1,0)

(c) RMS of KS distances for S(1.3,0.2,∞,0) (d) RMS of KS distances for S(0.7,°0.4,1,±)

Figure 2.2: Comparison of the KS distances for the methods based on the pro-
posed approach, Bibalan et al.’s approach, Krutto’s approach, and the QM method.
The RMS values of KS distances are studied for several cases of stable distribu-
tions with parameters (a) Æ (b) Ø (c) ∞ (d) ± ranging within its parameter range
(N = 10000,L = 500).
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Table 2.2: Basic statistics of USDJPY and WTI return time series with time in-
tervals of 1-hour and one day, respectively. Mean is the average of the return time
series, SD is the standard deviation, and N is the number of sample sizes.

Mean SD Skew Kurt Min Max N
USDJPY 1.027£10°5 0.0062 -0.0531 4.7880 -0.0384 0.0550 4190
WTI -7.312£10°6 0.0041 0.5900 23.945 -0.0576 0.1068 54356

2.4.3 Effect of sample size

Needless to say, the accuracy of the estimation method strongly depends on
the number of samples. Larger sample sizes give more information of the dataset
whereas smaller sample sizes have only little information making it challenging
to detect the true values. We examine the effect of sample size by comparing
the performance among the estimation methods. Figure 2.3 displays the MSE of
each parameter of stable distribution as the sample size N changes from 300 to
10000. The study is examined for the case of S(1.4,0.2,1,0). The MSE simulated
by means of our method decreases with the order O (1/N) while the MSE simu-
lated by means of other representative methods also exhibited similar behaviors
of order. Our proposed approach offers the best performance except for the loca-
tion parameter ±, where the QM method sometimes give more accurate estimates
for large datasets.

2.5 Application to Financial Empirical Data

This section shows application of the proposed estimation method to real fi-
nancial data. We provide several empirical studies to present that our proposed
approach is appliable for a wide range of empirical analysis in finance.

Asset price returns in various financial markets tend to show interesting prop-
erties of stable laws ever since Mandelbrot (1963) first revealed that stable dis-
tribution fits cotton price returns better than the classical Gaussian distribution.
This argument have attracted attention to identifying price behaviors in many
financial fields such as equities (Fama, 1965; Mantegna and Stanley, 1995; Xu
et al., 2011), price consumer index inflation (Chronis, 2016), metal markets (Kreżolek,
2012), oil markets (Yuan et al., 2014), and Cryptocurrency markets (Kakinaka and
Umeno, 2020a). We investigate return distributions of the Japanese Yen currency
exchange rate in terms of the US dollar (USDJPY) and the West Texas Interme-
diate (WTI) crude oil futures market, both of which are potent indices in finance.
The data that support the findings of this study are openly available in Hist-
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(a) MSE(Æ) for cases of S(1.4,0.2,1,0) (b) MSE(Ø) for cases of S(1.4,0.2,1,0)

(c) MSE(∞) for cases of S(1.4,0.2,1,0) (d) MSE(±) for cases of S(1.4,0.2,1,0)

Figure 2.3: Comparison of the MSE for the methods based on the proposed ap-
proach, Bibalan et al.’s approach, Krutto’s approach, and the QM method with
different values of sample sizes N = 300,1000,3000,10000. The MSE values of
each stable parameter (a) Æ (b) Ø (c) ∞ (d) ± are studied for cases of S(1.4,0.2,1,0)
over L = 500 synthetic datasets.
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Table 2.3: Parameters of the fitted stable distribution for daily return time se-
ries of USDJPY exchange rate (2004/01/05-2019/12/31) and KS-distance calcu-
lated based on several estimation methods (N = 4190).
method Æ Ø ∞ ± KS
proposed 1.708 -0.121 0.0035 -0.00004 0.0214

Bibalan et al. 1.884 -0.261 0.0039 -0.00002 0.0396
Krutto 1.767 -0.138 0.0036 -0.00004 0.0279
QM 1.584 -0.064 0.0034 -0.00012 0.0216

Data.com (http://www.histdata.com/download-free-forex-data/). The basic
statistics of the indices are provided in Table 2.2. We explore both cases of com-
mon daily analysis and high-frequency data analysis. In particular, we use daily
and one-hour return time series for the USDJPY and the WTI market, respec-
tively. Since the scale of returns for both cases are too small for the method based
on Bibalan et al. (2017) to give plausible estimates, we do a pre-standardization
process beforehand. We multiply returns by 100 and after the estimation the pa-
rameters ∞ and ± are adjusted by dividing them by 100. Table 2.3 presents the
estimates of the fitted stable distribution associated with the KS-distance between
the empirical distribution and the estimated stable distribution for USDJPY, cal-
culated based on four controversial estimation methods. Our primary focus is on
the KS-distance value. The results show that the estimated distribution based on
our proposed method presents the smallest value among other estimation meth-
ods. The smallest KS-distance implies that our method exhibits stable laws that
best describes the observed data. Parameter estimates and the distance measure
for the WTI market are shown in Table 2.4. The result indicates that the out-
standing performance of our method also holds for high-frequency data with the
lowest KS-distance. What makes the development of the estimation method a cru-
cial matter is that the parameter estimates can differ so much among the methods
when applied to empirically observed data, even for large datasets. We find in Ta-
ble 2.4 that the estimate of Æ marks a low 1.260 based on the QM method whereas
Bibalan et al.’s method presents 1.846, which the value differs quite a lot between
the methods in spite of the large sample size of dataset with N = 54356. A method
that accomplishes the inference of the closest distribution or set of parameters
provides a more reliable model. Hence, our proposed estimation approach play a
significant role as a tool for modeling with stable laws.
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Table 2.4: Parameters of the fitted stable distribution for 1-hour return time series
of WTI crude oil futures market (2010/11/14-2019/12/31) and KS-distance calcu-
lated based on several estimation methods (N = 54356).
method Æ Ø ∞ ± KS
proposed 1.357 -0.045 0.0015 -0.00007 0.018

Bibalan et al. 1.846 -0.012 0.0024 -0.00002 0.088
Krutto 1.487 -0.071 0.0017 -0.00007 0.036
QM 1.260 -0.031 0.0015 -0.00009 0.019

2.6 Summary and Discussions

This chapter has proposed a new approach for estimating stable laws and ap-
plied this approach to the exploration of price behaviors in financial markets. Our
new technique is developed under the method of moments, which is one of the
widely known CF-based methods that require the choice of appropriate momental
points. The points necessary for the estimation process are flexibly chosen, as the
estimation accuracy of stable laws depends heavily on their true parameter val-
ues. We have focused on the fact that the index parameter Æ and the desired mo-
mental points exhibit a distinctive relationship, which is a new perspective in the
literature. This relation is modelled as g(Æ,¥)= 0, based on the idea of employing
points ¥ at which the weighted absolute values of the CF present the maximum
sensitivity. To detect appropriate points, we have suggested a procedure rely-
ing on the combination of empirical searches and algorithmic approaches. The
advantage of employing these points is that the parameters of stable laws can be
estimated in a more precise manner while remaining straightforwardly the imple-
mentation of the method. The relative performance of the parameter estimates is
benchmarked against other existing methods, specifically the QM and the meth-
ods of Bibalan et al. (2017) and Krutto (2018), through simulation studies in terms
of the MSE and KS-distance criteria. The results have implied that our method
is the most powerful with the best performance. Our approach assures that the
estimates of all four parameters of stable laws present a closed-form expression
without any restrictions on parameter ranges, making the method significantly
practical. We have also explored the behaviors of price fluctuations in several
financial markets to show that our method is applicable for empirical financial
studies. For the USD-JPY exchange rate and the WTI crude oil future price, our
method supports stable laws with the highest performance among all the other
methods discussed in this chapter. This would motivate us to further develop
analytical methods for examining stable laws, as well as to further investigate
various features of financial markets.
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Chapter 3

Power Laws in Cryptocurrencies

This chapter corresponds to paper 2 in the author’s papers list.

3.1 Introduction

Analysis of financial price fluctuations has long been assumed to follow a Gaus-
sian distribution for its simplicity and the background of the Central Limit The-
orem (CLT). As an example, the famous Black-Scholes model (Black and Scholes,
1973) was formulated under this assumption. However, it is well known that
Gaussianity fails to capture volatile observations and leads to underestimating
tail risks. Extreme fluctuations have been observed repeatedly in financial mar-
kets: notable examples include the financial crisis of 2007-2008, which caused tur-
bulence of the market. Physical (or econophysics) concepts have been offering use-
ful tools for analyzing such economic phenomena. In the past decades, there have
been studies giving an account of asset returns well complied with a Lévy’s stable
distribution, which has fatter tails with power-functions compared to a Gaussian
distribution (Mandelbrot, 1963; Fama, 1965; Hsu et al., 1974; Mantegna and Stan-
ley, 1995). It is one of the most famous parametric fat-tailed distributions and
allows us to model not only financial modeling but also a wide range of scientific
fields from natural phenomena to computational science (Xu et al., 2011; Menabde
and Sivapalan, 2000; Koblents et al., 2016; Chronis, 2016; Scalas and Kim, 2007).
A common motivation in these studies is analyzing extreme values observed in
social issues and measuring the liquidity conditions in terms of the parameters of
stable laws. Moreover, in a theoretical context, Lévy’s stable distribution is closely
related to an essential theorem— the Generalized Central Limit Theorem (GCLT)
(Gnedenko and Kolmogorov, 1954) that thoroughly explains the scaling phenom-
ena in financial markets. This theorem suggests that the sum of i.i.d. random
variables with infinite variance converge only to a Lévy’s stable distribution. Be-
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sides, an extension of the GCLT is studied recently (Shintani and Umeno, 2018)
with the application of the form of Lévy’s stable distribution. Such arguments
enable us to capture the inherent characteristics of asset price fluctuations and
help identify the probability distribution of asset returns. Thus, analysis of price
fluctuation behaviors using Lévy’s stable distribution can be crucial to understand
the mechanism of financial markets (Jovanovic and Schinckus, 2016).

A paper by Begušić et al. (2018) studies the fat-tailed nature of price fluctu-
ations for Bitcoin and reveals that Æ is 2.0 ª 2.5, by using the traditional Hill
estimator method. The method focuses on finding a local fit for tails, and al-
though the results provide interesting findings of power-law behaviors, it does not
account for the entire distribution. On the other hand, the framework of Lévy’s
stable distribution covers the entire dataset, allowing us to investigate extreme
and non-extreme price fluctuations from the same standpoint.

In this chapter, we analyze the price fluctuation behaviors of emerging cryp-
tocurrency markets with the Lévy’s stable distribution and examine the validity of
the model. We first show that the probability density of price returns are in a good
agreement with the Lévy’s stable distribution through the parameter estimation
in the case of a fixed 1-hour time interval. We next consider different time inter-
vals for extensive analyses and provide empirical evidence that price fluctuations
in cryptocurrency markets do not follow a Gaussian distribution and can be better
described by a Lévy’s stable distribution. To confirm this, we propose a numeri-
cal assessment by using a function representing the distance between theoretical
and empirical distributions, which is obtained from the Parseval’s relation. An
advantage of this approach is to evaluate stable distributions quantitatively, and
at the same time, to avoid the analytical difficulties. In addition, we examine the
scaling property of returns to check whether the Lévy stable regime holds. The
combination of these approaches helps lead to a practical analysis for detecting
stable laws in cryptocurrency markets. We discuss that if we admit some intrin-
sic noise errors, returns can be assumed to follow a Lévy stable regime within a
certain range of time intervals— outside the range, there are either quantitative
or theoretical failures. Furthermore, we discuss whether the Lévy’s stable dis-
tribution can be an appropriate model by examining the model-fitting for returns
under the Lévy’s stable distribution and under other fat-tailed distributions. Our
study compares fitting approaches covering the large portion of the distribution
with those covering only the tail parts of the distribution, including the Hill esti-
mator. The idea proposed in this study is helpful not only to value the liquidity
conditions of the market but also provide clues towards financial modeling in a
more careful manner.
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3.2 Methodology of Power Law Analysis

This section explains the methods used for analysis in this study. In first sub-
section we discuss what method applies to parameter estimation. The second sub-
section introduces a quantitative valuation by means of characteristic function,
which can be expected as a tool to evaluate the fit with Lévy’s stable distributions.
Finally, the last subsection describes a method used for testing the fit compared
to other forms of distributions.

3.2.1 Power law estimations

Numerous approaches are known for parameter estimation. Since the PDF is
not always expressed in a closed form, there are some challenges to overcome the
analytic difficulties.This has long been a motivation for researchers to construct a
variation of estimation methods, and the representatives are for instance; the ap-
proximate maximum likelihood estimation (DuMouchel, 1973; Brorsen and Yang,
1990; Mittnik et al., 1999; Nolan, 2001), non-parametric quantile (QM) method
(Fama and Roll, 1971; McCulloch, 1986), fractional lower order moment (FLOM)
method (Ma and Nikias, 1995), method of log-cumulant (Nicolas and Anfinsen,
2001; Pastor et al., 2016), the characteristic function (CF) based method (Koutrou-
velis, 1980; Bibalan et al., 2017; Press, 1972; Kakinaka and Umeno, 2020b) and
more.

While these methods aim to get estimators related to the stable distribution,
there are some methods that can be applied to the case where the data is expected
to follow a power-law. One common approach is the traditional Hill estimator
(Hill, 1975), which focuses on estimating the tail index parameter Æ. The ap-
proach pays attention to discover the power law decay of the tail portion of the
cumulative distribution, P(X > x) ª x

°Æ (then the PDF decays with Æ+1). This
method is known to be a right choice of tool for identifying and qualifying the tail
properties in empirical studies (Plerou and Stanley, 2008; Gopikrishnan et al.,
1999; Begušić et al., 2018), and often reveals the inverse cubic law in many finan-
cial asset returns. Before the estimation, one first needs to set the lower bound
xmin, which means that the power law is studied only for values larger than the
lower bound. The idea of the method is to estimate local slopes of the tail portion
of the distribution as,

Æ̂= n

√
nX

i=1
ln

xi

xmin

!°1

,

where xi (i = 1,2, . . . ,n) is the n largest data out of N observed data, such that
xi ∏ xmin. Note that the method is based on the technique of maximum likelihood
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estimator. Hill estimator is known to be asymptotically normal and consistent for
n, N !1,n/N ! 0, and the standard error on Æ̂ is æ= Æ̂/

p
n.

The choice of the lower bound xmin is a crucial issue when applying to empirical
data. If we choose xmin too small, estimation for local slopes for the tail portion
will be more inaccurate (Clauset et al., 2009). Fitting local tails becomes difficult
because of including other portions of the distribution, which usually tends to
show properties different from the tail. On the other hand, if xmin too large is
chosen, we will get a biased estimate due to the lack of sample numbers. Moreover,
the estimator gives excellent results when the data follows a power-law form, but
also give some estimation for data that is not necessarily drawn from a power-law
distribution. In other words, the estimator calculates Æ accurately that best fits
the simple power-law form x

°Æfor any data in the range of x ∏ xmin. Although the
far tails of cumulative distribution for stable distribution show the simple power
law form as well: P(X > x) ª cx

°Æ, with the constants c = °(Æ)(sin(ºÆ/2))(1+Ø)/º,
it tends to have overestimated Æ̂ when choosing the proper xmin is not taken into
account(Weron, 2001).

To mitigate this issue, we employ the method of estimating the best choice
of xmin(Clauset et al., 2009), which helps to see whether the Hill estimator is
valid for stable distributions. The idea is the use of the Kolmogorov-Smirnov (KS)
statistic, which represents the maximum distance between two distributions in
terms of cumulative distribution function (CDF) shown as:

D = max
x∏xmin

|P(x)°Q(x)|,

where P(x) is the CDF obtained from empirical data, and Q(x) is the CDF that
best fits the power law model. With a given lower bound xmin, KS statistic can be
obtained using data points in the range of x ∏ xmin. The estimation for the lower
bound x̂min is then the one that minimizes the KS statistic D. This method gives
good results and achieves to estimate x̂min precisely and adequately. However,
when the distribution follows a power law only in the limit of very large x, it can
be unrealistic assuming to fit with distribution x

°Æ for any specific range of x.
Stable distributions have forms to illustrate this case; the far tails are equivalent
to the pure power-law form x

°Æ but only in an asymptotic behavior. Finding the
actual value of xmin is obscured by the fact that stable distribution does not exactly
correspond to the pure form x

°Æ within ranges of observed values. Therefore,
the Hill estimator may not be appropriate for detecting the power law under the
assumption of stable distributions.

In response to this fact, a method that can take enough data into consideration
is preferred when dealing with stable distributions. Many of the representative
methods suggested at the beginning of this subsection tend to have several issues,
such as a limited range of estimation, a high computational cost, and the require-
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ment of a larger dataset. The CF-based method makes good use of CF’s distinc-
tive features and is most frequently applied for its relatively less defect compared
to other methods (Kateregga et al., 2017). In particular, the regression-based
method (Koutrouvelis, 1980; Kakinaka and Umeno, 2020b) provides a straight-
forward approach with the application of regressions using the CF form, which is
the estimator of our choice. It shows fast and accurate computation well enough
to estimate cryptocurrency data.

3.2.2 Appraisal for the Lévy stable regime through the char-

acteristic function

For the goodness-of-fit, statistical tests have analytical difficulties in practice
due to the lack of fundamental statistics, especially the lack of a closed-form of
PDF. Numerically accurate expressions are known for stable distributions, but
often have several constraints (Crisanto-Neto et al., 2018; Arias-Calluari et al.,
2018). Therefore, statistical indicators such as KS statistics and KL divergence
have fundamental problems to be applied when modeling with stable distribu-
tions. As an alternative, we focus on the CF, following the fact that the inversion
formula for the CF indicates a one-to-one correspondence between the PDF and
the CF. The CF of the stable distribution can be expressed analytically as equa-
tion (1.2.2). Our attempt here is to calculate the difference or the distance between
the PDF of the estimated stable distribution (theoretical) and the PDF obtained
from a large number of real data (empirical). The distance we consider is a simple
form shown as,

Z1

°1
| p̂(x)° p(x)|2 dx.

where p̂(x) is the PDF for the estimated stable distribution in a continuous form
and p(x) for the empirical distribution as well. When we discuss the empirical
PDF pN(x) from N observed data, we should consider it in a discrete version
due to its discontinuous form. In the belief that continuous-time signals of the
empirical PDF could be discretized into discrete-time signals, we obtain

1X
n=°1

| p̂[n]° pN[n]|2 ,

where p̂[n] and pN[n] represents the discretized form of p̂(x) and pN(x), respec-
tively. We do not conduct the process of discretization in practice but instantly use
the Parseval’s theorem based on Discrete-time Fourier Transform (DTFT), which
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yields

1X
n=°1

| p̂[n]° pN[n]|2 = 1
2º

Zº

°º

ØØ¡̂(k)°¡N(k)
ØØ2 dk

= lim
¢k!0

√
1

2º

ºX

k=°º

ØØ¡̂(k)°¡N(k)
ØØ2¢k

!

' ¢k

2º

2º
¢kX

i=1

ØØ¡̂(ki)°¡N(ki)
ØØ2 . (3.2.1)

where ¢k is the width of bin for Riemann sums. Note that the Parseval’s theorem
holds under the assumption of the sampling theorem, which requires sampling
intervals to be refined enough. The process of Riemann sum in equation (3.2.1)
approximately holds when both conditions satisfy: a large enough number of
data to obtain an unbiased estimate of ¡̂(ki), and a small enough width of bin
¢k. In this study, for all cases, ¢k is assumed as small an amount as 2º/100
for computation convenience in the process of summation, which means the dis-
tance is calculated as 100 sums of 1

100
ØØ¡̂(ki)°¡N(ki)

ØØ2 for the range of ki 2 [°º,º]
(k1 = °º,k2 = °º+¢k, . . . ,k100 = º). This method implies that the distance be-
tween the theoretical and the empirical PDF could be calculated with the same
idea based on the form of CF.

Similar function forms are introduced as the minimum distance method for
parameter estimation (Press, 1972; Paulson et al., 1975); however, they have put
a weight function to the distance function. Heathcote extended to develop a more
general setting, but the method still has the difficulties of selecting the proper
values (Heathcote, 1977). The distance function we propose is advantageous for
many application due to its simple form and presents less computational draw-
backs.

Next, we remark on the validity of the distance function. We check the ap-
plicability of the distance function to make further discussions possible for fitting
data to stable laws. Figure 3.1 shows the basic properties and results needed
for explaining the concept. Sub-figure (a) shows the simulated distance between
theoretical stable distributions and generated stable distributions. The deviation
error for distance (variance from finite-size effects) is also shown. Here, the ran-
dom generator for stable distributions is based on the method proposed by Weron
(1996). When ¡N(k) obtained from i.i.d. distributed data Xn ideally follows some
theoretical distribution and becomes the true value ¡(k) as N ! 1, it can be
shown that

E

hØØ¡(k)°¡N(k)
ØØ2

i
= 1

N

°
1° |¡(k)|2

¢
, (3.2.2)
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Figure 3.1: (a) represents calculated distance between the theoretical stable dis-
tribution and the empirical distribution derived from the original stable distribu-
tion. First, a number of N synthetic data is generated by the stable random gen-
erator method. Then the distance is calculated as shown in equation (3.2.1). The-
oretical values for the theoretical stable distribution are given for different combi-
nations of the parameters (Æ,Ø). For the effects of variance, we show the average
of 1000 simulated distance associated with the 95% confidence intervals of the
synthetic 1000 distances (shadowed in light blue). Simulation results show that
distance depends on the number of data N, and the average decreases with the or-
der O (1/N), as demonstrated in equation (3.2.2), with deviation error that also de-
creases with the order O (1/N). (b) shows the behavior of the distance between the
average of 1000 generated stable distributions derived from S(1.3,0,1,0) and the
theoretical stable distribution with different Æ, as the number of data N changes.
The calculated average distance converges to the actual value for a more signifi-
cant number of datasets. Most notably, the more Æ drifts away from 1.3, the larger
the distance becomes for any number of data.
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where E[·] is the expectation with respect to the data distribution. Then the ex-
pectation of the distance function is the average of (3.2.2) for k 2 [°º,º], which
decreases with the order O (1/N). The bias of distance decreases with the same
order O (1/N), which is clarified through simulation. Sub-figure (b) checks if there
is no inconsistency between the theoretical distance and the synthetic distance.
According to these simulation results, we know that the distance function is inde-
pendent of the parameters (Æ,Ø), as well as showing larger values for a stronger
degree of parameter differences. No exceptional or inconsistent results are ob-
served, which indicates that it can potentially be used as an appropriate tool to
obtain a numerical expression in order to grasp the relationship between the the-
oretical and the empirical distribution. When a sufficient amount of data, N, is
given or known, the distance is determined and can be obtained as a particular
value. This value not only indicates simply the distance between the two distribu-
tions but also be a standard measure to discuss error evaluations of the calculated
distance.

3.2.3 Comparison with alternative distribution

Although the parameter estimation method and our evaluation method pro-
posed in the previous subsection illustrate how to analyze data with stable distri-
butions, they may still be unsatisfactory for discussing the validity of the model.
These methods find and evaluate the best fit under the condition of stable laws,
but it does not necessarily mean that the stable distribution exactly describes the
data. Thus, we compare the model-fits under the stable distribution with those
under other controversial distributions.

Regardless of how well the empirical data fit with a stable distribution, the
data may fit more with other distributions. An alternative distribution, for in-
stance, a power-law or exponential distribution, may show a better fit. Even
when the data does not follow any typical form of distribution, or when the ex-
act distribution cannot be identified empirically, the comparison approach tells us
which model can be reasonable for the fit. Here we employ a likelihood ratio test,
applied by Clauset et al. (2009) to directly compare two candidate distributions
against each other and decide which provides a better fit. The method is based
on calculating the likelihood of the data. With given PDFs of p1(x) and p2(x), the
log-likelihood ratio is obtained as

R = ln
nY

i=1

p1 (xi)
p2 (xi)

=
nX

i=1
{ln p1 (xi)° ln p2 (xi)} , (3.2.3)

which is equivalent to the logarithm of the ratio of the two likelihoods. As a higher
likelihood indicates a better fit, a positive value of R implies that the former
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distribution is better than the latter. Thus, the ratio value of R can be an indicator
for judging which distribution is efficient for the fit.

In practice, making a judgment is difficult when R is close to zero, almost
in the event of a tie, since the results depend on statistical fluctuations of the
likelihood values. To avoid misclassification, we calculate the p-value, associated
with the normalized log-likelihood ratio R/

°
æ
p

n
¢

(æ is shown in equation (3.2.5)),
to confirm whether the obtained ratio shows a statistically significant result (see
Clauset et al. (2009) for more). The p-value can be calculated as the probability
that the log-likelihood ratio becomes larger than the absolute value of observed
R. The sum of i.i.d. observations, R, becomes normally distributed by the CLT.
Thus the value is calculated as

p = erfc
≥
|R|/

p
2næ

¥
, (3.2.4)

where erfc denotes the complementary Gaussian error function,

erfc(z)= 2
p
º

Z1

z

e°t
2
dt,

and æ denotes the estimated standard deviation of a single term on R:

æ2 = 1
n

nX

i=1

n
(ln p1(xi)° ln p2(xi))°

≥
ln p1(x)° ln p2(x)

¥o2
, (3.2.5)

where bar denotes the average of terms. If the value is small enough (p < 0.1), the
result is statistically significant. In this case, it is sufficient to make a judgment
for discriminating which distribution model is proper for fitting the data.

3.3 Empirical Study

In this section, four subsections are beginning with the presentation of 5 types
of cryptocurrency datasets for analyzing returns. The second subsection shows the
results of the parameter estimation for cryptocurrency returns with a time scale of
¢t = 1hour when explained by a stable distribution. Furthermore, returns for dif-
ferent time scales are discussed in the third subsection in terms of the estimated
index parameter Æ and the distance measure. We strengthen the importance of
time scaling for the stable model but also address the issues for practical use and
applications. The last subsection shows the comparison of the model with other
representative fat-tail models to discuss the validity of the stable distribution for
cryptocurrency returns.
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Table 3.1: Basic data facts of cryptocurrencies (2019/01/15)
Cryptocurrency Market Cap[$] Price[$]
Bitcoin (BTC) 64,308,311,082 3,678.28
Ethereum (ETH) 13,391,497,879 128.29
Ripple (XRP) 13,534,746,905 0.33
Litecoin (LTC) 1,938,420,144 32.29
Monero (XMR) 761,083,680 45.58

3.3.1 Data presentation

This subsection explains the basic characteristics of our data on cryptocurren-
cies. Table 3.1 shows the market capitalization and the price of 5 major cryp-
tocurrencies, Bitcoin (BTC); Ethereum (ETH); Ripple (XRP); Litecoin (LTC) and
Monero (XMR). Basic data facts are taken from Cryptocurrency Market Capital-
ization (https://coinmarketcap.com).

Bitcoin is the most dominant cryptocurrency, whereas the others are consid-
ered as minor coins. However, recently, some minor coins (alto-coins) such as Rip-
ple and Litecoin have also emerged rapidly since the arrival of the cryptocurrency
boom in mid-2017. Figure 3.2 shows price fluctuations of cryptocurrencies for a
time period of 2017/01/01 to 2019/01/01. Cryptocurrency price data are obtained
from poloniex (https://poloniex.com), with all the price exchange rates against
USDT. USDT is an abbreviation of Tether USD, a cryptocurrency asset that main-
tains the same price and value as the legal US dollar. During the investigated
period, Bitcoin appears to be too volitile (Bouoiyour et al., 2016). Studies find
that positive shocks increase the volatility more than negative shocks (Baur and
Dimpfl, 2018). These volatile behaviors of price fluctuations have attracted consid-
erable attention; market capitalization reached a peek more than a billion dollars
momentarily. Since Bitcoin is not under control and disconnected from central
banks, it is not affected by monetary policy news but only by its own events (Vidal-
Tomás and Ibañez, 2018). Given these impacts of the cryptocurrency market on
the economy, the importance of analyzing alto-coins has increased greatly.

3.3.2 Parameter estimation

From the data above, we estimate the parameters of the stable distribution
that best describes the empirical returns.

We estimate the parameters of the returns for every five currencies over the
period from 01/01/2017 to 01/01/2019. Note that the data set here is every 1-hour
data (N=17520). For each currency, log-returns (returns) are firstly calculated
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(a) BTC (b) ETH

(c) XRP (d) LTC

(e) XMR

Figure 3.2: Price fluctuations of Bitcoin (BTC), Ethereum (ETH), Ripple (XRP),
Litecoin (LTC), and Monero (XMR) for 2017/01/01 to 2019/01/01. The cryptocur-
rency boom in the end of year 2017 have attracted many people.
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from the price Yt as

Xt = logYt+¢t ° logYt,

where ¢t is the time interval. Then the four parameters Æ,Ø,∞,± are estimated
using the proposed method of Kakinaka and Umeno (2020b).

For the index parameter Æ, the traditional Hill estimator method (Hill, 1975)
discovers that local tails of returns fit an exponent of Æ ' 2.0 ª 2.5, especially for
the Bitcoin market (Begušić et al., 2018), however, if we consider fitting a stable
distribution, we find different results. Table 3.2 shows that the tail index param-
eter Æ are estimated roughly in between 1.3 and 1.5. The values are undoubtedly
smaller than the Æ=2 Gaussian distribution, which indicates that cryptocurrency
asset returns are universally non-Gaussian with fat tails. Figure 3.3 shows the
fitted histogram using the stable distribution. The estimated stable distribution
well characterizes the fat-tail behaviors and the bulk portion of cryptocurrency
asset return distributions, as well as observed in other assets (Mandelbrot, 1963;
Mantegna and Stanley, 1995) and financial index (Lera and Sornette, 2018). It is
worthy of mentioning that Bitcoin and Ripple appear to have Æ smaller than the
other currencies, which is consistent with its fluctuation with prices skyrocketing
and falling heavily at the beginning of 2017.

Table 3.2: Parameter estimation of stable laws for cryptocurrency series with 1-
hour time interval data (2017/01/01-2019/01/01).
Cryptocurrency (/USDT) Æ Ø ∞ ±

Bitcoin (BTC) 1.339 °0.034 0.004 0.80£10°4

Ethereum (ETH) 1.395 0.031 0.006 3.40£10°4

Ripple (XRP) 1.343 0.010 0.007 °0.11£10°4

Litecoin (LTC) 1.413 0.016 0.006 1.11£10°4

Monero (XMR) 1.504 0.020 0.007 1.20£10°4

Both parameters, Æ and Ø, can offer clues to explain the properties of returns.
However, Ø is not so robust to large price fluctuations and tends to have significant
estimation errors. Still, the estimated Ø is close to 0, which means that returns
are not so skewed. The results provide additional views that price fluctuations for
cryptocurrency markets exhibit a symmetric behavior, which is also our finding.
In this study, we focus on the tail index parameter Æ, which refers to the measure
of the tail behaviors and helps further applications of numerical analysis.
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(a) btc (b) eth

(c) xrp (d) ltc

(e) xmr

Figure 3.3: Histogram of standardized empirical data (black plot) and fitted his-
togram from estimated stable distribution (blue solid line) compared with Gaus-
sian distribution (red dashed line). Note that the standardization process is done
according to equation (1.2.1). Although for extreme returns, there is a deficient of
data, the estimation well represents the distribution.
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3.3.3 Time scaling behavior of cryptocurrency

We have argued that in addition to the cryptocurrency market having non-
Gaussian features as observed in other financial markets, stable distributions
characterize returns well in terms of Æ for a fixed 1-hour time interval. This sub-
section focuses on analyzing cryptocurrency returns with different time scales in
order to further understand its behavior. Meanwhile, we discover the limitations

of the stable distribution for modeling returns in the latter half of this subsection.
Since the analysis of price fluctuations can be done at various time intervals,

we go into various time scales. We use the same datasets for five currencies men-
tioned in the previous subsection. The details for time intervals ¢t are given as
follows: 5 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours,
and intraday. With a fixed length of the observation period, the number of data is
inversely proportional to ¢t: 210240, 70080, 35040, 17520, 8759, 4379, 2190, and
729, respectively.

We show results in Table 3.3 from the fitting of stable distribution and Gaus-
sian distribution to each of these datasets using the distance measurement. We
first estimate the parameters for stable distributions and use them to obtain the
distance, as shown in equation (3.2.1). Since the distance is calculated via the
CF expression, each Gaussian distribution is not estimated from the mean and
standard deviation but by setting the parameter to Æ= 2. The skew parameter Ø
is not taken in consideration, because the CF does not depend on Ø when Æ is 2.
By doing such numerical assessment, we confirm that stable distribution fit re-
turns better than the Gaussian distribution— for all cases of currencies and time
interval conditions. We also find that both forms of distribution share roughly the
same ¢t with the smallest calculated distance.

We next check the validity of the calculated distance against the stable model.
If observed data entirely agrees with the stable distribution, and if we have unbi-
ased parameter estimates, the distance value should be close to 1/N with devia-
tion error with the order O (1/N), as discussed in section 2.3. However, Figure 3.4
shows that the calculated distances are likely to be quite above the assumed dis-
tance. The results indicate that observed data is not ultimately consistent with
the stable distribution to a complete degree.

One crucial point of issue is that stable distribution presents infinite variance.
This point contradicts the fact that the variance of returns for empirical observa-
tions turn out to be finite and supports the presence of a finite second moment (lo-
cal tails appear to be Æ∏ 2.0) (Grabchak and Samorodnitsky, 2010; Begušić et al.,
2018). Moreover, in the classical study of Mantegna and Stanley (1995), stable
distributions appear to fit the empirical returns well in the bulk part, but in the
very far tails, it seems to overestimate for the sake of its infinite variance (Man-
tegna and Stanley, 1995). Strictly speaking, far tails are fatter than those of the
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Table 3.3: Calculated distances between empirical distributions and estimated
stable distributions (top row), in addition to calculated distances between empir-
ical distributions and estimated Gaussian distributions (bottom row). The mini-
mum distance value of each currency is shown in bold for each form of distribution,
respectively.
¢t BTC ETH XRP LTC XMR

Estimated stable distribution (Æ< 2) (£10°3)
5 min 4.00 10.28 26.66 29.76 36.37
15 min 1.56 1.68 4.51 4.57 10.94
30 min 1.42 1.22 1.42 1.68 2.46
1 hour 1.52 1.63 0.84 1.30 0.86

2 hours 1.74 1.64 1.22 1.61 1.01
4 hours 6.11 1.98 1.07 3.61 1.03
8 hours 5.88 3.42 2.07 2.35 2.39
1 Day 5.48 6.19 3.39 2.96 4.07

Estimated Gaussian distribution (£10°3)
5 min 10.66 17.78 45.07 47.78 123.2
15 min 7.72 6.50 11.69 10.89 16.80
30 min 7.77 6.06 7.31 6.81 6.30
1 hour 8.53 7.56 6.64 6.58 4.26

2 hours 8.80 7.25 7.54 7.46 4.94
4 hours 14.93 8.03 8.49 10.01 4.75
8 hours 12.54 7.76 9.03 7.80 6.52
1 Day 12.29 12.79 14.30 6.22 7.16

empirical returns. Those observations are the same for cryptocurrency markets—
actual price fluctuations do not show return values too large (for instance, the
largest fluctuation for Bitcoin is 26.9%), whereas random stable variables include
unrealistic extreme values (100% or 200% or even larger fluctuations). This phe-
nomenon may be explained by the causes and effects of the system built in the
mechanisms in financial markets, such as the circuit breaker system. Besides
such causes, cryptocurrency prices differ between exchanges. These attributes are
factors outside the natural fluctuation behaviors but may affect the data we obtain
to some extent. Taking this standpoint gives reasonable assumption to consider
that observed data is unfortunately somewhat uncertain, and not ideally perfect
to be explained by a stable distribution. Still, many empirical studies suggest
the stable model as a model to examine non-Gaussian behaviors for asset returns
because it has solid theoretical reasons to reveal relationships of large and small
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terms (Xu et al., 2011; Bibalan et al., 2017; Lera and Sornette, 2018; Chronis,
2016; Scalas and Kim, 2007). As long as stable distributions show the potential
to describe cryptocurrency returns, it is essential to understand the possibilities
and limitations of stable models, and to what extent the model is applicable.

If we suppose that unexpected impacts are included in observed data as noise,
one possible stopgap approach to evaluate the distance including bias and noise
effects can be given as

1
2º

Zº

°º

ØØ'̂(k)°'(k)+"k

ØØ2 dk

= 1
2º
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°º

ØØ'̂(k)°'(k)
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2º
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°º

©
2Re

°°
'̂(k)°'(k)

¢
"k

¢™
dk

+ 1
2º

Zº

°º
|"k|2 dk, (3.3.1)

where '̂(k) is the CF based on estimated parameters, '(k) is the true value of the
CF, and "k represents the error value of the CF with respect to k. Here, we assume
that the empirical CF, 'N(k), is considered as the addition of errors and the true
CF, '(k). The first term on the right hand of equation (3.3.1) represents distance
error caused by parameter estimation errors, the second term is the cross-term be-
tween '̂(k)°'(k) and "k, and the last term represents the error caused by noise.
If data is ideal, noise is only related to the random nature of the sampling pro-
cess. This case is equivalent to the condition discussed in Section 2.3, and it is
evident that the distance decreases with the order O (1/N). Whereas if noise is
large enough to affect the errors "k, the cross-term errors (second term) cannot be
ignored as well as the errors in the last term. It is known that

p
N

°
'N(k)°'(k)

¢

is asymptotically normal with mean 0 (Feuerverger and McDunnough, 1981), and
hence the cross-term decreases with the order O

°
1/
p

N
¢
. The leading order of

the whole distance equation then becomes O
°
1/
p

N
¢

for large N. Therefore, if we
admit some observational noises, it may be reasonable and acceptable that the
distances of empirical studies are larger than the natural distance error 1/N. If
we have biased parameter estimates for '̂(k), we will have even more consider-
able distances. However, it should be noticed in Figure 3.4 that even though we
consider unexpected noise in cryptocurrency data, we find numerical evidence of
stable distributions fail to capture returns under some conditions of time inter-
vals. Figure 3.4 shows that for high-frequency data (¢t shorter than 30 minutes),
the distance values become too large. In other words, although we have more
abundant data available, distances tend to increase, which implies that stable
models do not perform well with ¢t shorter than 30 minutes. Some of the possible
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Figure 3.4: The values of distance defined in Section 3.2.2 are shown for different
time intervals ¢t. The distance decreases with the order O

°
1/
p

N
¢
, but not with

the order O (1/N) due to non-ideal conditions of observed data. For a range of
intervals shorter than 30 minutes (¢t < 30 min; outside the range in yellow), the
distance value increases considerably; this contradicts the idea that the value
should decrease (deviation error should also decrease) as the interval becomes
shorter with a more significant number of data. Therefore, outside the yellow
range is not plausible for modeling price fluctuations with stable distribution.

causes of the distance separation could be, for instance, the scarcity of tick-to-tick
fluctuation patterns on less active exchanges and the market microstructure noise
seen in high-frequency data (Ait-Sahalia et al., 2010). What is more, data may no
longer be stationary with overly high-frequent conditions owing to the volatility
clustering phenomenon. If data is non-stationary, ergodicity does not hold.

In Mandelbrot’s pioneering investment of cotton prices (Mandelbrot, 1963),
he observed that in addition to being non-Gaussian, returns show another en-
dogenous interest— the invariant property of time scaling, which means that the
return distribution for every various time interval ¢t potentially show a similar
class of functions conforming to a stable distribution. This behavior is certainly
well connected with the Generalized Central Limit Theorem (GCLT), and hence
the idea of exploring the scaling behavior is natural and essential when model-
ing financial assets with stable distributions. Mandelbrot has discovered that ¢t

ranging from 1 day up to 1 month shows consistent forms with the stable distribu-
tion. Gopikrishnan et al. (1999) also studied another asset of the S&P 500 index,
showing that the distribution for ¢t smaller than 4 days have consistent forms as
well (Gopikrishnan et al., 1999). In a trivial sense, however, not all ranges of ¢t
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Figure 3.5: The estimate value of Æ are shown for different time intervals ¢t in
order to investigate the property of time scaling. While the stable regime holds for
intervals smaller than 4 hours (¢t < 4 hours; range in pink), for longer time scales,
Æ tends to increase towards Æ = 2: the Gaussian regime. Although the crossover
between the two regimes seem to take slightly different values depending on the
choice of cryptocurrency, ¢t = 4 hours is a general agreement.

show excellent compatibility with stable distributions. In addition, these previous
studies show that financial asset returns tend to have less fat tails when analyzed
with long timescales. This is because finite empirical observations do not support
the GCLT, and the scaling property does not hold for long timescales but converges
to a Gaussian distribution by the Central Limit Theorem (CLT).

To overcome these issues, Mantegna and Stanley (1994) were the first to pro-
pose the Truncated Lévy Distribution (TLD) (Mantegna and Stanley, 1994). The
central part of the TLD is consistent with the stable distribution, but its far tail
has a discrete cutoff. Koponen (1995) improved the TLD by introducing a smooth
exponential cutoff to make it possible to derive an analytic expression for the CF
and easier computation simulations (Koponen, 1995). For both cases, far tails
have a faster decay compared to the stable laws. This assures the variance to be
finite, and fortunately, more or less preserves the stable properties. This develop-
ment can be explained when we consider the sums of independent and identically
random variables following the TLD, known as the Truncated Lévy Flight (TLF).
Since most of the distribution is like a stable distribution but has a finite vari-
ance, the TLF process converges slowly to the Gaussian distribution (Mantegna
and Stanley, 1994; Koponen, 1995). For relatively short timescales, the influence
of the truncated tails is too slight to affect the stochastic process for the CLT to
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be applied. It does not converge to the expected Gaussian distribution, but still
under the GCLT. Therefore, as long as the stable regime holds, such a stochastic
process can approximately be expressed as a stable distribution. Once the process
reaches the crossover, it starts to go towards the Gaussian behavior. Overall, sta-
ble processes accounting for TLD provides two forms of distributions in terms of
time scaling: stable regime and Gaussian regime.

Figure 3.5 displays the shift of Æ for different time scaling in cryptocurrency
markets, which enables us to discuss the correspondence between the empirical
behavior and the theoretical background of the GCLT. The results imply that the
stable model is inappropriate for ¢t larger than 4 hours (low-frequency data),
where the GCLT is not valid, and the stable regime does not hold. We have re-
ported in Figure 3.4 that in the case of high-frequency data (¢t < 30min), distance
results are undoubtfully too large to support the model. If we consider the pres-
ence of observational noises in data, a range of approximately 30min ∑ ¢t ∑ 4h
seems to be moderate for analyzing cryptocurrency returns when employing sta-
ble distributions. In this range, the return distributions satisfy the stable process
with reasonable distance values.

3.3.4 Performance of stable law fit and alternative distribu-

tion models

The approaches explained in the previous subsection contribute to demon-
strating how to apply the stable model properly to cryptocurrency markets. How-
ever, the approaches do not necessarily identify the actual model that describes
the fluctuation system. An alternative model may be more appropriate even when
the conditions, including time scaling, for supporting the stable model are satis-
fied. As we have mentioned before, the infinite properties of stable distributions
make it challenging to build a ‘good’ modeling for the far tail portions. The power-
law model is widely accepted, mainly when focusing on the tails, and often rules
out the stable regime in empirical data with finite variance.

To identify the appropriate model for fitting cryptocurrency data, we employ
the likelihood ratio test explained in subsection 3.2.3. We compare the stable
model with each of the two alternative models of one-sided distributions: power-
law and exponential distributions. We first focus on the identical range of local
tails for the two distributions, since the comparison should be made under the
same tail conditions. As explained in subsection 3.2.1, the tail is defined as the one
that shows the best fit with the alternative distribution in terms of KS statistics.
Tables A.1 and A.2 of Appendix A show the results of fitting the data of returns
with each of the two alternative distributions for the positive and the negative
tails, respectively. We confirm that the tail portions show plausible fits when
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using the power-law and exponential model.
Tables 3.4 and 3.5 show the results of the likelihood ratio tests (the likelihood

ratio R and the corresponding p-value) under several tail portions for the positive
and the negative tails of the standardized empirical returns, respectively. Time
intervals ¢t = 1 hour and ¢t = 2 hours are examined, where the time scaling con-
ditions are well satisfied for the stable model, as presented in subsection 3.3.3.
It should be noted that the standard density and distribution functions of the
stable distribution are numerically derived approximately by implementing the
Fourier integral formulas (Zolotarev, 1986; Nolan, 1997), which are available in
package libstable (del Val et al., 2017). We set aside any issues related to numer-
ical approximations of the stable distributions since we aim to directly compare
the fitting between models rather than the assessments of a specific model. Under
the estimated tails (columns x̂min in the Tables 3.4 and 3.5), the values of R are
negative for most cases, meaning that alternative distributions achieve a better
fit than the stable distribution. Moreover, the results in Appendix A imply that
empirical returns in the estimated tails are plausible with power laws. These
are consistent with the arguments in many empirical studies that local tails of
financial returns often exhibit the inverse cubic law.

However, our primary objective is to evaluate the entire or a wider range of
returns. Since the estimated tail portions sometimes leave too many observations
out of consideration, analyzing the data covering more observations, including
the estimated tail portions, is needed to capture the characteristics of the data
in a more comprehensive manner. In addition, we can explain the advantages of
stable distribution only when the entire distribution is considered, according to
the GCLT. We select the largest and lowest 5%, 15%, 30%, and 45% portions of
the data as the lower and upper bound of tails, respectively, in order to reveal
which distribution shows a better fit for larger portions of tails. The likelihood
ratios for the 5% tail portion show negative values for most cases, like those with
the estimated tails. However, as the tail portions become large, the likelihood
ratios generally turn to positive values, particularly for the tail portions larger
than 15%. Although some results are statistically insignificant, we confirm that
the stable model tends to present a better fitting of returns for large portions of
tails. Our results indicate that when we focus on the tails, for example, investi-
gating the tail risks, the power-law or exponential model is suggested. But when
we examine the characteristics of cryptocurrency price fluctuations from the en-
tire data, the stable distribution is suggested to be an appropriate model for the
analysis of behavior issues. A perfect model to explain the behaviors remains to
be a challenging issue, but our strategies of coping with stable models are helpful
for any extension of the model.
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3.3. EMPIRICAL STUDY
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CHAPTER 3. POWER LAWS IN CRYPTOCURRENCIES

3.4 Summary and Discussions

This chapter has explored the behaviors of price fluctuations in cryptocurrency
markets by applying the Lévy’s stable distribution and discussed its validity for
the empirical analysis. We provide numerical, theoretical, and justifications for
supporting the stable distribution as a practical model to understand the fluctua-
tion phenomena in financial systems.

We focus on characterizing the entire dataset of returns, including the tail be-
haviors. The stable distribution takes into account the entire observations. With
the use of the proper estimation method, we find that returns exhibit stable laws
with tail index Æ' 1.4 and Ø' 0 (symmetric). We introduce a numerical approach
based on the CF and a theoretical approach based on the GCLT to find evidence for
stable laws, by focusing on the time scaling behavior with different time intervals.
Similar to other financial asset returns, our results of the numerical approach sug-
gest that cryptocurrency price returns follow a fat-tailed stable distribution better
than the Gaussian distribution for all time scales. However, we find that even if
we admit some observational noise terms, the numerical distance shows implau-
sible results for high-frequency data. On the other hand, the theoretical approach
based on the GCLT represents implausible results for low-frequency data, where
the stable regime breaks down to a Gaussian regime. From both points of view,
our assessment implies that the stable model is not necessarily acceptable for any
analysis condition. We propose that the combination of these approaches helps
understand the intriguing properties of asset fluctuations, and gives us insight
into appropriate ranges of time scaling for modeling with stable distribution in a
more careful sense. In particular, a time scaling condition of ranging roughly 30
minutes to 4 hours is concluded to be a suitable range of intervals for cryptocur-
rency markets, where both quantitative and theoretic properties are consistent
with the stable model.

Moreover, we confirm the potency of modeling returns with stable distribu-
tions under some time scaling conditions by clarifying which distribution shows a
better fit among controversial fat-tailed distributions. We find statistical evidence
that when a wider range of tail portion of data is considered, the stable distribu-
tion dominates other alternative distributions. The results imply that the stable
model is comparatively appropriate for characterizing the entire or a broad range
of the data. At the same time, we find that the far tails generally follow a power
law, which coincides with the results in many empirical studies on tail behaviors
of returns. Therefore, these ideas can be developed to create some benchmarks
for portfolio theories and risk management. To reach a more rigorous conclusion
on whether stable models may work in practical applications, however, a more
elaborate discussion would be necessary.
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Chapter 4

Fractal Correlation Dynamics of

Cryptocurrencies

This chapter is corresponds to paper 3 in the author’s papers list.

4.1 Introduction

The spread of coronavirus (COVID-19) was officially declared as a pandemic in
March 2020 and has become a threat to people’s daily lives on a global scale. The
on-going prevalence has triggered many channels relevant to the global economy
such as stock markets (Topcu and Gulal, 2020; Zhang et al., 2020; Zaremba et al.,
2020; Baker et al., 2020) and labor markets (Groshen, 2020), making investors
and financial researchers increasingly concerned and nervous.

Since cryptocurrencies often show different features from conventional assets
due to their unique block-chain technology, there is growing interest in the im-
pact of COVID-19 on cryptocurrency markets. Conlon et al. (2020) and Ji et al.
(2020) examine the performance of cryptocurrencies as a safe haven during the
COVID-19 pandemic. Drożdż et al. (2020) show the impact of the outbreak on the
internal structure of the market. More importantly, a number of studies focus on
the major research subject of the efficient market hypothesis (EMH) for under-
standing cryptocurrency market characteristics. The EMH suggests that market
prices of assets immediately reflect all available information including past data
and its relevant data, so that price fluctuations can be best described as a random
walk movement and thus it is impracticable to predict market prices or earn prof-
its from returns. It has been recognized in the finance literature that financial
markets often exhibit anomalies, and hence informational efficiency is not always
achieved. Although Bitcoin returns show the efficiency for certain periods, they
do not follow a random walk behavior in general (Urquhart, 2016; Tiwari et al.,
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2018). The (in)efficiency of financial markets can also be time-varying (Jiang
et al., 2018; Frezza et al., 2021). Wang and Wang (2021) finds that during the
COVID-19 pandemic, the Bitcoin market became less inefficient than stock mar-
kets using an entropy-based analysis.

Extreme conditions of crisis and epidemic diseases often formulate behavioral
biases of herding (Chang et al., 2000; Chiang and Zheng, 2010; Economou et al.,
2011), and the presence of multifractality is a consequence of the presence of herd-
ing behavior (Cajueiro and Tabak, 2009). The concept of multifractality regards
complexity and provides an explanation of market patterns and correlations in
terms of self-similarity, long-memory, and scaling patterns, all of which the EMH
fails to capture (Fernández-Martínez et al., 2019). According to the alternative
fractal markets hypothesis (FMH) initiated by Peters (1994), short- and long-term
investors have different investment horizons and different valuations for informa-
tion flows. Market stability is achieved when the numbers of long-term investors
balance those of short-term ones. However, once they start focusing on the cur-
rent interim market fluctuations, the market equilibrium breaks down (Weron
and Weron, 2000). The predominance of short-term investors leads to crashes in
reaction to bad news. Moreover, herding behavior exhibits asymmetric character-
istics between upward and downward trends (Tan et al., 2008; Chiang and Zheng,
2010), so the asymmetric herding behavior of cryptocurrency markets have also
attracted attention (Stavroyiannis and Babalos, 2019; Mensi et al., 2019b; Krist-
janpoller et al., 2020).

Several studies have examined cryptocurrency markets during the COVID-19
pandemic in a framework of fractal analysis, but the results seem rather mixed.
Mnif et al. (2020) and Yarovaya et al. (2020) investigate the long-term proper-
ties of cryptocurrencies and find that the market became more efficient after the
outbreak, thus concluding that COVID-19 does not significantly increase herding.
Naeem et al. (2021), on the other hand, finds traces of temporarily increased inef-
ficiency during the COVID-19 pandemic by using a time-varying approach to de-
tect self-similarity and its asymmetric properties. One missing point is that past
studies discuss the efficiency without explicitly incorporating possible differences
between short and long investment horizons. To fill the gap, this study extends
our limited understandings of short- and long-term behaviors of cryptocurrency
markets during the COVID-19 pandemic.

For this purpose, we analyze market efficiency of cryptocurrency markets dur-
ing the pre- and post-COVID-19 periods, accounting for short and long investment
horizons with different scaling regimes, by applying the asymmetric multifractal
detrended fluctuation analysis (A-MFDFA) proposed by Cao et al. (2013). This
method allows us to detect the asymmetric efficiency level of cryptocurrency mar-
kets. For a given range of scales, the A-MFDFA method well quantifies the gen-
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4.2. DATA PRESENTATION: COVID19 AND SURROUNDING PERIODS

eralized Hurst exponents for uptrend and downtrend price movements under dif-
ferent magnitudes of price fluctuations. The main finding suggests that after the
outbreak, major cryptocurrency markets became more efficient in the long-run,
but in the short-run, the markets exhibit an increase in the degree of inefficiency,
which implies the presence of herding. We also confirm that the outbreak has
changed asymmetric patterns in cryptocurrency markets. Our results are crucial
for financial regulators and investment managers to mitigate cryptocurrency mar-
ket distortion and conduct effective risk controls during extreme conditions, like
the COVID-19 pandemic.

4.2 Data presentation: COVID19 and surround-

ing periods

Several studies suggest using such high-frequency data because inefficiency
and asymmetric behaviors are more likely to be highlighted than intra-day data
(Zargar and Kumar, 2019; Stavroyiannis et al., 2019; Naeem et al., 2021). We
use hourly-based Bitcoin (BTC) and Ethereum (ETH) prices traded on https:
//poloniex.com/ against the cryptocurrency Tether (USDT), which is designed
to maintain the same value as the US dollar, during the period from 2019/01/01
to 2020/12/31. Given that the first case of COVID-19 cluster was reported to the
WHO China Country Office on December 31, 2019, we split the whole sample
into two subperiods: the year 2019 (before outbreak) and the year 2020 (after
outbreak).1
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Figure 4.1: Price and 1-hour return series of Bitcoin (left) and Ethereum (right)
for the investigated period (2019/01/01 to 2020/12/31).

1Other relevant studies such as Mnif et al. (2020) and Aslam et al. (2020) also employ this date
to divide the period for analyzing financial markets before and after the COVID-19 outbreak.
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Table 4.1: Descriptive statistics for 1-hour Bitcoin and Ethereum return series for
the periods before and after the COVID-19 outbreak. For the Jarque-Bera test,
§§§ denotes statistical significance at 1% level.

BTC ETH
before outbreak after outbreak before outbreak after outbreak

Mean(%) 0.0076 0.0159 -0.0003 0.0198
Median(%) 0.0083 0.0133 -0.0003 0.0153
Std. Dev.(%) 0.7043 0.7935 0.8528 0.9702
Max.(%) 9.0774 16.122 9.7788 13.892
Min.(%) -9.1708 -19.200 -14.191 -23.273
Skewness 0.0800 -2.5899 -1.0883 -1.9389
Kurtosis 26.754 119.30 27.807 62.920
Jarque-Bera 261243§§§ 5218673§§§ 283917§§§ 1454321§§§

ADF °93.436§§§ °19.080§§§ °95.628§§§ °98.403§§§

KPSS 0.096 0.073 0.059 0.056

The return series are calculated as rt = ln pt ° ln pt°1 where pt denotes the
price at time t. We show in Figure 4.1 the price and return series of BTC and
ETH for the investigated period and we report in Table 4.1 the descriptive statis-
tics of returns for each sample period. Both major cryptocurrencies have a more
significant level of deviation, kurtosis and non-gaussianity after the outbreak.
Significant statistics of Augmented Dickey-Fuller (ADF) tests and insignificant
statistics of Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests show that the re-
turn series are stationary for all cases.

4.3 A-MFDFA analysis

4.3.1 Asymmetric multifractality in short- and long-terms

Figures 4.2 and 4.3 depict the log-log plots of the fluctuation functions (Fq(s),
F

+
q (s), and F

°
q (s)) versus the time scale s during the periods before and after the

COVID-19 outbreak for Bitcoin and Ethereum. As mentioned in Thompson and
Wilson (2016), we consider the scale ranges from 20 to N/10 to avoid biases and
assure the validity of the scaling exponent estimates. We find a crossover point s

§

of each fit at ln(s§) ' 5.5 (s§ ' 10 days) for both markets, where short- and long-
term component dynamics are described by different scaling regimes.2 Moreover,
the location of this point seems to be consistent over different market trends and

2See Wang et al. (2009) and Tiwari et al. (2017) for detailed discussions about crossover points.
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4.3. A-MFDFA ANALYSIS

periods. The presence of the crossover uncovers that investors’ behaviors differ
depending on horizons, and their strategies have distinctive features in terms of
herding and multifractal behavior. The generalized Hurst exponents for the short-
term components are calculated by using the log-log regression within the scale
ranges 20 ∑ s ∑ s

§, and those for the long-term components are calculated within
the scale ranges s

§ < s ∑ N/10.
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Figure 4.2: The case of Bitcoin. Log-log plot of Fq(s) versus time scale s for differ-
ent market trends and before and after the outbreak where q take the values of
°10, °5, °2, 0, 2, 5, and 10.

Figures 4.4 and 4.5 show the results of h(q), h
+(q), and h

°(q) for Bitcoin and
Ethereum, respectively. Both short- and long-term components show signs of mul-
tifractality since the values of the generalized Hurst exponents decrease as q be-
comes large. When focused on the Hurst exponent H = h(q = 2), the values are
nearby 0.5, meaning that the series may show signs of weak persistence or anti-
persistence. For smaller fluctuations (q < 0), the markets are more persistent in
the short-term after the outbreak (left-side panels in Figures 4.4 and 4.5), but the
opposite is observed in the long-term (right-side panels in Figures 4.4 and 4.5).
Asymmetric properties of persistence are also detected. Throughout our inves-
tigated period, we find the tendency of less asymmetry in the short-term where
uptrend and downtrend markets show similar scaling properties (left-side panels),
but the markets are more likely to exhibit asymmetry in the long-term (right-side
panels). This is consistent with the findings of Naeem et al. (2021) which suggests
that asymmetry results from the tendency of investors paying more attention to
persistence in the longer term. Moreover, to some extent, both multifractality and
asymmetry vary after the outbreak.
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Figure 4.3: The case of Ethereum. Log-log plot of Fq(s) versus time scale s for
different market trends and before and after the outbreak.

q q

Figure 4.4: The case of Bitcoin. q dependencies of generalized Hurst exponents
with different trends in the short-term s < s

§ (left) and in the long-term s > s
§

(right), where ln(s§) = 5.5. The blue solid lines present the results for the period
of before the outbreak, and the red lines after the outbreak.
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q q

Figure 4.5: The case of Ethereum. q dependences of generalized Hurst exponents
with different trends in the short-term s < s

§ (left) and in the long-term s > s
§

(right), where ln(s§)= 5.5.

4.3.2 Market inefficiency degree

To quantify the degree of multifractality and inefficiency, we use the market
deficiency measure (MDM) defined in Wang et al. (2009):

D = 1
2

(|h(°10)°0.5|+ |h(10)°0.5|). (4.3.1)

This measure illustrates the discrepancy from an efficient market by evaluating
the deviation from a random walk process in terms of both large (q = 10) and
small (q = °10) fluctuations. Zero value of the MDM implies market efficiency
with monofractal structure satisfying h(q) = 0.5 for any q. Large values of the
MDM indicate strong inefficiency. We find that regardless of market trends, the
values decrease after the outbreak in the long-term (s > s

§) (Table 4.2). This
result is consistent with Mnif et al. (2020) and Naeem et al. (2021) which find
that in the long-term, multifractality is reduced and thus the pandemic has a
positive impact on cryptocurrency market efficiency. However, when focusing on
short-term horizon (s < s

§), we find the opposite result where the MDM values
significantly increase after the outbreak, and thus the markets become inefficient.
These results imply that after the outbreak, cryptocurrency investors shift their
strategy towards shorter horizons, which means that strong herding behavior is
present in the short-term.

We further examine the asymmetric herding behaviors between upward and
downward market trends for each of the different periods and horizons. Fig-
ures 4.6 and 4.7 show the degree of asymmetry for the two investigated cryp-
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Figure 4.6: The case of Bitcoin. Asymmetric degree of multifractality between
uptrend and downtrend for the short-term horizon (left) and long-term horizon
(right), respectively. We represent the results for the period before the outbreak
in blue and after the outbreak in red.
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Figure 4.7: The case of Ethereum. Asymmetric degree of multifractality between
upward trends and downward trends for the short-term horizon (left) and long-
term horizon (right), respectively.
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Table 4.2: Values of the MDM for short-term and long-term under different mar-
ket trends. The larger values between before and after the outbreak are shown in
bold.

short-term (s < s
§) long-term (s > s

§)
before outbreak after outbreak before outbreak after outbreak

BTC overall 0.179 0.300 0.313 0.174
uptrend 0.160 0.260 0.238 0.120
downtrend 0.210 0.300 0.438 0.356

ETH overall 0.236 0.324 0.316 0.116
uptrend 0.240 0.344 0.273 0.053
downtrend 0.232 0.253 0.345 0.302

tocurrencies:

¢h
±(q)= |h+(q)°h

°(q)|, (4.3.2)

which corresponds to various fluctuation magnitudes. Larger values of ¢h
±(q) in-

dicate higher asymmetry of multifractality between upward trends and downward
trends. It is evident that asymmetric features are not constant over time. The re-
sults show that the degree of asymmetry increases only slightly in the short-term
(left-side panels in Figures 4.6 and 4.7).

4.3.3 Source of inefficiency

However, asymmetric properties in the long-term horizon (left-side panels) is
different from those observed in the short-term horizon. For relatively smaller
fluctuations (q < 0), the degree of asymmetry, particularly for Bitcoin, greatly
decreases during the pandemic so that the market persistence becomes close to
symmetry. On the contrary, for relatively larger fluctuations (q ∏ 0), the degree
significantly increases and the persistence is no longer symmetric. In line with
the long-term study of Bitcoin, Ethereum also shows evidence of weaker degree of
asymmetry for small fluctuations but stronger degree of asymmetry for large fluc-
tuations. Our results imply that the pandemic urged long-term cryptocurrency
investors to switch their attention from smaller toward larger fluctuations, which
results in the presence of asymmetric multifractality for larger q under different
signs of market returns (Chiang and Zheng, 2010). The pandemic did not in-
spire short-term investors to focus on certain fluctuation magnitudes, because the
asymmetry level was not raised significantly for any q.

Although the empirical findings uncover properties of asymmetric multifrac-
tality and how they have changed during the pandemic, further implications of
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multifractality need to be addressed to advance the discussions of EMH. There-
fore, we explore the sources of multifractality. It is well known that the multi-
fractality of financial time series is mainly a consequence of the two major phe-
nomenon: the broad probability density function and long-range correlations be-
tween elements of time series. To understand the contribution of long-range cor-
relations, we compare the level of multifractality between the original series and
random shuffled series. The shuffling procedure can destroy all correlations of re-
turns, while the distribution remains unchanged. To understand the contribution
of broad probability density function, we surrogate the returns with Gaussian dis-
tribution, while maintaining the same rank ordering by sorting the generated re-
turns, and compare its multifractality with the original one. This procedure elim-
inates the fat-tails but the linear correlations are preserved (Cao et al., 2013). To
quantify the level of multifractality, we employ the following measure (Cao et al.,
2013):

¢h =max
q

(h(q))°min
q

(h(q)). (4.3.3)

Greater values indicate stronger multifractality.

Table 4.3: The level of multifractality ¢h for the shuffled and surrogated series
with respect to short-term horizons. The smaller values between shuffled and
surrogated series are shown in bold.

before outbreak after outbreak
short-term (s < s

§) original shuffled surrogated original shuffled surrogated

BTC overall 0.359 0.459 0.086 0.599 0.568 0.255

uptrend 0.321 0.464 0.161 0.520 0.565 0.244

downtrend 0.420 0.450 0.037 0.600 0.578 0.206

ETH overall 0.473 0.446 0.154 0.647 0.528 0.251

uptrend 0.479 0.423 0.193 0.687 0.502 0.273

downtrend 0.464 0.440 0.151 0.506 0.520 0.213

We show in Tables 4.3 and 4.4 the level of multifractality for the shuffled and
surrogated series of Bitcoin and Ethereum returns before and after the outbreak
with respect to different investment horizons.3 When focused on the short-term
horizon (Table 4.3), the multifractality levels of the shuffled series are hardly
weaker than those of the original series, but the surrogated ones are obviously
weaker during both periods. This indicates that fat-tailed distribution is the main

3For the level of multifractailty, we employ the average of 100 synthetic ¢h calculated from the
shuffled/surrogated series to avoid strong biases due to sample size.
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Table 4.4: The level of multifractality ¢h for the shuffled and surrogated series
with respect to the long-term horizon. The smaller values between shuffled and
surrogated series are shown in bold.

before outbreak after outbreak
long-term (s > s

§) original shuffled surrogated original shuffled surrogated

BTC overall 0.627 0.174 0.093 0.349 0.274 0.162

uptrend 0.475 0.194 0.018 0.240 0.271 0.122

downtrend 0.875 0.199 0.275 0.712 0.308 0.332
ETH overall 0.632 0.174 0.278 0.232 0.207 0.242

uptrend 0.546 0.187 0.162 0.183 0.226 0.157

downtrend 0.690 0.193 0.346 0.605 0.220 0.415

cause of multifractality and correlations of large and small fluctuations is not an
essential factor. We note that this nature does not change before and after the
outbreak. In the long-term horizon (Table 4.4), we can see that both sources have
significant impacts on multifractality, especially before the outbreak. The impact
of both sources become smaller after the outbreak, which highlights the positive
effect on EMH in the long-run. Nevertheless, the surrogated results suggest that
fat-tailed distribution contributes to multifractality in the long-run as well, mean-
ing that local behaviors caused by fat-tails are likely to be reflected in the global
behaviors. Interestingly, the levels of multifractality are weaker for the surro-
gated series in uptrend markets, while they are weaker for the shuffled series in
downtrend markets. This implies that fat-tails contribute more to multifractal-
ity than autocorrelations when the market value goes up, while autocorrelations
contribute more than fat-tails when the market value goes down. Therefore, sub-
stantial asymmetric properties of Bitcoin and Ethereum in the long-term horizon,
shown in the right panels of Figs. 4.6 and 4.7, can be due to the presence of differ-
ent predominant sources of multifractality between bull and bear markets.

4.4 Summary and Discussions

This study evaluated market efficiency and asymmetric multifractality of the
two major cryptocurrencies (Bitcoin and Ethereum) during the periods before and
after the COVID-19 outbreak, accounting for the different scaling regimes on fast
and slow time scales. By using the A-MFDFA method, we found that the markets
have asymmetric multifractality with crossovers of approximately 10 days, indi-
cating that scaling behaviors are dependent of investment horizons. Our results
provided empirical evidence of increasing inefficiency for the short-term, while
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the markets show traces of efficiency for the long-term. In other words, COVID-
19 significantly increased herding in the short-run but not in the long-run. This
study also discussed the features of asymmetric properties between upward and
downward trends. For the short-term, there was only a subtle change of asym-
metry after the outbreak, but for the long-term, there was a substantial shift
in the degree of asymmetry where investors have focused more on larger fluc-
tuations. Although fat-tailed distribution of returns generally causes the multi-
fractal behavior, the contribution of autocorrelations to multifractality becomes
substantial in the long-term when the market is in a downtrend (bear market).
The presence of different predominant sources of multifractality between bull and
bear markets could be a driver to the substantial asymmetric properties of Bitcoin
and Ethereum observed in the long-term. Our findings argue that analyzing dif-
ferent scales of horizons can be a key to reveal complex behaviors during crisis
periods, although the relationship between multifractality and asymmetric effi-
ciency of the on-going COVID-19 pandemic is still debatable. Similar study of
Zitis et al. (2023) also reports interesting results during the pandemic period us-
ing the asymmetric multifractal analysis in addition to other complex measure
analysis. These results offer opportunities for investors and portfolio managers
to understand cryptocurrency market efficiency that plays a crucial role in their
decision-making.
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Chapter 5

Fractal Cross-correlation

Dynamics of Cryptocurrencies

This chapter corresponds to paper 4 in the author’s papers list.

5.1 Introduction

One of the fundamental issues in financial markets is the behavior of the re-
lationship between price and volatility. The cross-correlations between interna-
tional stock returns of highly developed economies fluctuate strongly with time,
and increase in periods of high market volatility Solnik et al. (1996). In addition,
it is known that the conditional variance of equity returns are more affected by
negative news compared to positive news Black (1976). In this sense, negative
returns increase the volatility by more than positive returns due to the leverage
effect, also known as the asymmetric volatility effect Baur and Dimpfl (2018).
This is related to the trading of informed and uninformed investors posing dif-
ferent impacts on the return process. Specifically, uninformed traders lead to
higher serial correlations in returns that make the volatility increase, whereas
informed traders suggest no autocorrelation Avramov et al. (2006). Many stud-
ies have traditionally applied the asymmetric Generalized Autoregressive Condi-
tional Heteroscedasticity (GARCH) models to analyze the asymmetric reactions
of volatility to returns. Baur and Dimpfl (2018) use the TGRACH model and
find an intriguing aspect of cryptocurrency price behavior differently from other
traditional assets— the presence of inverse-asymmetric volatility effect. In other
words, positive shocks increase the volatility by more than negative shocks, where
speculative investments made by uninformed noise traders are dominant after
positive shocks. Cheikh et al. (2020) employ a flexible model of ST-GARCH and
also report similar results of a positive return-volatility relationship.
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Although the anomalies in volatility dynamics justify the application of GARCH
class models (Katsiampa, 2017), they focus more on the linear correlations of
returns and volatility fluctuations without the scaling properties (Ghazani and
Khosravi, 2020). Applying the DFA based analysis could be advantageous to ac-
complish a more essential understanding of the dynamics of price and volatility
because it accounts for the widely acknowledged nonlinearity and scaling prop-
erties. In addition, the method does not require the specification of a statistical
model, so it is easy to implement and can directly calculate the scaling exponents.

This study employs the MF-ADCCA approach to investigate the asymmetric
multifractal properties of cross-correlations between price fluctuations and re-
alized volatility fluctuations in cryptocurrency markets, which is the first con-
tribution to the literature. Our empirical findings reveal traces of asymmetric
multifractality and its dependence on the directions of price movements. Next,
we address the financial issue of asymmetric volatility effect, crucial for finan-
cial investors and regulators. We propose to use a framework of fractal anal-
ysis, which differs from the conventional GARCH-class models where how one-
time price shock influences volatility is analyzed. This is the second contribution
to the literature. We show that the asymmetric volatility effect can be exam-
ined by the assessment of asymmetric cross-correlations between bull and bear
markets over various time scales from short to long time periods. The levels of
cross-correlations are quantitatively investigated for each time scale relying on
the asymmetric DCCA coefficient (Cao et al., 2018) based on the idea of the DCCA
coefficient (Zebende, 2011; Podobnik et al., 2011). We find the presence of differ-
ent reactions of volatility to price in major cryptocurrencies, where price-volatility
is more strongly cross-correlated under negative market trends compared to pos-
itive market trends. However, for the relatively minor ones, cross-correlations
are stronger under positive market trends, implying that the inverse-asymmetric
volatility effect is present. Our findings not only provide new insights into the na-
ture of the price-volatility dynamics, but also contribute to other relevant issues
such as volatility spillovers, speculative trading, and the maturity of cryptocur-
rency markets.

The rest of this chapter is organized as follows. Section 5.2 describes the data
used in the analysis. Section 5.3 explains the two nonlinear dynamical methods
used in the analysis, the MF-ADCCA approach and the asymmetric DCCA coef-
ficient, to further investigate volatility dynamics. Section 5.4 present the results
and discussions of the empirical analysis. Section 5.5 provides discussions and
summarizes the chapter.
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5.2 Data presentation

In this study, we use cryptocurrency price data traded on https://poloniex.
com/ 1 for four major coins of BTC, ETH, XRP, and LTC all against Tether (USDT),
which is a cryptocurrency designed to maintain the same value as the US dollar.
We analyze the period starting from June 1st, 2016, and ending on December
28th, 2020. This period includes the cryptocurrency boom at the end of 2018 and
the crash at the beginning of 2019. Recently the prices of many cryptocurrencies
are increasing, for instance, the Bitcoin price marked a record-breaker of over
$27,200 on December 28, 2020.

As a proxy of the volatility series, we employ the realized bipower variation (Barndorff-
Nielsen, 2004). Realized bipower variation is determined using high frequency
price data:

BPVt =
X

j

|rt,t j
||rt,t j+1 |, (5.2.1)

where rt,t j
is the return or the log-difference of price calculated from ±t-minute

sampling intervals, and t j = j±t denotes the time on day t. Although it is well-
known that realized volatility (realized variance), the sum of squared intraday
returns, is expected to converge to the integrated volatility æ2

t
in the limit ±t ! 0,

its pure form is not an appropriate measure when frequent jumps and microstruc-
ture noise are observed in the series. The realized bipower variation is some-
what robust to jumps providing a model-free and consistent alternative to realized
variance (Barndorff-Nielsen, 2004). In this study, we use the 5-minute sampling
interval because it avoids strong bias derived from extremely high frequencies
and maintains an accurate measure of volatility (Bandi and Russell, 2006; Liu
et al., 2015). The price increments (returns) and volatility increments (volatility
changes) are respectively calculated as

rt = ln pt ° ln pt°1, (5.2.2)
vt = ln æ̂t ° ln æ̂t°1, (5.2.3)

where æ̂t =
p

BPVt, and pt denotes daily closing price. To check whether the
log-volatility series (ln æ̂t) are non-stationary or not, we implemented two statis-
tical tests; the Augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 1979)
and Kwiatkowski-Philips-Schmidt-Shin (KPSS) test (Kwiatkowski et al., 1992).

1We take advantage of Poloniex that the exchange provides high frequency data without miss-
ing data throughout the investigated period. Although Poloniex certainly may not be one of the
most known exchanges, it provides transactions over 100 active cryptocurrencies. In the exchange,
the markets such as BTC, ETH, XRP, and LTC have enough liquidity so that market analysis can
be conducted without encountering zero values of intraday returns.
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(a) BTC (b) ETH

(c) XRP (d) LTC

Figure 5.1: The series of daily returns rt and the series of volatility changes vt

calculated from 5 minute intervals for (a) BTC, (b) ETH, (c) XRP, and (d) LTC.

We confirm that for all cases, the series are non-stationary and thus the log-
differences should be considered. In particular, the ADF tests show that the null
hypothesis of the existence of unit root cannot be rejected at 1% significance level,
and the KPSS tests show that the null hypothesis of sationarity is rejected at 1%
significance level (see Appendix). The data length of rt and vt equally consists of
N = 1669 for all the series we use in the analysis. The series are shown in Fig. 5.1.

In Table 5.1, we report the descriptive statistics for the returns of the inves-
tigated cryptocurrencies. As we can see from the results of the Jarque-Bera test,
all of them are remarkably far from the Gaussian distribution with high values of
kurtosis and a certain degree of skewness (*** denotes statistical significance at
1% level). Similarly, descriptive statistics for the volatility changes in Table 5.2
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Table 5.1: Descriptive statistics for cryptocurrency market time series (returns)
BTC ETH XRP LTC

Mean(%) 0.233 0.234 0.233 0.198
Median(%) 0.243 0.042 -0.152 -0.067
Std. Dev.(%) 4.174 5.701 7.397 5.934
Max.(%) 23.814 25.274 104.605 60.051
Min.(%) -50.435 -58.697 -68.039 -47.796
Skewness -1.107 -0.704 2.182 0.877
Kurtosis 15.557 9.800 37.335 12.740
Jarque-Bera1 17172§§§ 6816.1§§§ 98255§§§ 11501§§§

Table 5.2: Descriptive statistics for cryptocurrency market time series (bipower
volatility change)

BTC ETH XRP LTC
Mean(%) 0.044 0.050 0.054 0.137
Median(%) -2.702 -3.017 -4.498 -3.454
Std. Dev.(%) 37.672 39.560 80.847 47.053
Max.(%) 204.646 178.746 794.343 245.149
Min.(%) -149.576 -136.984 -725.121 -246.325
Skewness 0.747 0.600 0.264 0.506
Kurtosis 2.446 1.360 25.454 2.993
Jarque-Bera1 571.44§§§ 228.82§§§ 44588§§§ 693.64§§§

tell us that the series also have non-gaussian behavior, but tend to have higher
variance and lower kurtosis in comparison with the return series.

5.3 Methodology of fractal cross-correlation anal-

ysis

5.3.1 MF-ADCCA analysis

This subsection presents a slightly modified version of the MF-ADCCA method
of Cao et al. (2014), where the asymmetric proxy is not directly the return series
but the price index, similar to the index-based MFDFA proposed by Lee et al.
(2017). This method describes the asymmetric cross-correlations between two
time series {xt : t = 1, . . . , N} and {yt : t = 1, . . . , N} in terms of whether the aggre-
gated index shows a positive increment or a negative increment.
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First, we start by constructing the profiles from the series

X (k)=
kX

t=1
(xt ° x̄), t = 1, . . . , N,

Y (k)=
kX

t=1
(yt ° ȳ), t = 1, . . . , N

where x̄ and ȳ is the average over the entire return series, respectively. We also
calculate the index proxy series I(k)= I(k°1)exp(xk) for k = 1, . . . , N with I(0)= 1,
used for judging the positive and negative directions of the index series after-
wards. Next, the profiles X (k), Y (k), and the index proxy I(k) are divided into
Ns = bN/sc non-overlapping segments of length s. The division is repeated start-
ing from the other end of the series to consider the entire profile, since N is un-
likely to be a multiple of s and there may be remains in the profile. Thus, we have
2Ns segments in total for each series.

We next move on to the procedure of detrending the series. For each segment
v = 1, . . . ,2Ns of length s, the local trend of the profiles are calculated by fitting a
least-square degree-2 polynomial X̃v and Ỹv, which is used to detrend X (k) and
Y (k), respectively. At the same time we determine the local asymmetric direction
of the index series by estimating the least-square linear fit Ĩv(i) = aIv

+ bIv
i (i =

1, . . . , s) for each segment. Positive (upward) or negative (downward) trends de-
pend on the sign of the slope bIv

.
Then the detrended covariance for each of the 2Ns segments is calculated as:

f
2(s,v)=1

s

sX

i=1

ØØX ((v°1)s+ i)° X̃v(i)
ØØ ·

ØØY ((v°1)s+ i)° Ỹv(i)
ØØ

for v = 1, . . . , Ns and

f
2(s,v)=1

s

sX

i=1

ØØX (N ° (v°Ns)s+ i)° X̃v(i)
ØØ ·

ØØY (N ° (v°Ns)s+ i)° Ỹv(i)
ØØ

for v = Ns +1, . . . ,2Ns.
The upward and downward q-th order fluctuation functions are calculated by

taking the average over all segments as:

F
+
q (s)=

(
1

M+

2NsX

v=1

1+sgn(bIv
)

2
£
f

2(s,v)
§q/2

)1/q

,

F
°
q (s)=

(
1

M°

2NsX

v=1

1°sgn(bIv
)

2
£
f

2(s,v)
§q/2

)1/q

, (5.3.1)
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for any real value q 6= 0, and

F
+
0 (s)= exp

(
1

2M+

2NsX

v=1

1+sgn(bIv
)

2
ln

£
f

2(s,v)
§
)

,

F
°
0 (s)= exp

(
1

2M°

2NsX

v=1

1°sgn(bIv
)

2
ln

£
f

2(s,v)
§
)

, (5.3.2)

for q = 0. M
+ =P2Ns

v=1
1+sgn(bIv

)
2 and M

° =P2Ns

v=1
1°sgn(bIv

)
2 respectively represent the

numbers of segments with positive and negative trends under the assumption of
bIv

6= 0 for all v = 1, . . . ,2Ns, such that M
++M

° = 2Ns. The q-th order fluctuation
functions for the overall trend corresponds to the MF-DCCA method shown as:

Fq(s)=
(

1
2Ns

2NsX

v=1

£
f

2(s,v)
§q/2

)1/q

, (5.3.3)

for q 6= 0 and when q = 0,

F0(s)= exp

(
1

4Ns

2NsX

v=1
ln

£
f

2(s,v)
§
)

. (5.3.4)

If the series xk and yk are long-range power-law cross-correlated, then the q-th
order fluctuation functions follow a power-law of the forms F

+
q (s)ª s

h
+
xy(q), F

°
q (s)ª

s
h
°
xy(q), and Fq(s) ª s

hxy(q). The long-range power-law correlation properties are
represented in terms of the scaling exponent also known as the generalized Hurst
exponent.

The scaling exponent can easily be calculated by performing a log-log linear re-
gression. However, the performance of the regression more or less depends on the
choice of which range of scales to be implemented. As recommended in Thomp-
son and Wilson (2016), we employ the scale ranging from smin =max(20, N/100) to
smax =min(20smin, N/10) and using 100 points in the regression, in order to avoid
biases and maintain the validity of the estimation.

In cases of no cross-correlations, hxy(q) = 0.5 satisfies. If hxy(q) > 0.5, the
cross-correlations between the series are persistent with long-memory. On the
contrary, hxy(q) < 0.5 indicates that the cross-correlations between the series are
anti-persistent with short-memory. The same explanation certainly holds for
h
+
xy(q) and h

°
xy(q), but the scaling exponents of cross-correlations are individually

measured for positive and negative increments.
The order q implies to what degree the various magnitudes of fluctuations

are to be evaluated. Scaling exponents for q > 0, where the fluctuation function
Fq(s) is dominated by large fluctuations, reflect the behavior of larger fluctuations.
Scaling exponents for q < 0 reflect the behavior of smaller fluctuations since small
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fluctuations dominate the fluctuation function. If hxy(q) is independent of q, then
the cross-correlation of the series is monofractal since the scaling behavior of the
detrended covariance F

2(s,v) is identical for all segments. On the other hand, if
the value differs depending on q, small and large behaviors have different scaling
properties and the cross-correlations of the series are multifractal. It should be
mentioned that when q = 2, hxy(q) corresponds to the Hurst exponent.

The features of the multifractality can be further explored by the Rényi’s ex-
ponent given as

øxy(q)= qhxy(q)°1. (5.3.5)

If øxy(q) is a linear function of q, the cross-correlation of the series is monofractal
but otherwise, it is multifractal. From the Legendre transform, the singularity
spectrum is obtained as follows:

Æ= hxy(q)+ qh
0
xy(q)

fxy(Æ)= q(Æ°hxy(q))+1, (5.3.6)

where Æ is the singularity of the bivariate series. The singularity spectrum width
¢Æ = Æmax °Æmin represents the degree of multifractality of the bivariate series,
where Æmax and Æmin are respectively the Æ values at the maximum and minimum
of fxy(Æ) support. In the case of monofractality, ¢Æ heads to zero, and thus the
singularity spectra is theoretically just a point. The discussions above can also be
expanded to examine the multifractal properties for asymmetric cases of general-
ized Hurst exponents h

+
xy(q) and h

°
xy(q). Thus the asymmetric cases of the Rényi’s

exponent, ø+xy(q) and ø°xy(q), and the singularity spectra, f
+
xy(Æ) and f

°
xy(Æ), can be

calculated as well.
It must be noticed that when the series xj and yj are identical, the method

aims to study the properties of autocorrelations and the method is consistent with
the A-MFDFA.

5.3.2 Asymmetric DCCA coefficient analysis

The cross-correlation between two series with a high degree of non-stationarity
and self-similarity can be quantified via the DCCA coefficient, which utilizes the
analysis based on the DCCA. An asymmetric extension of the cross-correlation
coefficient is proposed by Cao et al. (2018), where the coefficient of the bivariate
series for the cases of when prices increase and decrease can be examined sepa-
rately.

The cross-correlation coefficient of Zebende (2011) and Podobnik et al. (2011)
between the series {xt : t = 1, . . . , N} and {xt : t = 1, . . . , N} is derived relying on the
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fluctuation functions calculated from overlapping N°s segments of length s+1 as

F
2
DCCA(s)= 1

N ° s

N°sX

i=1
f

2
DCCA(s, i), (5.3.7)

where f
2
DCCA(s, i) is the detrended covariance of the residuals for each segment

defined as

f
2
DCCA(s, i)= 1

s+1

1+sX

k=i

(Rx(k)° R̃x(k))(Ry(k)° R̃y(k)), (5.3.8)

where Rx(k)=P
k

t=1 xt, Ry(k)=P
k

t=1 yt, and the degree-2 polynomial fits R̃x(k) and
R̃y(k) are used to detrend Rx(k) and Ry(k). When we are considering the correla-
tions between two identical series, the fluctuation function F

2
DCCA(s) is reduced to

F
2
DFA(s) defined in terms of the DFA method.

Based on the fluctuation functions above, the cross-correlation coefficient is
defined as follows:

ΩDCCA(s)=
F

2
DCCA(s)

FDFAx(s)FDFAy(s)
, (5.3.9)

where F
2
DFAx

(s) and F
2
DFAy

(s) is the DFA fluctuation function for each of the series
x and y, respectively. Note that with a given scale of s, F

2
DCCA(s) represents cross-

correlation features at that scale, and F
2
DFA(s) represents autocorrelation features

of each series at scale s. This coefficient, therefore, reveals the degree of cross-
correlations for various scales.

In the asymmetric DCCA coefficient, the cross-correlation coefficients for the
upward and downward trends are taken in consideration as follows:

ΩDCCA+(s)=
F

2
DCCA+(s)

FDFAx+(s)FDFAy+(s)
,

ΩDCCA°(s)=
F

2
DCCA°(s)

FDFAx°(s)FDFAy°(s)
, (5.3.10)

where F
2
DCCA+(s) and F

2
DCCA°(s) are obtained from the calculation process in line

with equation (5.3.1), using the detrended covariance of the residuals for each
segment shown in equation (5.3.8). The coefficients ΩDCCA, ΩDCCA+, and ΩDCCA°
range from -1 to 1, and the value equal to 1 indicates the existence of a perfect
cross-correlation, and -1 indicates perfect anti-cross-correlation.
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5.4 Fractal cross-correlations of price–volatility

This section explores asymmetric multifractal features of price-volatility cross-
correlations and quantifies their coupling levels to clarify the presence of asym-
metric volatility effects in cryptocurrency markets.

5.4.1 Multifractality and their asymmetric properties

Before we conduct the MF-ADCCA method, we first test the presence of cross-
correlations between price changes and volatility changes to confirm that applica-
tion of DFA-based methods is appropriate for the analyses. We apply the statistic
test proposed by Podobnik et al. (2009) to check the presence of cross-correlations
between the bivariate series. The cross-correlation statistic for the series {xi} and
{yi} of equal length N is defined as:

Qcc(m)= N
2

mX

i=1

X
2
i

N ° i
, (5.4.1)

where Xi is the cross-correlation function defined as:

Xi =
P

N

k=i+1 xk yk°iqP
N

k=1 x
2
k

P
N

k=1 y
2
k

. (5.4.2)

Since the statistic Qcc(m) is approximately ¬2(m) distributed with m degrees of
freedom, it can be used to test the null hypothesis that the first m cross-correlation
coefficients are nonzero. If the value of Qcc(m) is larger than the critical value of
¬2(m), the null hypothesis is rejected and thus the series have a significant cross-
correlation.

The cross-correlation test statistics in eqs.(5.4.1) and (5.4.2) for price changes
and volatility changes of the four cryptocurrencies are calculated with various
degrees of freedom m, ranging from 1 to 700. The results are shown in Fig. 5.2
together with the critical values of the ¬2(m) distribution at the 5% level of signif-
icance. We find that for all the investigated cryptocurrencies, the statistic Qcc(m)
deviates from the corresponding critical value, indicating that there are nonlin-
ear cross-correlations between price changes and volatility changes. For XRP and
LTC, the test statistic deviates from the critical value more than those of BTC
and ETH. This implies the presence of stronger nonlinear cross-correlations in
the minor cryptocurrencies compared to the major ones.

Now that we have verified the existence of nonlinear cross-correlations in
the bivariate series, we next analyze the multifractal properties of asymmetric
cross-correlations for each cryptocurrency via the MF-ADCCA method. Figure 5.3
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Figure 5.2: Cross-correlation statistics between the return series and volatility
change series of the four major cryptocurrencies. The black line represents the
critical values at the 5% level of significance.

shows the q-th order fluctuation functions calculated from the returns and volatil-
ity changes with various q ranging from -10 to 10. The fluctuation functions un-
der different situations of bull and bear markets (uptrend and downtrend) are
also depicted with the overall trend. For all cases, we observe that the fluctuation
functions generally follow a power-law against the scale, which means that the
cross-correlations between the bivariate series have a long-range power-law prop-
erty. Therefore the MF-ADCCA is expected to be an effective method for analyz-
ing cross-correlations, along with the asymmetry between uptrend and downtrend
cross-correlations.

Figure 5.3 shows that the behavior of power-law cross-correlations varies among
market situations of different trends. To measure the degree of asymmetry of the
cross-correlations, we calculate the metric defined as

¢hxy(q)= h
+
xy(q)°h

°
xy(q), (5.4.3)

for given q. The greater the value, the greater the asymmetric behavior in terms
of different trends. If ¢hxy(q) > 0 (¢hxy(q) < 0), the cross-correlation for uptrend
situations has a larger (smaller) exponent compared to those of downtrend situ-
ations. When the bivariate series are essentially identified by the same scaling
exponent, ¢hxy(q) is theoretically zero and the two series have symmetric cross-
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(a) BTC

(b) ETH

(c) XRP

(d) LTC

Figure 5.3: Log-log plots of Fq(s),F+
q (s) and F

°
q (s) versus time scale s for the four

cryptocurrency series of (a) BTC, (b) ETH, (c) XRP, and (d) LTC. We show the
cases of q =°10,°8,°6, . . . ,10. The power-law relations indicate that the bivariate
series have long-range power-law cross-correlations.
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correlations. We calculate the cases of q = °10 (small fluctuations), q = 2 (corre-
sponding to the Hurst exponent), and q = 10 (large fluctuations). We clearly find in
Table 5.3 that regardless of small and large fluctuations, ¢hxy(q) is positive for all
the investigated cryptocurrencies (except for the case of q =°10 in LTC). Fig. 5.4
also supports these findings where h

+
xy(q) is larger than h

°
xy(q). Cross-correlations

of price-volatility in the uptrend markets generally have slightly higher persis-
tency at all levels of fluctuations compared to those in the downtrend markets.
To investigate the statistical validity of the asymmetric multifractal degree, we
implement Monte Carlo simulations and obtain confidence intervals of ¢hxy(q)
calculated from 1000 generated series of returns and realized bipower volatil-
ity changes. The daily returns and realized bipower volatility changes are con-
structed based on the shuffled series of the original 5-minute high frequency re-
turns. We find that BTC, ETH, and XRP exhibit asymmetry at the 1% or 5% sig-
nificance level, while LTC have rather insignificant asymmetry. We also find that
the major currencies of BTC and ETH present significant asymmetry especially
in large fluctuations, but the minor currencies tend to present more asymmetry
in smaller fluctuations.

Table 5.3: Asymmetric degree of price-volatility cross-correlations in terms of
uptrend and downtrend price movements shown together with the multifractal
degree for each of the four cryptocurrencies. Note that ***, **, and * denote 1%,
5%, and 10% significance levels, respectively.

¢hxy(°10) ¢hxy(2) ¢hxy(10) Dxy

BTC 0.044 0.075§§ 0.123§§§ 0.233
ETH 0.021 0.111§§§ 0.158§§§ 0.127
XRP 0.074§§ 0.079§§ 0.020 0.151
LTC °0.050 0.045 0.029 0.178

The presence of multifractality can be examined by looking into whether or not
the generalized Hurst exponents are dependent on its order q. Given that hxy(q)
decreases as q increases in Fig. 5.4, hxy(q) is not constant for q and hence multi-
fractal behaviors exsist in the cross-correlations between the bivariate series. To
numerically explain the deviation from monofractality and efficiency, we use the
market efficiency measure (MDM) of Wang et al. (2009) defined as

Dxy =
1
2

(|hxy(°10)°0.5|+ |hxy(10)°0.5|). (5.4.4)

If Dxy is zero or close to zero, then the relationship between the series are effi-
cient. Larger values of Dxy indicate higher inefficiency, and smaller values in-
dicate lower inefficiency. This metric is useful to determine the ranking of the
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(a) BTC (b) ETH

(c) XRP (d) LTC

Figure 5.4: Relationship between the generalized Hurst exponents and the order
q for the cases of (a) BTC, (b) ETH, (c) XRP, and (d) LTC.
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(in)efficiency degree (Mensi et al., 2017). From the results shown in Table 5.3, we
suggest that BTC is the most inefficient with Dxy = 0.233, and ETH is the most
closest to efficiency with Dxy = 0.127.

(a) BTC (b) ETH

(c) XRP (d) LTC

Figure 5.5: Singularity spectra fxy(Æ), f
+
xy(Æ), and f

°
xy(Æ) for the cases of (a) BTC,

(b) ETH, (c) XRP, and (d) LTC.

To further study the multifractal properties, we display the singularity spec-
tra fxy(Æ), f

+
xy(Æ), and f

°
xy(Æ) in Fig. 5.5 where the asymmetric market trends are

considered. The spectra are quite broad as expected, and the width differs with
respect to cryptocurrencies and market trends. In particular, among the investi-
gated markets, spectrum width in BTC for the overall trends present the largest
degree of multifractality of ¢Æ= 0.5427. On the contrary, spectrum width in ETH
for uptrends present the smallest degree of ¢Æ = 0.1513. In addition, we discuss
the multifractal features from another metric of the asymmetric spectrum param-
eter, AÆ = ¢ÆL°¢ÆR

¢ÆL+¢ÆR
, where ¢ÆL = Æ0 °Æmin, ¢ÆR = Æmax °Æ0, and Æ0 is the value

of Æ at the maximum of the singular spectrum (Drożdż and Oświȩcimka, 2015).
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Note that the asymmetry here is not in terms of different market trends but the
distortion of the singularity spectrum fxy(Æ). The metric AÆ provides informa-
tion to identifying the compositions of the bivariate series. If AÆ > 0 (AÆ < 0),
the singular spectrum has a left-sided (right-sided) asymmetry, which indicates
that the scaling properties are determined by q > 0 (q < 0) and hence larger fluc-
tuations (smaller fluctuations) dominate the multifractal behavior (Drożdż and
Oświȩcimka, 2015). Therefore, it can be interpreted that multifractality owes to
larger fluctuations for the left-sided case, and the opposite for the right-sided case.
If AÆ = 0, the left and right sides of spectrum width are equivalent, and thus the
small and large fluctuations operate equally on multifractality.
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We report in Table 5.4 the asymmetric spectrum parameter AÆ and values
of Æ for the three different market trends: overall, uptrend, and downtrend. In
real-world finance data, left-sided spectrum is more common and in such case, it
is reasonable to have peculiar features in the larger fluctuations and a noise-like
behavior in the smaller fluctuations Drożdż and Oświȩcimka (2015). However,
we find uncommon features in some cases. The asymmetric spectrum parame-
ters AÆ, A

+
Æ, and A

°
Æ take negative values in BTC and LTC markets (except for

A
+
Æ in LTC taking a positive value), and the right-skewed spectra explain that

smaller events play a more important role in the underlying multifractality. In
contrast, larger events contribute more to the multifractal behavior in the XRP
market because the asymmetric spectrum parameters take positive values. It is
interesting to mention that regardless of the market trends, multifractality of the
price-volatility coupling for BTC and XRP exhibit the same behavior of asymme-
try fxy(Æ) either with the right- or left-sided spectrum, i.e., the same distortion.
On the other hand, ETH and LTC show different multifractal properties depend-
ing on market trends, where large fluctuations are dominant in bull markets but
small fluctuations are dominant in bear markets. We find that LTC tends to show
relatively stronger right-skewed fxy(Æ) with smaller values of AÆ, whereas XRP
shows the strongest left-skewed fxy(Æ) with the largest values of AÆ for all mar-
ket trends. In addition to the right-skewed property of BTC and LTC, they tend
to have wider spectrum width ¢Æ, demonstrating that these markets exhibit a
highly complex price-volatility behavior.

Although the bivariate extension of scaling exponents and singularity spectra
captures power-law cross-correlations and helps characterize complex behaviors
between the two series, the discussion without each of its univariate exponents
and spectra may not provide a satisfactory interpretation. Focusing on the bi-
variate Hurst exponent (Hxy = hxy(2)), many empirical studies have reported that
Hxy > 1

2(Hx + Hy) or Hxy = 1
2(Hx + Hy) (He and Chen, 2011; Oświeçimka et al.,

2014), whereas numerical and theoretical studies have found that Hxy < 1
2(Hx +

Hy) or Hxy = 1
2(Hx +Hy) (Sela and Hurvich, 2012). Kristoufek (2013) (Kristoufek,

2013) defines a mixed-correlated ARFIMA (MC-ARFIMA) process, which allows
for generating power-law cross-correlations and controlling the Hxy parameter,
and shows that there is no combination of parameters leading to Hxy > 1

2(Hx+Hy).
A theoretical basis in terms of the frequency domain using the squared spectrum
coherency also supports the finding that Hxy > 1

2(Hx + Hy) is impossible (Kris-
toufek, 2015a). However, the empirical estimation of Hxy or specifically its com-
parison with 1

2(Hx + Hy) can lead to unreliable and controversial results due to
the underlying bias such as short-term dependence bias, bias in the presence of
heavy tails, and finite sample bias, which is often observed in the econophysic
work of empirical studies (Kristoufek, 2020). We find that among the investi-

95



5.4. FRACTAL CROSS-CORRELATIONS OF PRICE–VOLATILITY

gated cryptocurrencies, BTC, ETH, and LTC satisfy Hxy < 1
2(Hx + Hy). On the

other hand, XRP shows higher bivariate Hurst exponent than the average of two
separate ones, with Hxy = 0.355 and 1

2(Hx +Hy) = 0.342, implying the biased re-
sults. Towards an intuitive interpretation of cross-correlations without relying
solely on Hxy, Kristoufek (2020) suggests two ways to overcome the issue: uti-
lizing the DCCA-based cross-correlation coefficient and focusing on the case of
Hxy < 1

2(Hx +Hy). We focus on the former method, since it is straightforward to
implement and the DCCA measure can lead to find novel relationships between
price and volatility in cryptocurrency markets. Since our discussion so far has
been based on the multifractal analysis, not only the issue of Hurst exponent but
also the issue of generalized Hurst exponent should be addressed. The estimation
of hxy(q) and its comparison with 1

2(hx(q)+ hy(q)), as well as in the framework
of the singular spectra fxy(Æ), would play a crucial role in giving interpretation
when multifractal properties are present in cross-correlations. A further work
that explains the theoretical aspect of these connections is left for future work.

5.4.2 Asymmetric volatility assessment

We next apply the DCCA coefficient analysis to quantify the asymmetric cross-
correlations between price and volatility and to examine the asymmetry volatility
effects in cryptocurrency markets. Fig. 5.6 depicts the coefficients for the over-
all trend, ΩDCCA(s), and the upward (bull) and downward (bear) market trends,
ΩDCCA+(s) and ΩDCCA°(s), for various time scales s ranging from 10 to 334 days.
For the entire period (overall trend), the coefficients are not so far from zero at all
time scales. Analyzing the case of the overall trend appears to suggest that price
and volatility are less interrelated. However, once we consider uptrend and down-
trend, we can realize different pictures of the markets. The asymmetric DCCA
coefficient approach enables us to separately figure out the interrelationship be-
tween price and volatility under bull and bear regimes.

As shown in Fig. 5.6, the coefficients are positive for uptrend markets but
negative for downtrend markets. This reconfirms that both positive and negative
price changes have a certain degree of the impact on volatility. When |ΩDCCA°(s)| >
|ΩDCCA+(s)| is satisfied, i.e., price and volatility are more strongly cross-correlated
in downtrend markets than in uptrend markets, we can say that asymmetric
volatility is present at a certain time scale. On the contrary, when |ΩDCCA°(s)| <
|ΩDCCA+(s)| holds, we can say that inverse-asymmetric volatility is present where
uptrend markets have stronger price-volatility cross-correlations.
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(a) BTC (b) ETH

(c) XRP (d) LTC

Figure 5.6: DCCA cross-correlation coefficients ΩDCCA(s), ΩDCCA+(s), and
ΩDCCA°(s) between the price-volatility relationships under various scales s for the
cases of (a) BTC, (b) ETH, (c) XRP, and (d) LTC. The scales represent the lag of
days.

97



5.4. FRACTAL CROSS-CORRELATIONS OF PRICE–VOLATILITY

Ta
bl

e
5.

5:
E

st
im

at
e

re
su

lt
s

of
co

nd
it

io
na

lv
ar

ia
nc

e
fo

r
cr

yp
to

cu
rr

en
ci

es
.

Th
e

E
G

A
R

C
H

m
od

el
an

d
G

JR
-G

A
R

C
H

m
od

el
ar

e
es

ti
m

at
ed

ov
er

th
e

pe
ri

od
fr

om
Ju

ne
3,

20
16

to
D

ec
em

be
r

28
,2

02
0.

St
an

da
rd

er
ro

rs
of

es
ti

m
at

es
ar

e
re

po
rt

ed
in

pa
re

nt
he

se
s.

N
ot

e
th

at
**

*,
**

,a
nd

*
de

no
te

1%
,5

%
,a

nd
10

%
si

gn
ifi

ca
nc

e
le

ve
ls

,r
es

pe
ct

iv
el

y.
Q

2 (
10

)i
s

th
e

sq
ua

re
Q

-s
ta

ti
st

ic
an

d
th

e
p-

va
lu

es
ar

e
pr

es
en

te
d

in
br

ac
ke

ts
.

E
G

A
R

C
H

G
JR

-G
A

R
C

H
B

TC
E

TH
X

R
P

LT
C

B
TC

E
TH

X
R

P
LT

C
!

°0
.6

82
7§

§§
°0

.7
08

9§
§§

°1
.0

25
2§

§§
°0

.3
76

2§
§§

0.
00

01
§§

§
0.

00
03

§§
§

0.
00

04
§§

§
0.

00
01

§§
§

(0
.0

66
1)

(0
.0

71
2)

(0
.0

42
2)

(0
.0

30
3)

(0
.0

00
0)

(0
.0

00
0)

(0
.0

00
0)

(0
.0

00
0)

Æ
1

0.
26

09
§§

§
0.

28
93

§§
§

0.
44

41
§§

§
0.

17
58

§§
§

0.
12

17
§§

§
0.

15
85

§§
§

0.
40

89
§§

§
0.

07
75

§§
§

(0
.0

20
8)

(0
.0

18
5)

(0
.0

18
2)

(0
.0

12
9)

(0
.0

16
0)

(0
.0

17
2)

(0
.0

26
9)

(0
.0

10
1)

Æ
2

-0
.0

5
8
6
§§

§
-0

.0
0
7
1

0
.0

8
2
8
§§

§
0
.0

1
9
3
§§

§
0
.1

1
6
2
§§

§
0
.0

1
7
6

-0
.1

1
6
1
§§

§
-0

.0
2
5
6
§§

§

(0
.0

08
0)

(0
.0

09
7)

(0
.0

09
7)

(0
.0

06
0)

(0
.0

16
5)

(0
.0

17
1)

(0
.0

25
7)

(0
.0

08
2)

Ø
0.

92
17

§§
§

0.
91

35
§§

§
0.

87
06

§§
§

0.
95

49
§§

§
0.

77
69

§§
§

0.
76

49
§§

§
0.

62
97

§§
§

0.
89

97
§§

§

(0
.0

08
3)

(0
.0

10
6)

(0
.0

06
0)

(0
.0

04
0)

(0
.0

17
6)

(0
.0

19
5)

(0
.0

14
1)

(0
.0

09
6)

Lo
g

lik
el

ih
oo

d
30

79
.3

3
25

53
.7

3
24

12
.3

5
24

19
.2

5
30

83
.5

8
25

56
.6

6
24

28
.9

9
24

66
.0

2
A

IC
-3

.6
81

8
-3

.0
52

4
-2

.8
83

1
-2

.9
77

5
-3

.6
86

9
-3

.0
55

9
-2

.9
03

0
-2

.9
47

3
Q

2 (
10

)
2.

44
76

8.
45

55
4.

75
84

1.
76

40
4.

20
86

10
.1

43
3.

22
43

1.
22

43
[0

.9
92

]
[0

.5
84

]
[0

.9
07

]
[0

.9
98

]
[0

.9
37

]
[0

.4
28

]
[0

.9
76

]
[1

.0
00

]

98



CHAPTER 5. FRACTAL CROSS-CORRELATION DYNAMICS OF
CRYPTOCURRENCIES

The results provide clear evidence that for BTC and ETH, price and volatility
are more strongly cross-correlated in downtrend markets than in uptrend mar-
kets. In particular, we find ΩDCCA°(s) º °0.5 and ΩDCCA+(s) º 0 for BTC, and
ΩDCCA°(s) º °0.5 and ΩDCCA+(s) º 0.15 for ETH under approximately one-month
time scales (s º 30). This implies the absence of uninformed noise traders during
bull markets, but they are active during bear markets. Similar results are ob-
served when studied at longer time scales of half a year (s º 180), with the DCCA
coefficients ΩDCCA°(s)º°0.25 and ΩDCCA+(s)º 0.1 for both markets. Higher levels
of cross-correlations in downtrends are found across all time scales for BTC and
ETH, suggesting the presence of asymmetric volatility dynamics.

In the case of XRP, however, we find inverse-asymmetry in volatility dynamics
because |ΩDCCA+(s)| is always larger than |ΩDCCA°(s)| for all time scales. Unin-
formed noise traders are more dominant when the price increases than when the
price decreases. More interestingly, LTC exhibits different volatility-asymmetry
depending on which time scale the cross-correlation analysis was implemented
at. At relatively longer time scales (s > 150), |ΩDCCA+(s)| is larger than |ΩDCCA°(s)|,
but at relatively shorter time scales, |ΩDCCA°(s)| surpasses the value of |ΩDCCA+(s)|.
In other words, inverse-asymmetric volatility is present at scales of s > 150, but
not at scales shorter than s = 150. Such explanations cannot be confirmed by
the conventional GARCH-class models, which generally focus on the effects of
one-time price shock on volatility. The approach in this study challenges to a dy-
namical effects of price on volatility while accounting for the directions of price
trends with various time scales. Focusing on the time scales, we find that cross-
correlations for uptrend markets are generally constant; however, the loss of
cross-correlations is observed for downtrend markets at longer time scales.

The asymmetric DCCA coefficient is derived from the fractal analysis and
therefore reflects the scaling properties of the price-volatility nexus in a nonlin-
ear way. However, the asymmetric behavior of the price-volatility is often assessed
using the GARCH-class models which focus more on linear correlations. To make
sure that our empirical findings based on the fractal framework show the same
direction of asymmetric volatility with the conventional methods, we also imple-
ment two types of GARCH models that can explain the asymmetric effects on
volatility. The first model is the exponential GARCH (EGARCH) written as fol-
lows (Nelson, 1991):

lnæ2
t =!+Æ1

|rt°1|
æt°1

+Æ2
rt°1

æt°1
+Ø lnæ2

t°1, (5.4.5)

with rt = "tæt, where æ2
t

is the conditional variance at time t, and "t denotes an
error term with i.i.d. standard Gaussian noise N (0,1). The second model is the
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threshold GJR-GARCH written as follows (Glosten et al., 1993):

æ2
t =

Ω
!+Æ1r

2
t°1 +Øæ2

t°1, rt°1 ∏ 0
!+ (Æ1 +Æ2)r2

t°1 +Øæ2
t°1, rt°1 < 0 (5.4.6)

where the term Æ2r
2
t°1 is operated only when the market goes downwards. For

convenience, both models are with one lag of the innovation (p = 1) and one lag
of volatility (q = 1), since the selection of optimized lags often produces similar
estimation results. The GARCH models above are represented by the parame-
ters !, Æ1, Æ2, and Ø. Among these parameters, Æ2 is the responsible one that
determines the asymmetric responses of volatility to market shocks. Significantly
positive values of Æ2 for the EGARCH model imply that positive shocks increase
volatility more than negative shocks. Note that the positive/negative direction is
reversed for the GJR-GARCH model, where negative shocks increase the volatility
more when Æ2 is positive. As shown in Table 5.5, the values of Æ2 are negative in
EGARCH and positive in GJR-GARCH for BTC and ETH, and hence the volatility
is increased more by negative shocks. We find opposite results for the XRP and
ETH because Æ2 are positive in EGARCH and negative in GJR-GARCH. In such
cases, volatility is increased more by positive shocks. Note that for the ETH, the
asymmetric parameter is insignificant and thus the asymmetric effect cannot be
statistically confirmed by the implemented GARCH models.

The results of GARCH models appear to highlight that our empirical findings
of the DCCA coefficient analysis on asymmetric cross-correlations are relevant
to the asymmetric volatility dynamics. Both asymmetric-GARCH models and
detrended cross-correlation analysis reveal consistent results of the underlying
asymmetric/inverse-asymmetric volatility in cryptocurrency markets. Past stud-
ies have shown inverse-asymmetric volatility dynamics of cryptocurrency mar-
kets (Baur and Dimpfl, 2018; Cheikh et al., 2020). Our findings conclude that un-
like in the earlier periods, the volatility for the two major coins of BTC and ETH,
are no longer inverse-asymmetric. One possible reason may be the less presence
of uninformed noise traders and increasing participants of informed traders in
the market, and the major coins head to maturity in recent years. Minor coins are
immature with inverse-asymmetric volatility where speculated noise traders still
dominate the market and play a significant role in raising the volatility especially
during the uptrend periods. The appearance of stronger negative cross-correlation
of price-volatility at shorter scales for LTC could be a key clue to explain the pro-
cess that minor coins are expected to head for mature markets. As asymmetric
cross-correlations are available at different scales, our findings can be applied to
form models for optimal portfolio diversification under different investment hori-
zons, which helps address the nonlinear interactions and asymmetric responses
prevalent in the cryptocurrency market. In particular, investors can introduce a
correlation matrix based on the asymmetric DCCA coefficient as an alternative to
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the conventional one, allowing investment allocations to depend on time scales.
The performance of such portfolios and whether the diversification strategy is ef-
fective for making profit are left for future works.

5.5 Summary and Discussions

This chapter examined the nexus between daily price and realized volatility
in cryptocurrency markets. The MF-ADCCA approach revealed that the price-
volatility relationship exhibits power-law cross-correlations as well as multifrac-
tal properties. We discussed the multifractal characteristics of the asymmetric
cross-correlations when the market is rising and falling, together with the overall
market trend, and found that the bivariate series have different properties be-
tween positive and negative market trends. We investigated the multifractal fea-
tures in detail by using the generalized Hurst exponents and the singular spec-
trum. The results pointed out that generally for the investigated cryptocurren-
cies, cross-correlations of price and volatility in the uptrend markets have slightly
higher persistency compared to those in the downtrend markets, irrespective of
small and large fluctuations. Distinctive features of how small and large fluctua-
tions operate on multifractality were also discovered and reported by investigat-
ing the spectrum distortion for each cryptocurrency and its market trends.

More importantly, the level of the asymmetric cross-correlations for each cryp-
tocurrency was quantitatively evaluated by employing the asymmetric DCCA co-
efficient. Our empirical findings showed that depending on market directions or
trends, the level of cross-correlations differs. We found the presence of stronger
cross-correlations in bear markets than in bull markets for the maturing major
coins (BTC and ETH), whereas the opposite results were observed for the still-
developing minor coins (XRP and LTC). As long as price-volatility is our sub-
ject, we provided evidence that such an approach enables us to discuss whether
asymmetric/inverse-asymmetric volatility dynamics are present with various time
scales, which is an intriguing financial phenomenon for investors and financial
regulators. The detection of asymmetric volatility works well since the results
of our fractal analysis were in line with those of the conventional asymmetric
GARCH-class models. Taking the advantage of the multifractal features, power-
law cross-correlations, and scaling behaviors of price-volatility within various
time scales, our approach can be an alternative approach for discussing dynamical
volatility behaviors in cryptocurrency markets.
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Chapter 6

Asymmetric Volatility Dynamics in

Cryptocurrency Markets on

Multi-time Scales

This chapter corresponds to paper 5 in the author’s papers list.

6.1 Introduction

One of the economic behaviors well-established in the finance literature is
that volatility of financial series responds asymmetrically to return shocks (Black,
1976; Bollerslev et al., 2009; Bentes, 2018). The so-called “leverage effect”, also
known as the “asymmetric volatility effect”, is described in stock markets that
bad news (negative return shocks) increase the volatility by more than good news
(positive return shocks) (Schwert, 1989; Cheung and Ng, 1992). The concept of
this asymmetric effect has been theoretically studied and modeled utilizing vari-
ous statistical volatility models (e.g., GARCH-type models), and how asymmetric
responses are produced is generally demonstrated by factors built on the tradi-
tional framework of EMH (Black, 1976; Christie, 1982). However, the asymmetric
volatility effect has not been well-studied in terms of the fractal framework. Fi-
nancial time series as well as cryptocurrencies are rather inefficient and are likely
to represent remarkable properties of fractality associated with multi-time scales.
Motivated by evidence of significant scale-dependent consequences in cryptocur-
rencies and limited empirical evidence of asymmetric volatility effect due to the
markets’ short history, the objective of this study is to examine whether and why
volatility responds asymmetrically in cryptocurrency markets, in a more precise
manner accounting for scaling dependence of the market behavior given the high
complexity. We take advantage of the bivariate fractal regression analysis of Wang
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et al. (2018) to detect whether the volatility of price change is positively or nega-
tively related to its return shocks at different time scales. The approach allows us
to consider FMH-based features of asymmetric volatility that cannot be captured
by the conventional models.

Following several works that discover a reversed leverage among early emer-
gence periods of cryptocurrency markets (Bouri et al., 2017a; Baur and Dimpfl,
2018; Cheikh et al., 2020; Kakinaka and Umeno, 2021), this study also finds evi-
dence of the presence of an “inverse” asymmetric volatility effect in cryptocurrency
markets— contrary to conventional markets, the return volatility is higher when
a positive shock occurs. The consequences are discussed in the context of who is
trading in the market and heterogeneity of the investors. According to Glosten
and Milgrom (1985) and Easley et al. (1996), the trading of informed and unin-
formed investors leads to different traces in the return process due to the inef-
ficiency of market information. In particular, informed traders do not generate
auto-correlation, while uninformed traders drive serial correlation in the return
process, thereby increasing the volatility (Avramov et al., 2006). Utilizing this
idea, we will examine under what market conditions uninformed investors domi-
nate the market and discuss the asymmetric factors of our empirical findings.

We reconfirm that except for the prominent markets of Bitcoin and Ethereum,
the minor markets substantially exhibit a positive relation between return shocks
and volatility. More interestingly, our dynamical fractal approach reveals further
the multi-time scale components of the asymmetric volatility phenomenon under
different time scales. Since asymmetric response may be time-varying (Takaishi,
2021), we also attempt to examine inverse/non-inverse effects under different data
periods. Our approach can be an alternative to existing models, providing a new
view based on investors’ speculative trading and how they are the source of asym-
metry, which could play a crucial role in investment decisions, pricing, risk man-
agement, and monetary policy.

The rest of this chapter is organized as follows. Section 6.2 describes the
methodology associated with analyzing asymmetric volatility. Section 6.3 intro-
duces the dataset used in this study, and presents the results and empirical find-
ings we have reached. Finally, Section 6.4 draws the main summary and discus-
sions.

6.2 Detection Methodology

6.2.1 DFA-based bivariate regression estimator

By translating the standard regression analysis into the DFA and DCCA-
based language, Kristoufek (2015b) proposed the fractal regression analysis that
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enables quantifying scale-dependent interactions between time series. The method
provides richer information than the standard regression framework in that it
deals with complexity and nonlinearity in dynamical systems, as well as the ac-
tual response of the series at multi-time scales. The fractal regression analysis
was then extended to the case of two impulse series, namely the DFA-based bi-
variate regression analysis (Wang et al., 2018). A further development was made
recently by Tilfani et al. (2022), where multivariate regression model in the frac-
tal framework is illustrated for financial applications. In effect, these multi-time
scale approaches are practical for modeling heterogeneity in economic and finan-
cial systems and their underlying scale structure (Tilfani et al., 2022).

By combining DFA with the standard bivariate linear regression method, we
estimate the scale-dependent regression coefficients between return and volatility
series in cryptocurrency markets, which are considered to exhibit non-stationary
and complex behaviors (Telli and Chen, 2020; Wa̧torek et al., 2021). The advan-
tage of this method is that we can investigate a multi-time scale procedure and
check the nonlinear dependence between a response series and an impulse series
at different levels of scales.

We slightly modify the DFA process of the above DFA-based bivariate regres-
sion analysis of Wang et al. (2018). We follow the initial approach of Podobnik and
Stanley (2008), where they derive the fluctuation functions relying on overlap-

ping segments of the dataset instead of non-overlapping segments. Although the
process requires more segments to be averaged over the fluctuation functions, it
avoids the significant variance of the estimates due to the small number of sample
segments to be averaged.

The key point of fractal regression methods is to use the scale-dependent vari-
ance and covariance derived from the “detrended function”, instead of the stan-
dard variance form. For a given time series {xt} with length N, we split its cumula-
tive sum, or in other words the profile series, X (t)=P

t

i=1 xi, for t = 1,2, . . . , N, into
N ° s overlapping segments of length s+1. The degree-2 polynomial fits X̃ (t) are
used to detrend X (t) for each segment, and then calculate the detrended variance
function for each segment defined as

f
2
X X

(s,v)= 1
s+1

v+sX
t=v

£
X (t)° X̃ (t)

§2 . (6.2.1)

By averaging f
2
X X

(s,v) over all the segments, we get the fluctuation function, or
the scale-dependent variance

F
2
X X

(s)= 1
N ° s

N°sX

v=1
f

2
X X

(s,v). (6.2.2)

The scale-dependent covariance can be derived in a similar way by the detrended
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covariance function of bivariate series {xt} and {yt} with the same length deter-
mined as

F
2
XY

(s)= 1
N ° s

N°sX

v=1
f

2
XY

(s,v), (6.2.3)

where

f
2
XY

(s,v)= 1
s+1

v+sX
t=v

£
X (t)° X̃ (t)

§£
Y (t)° Ỹ (t)

§
. (6.2.4)

Note that Eq. (6.2.3) and Eq. (6.2.4) can take positive as well as negative values.
To illustrate the dependences of bivariate series, we consider a bivariate linear

regression model

Zt =Ø0 +Ø1Xt +Ø2Yt +"t (t = 1, . . . , N), (6.2.5)

where Zt is a response variable, Xt and Yt are impulse variables, and "t is a
Gaussian error term with zero mean. Partial regression coefficients Ø1 and Ø2
characterize the dependence of response variables on impulse variables. In accor-
dance with the standard OLS method and replacing variance (covariance) with
scale-dependent variance (covariance), we get the scale-dependent coefficient es-
timators as follows:

Ø̂DFA
1 (s)=

F
2
X Z

(s)F2
Y Y

(s)°F
2
Y Z

(s)F2
XY

(s)

F
2
X X

(s)F2
Y Y

(s)°
£
F

2
XY

(s)
§2 , (6.2.6)
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(s)F2
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(s)F2
Y Y
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2
XY

(s)
§2 . (6.2.7)

By using the scale-dependent residual

ê t(s)= Zt ° Ø̂DFA
1 (s)Xt ° Ø̂DFA

2 (s)Yt °
D

Zt ° Ø̂DFA
1 (s)Xt ° Ø̂DFA

2 (s)Yt

E
,

we can calculate the fluctuation function F
2
""(s) in the same manner as Eq. (6.2.2),

and the variance of the above coefficients can be estimated as below:

var
h
Ø̂DFA

1 (s)
i
= 1

N °3
F

2
Y Y

(s)F2
""(s)

F
2
X X

(s)F2
Y Y

(s)°
£
F

2
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(s)
§2 , (6.2.8)
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2 (s)
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= 1

N °3
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2
X X

(s)F2
""(s)
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2
X X

(s)F2
Y Y

(s)°
£
F

2
XY

(s)
§2 . (6.2.9)

Now that the coefficients are estimated for some specific scale s, we can do the
same procedure under other scales by changing s. It is worth noting that Fan and
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Wang (2020) introduces a similar approach of DMA-based bivariate regression es-
timator, which uses the centered moving average technique when detrending the
profile series, i.e., X (t) in Eq. (6.2.1). Since the centered DMA analysis requires
some reference to future data, we focus on the DFA that can be carried on with
the data at hand.1

In this study, we use the DFA and DCCA fluctuation functions to implement
the fractal regression analysis. Discussions based on the fractal regression anal-
ysis provide a more transparent view of multi-time scale connections between the
variables because the regression model intends to design the actual dependence
rather than just looking at the strength of its correlation.2 Moreover, it plays a
role in meeting the need to regard asymmetric effects of asymmetric volatility by
devising the fractal regression model presented in the following subsection.

6.2.2 Modelling asymmetric volatility behavior

We provide an alternative approach to model asymmetric effects of return
shocks on volatility. To clarify the dependence at different time scales, we develop
the DFA-based bivariate fractal regression and construct the following regression
model:

Zt =Ø0 +Ø1Xt +Ø2Yt +"t (t = 2, . . . , N), (6.2.10)
8
>>><
>>>:

Xt = |rt°1|p
RVt°1

Yt = rt°1p
RVt°1

Zt = lnRVt

where RVt is the realized volatility series in Eq. (6.3.1), rt is the return series
in Eq. (6.3.2), and |rt| is the absolute value of return series. The independent
variable rt°1p

RVt°1
represents the positive and negative return shocks relative to

volatility, in the previous time step. The independent variable |rt°1|p
RVt°1

represents

its magnitude—the larger the value, the greater the impact, i.e., impact of shocks
relative to volatility. In other words, these variables are filtered by volatility.
This filtering procedure removes short range dependencies and reduces possible
volatility bias among different time windows (Tilfani et al., 2019). The infor-
mation on market sign enables to model potential asymmetry of the impact on

1In general, the DFA-based methods are powerful and robust tools for determining remarkable
stylized facts of long-range correlations and scale dependencies in one’s series and across other
series.

2Zebende (2011) uses the DFA and DCCA fluctuation functions to calculate the cross-correlation
coefficient at multi-time scales defined as ΩDCCA(s)= F

2
XY

(s)
FX X (s)FY Y (s) .
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volatility. Asymmetric response of positive and negative shocks can be quantified
through the regression coefficients Ø1 and Ø2; a positive shock in the market is re-
sponsible for the increase in volatility as much as (Ø1+Ø2) |rt°1|p

RVt°1
, whereas a neg-

ative shock in the market is responsible for the increase in volatility as much as
(Ø1 °Ø2) |rt°1|p

RVt°1
. Therefore, among the coefficients, Ø2 determines the asymmetric

volatility behavior. Significantly positive (negative) values of Ø2 in the model im-
ply that positive (negative) shocks increase volatility by more than shocks whose
sign is opposite.

Rewriting Eq. (6.2.10) as

lnRVt =Ø0 +Ø1
|rt°1|+∞rt°1p

RVt°1
+"t, (6.2.11)

where ∞ = Ø2
Ø1

, appears to resemble the structure of the conventional EGARCH
model, which is one of the most common GARCH model capable of investigating
asymmetric effects. The EGARCH model and our fractal regression model are
similar to some extent. For both the impulse variable of our regression model and
the process of return innovations in the EGARCH model, the sign of past return
shocks yields separate effects on volatility, and for the response variable, the loga-
rithm of the volatility relaxes the positiveness constraint of model coefficients and
allows values to be negative. While the EGARCH model describes the volatility
and variance of the current error term or innovation conditioned to previous er-
ror terms and innovations, the DFA-based regression model aims to demonstrate
the nonlinear dependence of volatility with lagged return series across different
time scales. The conditional volatility term is not included in our model because
the DFA-based method accounts for the nonlinear elements of volatility, such as
long-range dependence. Since the whole history of returns are already incorpo-
rated into the fractal regression model in terms of long-range correlations, taking
additional lagged return innovations may be inappropriate in fractal regressions.
The fractal regression framework addresses the dynamic behavior, even in simple
regression models. Under a specific time scale of s, the model of Eq. (6.2.10) can
be expressed as

lnRVt =Ø0(s)+Ø1(s)
|rt°1|p
RVt°1

+Ø2(s)
rt°1p
RVt°1

+"t(s) (t = 2, . . . , N), (6.2.12)

where the scales can be interpreted as investment horizons. For each specific
scale, we can estimate the model coefficients separately. Our model provides a
new view of how good and bad news affect the volatility on multi-time scales and
how they differ across investment horizons when detecting asymmetric volatility.
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6.3 Empirical Analysis

6.3.1 Data presentation

We collect price data from https://poloniex.com/, one of the largest cryp-
tocurrency exchanges with various cryptocurrencies available. By using the pub-
lic API, we obtain high-frequency 5-minute interval closing price of Bitcoin (BTC),
Ethereum (ETH), Ripple (XRP), Litecoin (LTC), Monero (XMR), and Dash (DASH)
for the period from 2016/06/02 to 2021/09/25.3 are against Tether (USDT), a cur-
rency designed to maintain the same value as the US dollar. The data include the
period of the boom in 2017 when cryptocurrency prices experienced a substantial
increase. The choice of cryptocurrencies is the large ones with a market capital-
ization of $50 million or more as of June 2016, when they began to show growth
in more active online trading (except for XMR, which had a market capitaliza-
tion of only $10 million but has grown rapidly to over $200 million within a year,
so we also select this cryptocurrency). Since cryptocurrencies do not belong to a
particular country or an institution, the closing price data we use is based on the
Coordinated Universal Time (UTC). Note that the “closing” price here does not
indicate that the market itself closes (cryptocurrency markets are open 24-7).

Barndorff-Nielsen and Shephard (2002) propose to use the realized volatility
(RV), i.e., intraday square returns, as a proxy of the daily volatility series:

RVt =
X

j

r
2
t,t j

, (6.3.1)

where rt,t j
denotes intraday returns, i.e., the log-difference of price calculated

from high frequent sample intervals, and t j denotes the j-th value on day t. It
is widely known that when sample intervals are set closer to zero and infinite
numbers of intraday returns are summed up, the realized volatility estimator
converges to the integrated volatility æ2

t
, which is a former standard measure used

in various sets of studies. We use 5-minute intervals since such a sampling base is
a reasonable choice for avoiding strong bias driven by extremely high frequencies
and thus maintaining an accurate measure of volatility (Bandi and Russell, 2006;
Liu et al., 2015). The daily return series are calculated as the log difference in
prices shown as

rt = ln pt ° ln pt°1, (6.3.2)

where pt denotes the price at day t. We equally have 1941 return and volatility
observations for each cryptocurrency.

We show in Figure 6.1 the return series rt and the volatility measure of
p

RVt

for each cryptocurrency, along with their descriptive statistics (see Table 6.1 and
3Due to data availability, all cryptocurrencies in our analyses
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Table 6.2). Note that for
p

RVt we do not show the mean, standard deviation,
and the Jarque-Bera test since the data is far from stationary and normality. All
cryptocurrency returns present similar positive mean values to some extent; how-
ever, higher moments tend to differ among the major and relatively minor coins.
Negative skewness is observed for BTC and ETH, whereas positive skewness and
larger standard deviation are found for the others. This is a consequence of BTC
and ETH being more exposed to negative returns, while other coins are more
exposed to volitile positive returns. Kurtosis values of the investigated cryptocur-
rencies are all well above 3, suggesting that the distribution of returns is highly
leptokurtic, having a broader or flatter shape with fatter tails. The Jarque-Bera
test reconfirms its significant deviation from normality. In Table 6.2, we see how
the extreme events of XRP led to very high skewness and kurtosis of the volatility
indicator.

Table 6.1: Descriptive statistics and moments of the return series rt. For the
Jarque-Bera test statistic, §§§ indicates significance at the 1% level.

BTC ETH XRP LTC XMR DASH

Mean (%) 0.2254 0.2758 0.2624 0.179 0.2854 0.1545
Median (%) 0.236 0.1126 -0.1312 -0.0411 0.2024 0.0356
Std. Dev. (%) 4.2175 5.7697 7.5973 6.0541 6.4134 6.2678
Max. (%) 23.814 25.274 104.61 60.051 59.249 45.668
Min. (%) -50.435 -58.697 -68.039 -47.796 -54.466 -47.595
Skewness -0.9362 -0.6665 1.8394 0.4671 0.2289 0.3336
Kurtosis 13.086 8.756 30.195 12.043 12.126 8.7689
J.B. 14132§§§ 6344.2§§§ 74829§§§ 11800§§§ 11909§§§ 6254.7§§§

Table 6.2: Descriptive statistics and moments of the realized volatility measurep
RVt.

BTC ETH XRP LTC XMR DASH

Median 0.0354 0.0496 0.0592 0.0573 0.0621 0.0642
Max. 0.3192 0.4320 1.7104 0.4100 0.4160 0.4183
Min. 0.0070 0.0112 0.0094 0.0131 0.0141 0.0075
Skewness 2.8323 3.1065 8.2063 2.7228 2.5840 2.3125
Kurtosis 13.943 16.779 150.56 12.697 10.354 9.8965
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Figure 6.1: Daily return and volatility series of (a) Bitcoin, (b) Ethereum, (c) Rip-
ple, (d) Litecoin, (e) Monero, and (f) Dash, for the investigated period (2016/06/02
to 2021/09/25).
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6.3.2 Scaling dependencies of asymmetric volatility effect

After we calculate return and realized volatility series from 5-minute interval
cryptocurrency data as presented in Subsection 6.3.1, we analyze the multi-time
scale property of the return-volatility structure regarding its asymmetry follow-
ing the procedures in Section 6.2. We show in Fig. 6.2 the estimated values of
the scale-dependent coefficients Ø̂DFA

1 (s) and Ø̂DFA
2 (s) of model Eq. (6.2.10) for each

cryptocurrency. We also depict together with colored ranges the 95% confidence
intervals of the estimates. Clearly, the coefficients are not monotonous— the de-
pendence of the series oscillates at different time scales. The coefficients Ø̂DFA

1 (s)
are always significantly above zero in all cases, as expected, since the standard-
ized absolute return (corresponding impulse variable) and the volatility index (re-
sponse variable) are both a representation of volatility. The coefficient value in-
creases as scales become larger. We find that the impact of good and bad news to
volatility, Ø̂DFA

1 (s)+ Ø̂DFA
2 (s) and Ø̂DFA

1 (s)° Ø̂DFA
2 (s), always stay positive (Fig. 6.3).

In our model, as long as Ø̂DFA
1 (s)+ Ø̂DFA

2 (s) > 0 and Ø̂DFA
1 (s)° Ø̂DFA

2 (s) > 0 satisfy,
only the sign of coefficient Ø̂DFA

2 (s) sufficiently determines the asymmetric reac-
tion. Therefore, we focus on Ø̂DFA

2 (s) to discuss whether negative or positive price
movements have more impact on volatility. We find different asymmetric features
among the investigated cryptocurrencies and that they can be broadly classified
into three categories; positive, negative, and both positive and negative effects. 4

First of all, we find that Ø̂DFA
2 (s) are always negative for the two major curren-

cies of BTC and ETH, indicating the presence of an asymmetric volatility effect
regardless of time scale— negative news has a greater impact on volatility incre-
ment than positive news at all scales. This leverage effect is consistent with what
is commonly observed in stock markets (Jeribi et al., 2015; Fakhfekh et al., 2016;
Bentes, 2018), however, its origin should not be associated with financial lever-
age (Hens and Steude, 2009; Hasanhodzic and Lo, 2019). More generally, such an
asymmetric phenomenon has its explanation on the background of who trades and
how they transact in practice (Black, 1976; Antoniou et al., 1998). This is espe-
cially true in cryptocurrency markets (Baur and Dimpfl, 2018), since a “financial”
explanation of the effect may be challenging. Traces of market price fluctuations
are a consequence of informed traders correcting market asymmetries caused by
irrational transactions and herding behavior of uninformed traders. In this re-
gard, uninformed traders are responsible for the striking rises in volatility, so

4To check the stability of the results we have also performed an analysis using volume-weighted
averaged daily prices (VWAP) in case the asymmetric volatility effect is a consequence of market
illiquidity. By taking the ratio of the value of cryptocurrency traded to the total volume of daily
transactions, the trading prices are averaged out, thus reducing market illiquidity. We report no
notable changes compared to the results for the closing price case, indicating that illiquidity does
not greatly contribute to asymmetric volatility effect (see Fig. B.2 and Fig. B.3 in Appendix B.3).
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Figure 6.2: DFA-based bivariate regression estimates of cryptocurrency series.
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speculative investments of uninformed traders’ in BTC and ETH are more active
when the markets experience negative return shocks. We find that the effect is
remarkable, especially in BTC.

However, a completely opposite effect can be observed for the relatively mi-
nor cryptocurrencies of XRP and DASH. As shown in the figure, the coefficients
Ø̂DFA

2 (s) turn out positive. This outcome indicates the presence of an “inversed”
asymmetric volatility effect in these markets, meaning that positive returns af-
fect volatility more than negative returns. The rise in volatility can be inter-
preted as being due to uninformed traders, this time reacting to positive news.
We can confirm this effect across scales. According to Baur and Dimpfl (2018), the
pump-and-dump scheme, telling people to buy a particular currency, and the fear
of missing out, not feeling that they are taking full advantage of information to-
wards future prices, are in the background of this reaction. These attributes can
remarkably drive to raise cryptocurrency prices, and as a result, volatility will
increase more than in rising markets compared to falling markets. In addition,
the relatively small market size of XRP and DASH may attribute to increasing
volatility especially when the market is in its rising trend with soaring prices.
Such markets tend to be susceptible to attracting more uninformed traders to
speculative investment where informed traders become less capable of exerting
pressure on reducing market volatility.

Interestingly, the remaining LTC and XMR currencies exhibit a composite
structure with different signs of asymmetric volatility. As shown in Fig. 6.2, the
coefficients Ø̂DFA

2 (s) oscillate around zero and do not constantly take the same
sign— they can be either positive or negative depending on which time scale
we focus. LTC and XMR have in common that Ø̂DFA

2 (s) take negative values for
s < 80 and positive values for s > 100. Although the values are close to zero and
the volatility effect seems to be almost absent, either positive or negative return
news can lead to larger volatility increments. Asymmetric volatility effect may be
present on scales smaller than approximately three months, but on larger scales,
the effect is slightly reversed or, in the worst case, disappear. The findings imply
that uninformed investors who seek short-term horizons play a prominent role in
downside markets to amplify the asymmetry of volatility effect.

Although the scale-dependent regression coefficients seem to be mostly well
above or below zero value, including their confidence intervals (orange ranges in
Fig. 6.2), they may be an outcome where asymmetric behavior is absent. The theo-
retical value of Ø̂DFA

2 (s)= 0 can be calculated only for an infinitely long time series.
As long as datasets are finite, empirical estimations can vary due to sample size
effects, and even if there is no dependence between the variables, the coefficient
estimates can be far from zero to some extent. To assure whether the regression
relationship under different scales is genuine or not, we employ the statistical
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test of Wang et al. (2018) that tests the absence of dependencies between Z and
X or Y of the regression model Zt = Ø0 +Ø1Xt +Ø2Yt + "t, i.e., the null hypothe-
sis of Øi(s) = 0 for i = 1,2. They introduce the scale-dependent t-statistics defined

as ti(s) = Ø̂DFA
i

(s)°Øiq
var(Ø̂DFA

i
(s))

, similar to the t-statistics used in the standard regression

analysis. The subject series are firstly shuffled in practice, and then the scale-
dependent t-statistics of the regression coefficients are calculated. This procedure
is repeated many times to carry out the computation of scale-dependent critical
values t

c(s) based on Podobnik et al. (2011), defined such that the integral of the
probability distribution function of ti(s), [°t

c(s), t
c(s)], is equal to 1°Æ, where Æ

denotes confidence level. Thereby, we can determine the range of ti(s) that can
be considered statistically significant under some specific time scale. We shuf-
fle Zt = lnRVt (the volatility series) and Yt = rt°1/

p
RVt°1 (return shocks series)

while setting Xt = |Yt| in order to correspond to our model in Eq. (6.2.10). In this
way, positive and negative return shocks are always associated with their magni-
tude (impulse variables) while their correlation with volatility (response variable)
is destroyed, thus Ø2 = 0. We calculate the empirical values of t2(s) and perform
the hypothesis test of Ø2(s) = 0 by repeating 1000 times the procedure of calcu-
lating the scale-dependent t-statistics from the shuffled series. For robustness
check, we also use the bootstrap method to test whether the Ø2(s) coefficients are
significantly different from 0. For each scale we compute the quantile of the co-
efficient and its confidence interval is obtained. Details of the procedure and the
estimation results can be found in Appendix B.2.

We depict in Fig. 6.4 the values of t2(s) with the scale-dependent critical val-
ues at the 5% and 10% levels of significance (Æ = 0.1,0.05). If the value is not
within the critical band, the hypothesis can be rejected. We find that in BTC,
the values of t2(s) are always lower than the critical band, so the absence of an
asymmetric response is rejected and hence asymmetric volatility effect exists for
all scales. However, in other cryptocurrencies, it is not always assured whether
asymmetric reaction exists across scales. For instance, we find in ETH that t2(s)
stay way below the band only for s < 90 (three months). In other words, asymmet-
ric volatility effect is significant on scales shorter than three months but not for
scales larger than that. In XRP and DASH, which appeared to show an inverse
asymmetric volatility effect, we find that t2(s) stay mainly within the critical band
for small scales. An inverse effect can be confirmed on mid-scales around s = 120
(four months) or more, where the scale-dependent t-statistics go over the upper
critical bound of 95% confidence level. For other scales (small and large scales)
the corresponding t-statistics are not rigorously statistically significant, however,
they are rather close to the upper critical values suggesting that good news in
XRP and DASH tends to help increase volatility slightly more than bad news on
average. The results tell us the possibility of an interesting story in which the
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uninformed traders’ herding is dominant in rising markets but not in falling mar-
kets, and that its effect is strongest at mid-term horizons. Investors seem to have
speculative expectations of mid- to long-term growth in these markets. In LTC
and XMR, which may present both signs of asymmetric volatility, t2(s) fall out
of the lower 95% critical band for scales smaller than approximately s = 30 (one
month). Therefore, the null hypothesis is rejected and assures the presence of an
asymmetric volatility effect only at small scales. The result implies that herding
of uninformed traders on shorter time horizons has significantly increased the
volatility in falling markets. On the other hand, for large scales of s > 30 (one
month), we find no statistical evidence of asymmetric volatility, neither positive
nor negative. This indicates that the inverse asymmetric volatility phenomenon
(positive effect) at large scales is likely to be simply within the statistical accident
of size effects.

In addition, we present in Table 6.3 the asymmetry results estimated by the
EGARCH(1,1) model to check the differences and similarities with the results
estimated by our model. Since the scaling properties are not considered in the
EGARCH model, the sign of ∞2 alone represents the overall asymmetric response
of volatility to good and bad news. As expected, a significant negative effect
(∞2 < 0) is found for BTC. We also find negative in ETH, but the effect is insignif-
icant. All the other cryptocurrencies show an inverse asymmetric volatilty effect
(∞2 > 0), and their coefficients are found to be statistically significant. These re-
sults tell us that the traditional model provides us a plausible overall picture of
asymmetry, but fails to address the heterogeneous effect among scales— for ex-
ample, the negative effect we have confirmed in LTC for small scales cannot be
detected by the EGARCH model. Our model thus helps us find some interesting
results throughout the various investment horizons.

6.3.3 Time-varying property

As the cryptocurrency market heads to maturity with more active online trades,
the asymmetric volatility response to return shocks may vary due to the change
in informed and uninformed traders’ behavior. In effect, using the asymmetric
GARCH models, Takaishi (2021) reports that Bitcoin exhibits different signs of
asymmetric volatility for other historical periods and infers that such an underly-
ing time-varying property may be one of the reasons why a constant picture is not
observed in the Bitcoin market. Therefore, we examine how the asymmetry and
scaling factors changed through the evolution of cryptocurrency history, including
other representative cryptocurrencies.

We focus on analyzing two periods, from 2016/6/2 to 2019/4/30 and 2018/11/1
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Figure 6.4: Statistic significance tests of the DFA-based bivariate regression esti-
mates. Among the synthetic distribution of the scale-dependent t-statistics of the
coefficient Ø̂DFA

2 (s), the black dashed line indicates the critical values of the 95%
band, and the red dash-dotted line indicates the critical values of the 90% band.
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Table 6.3: Estimation results of the EGARCH model; lnæ2
t
=!+∞1

|rt°1|
æt°1

+∞2
rt°1
æt°1

+
Æ lnæ2

t°1 and rt = "tæt, where æ2
t

is the conditional variance at time t, and "t de-
notes an error term with i.i.d. standard Gaussian noise. Standard errors of es-
timates are reported in parentheses. The asymmetric parameter ∞2 is shown in
bold. Note that ***, **, and * denote 1%, 5%, and 10% significance levels, respec-
tively.

BTC ETH XRP LTC XMR DASH

! °0.5935§§§ °0.6653§§§ °1.1289§§§ °0.3691§§§ °0.4701§§§ °0.6078§§§

(0.0582) (0.0646) (0.0410) (0.0276) (0.0419) (0.0500)
∞1 0.2256§§§ 0.2724§§§ 0.4895§§§ 0.1772§§§ 0.2574§§§ 0.3224§§§

(0.0184) (0.0170) (0.0179) (0.0123) (0.0146) (0.0184)
∞2 -0.0514

§§§
-0.0068 0.0924

§§§
0.0196

§§§
0.0292

§§§
0.0333

§§§

(0.0066) (0.0087) (0.0103) (0.0060) (0.0054) (0.0075)
Æ 0.9317§§§ 0.9187§§§ 0.8554§§§ 0.9562§§§ 0.9487§§§ 0.9330§§§

(0.0074) (0.0097) (0.0060) (0.0036) (0.0063) (0.0073)

to 2021/9/25, with data long enough to run our fractal regression analysis.5 They
include typical cryptocurrency bubbles and crashes, the first occurring in late 2017
to early 2018 and the second in 2021. Cryptocurrencies during these periods have
experienced remarkable rises and intense falls in prices. In such situations, the
existence of noise traders cannot be ignored, and it is clear that they, in part, play
an essential role in influencing the asymmetric behavior of market volatility in
the short- and long-term. In Table 6.4 and Table 6.5, we show the DFA-based
bivariate regression coefficient estimates associated with the t-statistics for each
period. We consider the following investment horizon settings; short-term (s =
30), mid-term (s = 60), and long-term scales (s = 120). During the first period
(Table 6.4), the scale-dependent coefficients Ø̂DFA

2 (s) of BTC stay negative for all
investment horizons, indicating that BTC volatility is higher following negative
return shocks on whatever scale. A similar outcome is found in ETH, although
the coefficient is insignificant for long-term scales. For the minor coins of XRP and
DASH, the coefficients turn out to be slightly positive for all scales. This indicates
that volatility may rather be higher following positive return shocks, however, the
coefficients are generally not statistically significant. The remaining minor coins
of LTC and XMR show no remarkable evidence of asymmetry; on the one hand, we

5The first sub-period corresponds to one year before and after the bubble and crash periods of
2017 to 2018, in order to also consider the periods when prices are in a stable state. Remarkable
rises and falls in prices in 2021 are ongoing, and the second sub-period is set to have roughly the
same data length as the first sub-period.
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find negative coefficients for short- and mid-term scales but a positive coefficient
for long-term scales. This trend is in line with the findings mentioned earlier in
Fig. 6.2, Fig. 6.3 and Fig. 6.4.
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6.3. EMPIRICAL ANALYSIS

The results so far provide not so much a different picture from that of using the
entire period. However, we find different asymmetric effects and scaling depen-
dencies in the second period (Table 6.5). All scale-dependent coefficients Ø̂DFA

2 (s)
and their scale-dependent t-statistics t2(s) of BTC are closer to zero, meaning that
compared to the first period, the degree of asymmetry became weaker.6 Notewor-
thy, the BTC market still holds a significant asymmetric volatility effect, and also,
the ETH does. More importantly, in the relatively minor cryptocurrencies, traces
of the inverse asymmetric volatility effect is no longer present on most scales be-
cause these markets are prone to show negative coefficients more often than in
the first period. The shift from positive to negative asymmetric effect, in addition
to the reduction of asymmetry in major cryptocurrencies, is in good agreement
with the argument that cryptocurrency markets are steadily heading toward ma-
turity (Drożdż et al., 2018). As the market matures, informed investors will be
more dominant, helping to reduce market asymmetry.

The asymmetric results among different time periods may be attributed to the
safe-haven property of cryptocurrencies and their change in recent times. Bouri
et al. (2017a) demonstrate that any evidence of an inverse asymmetric volatility
in cryptocurrency markets may point toward a safe-haven property. When cryp-
tocurrency prices rise in periods of financial turmoil in which traditional market
prices (e.g., stock prices) fall, investors interpret this as an increase in macroe-
conomic environment and uncertainty. In this situation, investors (in particular
the uninformed) buy cyptocurrencies and transmit the increased volatility of the
stock market to cryptocurrency markets. On the contrary, when cryptocurrency
prices fall in periods of rising stock prices, uninformed investors consider that the
uncertainty of macroeconomic environment is low. They thereby transmit the de-
creased volatility of stock markets to cryptocurrency markets, which operates to
mitigate downside market risks in cryptocurrencies and prevents volatility from
rising. Accordingly, the existence of an inverse leverage during the first sub-period
justifies the possibility that they are a consequence of cryptocurrencies acting as
a safe-haven against leveraged traditional assets.7 However, the potential is lost
in the second period, and thereby the market can no longer be associated with the
safe-haven property. The market has grown to show asymmetric outcomes simi-
lar to those generally seen in mature markets. In this context, the results warn
financial risk managers that using cryptocurrencies on the route to maturity for
hedging requires careful investigation of their dynamic interdependence between
return and volatility. It is expected that the discussion will be further developed
by investigating the connection of cryptocurrencies to global traditional markets.

6Urquhart (2016) provides empirical evidence that Bitcoin is an inefficient market but may be
in the process of moving towards an efficient market.

7In fact, the cryptocurrency crash of 2017 and 2018 is said to be detached from the global
financial system and thus the market is uncorrelated with traditional markets.
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CHAPTER 6. ASYMMETRIC VOLATILITY DYNAMICS IN
CRYPTOCURRENCY MARKETS ON MULTI-TIME SCALES

Moreover, one can extend the DFA-based fractal regression model to address
another critical component of financial time series— multifractal characteristics—
by extending the DFA to the MFDFA. A deeper investigation of multifractal dy-
namics in the return-volatility nexus may further develop the understanding of
complex behaviors of volatility in cryptocurrency markets and how return shocks
play an essential role in producing asymmetric responses in the market. These
are left for future work.

6.4 Summary and Discussions

This study develops a fractal regression framework to evaluate how return
volatility responds asymmetrically to return shocks in six representative cryp-
tocurrency markets of Bitcoin, Ethereum, Ripple, Litecoin, Monero, and Dash.
We make two major contributions in this chapter. First, we reveal the presence
of a scaling-dependent structure in the asymmetric relationship between return
shocks and return volatility— volatility of cryptocurrencies can negatively or pos-
itively be influenced by return shocks dependent on time scales, i.e., investment
horizons. We focus on discussing the asymmetric volatility effect and its inverse
effect using the fractal regression analysis, which allows us to quantify the scaling
factors of dependencies between the series. The proposed fractal regression model
has its advantage in modeling heterogeneity between asymmetric shocks and be-
tween large and small scales. In this sense, our approach is more general than the
traditional models that do not account for multi-time scales. The findings illus-
trate that the asymmetry of volatility effect is determined not only by proximate
return shocks but also by shocks across scales. The empirical results present a
more precise insight that regardless of scales, the major BTC and ETH show a
strong asymmetric volatility effect (negative effect), where negative shocks tend
to have a greater impact on volatility. On the contrary, for some specific ranges
of mid-term scales, minor cryptocurrencies (especially XRP and DASH) show an
inverse asymmetric volatility effect (positive effect), where positive shocks tend
to have a greater impact on volatility. The reason is discussed in the context of
uninformed traders dominating the market in different situations. The impact of
informed short sellers trading during the downside market is worth future dis-
cussion, since it is another possibility that could affect volatility.

Second, we study how the scale-dependent asymmetric volatility effect in cryp-
tocurrencies changed by experiencing two prominent bubbles and crashes. Under
the proposed fractal regression model, we highlight the asymmetric outcomes for
the two periods. Volatility in major cryptocurrencies is higher following a nega-
tive return shock for both periods. In minor cryptocurrencies, the features tend
to be time-varying, where the effect shifted from positive to negative for a wide
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6.4. SUMMARY AND DISCUSSIONS

range of scales. This negative effect is consistent with that reported in recent
major cryptocurrencies and other traditional financial assets. The reduction of
such an asymmetric effect reveals traces of the markets’ increasing maturity with
a larger predominance of informed traders mitigating the effect of uninformed
traders’ herding.

To sum up, our approach has the ability to explain the asymmetric return-
volatility relationship in addition to their scaling-dependencies. Since under-
standing the features of volatility plays a crucial role in various determinants
in real-world finance, our findings should be of interest to academic researchers,
market investors, and policymakers.
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Chapter 7

Scale-dependent Fractal Portfolio

Optimization

This chapter corresponds to paper 6 in the author’s papers list.

7.1 Introduction

Modern portfolio theory, which determines the allocation of investments in
financial assets, requires controlling and minimizing risk to achieve diversifica-
tion. In the traditional mean-variance analysis, the investor’s decision-making
is characterized by expected returns and variances, and the optimal combination
of assets should be identical among investors (Markowitz, 1952). However, since
there are different types of investors with different trading strategies and invest-
ment horizons, it is unlikely that they are homogeneous in their expectations with
an agreement on specific risk measures as called for the Efficient Market Hypoth-
esis (EMH) (Fama, 1991; Kristoufek, 2018). Markets are rather inefficient, com-
plex, and likely to exhibit heterogeneous behaviors (Battiston et al., 2016; Tilfani
et al., 2020), and portfolio selection based on traditional approaches may not be
appropriate (Kristoufek, 2018; Tilfani et al., 2019; Zhang et al., 2022). According
to the alternative framework of the Fractal Market Hypothesis (FMH) proposed
by Peters (1994), financial series exhibit fractal properties due to the different
valuations for information flows among investment horizons, thereby justifying
sudden spikes in market volatility and lack of market liquidity during crashes.
Zhang et al. (2022) developed the mean-DCCA analysis by incorporating the frac-
tal correlation characteristics of multiple assets into the mean-variance portfolio
strategy, where the detrended cross-correlation analysis (DCCA) function (Podob-
nik and Stanley, 2008) was used in place of the covariance function to substitute
the risk definition. At different scales, in other words, at different investment
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7.2. MEAN-MFCCA PORTFOLIO

time horizons, the portfolio risk can be defined nonlinearly and allows investment
allocations from various decision-making standards.

The mean-DCCA portfolio performs well, assuming that investors’ scale pref-
erence stays constant (Zhang et al., 2022). However, their preference may shift to
a different level since they change positions in response to changes in economic
states. Ferson and Schadt (1996) and Evans (1994) show that time-varying risk
prices play an important role in the expected returns of the stock market by us-
ing conditional factor models. In addition, although the mean-DCCA analysis
incorporates the monofractal aspect of asset fluctuations, it does not consider the
multifractal aspect. Incorporating the different scaling properties between small
and large market price fluctuations may help improve portfolio performance. Mo-
tivated by the fact that investors’ preference for time horizons may vary over time
and that their emphasis on short scales triggers market crashes (Peters, 1994),
we examine whether incorporating changes in scale preference improves portfo-
lio performance. In particular, we construct a strategy that switches preference
between short and long scales in response to maximum drawdown. Given the
fact that multifractality is found prevalent in asset fluctuations, we adopt the
multifractal cross-correlation function (MFCCA) (Oświeçimka et al., 2014) as an
alternative risk function and propose a new approach, the mean-MFCCA analy-
sis, which is an extension of the mean-DCCA analysis. Our results confirm that
incorporating multifractality aspects into the portfolio analysis improves the per-
formance and reduces portfolio risks. Moreover, our results indicate that short-
scale preference strategy of the mean-MFDCCA gains risk control during volatile
market conditions, which supports the background hypothesis of the FMH.

7.2 Mean-MFCCA portfolio

In the mean-variance (MV) analysis, the portfolio is selected to minimize vari-
ance under some required expected return. The mean-DCCA (MD) analysis uti-
lizes the DCCA (covariance) function instead of variance to consider fractal corre-
lations and multiscale properties of assets. We generalize the MD portfolio into a
multifractal form based on the MFCCA, namely, the mean-MFCCA (MMF) port-
folio. The MFCCA function is calculated as follows (Oświeçimka et al., 2014):

For a given time series {xt}N

t=1 and {yt}N

t=1, we first split its cumulative sum,
X (t) = P

t

i=1 xi and Y (t) = P
t

i=1 yi, into Ns = bN/sc non-overlapping segments of
length s. The division is repeated from the other end, so we have 2Ns segments
in total. Then, for each segment we eliminate the local trend and calculate

f
2
XY

(s,v)= 1
s

sX

t=1

©
Xv(t)° X̃v(t)

™©
Yv(t)° Ỹv(t)

™
, (7.2.1)
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CHAPTER 7. SCALE-DEPENDENT FRACTAL PORTFOLIO OPTIMIZATION

where X̃v(t) and Ỹv(t) denotes the degree-2 polynomial fits used to detrend the
vth segment of X (t) and Y (t), respectively. Note that f

2
XY

(s,v) can take negative
values. Note that f

2
XY

(s,v) can take negative values. The qth-order covariance
function is calculated by averaging f

2
XY

(s,v) over all segments,

F
q

XY
(s)= 1

2Ns

2NsX

v=1
sgn

£
f

2
XY

(s,v)
§ØØ f

2
XY

(s,v)
ØØq/2 . (7.2.2)

The MFCCA function (Eq. (7.2.2)) is scale-dependent and often characterized by
long-range power-law correlations F

q(s) ª s
h(q), which provides valuable supple-

mental information on the key outcomes of financial time series. 1 When q = 2,
the function degenerates to the DCCA function. These functions uncover different
correlation levels of heterogeneous investment horizons.

On the basis of the MV portfolio, the MMF portfolio of n assets is constructed
using the MFCCA function and the expected portfolio return calculated from the
expected return of each asset, r̄ i. With the constraint that risk minimization is
achieved under some given return greater than re, the investment weight wi(q, s)
can be obtained by solving the following optimization problem:

minimize
w

nX

i, j=1
wi(q, s)wj(q, s)Fq

i j
(s)

subject to
nX

i=1
r̄ iwi(q, s)∏ re,

nX

i=1
wi(q, s)= 1,

wi(q, s)∏ 0, i = 1, . . . ,n.

(7.2.3)

Each weight is determined to meet the optimal values under each different scale
s and fluctuation q-order. Since the FMH explains that the market is composed
of investors trading from all kinds of investment horizons, the impact from mul-
tiple time scales must be reflected in the optimal weights. The weight under a
single time horizon wi(q, s) is only one component of the complex multiscale mar-
ket behavior, and therefore not appropriate to conclude as the optimal investment
weight. Additional steps are required to ensure the effectiveness of the MD as well
as the MMF portfolio. Following Zhang et al. (2022), we consider a set of multi-
ple time scales S = {s1 = smin, s2, . . . , sn°1, sn = smax}, where smin and smax are the
minimum and maximum elements of set S, so that we obtain investment weights
wi(q, s) under scales that satisfy s 2 S. In the same vein, we consider a set of
multiple fluctuation q-orders Q = {qmin, . . . , qmax} to regard multifractal effects of
assets.

1For instance, the scaling exponent h(q) helps find traces of long- and short-memory in addition
to the prevailing multifractal behaviors.
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The optimal investment weight w
opt
i

is then defined as the weighted average
of the scale-dependent weight wi(s) expressed as

w
opt
i

=
X

s2S

X

q2Q

Æi(s)Øi(q)wi(q, s), (7.2.4)

where
P

s2SÆi(s)= 1 holds and Æi(s) 2 [0,1] represents the investor’s relative pref-
erence degree for time scale s, and

P
q2Q Øi(q)= 1 holds for Øi(q) 2 [0,1]. The pref-

erence degree can be adjusted depending on how we associate Æi(s) with s. Given
the heterogeneity of investors, we consider three types of investment strategies
according to their scale preference— equal preference among time scales, more
preference for shorter time scales, and more preference for longer time scales.
If, for example, investors have no specific preference among different investment
horizons, we set Æi(s) = 1

#S
, where #S denotes the total number of elements in

set S. For the fluctuation preference Øi(q), we set Øi(q) = 1
#Q

, which means that
investors have no specific preference between large and small fluctuations.

7.3 Numerical Experiments

7.3.1 Multiscale diversification

To confirm the availability of the proposed MMF analysis towards an effective
risk diversification, we check the performance of the portfolio using two types of
simulated time series. In order to investigate the effect of multiscale properties,
we first utilize the two-component autoregressive fractionally integrated moving

average (ARFIMA) stochastic process model to generate series that exhibit power-
law auto-correlations and power-law cross-correlations. In this case each variable
depends not only on its own past, but also on the past values of the other vari-
able (Podobnik et al., 2009; Zebende, 2011),

yt =W

1X

j=1
a j(d1)yt° j + (1°W)

1X

j=1
a j(d2)y

0
t° j

+"t

y
0
t = (1°W)

1X

j=1
a j(d1)yt° j +W

1X

j=1
a j(d2)y

0
t° j

+"0t,
(7.3.1)

where a j(d) represents statistical weights using the Gamma function ° and the
exponent parameter d ranging from -0.5 to 0.5, defined as

a j(d)= °( j°d)
°(°d)°(1+ j)

.

128



CHAPTER 7. SCALE-DEPENDENT FRACTAL PORTFOLIO OPTIMIZATION

Note that d is closely related to the Hurst exponent in terms of the DFA anal-
ysis, where H = d +0.5 holds (Podobnik et al., 2009; Zebende, 2011). The resid-
uals "t and "0

t
denote two independent and identically distributed (i.i.d.) Gaus-

sian variables with zero mean and unit variance. The parameter W is called a
“free parameter” ranging from 0.5 to 1.0 and controls the strength of power-law
cross-correlations between the variables yt and y

0
t
. By using the two-component

AFRIMA process of Eq. 7.3.1, we generate two new series yt and y
0
t

characterized
by different values of parameters d1, d2, W , "t, and "0

t
. In the case of W = 1, the

series will have minimum strength of power-law cross-correlations in the long-
term , while W = 0 the series will have maximum strength of power-law cross-
correlations in the long-term. In the case of "t = "0

t
, in the short-term, there is a

perfect cross-correlation in the short-term, and if "t = °"0
t
, there is a perfect anti

cross-correlation. When "t 6= "0
t
, cross-correlation is absent in the short-term.

For the purpose of testing the potential of MMF reflecting different diversifi-
cation effects on different scales, we generate series with the parameters d1 = 0.4,
d2 = °0.4, W = 0.7, and "t = °"0

t
of length 212. For the two generated series, we

calculate the cross-correlation levels at different scales defined by the DCCA coef-
ficient of Zebende (2011) defined as

ΩDCCA(s)=
F

2
XY

(s)
FX X (s)FY Y (s)

. (7.3.2)

The cross-correlations appear to be scale-dependent, with strong anti cross-correlations
in the short-term and no correlation in the long-term (Fig. 7.1).
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Figure 7.1: Cross-correlations between scale-dependent simulated series gener-
ated by the two-component ARFIMA model. Coefficients are significantly negative
due to strong anti cross-correlations in the short-term ("t = °"0

t
), but the values

gradually increase as scale become larger due to the existence of power-law cross-
correlations in the long-term (W = 0.7).
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Comparing the efficient frontiers of the these series based on the MV analysis
and the MMF analysis with scales s = 10,100,1000 and fluctuation order q = 2, we
confirm that the shape differs among scales (Fig. 7.2). This result indicates that
the scale dependence of the serial correlations and cross-correlations can be cap-
tured in the portfolio in a more precise manner.2 The efficient frontier approaches
to a straight line as the scale increase, which is consistent with the fact that the
simulated series yt and y

0
t

become more and more uncorrelated for large scales.
Therefore, portfolio selection based on the MMF analysis can accurately reflect
scale dependence among assets.
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Figure 7.2: Efficient frontiers of the fractal portfolio (q = 2) under different scales
(s = 10,100,1000). We confirm that the shape of the frontier varies by scale, suc-
cessfully providing different levels of diversification effects.

2The risk value itself is not essential here, as the definition of the risk function changes with
scale. The shape of the efficient frontier matters when discussing portfolio diversification effects.
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7.3.2 Multifractal diversification

In order to examine whether the MMF analysis can yield diversification ef-
fects that reflect the multifractal characteristics of the series, we next utilize the
multifractal binomial measure and generate series that exhibit multifractal char-
acteristics. The series can be differently correlated with each other for different
multifractal order q (Jiang and Zhou, 2011). In an iterative way each multifractal
signal {x(i) : i = 1,2, . . . ,2k} and {y(i) : i = 1,2, . . . ,2k} is obtained based on the mul-
tifractal cascade p-model (Meneveau and Sreenivasan, 1987). Starting with k = 0
with data z

(0)(1) = 1 consisting of one value, the dataset {z(k)(i) : i = 1,2, . . . ,2k} in
the kth iteration is obtained from

z
(k)(2i°1)= pzz

(k°1)(i),

z
(k)(2i)= (1° pz)z(k°1)(i),

(7.3.3)

for i = 1,2, ...,2k°1. Especially for k ! 1, z
(k)(i) approaches a binomial measure

with an analytical scaling exponent function.
In our simulation, we have set p1 = 0.25 for x(i) and p2 = 0.45 for y(i) and

performed k = 13 iterations. For the two generated series, we calculate the cross-
correlation levels at different fluctuation order q defined by the qDCCA coefficient
of Kwapień et al. (2015) defined as

ΩqDCCA(s)=
F

q

XY
(s)

q
F

q

X X
(s)Fq

Y Y
(s)

. (7.3.4)

Note that when q = 2, the qDCCA coefficient degenerates to the DCCA coefficient.
For simplicity, the scale is set at s = 100. The strength of cross-correlations change
for different q-order values (Fig. 7.3).

Comparing the efficient frontiers based on the MV analysis and the MMF anal-
ysis with q-orders q = 0.5,3,6 and scale s = 100, we confirm that the shape differs,
as expected, among fluctuation orders (Fig. 7.4). This result indicates that mul-
tifractal characteristics in the serial and cross-correlations of the series can be
reflected in the portfolio. The efficient frontier approaches to a straight line as the
q increase, which is consistent with the fact that the simulate series x(2k) and
y(2k) become more and more uncorrelated for large q. Therefore, portfolio selec-
tion based on the MMF analysis can accurately reflect not only scale dependence
but also q-order dependence among assets.
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7.3. NUMERICAL EXPERIMENTS
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Figure 7.3: Cross-correlations between multifractal simulated series generated by
the multifractal binomial measure model. The qDCCA coefficients are calculated
at a fixed scale s = 100. There are strong anti-correlations for small fluctuations,
but not for large fluctuations.
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Figure 7.4: Efficient frontiers of the multifractal portfolio (s = 100) under different
q-order (q = 0.5,3,6). We confirm that the shape of the frontier varies by the mul-
tifractal order q, successfully providing different levels of diversification effects.
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CHAPTER 7. SCALE-DEPENDENT FRACTAL PORTFOLIO OPTIMIZATION

7.4 Portfolio Construction and Applications

7.4.1 Dataset and their multiscale property

The fractal MMF portfolio is applied to Four assets including Bitcoin price in
USD (BTC), S&P500 stock price , West Text Intermediate price in USD (WTI),
and gold spot price versus USD (XAU), from January 2016 to December 2020.
Daily price data are obtained from http://www.histdata.com/. The daily return
series are shown in Fig. 7.5.
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Figure 7.5: Daily return series of the data for the investigated period (2016/01/06
to 2020/12/31).

In Appendix C, we also implement a MD portfolio using major financial as-
sets other than cryptocurrencies. 8 empirical daily indexes of S&P500 stock,
US Treasury bond (1-3 Year, 10 year), US High-yield corporate bond, and US
Investment-grade corporate bond (Aaa, Aa, A, Baa) are applied for the period of 5
January 2004 to 31 December 2021. High-yield bond provides higher yields than
Investment-grades, and they are riskier with lower credit ratings.
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7.4. PORTFOLIO CONSTRUCTION AND APPLICATIONS

7.4.2 Performance under different scaling preference

Before implementing the MMF analysis, we investigate whether the fractal
portfolio reflects the diversification effect, if any, among the datasets at study. For
each pair of daily returns, we calculate the DCCA cross-correlation of Zebende
(2011) at different scales (Fig. 7.6). We confirm that coefficients tend to vary de-
pending on scales. This means that there exist different diversification effects at
heterogeneous scales. As reported in Zhang et al. (2022), the fractal portfolio im-
proves the performance of the MV portfolio by incorporating such scaling effects.
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Figure 7.6: Multiscale cross-correlation coefficients of the investigated assets.

In addition, we go further to investigate whether the MMF approach reflects
the multifractal properties, if any, within and between the series. For each pair of
daily returns, we calculate the qDCCA coefficient of Kwapień et al. (2015) to ex-
amine the cross-correlation levels at different fluctuation order q. We confirm that
scale-dependent coefficients are dependent on q-th order of fluctuations (Fig. 7.7).
This means that the constructed portfolio exhibits different diversification effects
not only at heterogeneous scales but also at hierarchical levels of fractality. Thus,
the MMF approach can shed light on the scale-dependent multifractality property
and has potential for portfolio improvement.

Given that the market exhibits multifractal correlations in addition to dif-
ferent diversification effects by scale, we construct a multifractal portfolio that
takes into account the investors’ scale preferences classified into three types;
long-, short-, and balanced-scales. In particular, referring to Eq. (7.2.4), we set
Æi(s j) = s j/

P
s2S s for long-scale preference, and Æi(s j) = s#S+1° j/

P
s2S s for short-

scale preference, where s j denotes the jth element of subset S = {s1, . . . , s j, . . . , s#S}.
For the balanced-scale type, the optimal weight is calculated by averaging all the
scale-dependent weights. In our analysis, we use a window of 1 year and employ
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Figure 7.7: Multifractal cross-correlation coefficients of the investigated assets.

S = {5,10,15, . . . ,65} as the scale preference subset. For the fluctuation preference
subset, we set Q = {2,3,4} to avoid bias from extremely large levels of price fluctu-
ations.

Table 7.1 presents the maximum drawdown performance of MV and MMF
portfolios based on the three strategy types, with the minimum risk measure.
All three types of MMF portfolio generally outperform the traditional MV. More
interestingly, the higher performance among the MMF strategies appears to vary
by market period. The results imply that understanding the heterogeneity of in-
vestors and their scale inclination plays an essential role in increasing portfolio
risk control. According to the FMH concept, investors tend to focus more on the
short-term in downside situations. Thus, in a relatively unstable market condi-
tion, short-scale MMF is expected to minimize portfolio risk the most.

Table 7.1: Maximum drawdown performance (%) of the portfolios with the mini-
mum risk measure

MV MMF-balanced MMF-short MMF-long

2016 -5.221 -4.782 -5.307 -4.459

2017 -2.451 -1.907 -1.978 -1.958
2018 -11.27 -13.15 -13.09 -13.20
2019 -3.077 -2.939 -2.922 -2.955
2020 -16.23 -14.99 -15.23 -14.75
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7.5. SUMMARY AND DISCUSSIONS

7.4.3 Outsample performance of the switching strategy

The out-sample performance of the MMF portfolio is also discussed by back-
testing. We use a 1-year rolling window (260 daily returns) estimation with quar-
terly rebalancing. To regard the effect of the heterogeneity of investors under
different market conditions, we introduce a new strategy, that is, when rebal-
ancing the portfolio, we switch the scale preference types among the three MMF
strategies. If the maximum drawdown of the balanced-scale MMF over the past
two years is worse than -10%, we consider the market to be in an unfavorable
state and select the short-scale strategy. Otherwise, we assume the market to be
out of recession or not in its downtrend and expectations for longer investment
horizons have increased; thus, we select the long-scale strategy. Figure 7.8(a)
shows the switch and maximum drawdown throughout the entire period. In Fig-
ure 7.8(b), we confirm that the MMF-switching strategy outperforms portfolio risk
and achieves to gain profit compared to MV and other types of MMF. Table 7.2
shows that the portfolio reduces maximum drawdown, Value-at-Risk (VaR), and
expected shortfall (ES) and increases portfolio returns. Therefore, changing the
scale preference of the MMF portfolio in response to market conditions is effective
in gaining more portfolio risk control.

Table 7.2: Backtest performance (annual average) of portfolios.
MV MMF

balanced short long switching

max. drawdown (%) -10.25 -10.02 -10.07 -9.989 -9.970

10-day 99%VaR (%) -6.452 -6.163 -6.194 -6.126 -6.117

10-day 97.5%ES (%) -6.324 -6.075 -6.121 -6.034 -6.027

annual return (%) 9.530 9.532 9.565 9.499 9.701

7.5 Summary and Discussions

The application of the fractal MD as well as the MMF portfolio provides insight
into the scale dependence of the optimal allocation, especially when assets have
multiscale relationships with each other. Since investors’ scale preference and
scale dependence shift to a different level according to changing economic condi-
tions, further development is achieved by incorporating time-varying features in
the MMF portfolio. The short-scale preference strategy increases the diversifi-
cation effect when the market outlook is uncertain, while the long-scale prefer-
ence strategy is more effective when the market is less turbulent. Such a strat-
egy works well for both in-sample and out-sample data and improves maximum
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(a) Strategy switching and maximum drawdown throughout the period. The red (green) ranges
represent long (short) scale preference.

2017�01 2017�07 2018�01 2018�07 2019�01 2019�07 2020�01 2020�07 2021�01

0

10

20

30

40

50

cu
m

ul
at

iv
e

p
or

tf
ol

io
re

tu
rn

(%
)

Mean-Variance

Mean-MFCCA, balanced scale preference

Mean-MFCCA, short scale preference

Mean-MFCCA, long scale preference

Mean-MFCCA, switching strategies

(b) Cumulative portfolio returns

Figure 7.8: Backtest results of the MV and MMF portfolio with different types of
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7.5. SUMMARY AND DISCUSSIONS

drawdown, VaR, and ES, and hence should be of interest not only to academic re-
searchers but also to portfolio managers and policy makers. An extension of our
study would be to consider asymmetry in the multifractality of the assets by em-
ploying the MF-ADCCA function instead of DCCA or MFCCA when calculating
the risk function. This may allow for a more sophisticated portfolio diversifica-
tion taking consideration of the differences between downside and upside market
risks.

More importantly, our results emphasise the importance of revealing the mul-
tiscale behaviors and heterogeneous properties of price fluctuation and corre-
lation, supporting that the FMH hypothesis framework illuminates additional
views to systematic and mathematical approaches to portfolio construction. Al-
though the emphasis tends to be on optimization methods that reduce portfolio
risk and increase returns, the results of these fractal methods remind us that
attention should be paid to defining and assessing risk measures that play a cru-
cial role in quantifying portfolio risk. This framework not only addresses the
shortcomings of the MPT, but also those of the EMH, which deviates signifi-
cantly from reality, such as the assumption that markets are efficient and that
investors have equal access to the same information. Investors have other objec-
tives, such as socially positive/negative impact and market events, showing evi-
dence of heterogeneity— which appears mathematically as the fractal principle.
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Chapter 8

Conclusion

In this thesis, we have focused on alternative approaches toward analyzing
cryptocurrency series from a nonlinear physical approach. In particular, we have
applied the stable distribution, a class of power-law distibution, to further de-
velop investigation of intense fluctuation behaviors of cryptocurrency markets. In
addition, we have attempted to clarify some of the notable behaviors based on
the Fractal Market Hypothesis, and to shed light on the background mechanism
through an interpretation based on the behavioral finance theory. The concept of
fractal correlations helps analyzing dynamical complex systems of financial mar-
kets including cryptocurrencies.

In Chapter 2, we have proposed a new approach for estimating stable law pa-
rameters and have applied to the exploration of price behaviors in financial mar-
kets. We tackle the issue of a primary defect in the CF-based estimation process
that the lack of stable densities and cumulative distribution functions face chal-
lenges when modelling empirical distributions with stable laws. By proposing
a technique that allows us to benefit from the interrelations between the scal-
ing exponent parameter and the characteristic parameter, the points necessary
for the estimation process are flexibly chosen, making the process more practical
without any inconvenient restrictions on parameter ranges. The proper points at
which the characteristic function should be evaluated are chosen through an iter-
ation procedure relying on the combination of empirical searches and algorithmic
approaches. Benchmarked against other existing methods, we have compared the
estimation performance through Monte Carlo simulation in terms of the MSE and
KS-distance. The proposed method not only improved the performance of each
parameter, but also reduced distributional estimation errors. We also applied our
method to several financial markets to show that our method is practical.

In Chapter 3, we have explored the behavior of cryptocurrency price fluctua-
tions by applying the stable distribution and discussed its validity for empirical
analysis. We provided numerical and theoretical justifications for supporting the
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stable distribution as a practical model when analyzing financial time series. We
find that returns exhibit stable laws with tail index Æ ' 1.4 and Ø ' 0. To find
evidence of stable laws, a numerical approach based on the CF and a theoretical
approach based on the GCLT was introduced by focusing on the time scaling be-
havior with different time intervals. However, we find evidence that the stable
model is not acceptable under certain time frequencies, where the stable regime
breaks down to a Gaussian regime. A time scaling ranging roughly 30 minutes
to 4 hours is concluded to be a suitable range of intervals for cryptocurrency mar-
kets. Moreover, we confirm the potency of stable distributions by investigating
which distribution shows a better fit among controversial fat-tailed distributions.
We find statistical evidence that when a wider range of tail portion of data is con-
sidered, the stable distribution dominates other alternative distributions. On the
other hand, the far tail generally follows a power law, which coincides with the
results in many empirical studies on tail behaviors of returns. To reach a more
rigorous conclusion on whether stable models may work in practical applications,
however, a more elaborate discussion would be necessary.

In Chapter 4, we have evaluated market efficiency and asymmetric multifrac-
tality of the two major cryptocurrencies (Bitcoin and Ethereum) during the pe-
riods before and after the COVID-19 outbreak, accounting for the different scal-
ing regimes on long and short time scales. By using the A-MFDFA method, we
found that the markets have asymmetric multifractality with crossovers of ap-
proximately 10 days, indicating that scaling behaviors are dependent of invest-
ment horizons. Our results provided empirical evidence of increasing inefficiency
for the short-term, while the markets show traces of efficiency for the long-term.
In other words, COVID-19 significantly increased herding in the short-run but
not in the long-run. This study also discussed the features of asymmetric prop-
erties between upward and downward trends. Although fat-tailed distribution of
returns generally causes the multifractal behavior, the contribution of autocorre-
lations to multifractality becomes substantial in the long-term especially when
the market is in a downtrend. The presence of different predominant sources of
multifractality between bull and bear markets could be a driver to the substantial
asymmetric properties observed in the long-term. Our findings argue that analyz-
ing different scales can be a key to reveal complex behaviors during crisis periods,
although the relationship between multifractality and asymmetric efficiency of
the on-going COVID-19 pandemic is still debatable.

In Chapter 5, we have examined the nexus between daily price and realized
volatility in cryptocurrency markets using the MF-ADCCA approach. The ap-
proach revealed that the price-volatility relationship exhibits power-law cross-
correlations as well as multifractal properties. More interestingly, the multifrac-
tal characteristics of the cross-correlation present different properties between
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CHAPTER 8. CONCLUSION

positive and negative market trends. The details of these features are confirmed
through the generalized Hurst exponents and the singular spectrum. Our results
pointed out that generally for the investigated cryptocurrencies, cross-correlations
of price and volatility in the uptrend markets have slightly higher persistency
compared to those in the downtrend markets. Distinctive features of how small
and large fluctuations operate on multifractality were also discovered and re-
ported by looking at the spectrum distortion for each cryptocurrency and for each
market trend. Moreover, the level of the asymmetric cross-correlations for each
cryptocurrency was quantitatively evaluated by employing the asymmetric DCCA
coefficient. Our empirical findings showed that depending on market directions
or trends, the level of cross-correlations differs. We found the presence of stronger
cross-correlations in bear markets than in bull markets for the maturing major
coins (BTC and ETH), whereas the opposite results were observed for the still-
developing minor coins (XRP and LTC).

In Chapter 6, we have developed a fractal regression framework to evaluate
how return volatility responds asymmetrically to return shocks in six representa-
tive cryptocurrency markets of Bitcoin, Ethereum, Ripple, Litecoin, Monero, and
Dash. We reveal the presence of a scaling-dependent structure in the asymmet-
ric relationship between return shocks and return volatility, that is, volatility of
cryptocurrencies can negatively or positively be influenced by return shocks de-
pendent on time scales. The findings illustrate that the asymmetry of volatility
effect is determined not only by proximate return shocks but also by shocks across
scales. The empirical results indicates that regardless of scales, the major BTC
and ETH show a strong asymmetric volatility effect (negative effect), where neg-
ative shocks tend to have a greater impact on volatility. On the contrary, for some
specific ranges of mid-term scales, minor cryptocurrencies (especially XRP and
DASH) show an inverse asymmetric volatility effect (positive effect), where pos-
itive shocks tend to have a greater impact on volatility. The reason is discussed
in the context of uninformed traders dominating the market in different situa-
tions. In addition, we confirmed that the scale-dependent asymmetric volatility
effect in cryptocurrencies changes by experiencing two prominent bubbles and
crashes. Therefore, our approach has the ability to explain the asymmetric return-
volatility relationship in addition to their scaling-dependencies.

In Chapter 7, we have developed the portfolio selection approach in terms of
the FMH framework. The application of the fractal MD as well as the MMF port-
folio provides insight into the scale dependence of the optimal allocation, espe-
cially when assets have multiscale relationships with each other. Since investors’
scale preference and scale dependence shift to a different level according to chang-
ing economic conditions, further development is achieved by incorporating time-
varying features in the MMF portfolio. The short-scale preference strategy in-
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creases the diversification effect when the market outlook is uncertain, while the
long-scale preference strategy is more effective when the market is less turbulent.
Such a strategy works well for both in-sample and out-sample data and improves
maximum drawdown, VaR, and ES.

To sum up, understanding the features of price fluctuation, the interrelation-
ships of volatility and their asymmetric behavior, and multiscale definition of port-
folio risk play a crucial role in various determinants in real-world finance. Our
findings underscore the significance of understanding the multiscale character-
istics and varied properties of financial fluctuation and correlation, and demon-
strate that the FMH hypothesis framework provides new perspectives for system-
atic and mathematical approaches to risk hedging and portfolio building. There-
fore, our findings should be of interest to academic researchers, market investors,
portfolio managers, and policymakers, who wish to enhance their decision-making
with cryptocurrencies.
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Appendix A

Power Law Properties

A.1 Fitting Local Tails with One-sided Distribu-

tions

This Appendix shows the results of the best local fit with two types of one-sided
distribution models, the power-law and exponential distributions, for cryptocur-
rency data. Before showing the results, we provide a technical description of the
goodness-of-fit test.

Concerning the case of the power-law distributions, as mentioned in subsection
2.2, the method of fitting data with power-laws relies on the combination of KS
statistics and the maximum likelihood estimators (Hill estimator) suggested by
Clauset et al. (Clauset et al., 2009). They also propose how to test the goodness-
of-fit to see whether the hypothetical model is plausible for fitting the data. The
idea is based on the resampling method with the procedures given as follows.
After fitting the data with the power-law model, we generate synthetic datasets
that follow a power law with the parameter estimate Æ̂ and the lower bound x̂min.
The same method of fitting with power laws is applied again to these datasets to
obtain synthetic distances between the generated CDF and the newly estimated
CDF associated with the minimum KS statistic. A sufficiently large number (L =
1000) of synthetic datasets are generated, and each synthetic distance Di (i =
1, . . . ,L) is then compared with the empirical distance D. Finally, the p-value
for the null hypothesis that the data follows the estimated model is calculated
by using the number of times that satisfy Di ∏ D (i = 1, . . . ,L). The confidence
level is set at 90%, in other words, if p ∏ 0.1, we can say that the model shows
a plausible fit. Regarding the case of the exponential distributions, we conduct
similar procedures as the case of the power-law distributions.

Table A.1 shows the results of fitting the data of standardized returns, pre-
sented in subsection 3.2, with power-law and exponential models for the positive
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Table A.1: Estimation results of the power-law and exponential fit with standard-
ized cryptocurrency returns for the positive tail and its goodness-of-fit test with
the p-value. ¢t is the time interval, x̂min is the lower bound of the estimated tail,
and ntail represents the number of data used for the estimation (data number of
the tail portion). Æ̂ and ∏̂ is the estimated power-law parameter and the esti-
mated exponential parameter, respectively. Statistically significant fit (p ∏ 0.1)
are shown in bold.

Power law ¢t ntail x̂min Æ̂ p

BTC 1h 344 5.632 3.098 0.598

2h 226 4.839 2.997 0.637

ETH 1h 145 7.527 3.368 0.907

2h 286 4.277 2.631 0.225

XRP 1h 169 9.176 2.876 0.204

2h 133 7.403 2.662 0.989

LTC 1h 194 6.939 3.221 0.999

2h 103 7.272 3.371 0.654

XMR 1h 53 8.978 3.618 0.980

2h 148 5.269 3.139 0.805

Exponential ¢t ntail x̂min ∏̂ p

BTC 1h 1121 3.106 0.442 0.000
2h 539 3.046 0.472 0.012

ETH 1h 245 5.916 0.328 0.376

2h 4342 0.003 0.673 0.000
XRP 1h 346 6.220 0.234 0.016

2h 266 4.985 0.260 0.000
LTC 1h 497 4.553 0.365 0.004

2h 163 5.758 0.334 0.756

XMR 1h 8459 0.0002 0.696 0.000
2h 4350 0.0001 0.707 0.000
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A.1. FITTING LOCAL TAILS WITH ONE-SIDED DISTRIBUTIONS

Table A.2: Estimation results of the power-law and exponential fit with stan-
dardized cryptocurrency returns for the negative tail (in absolute values) and
its goodness-of-fit test with the p-value. Statistically significant fit (p ∏ 0.1) are
shown in bold.

Power law ¢t ntail x̂min Æ̂ p

BTC 1h 229 7.279 3.156 0.943

2h 341 4.258 2.567 0.301

ETH 1h 345 5.535 2.950 0.044
2h 414 3.612 2.353 0.001

XRP 1h 329 5.833 2.571 0.827

2h 221 5.043 2.547 0.234

LTC 1h 128 7.882 3.778 0.914

2h 149 5.743 3.168 0.420

XMR 1h 379 4.620 2.983 0.135

2h 61 7.557 3.993 0.902

Exponential ¢t ntail x̂min ∏̂ p

BTC 1h 1178 3.140 0.380 0.000
2h 891 2.203 0.444 0.002

ETH 1h 1753 2.202 0.471 0.000
2h 256 4.525 0.383 0.755

XRP 1h 71 10.46 0.174 0.807

2h 80 7.560 0.245 0.597

LTC 1h 700 3.806 0.420 0.005
2h 459 3.331 0.449 0.031

XMR 1h 8827 0.009 0.731 0.000
2h 4278 0.018 0.702 0.000
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tail, and Table A.2 shows the results for the negative tail. The analysis gen-
erally confirms that the tail portion of cryptocurrency returns plausibly fit with
a power law exponent with Æ approximately ranging from 2.5 to 3.5, which is
slightly higher than the finding in the previous study for the Bitcoin (BTC) (Be-
gušić et al., 2018). On the other hand, the exponential model is not appropriate for
many cases. However, since the exponential model sometimes shows a plausible
fit with empirical data, we consider it as an critical model. Thus, we discuss the
model-fit for the tail portion of returns by comparing the stable distribution with
the exponential distribution in subsection 3.4.
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Appendix B

Scale-dependent Regressions

B.1 Literature Review of the Asymmetric Volatil-

ity Effect

The negative response of volatility to return shocks was originally referred to
the financial leverage, because the decrease of stock prices naturally brings in the
rise in firm’s leverage, making the stock become riskier and increasing its volatil-
ity (Black, 1976; Christie, 1982; Schwert, 1989; Cheung and Ng, 1992). However,
many papers warn us that such an effect should not be associated with finan-
cial leverage. Hens and Steude (2009) explain the effect in an experimental stock
market under a controlled setting where students are given instructions to trade
artificial securities with each other using an electronic trading system with no fi-
nancial leverage. They find that the effect can be observed even in the absence of
financial leverage. Similar results are presented by Hasanhodzic and Lo (2019),
where they confirm the existence of leverage effect in all-equity-financed firms
having no debt. The volatility feedback is another possible factor that explains
the negative correlation between volatility and expected rate of return (Campbell
and Hentschel, 1992). In response to favorable information (good news), the in-
crease in return is mitigated by the effect of price decline due to increased risk. In
response to unfavorable information (bad news), the price decline due to increased
risk is added, magnifying the decrease in the rate of return. Nevertheless, since
both factors of financial leverage and volatility feedback are built on the EMH,
they do not fully explain the leverage effect. Namely, the inefficiency of market
information can also give rise to asymmetric volatility, so it has arisen as an im-
portant factor.1 The informational inefficiency imposes different impacts on the
return process, i.e., asymmetric volatility occurs when investors trade based on

1In the study of Antoniou et al. (1998), they reject the traditional leverage effect and conclude
that information inefficiency in markets is the cause of asymmetry in volatility.
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noise rather than information. Black (1976) calls them “noise traders” because
they overreact to information and trade irrationally. These uninformed investors
affect liquidity to the market (Easley et al., 1996) and generate asymmetric fluc-
tuations in market prices (Avramov et al., 2006; Baur and Dimpfl, 2018). In this
context, noise traders happen to be dominant after negative shocks in many of the
conventional markets, where higher volatility follows.

On the other hand, some markets show an inverse asymmetric volatility phe-
nomenon where higher volatility follows after positive shocks. Chen and Mu
(2021) reveal the presence of an inverse leverage in a wide range of commodity
markets, including agricultural products, energy, industrial metals, and precious
metals, except for crude oil. Kliber (2016) finds evidence of inverse leverage in
the sovereign credit default swap spreads (sCDS) for the countries of Portugal,
Poland, Greece, and Slovenia. The author refers it to the Prospect Theory of Tver-
sky and Kahneman (1992), where the decision making of investors is explained
under different risk conditions. Under several assumptions, the author justifies
that inverse-leveraged sCDS in the above cases are due to market participants
feeling that the probability of default is higher than the one implied by the spread.

In respect of cryptocurrencies, a number of studies have attempted to model
the behavior of volatility. Whether volatility of price changes is positively or nega-
tively related to return shocks has traditionally been modeled by making explicit
the conditional variance of returns. Katsiampa (2017) compares several compet-
ing GARCH-type models and concludes that the Component GARCH (CGARCH),
a model that allows a short-run and a long-run component of conditional variance,
provides the optimal fit level of Bitcoin data for the period between July 2010 and
October 2016. It is worth noting that during the period, the log-likelihood value
under the CGARCH model is higher than that of under its asymmetric model,
the asymmetric component GARCH (ACGARCH) model. This result implies that
asymmetric models are not always the most appropriate to explain Bitcoin volatil-
ity, and thus symmetric models can sometimes provide a better explanation. The
information criteria for diagnosing model selection discussed in the literature also
support the findings that the (symmetric) CGARCH model presents a plausible fit.

However, asymmetric models under other GARCH-type models generally out-
perform symmetric models in many cases, and they have the potential to ad-
dress significant asymmetry in volatility. On implementing the well-known GJR-
GARCH model of Glosten et al. (1993) and the EGARCH model of Nelson (1991),
Bouri et al. (2017a) investigate the relation between price returns and volatility
changes in the Bitcoin market against various world currencies and test if there is
a difference in the asymmetric structure before and after the price crash of 2013.
They report that before the crash, positive returns helped increase the conditional
variance more than negative returns but not after the crash, suggesting that pos-
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itive (inverse) asymmetric volatility effect is relevant to a safe-haven property of
Bitcoin rather than the financial leverage or volatility feedback. Cheikh et al.
(2020) attempt to capture different impacts of positive versus negative shocks re-
garding a flexible intermediate state between variance regimes. They employ the
smooth transition GARCH (ST-GARCH) model and investigate four representa-
tive cryptocurrencies of Bitcoin, Ethereum, Ripple, and Litecoin using data from
April 28, 2013, to December 1, 2018. They find a positive relationship between
return shocks and volatility for the majority of currencies except for the case of
Ethereum, where no asymmetry can be detected under the ST-GARCH, EGARCH,
threshold GJR-GARCH, and threshold GARCH (ZGARCH) models. Using a wide
range of data periods available through August 2018, Baur and Dimpfl (2018) test
the existence of an asymmetric volatility effect in as many as 20 major and minor
cryptocurrencies by employing the TGARCH model in addition to the quantile au-
toregressive model (QAR). They find that positive shocks increase volatility more
than negative shocks for most cases, with the most notable exceptions being the
two largest currencies, Bitcoin and Ethereum. They attempt to explain the phe-
nomenon in terms of informed and uninformed (noise) traders’ trading activities—
asymmetry is due to uninformed traders’ herding and buying activity boosted by
the fear of missing out (FOMO) on rising cryptocurrency prices, as well as the
pump-and-dump schemes. In this context, the authors argue that the two largest
Bitcoin and Ethereum play a special and different role because, in the most ma-
ture peer-to-peer currencies, the market is dominated by informed traders who
have the ability to reduce some of the prominent asymmetry generated by unin-
formed traders.

Fakhfekh and Jeribi (2020) refer to the importance of focusing on long-memory
properties of time series in finding the most optimum model or sets for depict-
ing volatility. By introducing fractionally integrated models of FIGARCH and
FIEGARCH, they take into account long-memory factors in the conditional het-
eroskedasticity variance towards modeling sixteen of the most popular cryptocur-
rencies’ volatility. Under the period from August 7, 2017, to December 12, 2018,
they apply fourteen GARCH specifications, including typical asymmetric GARCH-
type models, with different error distributions. They conclude that, in general, the
TGARCH and EGARCH models provide the best model explanation, although the
best model fit varies across cryptocurrencies. They also report the presence of
an inverse asymmetric volatility effect, more or less in line with other relevant
studies. Mensi et al. (2019a) examine structural break impacts on the dual long
memory of Bitcoin and Ethereum using four different ARFIMA-GARCH family
models, specifically GARCH, FIGARCH, FIAPARCH, and HYGARCH models. By
considering long-memory and structural breaks, they find that dual long memory
exists in Bitcoin and Ethereum returns and volatility. Their results indicate that
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market returns and volatility do not follow a random pattern, and thus EMH does
not hold for cryptocurrencies. They also point out that FIGARCH with structural
breaks is comparatively superior to other models for volatility forecasting.

Al-Yahyaee et al. (2018) show evidence of long-memory feature as well as mul-
tifractality in the Bitcoin market and compare the level of market efficiency to
gold, stock, and foreign exchange markets by applying the dynamical approach
of multifractal detrended fluctuation analysis (MFDFA) proposed by Kantelhardt
et al. (2002), which is a method that generalizes the DFA to multifractality. They
find evidence of the market being more inefficient with stronger multifractality
than other assets. With the use of A-MFDFA, which extends the MFDFA to cap-
ture asymmetric structures, Liu and Chen (2018) examine the asymmetric volatil-
ity of the dry bulk shipping market brought by the financial crisis. They also
demonstrated the fractal method’s usefulness in illustrating asymmetric charac-
teristics of long-range correlation, multifractality, and many other data proper-
ties in financial time series. In the same framework, with high-frequency Bit-
coin and Ethereum data, Mensi et al. (2019b) examine long-memory, asymmetric
multifractality, and time-varying efficiency to reveal different market patterns be-
tween downside and upside trends. They clarify that both Bitcoin and Ethereum
are highly inefficient because different scaling laws and asymmetric fractal pat-
terns exist in the price dynamics, supporting the FMH. Both markets are more
inefficient when moving downwards relative to when they are moving upward.
Other studies use the MF-ADCCA, an extension of A-MFDFA, in estimating the
scaling factor of asymmetric long-range cross-correlations between time series.
In the literature of Cao and Xie (2021), the authors highlight the long-memory
and asymmetric multifractal characteristics of cross-correlations between cryp-
tocurrencies and Chinese financial markets. These stylized facts are also evident
between leading cryptocurrencies, leading conventional currencies (Kristjanpoller
and Bouri, 2019), and equity ETFs (Kristjanpoller et al., 2020). The above studies
suggest that cryptocurrency markets represent a complex system that can gener-
ate asymmetry in its inter-relationship with other financial markets.

Kakinaka and Umeno (2021) utilize the fractal method of MF-ADCCA to inves-
tigate asymmetric cross-correlation between price return and return volatility in
cryptocurrency markets from June 1, 2016, to December 28, 2020. The literature
further quantifies the multi-time scale strength of asymmetric cross-correlation
by employing the asymmetric DCCA coefficient at various scales. They report
that stronger cross-correlation appears in the downtrend market for the major
coins of Bitcoin and Ethereum. In contrast, stronger cross-correlation appears in
the uptrend market for the more minor coins of Ripple and Litecoin. One of the
main contributions of the work to the field is that they established an approach
to investigate dynamical properties of long-range dependent processes of return
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and volatility at a specific scale, which extends the discussion to the economic
phenomenon of asymmetric volatility effect on multi-time scales.

Although the idea of using fractal analysis towards detecting the asymmet-
ric volatility effect under different time scales is demonstrated in Kakinaka and
Umeno (2021), its interpretation is limited in terms of correlation coefficients de-
fined between -1 and 1. In our study we will also utilize fractal analysis, but un-
like earlier studies, the asymmetric effect is associated with the actual effect of an
economic variable (return shocks) on another (volatility) rather than simply the
strength of correlation between variables. Our study is also different from other
volatility models, i.e., GARCH models, in that we take into account the multi-
time scale structure between the variables, while the scaling property is ignored
in these conventional models. The multi-time scale fractal regression analysis
we implement is complementary to other existing methods built on long-memory,
fractality, and scale-dependent processes and works excellent with modeling het-
erogeneity in economic and financial variables (Tilfani et al., 2022). As the detec-
tion of asymmetric volatility effect is crucial towards deciding portfolio positions,
modeling its heterogeneity expectations in terms of multi-time scales may provide
additional views from past studies. Our study deepens the interdisciplinary un-
derstanding of the connection between economic behavior and stylized facts that
emerged from the field of physics.

B.2 Bootstrap Confidence Interval

After obtaining Ø̂DFA
i

(s) and the error "t(s) from the model of Eq. (6.2.10)
(Eq. (6.2.12)), we resample the error "§

t
(s) and construct a new data Z

§
t

using
Ø̂DFA

i
(s) and "§

t
(s). We apply once again the fractal regression and run the pro-

cedure 1000 times. Then we obtain a collection of estimated coefficients, so the
quantile of ØDFA

2 (s) can be calculated. Below in Figure B.1, the 95% confidence
intervals across scales for each cryptocurrency are depicted. If Ø̂DFA

2 (s) = 0 is out
of the range in orange, the coefficient is significantly different from 0. We con-
firm that the results are very similar to those obtained using the scale-dependent
t-statistics presented in Figure 6.4.

B.3 Estimation Results Using Volume-Weighted Av-

erage Daily Prices

In this section we show the estimates of the DFA-based bivariate regression
based on the volume-weighted average daily prices (VWAP) of each cryptocur-
rency, to check the robustness of our results presented in 6.3.2.
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Figure B.1: Bootstrapped 95% confidence interval of DFA-based bivariate regres-
sion.
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B.3. ESTIMATION RESULTS USING VOLUME-WEIGHTED AVERAGE
DAILY PRICES
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Figure B.2: DFA-based bivariate regression estimates of cryptocurrency series
based on VWAP. The coefficients Ø̂DFA
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2 (s) are shown for each cryp-
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95% confidence intervals calculated as Ø̂DFA

i
(s)±2

q
var(Ø̂DFA

i
(s)), for i = 1,2.

154



APPENDIX B. SCALE-DEPENDENT REGRESSIONS

0

1

2

3

4

5

�̂
D

FA
1

(s
)
±

�̂
D

FA
2

(s
)

BTC�̂DFA
1 (s) + �̂DFA

2 (s)

�̂DFA
1 (s) � �̂DFA

2 (s)

ETH�̂DFA
1 (s) + �̂DFA

2 (s)

�̂DFA
1 (s) � �̂DFA

2 (s)

0

1

2

3

4

5

�̂
D

FA
1

(s
)
±

�̂
D

FA
2

(s
)

XRP�̂DFA
1 (s) + �̂DFA

2 (s)

�̂DFA
1 (s) � �̂DFA

2 (s)

LTC�̂DFA
1 (s) + �̂DFA

2 (s)

�̂DFA
1 (s) � �̂DFA

2 (s)

20 40 60 80 100 120 140 160 180

s (days)

0

1

2

3

4

5

�̂
D

FA
1

(s
)
±

�̂
D

FA
2

(s
)

XMR�̂DFA
1 (s) + �̂DFA

2 (s)

�̂DFA
1 (s) � �̂DFA

2 (s)

20 40 60 80 100 120 140 160 180

s (days)

DASH�̂DFA
1 (s) + �̂DFA

2 (s)

�̂DFA
1 (s) � �̂DFA

2 (s)

Figure B.3: The impact of good and bad news to volatility, Ø̂DFA
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Appendix C

Mean-DCCA portfolio

C.1 Mean-DCCA portfolio with major financial as-

sets

We investigate whether the fractal approach of MD analysis reflects the diver-
sification effect among the major financial assets. For each pair of daily return
series we calculate the cross-correlation levels at different scales defined by the
DCCA coefficient (Fig. C.1). We confirm that coefficients tend to vary depending on
scales. This means that the constructed portfolio shows different diversification
effect under different time scales.

For the scale preference strategy in Eq. (7.2.4), we set Æi(s j) = s j/
P

s2S s for
long-scale preference, and Æi(s j) = s#S+1° j/

P
s2S s for short-scale preference as-

sociated with the subset S = {5,10,15, . . . ,130}. For the balanced-scale type, the
optimal weight is calculated by averaging all the scale-dependent weights. In
our analysis, we use Q = {2} and past data length of 2 years to calculate optimal
allocations.

Table C.1 presents the maximum drawdown performance of MV and MD port-
folios based on the three strategy types, with a given annual return level of 2.5%.
All three types of MD generally outperform the traditional MV, and better strat-
egy of MD seems to vary by market period. For example, during the global finan-
cial crisis (2008-2009), the MD with short-term preference reduces drawdown the
most, whereas after market recovery (2012-2013), the MD with long-term prefer-
ence reduces the most. In a relatively unstable market condition, short-scale MD
minimizes portfolio risk, where investors tend to focus more on the short-term in
downside situations.

We also discuss the out-sample performance of the MD portfolio by backtest-
ing. The optimal investment weighting (Eq. (7.2.4)) is calculated using the past
520 data (2 years) and managed for the next quarterly period. Allocations are
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Figure C.1: Multi-scale cross-correlation coefficients of assets.
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Table C.1: Maximum drawdown performance (%) of the portfolios under a re-
quired annual return level of 2.5%.

sample period MV MD-balanced MD-short MD-long

2004-2005 -2.227 -2.222 -2.229 -2.215

2006-2007 -0.584 -0.533 -0.542 -0.524

2008-2009 -1.919 -1.610 -1.515 -1.706
2010-2011 -0.662 -0.674 -0.665 -0.683
2012-2013 -1.417 -1.206 -1.238 -1.174

2014-2015 -1.913 -1.684 -1.657 -1.710
2016-2017 -0.606 -0.518 -0.540 -0.540
2018-2019 -0.508 -0.480 -0.469 -0.492
2020-2021 -2.557 -1.888 -1.990 -1.786

recalculated and rebalanced every quarter. We also implement a switching-MD
portfolio by switching the scale preference types among the three MD strategies,
relying on the level of past maximum drawdown. If the maximum drawdown of
the balanced-scale MD over the past two years is worse than -1.5%, we select
the short-scale strategy. Otherwise, we select the long-scale strategy. Figure C.2
shows the switch and maximum drawdown throughout the entire period. We con-
firm that the MD-switching strategy outperforms portfolio risk compared to MV
and other types of MD (Figure C.3). The strategy reduces maximum drawdown,
Value-at-Risk (VaR), and expected shortfall (ES) of the constructed portfolio and
increases portfolio returns under the same level of required returns (Table C.2).
Therefore, changing the scale preference of the MD portfolio in response to market
conditions is effective for gaining more portfolio risk control not only in cryptocur-
rency markets but also in major financial assets.

Table C.2: Backtest performance (annual average) of portfolios.
MV MD

balanced short long switching

max. drowdown (%) -1.537 -1.303 -1.361 -1.255 -1.240

10-day 99%VaR (%) -0.832 -0.725 -0.760 -0.696 -0.694

10-day 97.5%ES (%) -0.809 -0.706 -0.737 -0.678 -0.675

120-day 99%VaR (%) -0.864 -0.591 -0.678 -0.510 -0.474

120-day 97.5%ES (%) -0.832 -0.570 -0.654 -0.490 -0.455

annual return (%) 2.440 2.441 2.416 2.466 2.550
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Figure C.2: Strategy switching and maximum drawdown throughout the period.
The red (green) ranges represent long (short) scale preference.
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cross-correlation analysis consistently extended to multifractality. Physical Re-
view E 89. URL: https://doi.org/10.1103/physreve.89.023305, doi:10.
1103/physreve.89.023305.

Pastor, G., Mora-Jimenez, I., Caamano, A., Jantti, R., 2016. Asymptotic Expan-
sions for Heavy-tailed Data. IEEE Signal Processing Letters 23(4), 444–448.
URL: https://doi.org/10.1109/lsp.2016.2526625, doi:10.1109/lsp.2016.
2526625.

Paulson, A.S., Holcomb, E.W., Leitch, R.A., 1975. The estimation of the parame-
ters of the stable laws. Biometrika 62, 163–170.

Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger,
A.L., 1994. Mosaic organization of DNA nucleotides. Physical Review E
49, 1685–1689. URL: https://doi.org/10.1103/physreve.49.1685, doi:10.
1103/physreve.49.1685.

Peters, E.E., 1994. Fractal market analysis: applying chaos theory to investment
and economics. volume 24. John Wiley & Sons.

Plerou, V., Stanley, H.E., 2008. Stock return distributions: Tests of scal-
ing and universality from three distinct stock markets. Physical Review
E 77. URL: https://doi.org/10.1103/physreve.77.037101, doi:10.1103/
physreve.77.037101.
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