
 1

DEEP DETERMINISTIC POLICY GRADIENT AND GRAPH CONVOLUTIONAL
NETWORKS FOR TOPOLOGY OPTIMIZATION OF BRACED STEEL FRAMES

 Chi-tathon KUPWIWAT*, Yuichi IWAGOE**, Kazuki HAYASHI*** and Makoto OHSAKI****

1．INTRODUCTION

Optimization of discrete structures, such as frames and trusses, has widely

been studied in the field of structural optimization. When nodal connectivity

and/or cross-sectional properties are chosen as design variables in the

optimization problem, the problem is classified as a topology optimization

problem1). Optimal solutions of this problem can be obtained with small

computational effort when the numbers of members and degrees of freedom

(DOFs) are small. However, the problem may become more difficult to solve

for real-world structures which have larger numbers of members and DOFs.

Moreover, when design variables are chosen from a set of discrete values,

the topology optimization is considered as a combinatorial problem which is

difficult to solve, because the gradient of the objective and constraint

functions with respect to the design variables are not available2).

 Optimization methods can be classified into mathematical programming,

in which the gradient with respect to design variables is needed, and heuristic

approach, in which the gradient information is not utilized. However, for

heuristic approaches, large computational cost is required for computing and

comparing structural responses of multiple candidates. The heuristic

approach is further classified into a population-based approach such as a

genetic algorithm (GA)3) and a local search approach such as simulated

annealing (SA)4). In application of the population-based approach to

structural optimization problems [Refs.5-8], multiple candidates (i.e.,

population) for optimal solutions are generated in each optimization step.

Prospective candidates are then selected, based on their structural responses,

for generating the candidates at the next optimization step, and the

optimization process is continued until the termination criteria are satisfied.

 Machine learning (ML) has recently been a subject of study for solving

engineering problems in various fields including structural design and

optimization problems. Vanluchene and Sun9) applied an ML approach to

design reinforced concrete beams. Zheng et al.10) trained an ML model to

predict architect’s preference of generated structures based on graphic statics.

Mirra and Pugnale11) used variational autoencoder12) to design shell structures.

For the braced frames, Tamura et al.13) proposed combining ML, such as

binary decision tree or support vector machine, with SA for optimization of

brace locations of building frames. Sakaguchi et al.14) proposed methods for

extracting important features, and converting the features of a small frame to

those of a large frame. In both studies, the sizes of beams and columns are

fixed, and only the types and locations of the braces are optimized.

 Types of application of ML are classified into function approximation

(regression), classification of solutions (optimal/non-optimal, feasible/

infeasible), and learning optimization process by reinforcement learning

(RL), which trains the agent to perceive the environment around itself and

Keywords : Topology optimization, Plane building frame, Reinforcement learning, Deep deterministic policy gradient,

Graph representation, Graph convolutional network

We propose a method for topology optimization of braced frames under static seismic loads using Deep Deterministic Policy Gradient (DDPG)

and Graph Convolutional Network (GCN). The structure is interpreted as a graph where structural elements and element configurations are

represented by the node feature matrix and adjacency matrices, respectively. Using this graph representation, the DDPG agent with GCN

architecture can observe the properties of the frame, and make the decision to either add braces into the frame or enlarge sections of frame

elements by selecting from a list of available sections. During the optimization process, the initial structure that cannot withstand the seismic

load is modified by the agent until all constraints are satisfied. The trained agent can be applied to frames of different sizes and can obtain

competitive results with less computational cost compared to the genetic algorithm.

Journal of Structural Engineering, Vol.69B, April 2023 Architectural Institute of Japan
構造工学論文集 Vol.69B (2023年 4月) 日本建築学会

 * Ph.D. Student, Dept of Architecture and Architectural Engineering, Kyoto University, M. Eng.

** Graduate Student, Dept of Architecture and Architectural Engineering, Kyoto University (Currently, Morikita Publishing Co.,Ltd.), M. Eng.

 *** Assistant Prof., Dept of Architecture and Architectural Engineering, Kyoto University, Dr. Eng.

**** Prof., Dept of Architecture and Architectural Engineering, Kyoto University, Dr. Eng.

－ 129 －

日本建築学会

Architectural Institute of Japan
構造工学論文集 Vol.69B (2023 年 4 月)
Journal of Structural Engineering, Vol.69B, April 2023

 2

make decisions to accomplish the given tasks. Thus, the RL agent can be

trained to learn an optimal decision process. After the training, the agent can

be applied to do tasks in other similar environments. Deep Deterministic

Policy Gradient (DDPG)15) is an RL algorithm using two neural networks

(NNs), namely actor and critic networks16)-18). The actor network is trained

to maximize the estimated reward, and the critic network is trained to

accurately estimate the reward.

Graph is a type of data consisting of vertices (nodes) and edges. A graph

can be processed and manipulated using convolutional operators or graph

signal processing methods19),20). Graph representation can be effectively

utilized for modeling various components of the building. Langenhean et

al.21) used graphs to represent room types. Abualdenien and Borrmann22) used

graph representation for patterns of building elements. Vestartas23)

represented structural elements and joints using a graph. Hayashi and

Ohsaki24) proposed a combined method of graph representation and RL for

binary topology optimization of the trusses. Kupwiwat et al.25) proposed a

method for binary optimization of braced lattice shells using an RL agent

made of Graph Convolutional Network (GCN)26) which is a type of NN that

works effectively with graph data. However, in Kupwiwat et al. paper, the

dot product of the agent output is needed to identify modifications of the

element which is too complicated. This paper proposed an improved method

where the modifications of the element can be directly obtained from the

agent output.

 This paper proposes a method for combinatorial optimization of member

sizes and brace placements of plane building frames under constraints on

static seismic responses using graph representation and a DDPG agent

introducing GCN. The agent observes properties of the frame through graph

representation and sequentially adjusts the frame by adding braces or

enlarging the sizes of beams and columns. During the training, the penalty

determined by material and construction cost is given to the agent. It is shown

that the optimal design modification can be learned by the proposed method.

The rest of the paper is organized as follows. Section 2 explains the

formulations of objective and constraint functions of the combinatorial

optimization problem. Sections 3 and 4 introduce the graph representation

and DDPG, respectively. Section 5 explains components of the decision-

making process to implement RL. In Section 6, numerical examples of the

training and test phases are presented. The learnability and applicability of

the agent are shown in the training phase, and solutions obtained by the RL

agent in the test phase are compared to those obtained by the GA.

Fig. 1 Five brace types including no brace

2．COMBINATORIAL OPTIMIZATION PROBLEM

2.1 Outline of optimization problem

 Seismic performance is an important factor in designing building frames

in earthquake-prone areas. In this paper, the seismic load is simplified using

the Japanese building code of allowable stress design based on so-called Ai

distribution for short-term loading, whereas the dead and live loads are

building frame is improved by increasing the sizes of beams and columns

and placing braces of various types including diagonal braces, K-type, and

V-type as shown in Figure 1.

The building frame without braces is initialized with the smallest section

index in the lists. During the optimization, braces are placed into the building

frame together with adjustment of sizes of beams, columns, and braces until

the building frame can satisfy all constraints on the structural responses.

2.2 Static seismic loads

 The horizontal seismic force on each floor is computed by distributing

shear forces. Horizontal load 𝑃𝑃! on the 𝑖𝑖th floor of the building frame is

computed as follows:

𝑃𝑃! = $ 𝑄𝑄!									(𝑖𝑖 = 𝑁𝑁")
										𝑄𝑄!#$%𝑄𝑄!					(𝑖𝑖 = 1, … , 𝑁𝑁" − 1)																													(1.1)

𝑄𝑄! = 𝐶𝐶! 0 𝑊𝑊&

'!

&(!
																																																																							(1.2)

𝐶𝐶! = 𝑍𝑍)𝑅𝑅𝐶𝐶)𝒜𝒜!																																																																													(1.3)

𝑅𝑅 =

⎩
⎪
⎨

⎪
⎧ 1																																	(𝑇𝑇 < 𝑇𝑇*)

1 − 0.2 >+
+"

− 1?
,

								(𝑇𝑇- ≤ 𝑇𝑇 < 2𝑇𝑇-)

1.6+
+#

																											(2𝑇𝑇* ≤ 𝑇𝑇)
																					(1.4)

𝑇𝑇 = 0.003ℎ																																																																																	(1.5)

𝒜𝒜! = 1 + F $
./$

− 𝛼𝛼!H
,+

$#0+																																																									(1.6)

𝛼𝛼! =
∑ 𝑊𝑊&

'!
&(!

∑ 𝑊𝑊1
'!
1($

																																																																													(1.7)

𝑊𝑊! = 𝑤𝑤!𝑎𝑎!																																																																																			(1.8)

where 𝑄𝑄!, 𝐶𝐶!, 𝑊𝑊!,	 𝑅𝑅, and 𝒜𝒜! are the shear force acting on the 𝑖𝑖th story

between the (𝑖𝑖-1)th and 𝑖𝑖th floors, shear coefficient of the 𝑖𝑖th story, the

weight of the 𝑖𝑖 th floor, a value representing soil category and vibration

characteristics of the building, and the shear distribution coefficient of the

𝑖𝑖th floor, respectively. 𝐶𝐶), 𝑇𝑇, 𝑤𝑤!, and 𝑎𝑎! are the base shear coefficient, the

fundamental natural period of the building, the unit load of the	 𝑖𝑖th floor, and

the area of the	 𝑖𝑖th floor, respectively. ℎ, 𝑇𝑇-, 𝑍𝑍), and 𝑁𝑁" are the total height

of the building, the specific period assigned according to the soil type under

the building, the regional seismic coefficient, and the number of floors

excluding the base, respectively.

 In the following examples, short-term loadings in both left and right

directions are considered to evaluate the largest response of the building

frame.

2.3 Structural response

 Internal forces and displacements are computed using linear elastic

analysis. The beams and columns are modeled using 2-dimensional beam

elements with 6-DOFs, whereas the braces are modeled using 2-dimensional

truss elements with 4-DOFs. In the local coordinate system, the stiffness

－ 130 －

 3

matrices of the beam or column element and the brace element are denoted

as 𝐤𝐤" ∈ ℝ2×2 and 𝐤𝐤4 ∈ ℝ5×5, respectively. These matrices are transformed

into the global coordinate system and assembled into the global stiffness

matrix 𝐊𝐊 ∈ ℝ6%×6%, where 𝑛𝑛7 is the number of DOFs of the frame.
 The load vectors corresponding to the three cases of long-term loading,

long-term loading with left direction (negative) short-term loading, and

long-term loading with right direction (positive) short-term loading are

denoted by 𝐩𝐩8 ∈ ℝ6% , 𝐩𝐩9& ∈ ℝ6% , and 𝐩𝐩9' ∈ ℝ6% , respectively. Nodal

displacement vectors 𝐝𝐝8 ∈ ℝ6% , 𝐝𝐝9& ∈ ℝ6% , and 𝐝𝐝9' ∈ ℝ6%

corresponding to the three load cases, respectively, are obtained by solving

the following stiffness equation:
𝐊𝐊𝐊𝐊 = 𝐩𝐩																																																					(2)

where 𝐝𝐝 ∈ {𝐝𝐝8, 𝐝𝐝9& , 𝐝𝐝9'} and 𝐩𝐩 ∈ {𝐩𝐩8, 𝐩𝐩9& , 𝐩𝐩9'}.

 The internal forces 𝐟𝐟! = X𝑓𝑓:;, 𝑓𝑓:
<, 𝑓𝑓:=, 𝑓𝑓>;, 𝑓𝑓>

<, 𝑓𝑓>=Z of a beam or column

element 𝑖𝑖	can be obtained from 𝑝𝑝 and 𝑞𝑞 end displacements of the element

𝑖𝑖 in the local coordinate system and its corresponding stiffness matrix. See

Figure 2 for definitions of forces. Internal forces 𝐟𝐟! = X𝑓𝑓:;, 𝑓𝑓:
<, 𝑓𝑓>;, 𝑓𝑓>

<Z of a

brace element can be obtained similarly. From these internal forces, internal

stress 𝜎𝜎! of a structural element 𝑖𝑖 can be computed as follow:

𝜎𝜎! =
^𝑓𝑓:;^

𝐴𝐴!
+

max	(^𝑓𝑓:=^, ^𝑓𝑓>=^)
𝑍𝑍!

																																																	(3)

where 𝐴𝐴! and 𝑍𝑍! denote the cross-sectional area and the section modulus

of element 𝑖𝑖, respectively, and the second term does not exist for a truss

element. Note that this paper uses the assumption of the rigid floor where in-

plane stiffness of slab is incorporated by multiplying axial stiffness of the

beam element by 10.

Fig. 2 Internal forces in local coordinates

2.4 Objective function

 The optimal section sizes of beams, columns, and braces as well as brace

placements of steel frames are to be obtained for minimizing the objective

function formulated considering material and construction costs. Let 𝑐𝑐! ∈

{0,1, … , 𝑛𝑛*} and 𝑏𝑏! ∈ {0,1, … , 𝑛𝑛?} denote the indices of the predetermined

cross-sectional properties of columns and beams, respectively. A vector

representing the element properties of the building frame which has 𝑐𝑐"

columns and 𝑏𝑏" beams is denoted as
𝐀𝐀 = X𝑐𝑐$, … , 𝑐𝑐-! , 𝑏𝑏$, … , 𝑏𝑏@!	Z																																		(4)

 A vector that represents the type of brace in each domain of a building

frame with 𝑁𝑁B spans and 𝑁𝑁" stories is denoted as

𝐁𝐁 = >𝑟𝑟$, … , 𝑟𝑟'(')?,				𝑟𝑟! ∈ {0,1,2,3,4}																															(5)

where 0, 1, …, 4 correspond to the brace types (A), (B), …, (E) in Figure 1,

respectively.

 A design variable vector for a building frame can be represented as a

combination of 𝐀𝐀 and 𝐁𝐁 as
𝐗𝐗 = {𝐀𝐀, 𝐁𝐁}																																																													(6)

 The objective function to be minimized is the cost denoted by 𝑉𝑉(𝐗𝐗)

which is equivalent to the total structural volume. Note that the cost of braces

is multiplied by the cost coefficient B to avoid placing too many braces. The

optimization problem of member sizes and brace placements of the steel

frame is formulated as follows:
minimize					𝑉𝑉(𝐗𝐗)																																																							(7.1)

subject	to				𝜎𝜎CDE
8 ≤ 𝜎𝜎u8																																													(7.2)

𝜎𝜎CDE
9 ≤ 𝜎𝜎u9																																													(7.3)

𝜃𝜃CDE ≤ 𝜃𝜃w																																															(7.4)

𝛿𝛿CDE ≤ 1																																															(7.5)

𝜆𝜆CDE ≤ 1																																															(7.6)

where 𝜎𝜎CDE
8 , 𝜎𝜎CDE

9 , and 𝜃𝜃CDE are the maximum absolute value of stresses

at the element ends among all members due to long-term loading, the largest

maximum absolute value of stresses at the element ends among all members

due to both directions of short-term loading, and the maximum absolute

value of inter-story drift angles among all stories, respectively. Their upper

bounds are denoted by 𝜎𝜎u8, 𝜎𝜎u9, and 𝜃𝜃w, respectively. Note that the two cases

of positive and negative directions of horizontal loads are considered for

evaluating the maximum value of responses for the short-term loadings.

Constraints on base beams are also measured because they are necessary for

adding V-type braces. 𝛿𝛿CDE is the maximum value of deflection ratio 𝛿𝛿!
? at

the centers of all beams defined as

𝛿𝛿!
? = max	 F0))×FG$

*F

H$
* , 1H																																														(8)

where 𝑑𝑑!
? and 𝐿𝐿!

? are the deflection at the center of beam 𝑖𝑖 in the local 𝑦𝑦

coordinate, and the length of beam 𝑖𝑖, respectively. 𝜆𝜆CDE is the maximum

value of buckling stress ratios 𝜆𝜆!, defined as follows, of all braces:

𝜆𝜆! = }
I$
+

J,KL/(OH,)
						(𝑓𝑓:; > 0)

0																							(𝑓𝑓:; ≤ 0)
																																	(9)

3．GRAPH CONVOLUTIONAL NETWORK

3.1 Graph representation

 In this paper, the building frame structure is represented as a graph which

consists of nodes representing structural elements (i.e., columns, beams, and

braces) and edges representing connections between the structural elements

as shown in Figure 3. The graph representation is a method to store graph

data in vector or matrix forms.

3.2 Graph Convolutional Network

 GCN is a type of NN that can map the input of graph representations to

the target domain of the graph. The graph consisting of 𝑛𝑛 nodes with 𝑢𝑢

features can be represented using a node feature matrix 	𝐍𝐍 ∈ ℝ6×Q to

represent the features of each node in the graph. An adjacency matrix 𝐌𝐌 ∈

ℝ6×6 indicates the connectivity between nodes such that each entry 𝑚𝑚!,& is

1 if there is an edge connecting node i and node j, or 0 if there is no edge

connecting node i and node j, respectively. A diagonal degree matrix 𝐃𝐃 ∈

ℝ6×6 has each entry 𝑑𝑑!,!	 representing the number of edges connected to the

node i. Note again that the nodes in the graph represent structural elements;

not the connections of joints between the elements.

－ 131 －

 4

A single GCN computation, corresponding to a layer, takes these

representations as input and computes the output as follows:
𝐍𝐍′ = σX𝐌𝐌‡ 𝐍𝐍𝐍𝐍Z																																																							(10)

where σ and 𝐰𝐰 ∈ ℝQ×S are a non-linear activation function and the weight

matrix (i.e., the convolution filter parameters with 𝑣𝑣 filters) in the GCN

layer which is adjusted during the training, respectively.

 𝐌𝐌‡ is the normalized adjacency matrix computed as

𝐌𝐌‡ = 𝐃𝐃&-/,[𝐌𝐌 + 𝐈𝐈]𝐃𝐃&-/,																																														(11)

where 𝐈𝐈 ∈ ℝ6×6 and 𝐃𝐃%$/, are the identity matrix and the inverse of the

matrix 𝐃𝐃$/, satisfying 𝐃𝐃$/,𝐃𝐃$/, = 𝐃𝐃, respectively.

 Multiple GCN layers can be connected together, in which output 𝐍𝐍′ ∈

ℝ6×S of the previous GCN layer is treated as node input 𝐍𝐍 of the next GCN

layer, to create a machine learning model.

 In this paper, we utilize GCN to build an RL agent that can determine

how to adjust the design of a structure. Let 𝑁𝑁D denote the number of actions

assigned to each member, which is 1 in this study. The output of the agent is

𝛑𝛑 ∈ ℝ6×'/, representing the probability to choose the element whose cross-

sectional area is to be enlarged.

4．REINFORCEMENT LEARNING

4.1 Outline of reinforcement learning

 An agent aiming to obtain a high accumulated reward signal is trained to

do actions in an environment that give a reward signal according to how the

agent’s action affects the environment. RL algorithm consists of three main

components: a policy dictating the agent’s behavior, a reward signal, and a

value function that estimates the accumulated reward signal 27). Interactions

between the agent and the environment are represented using a discrete time

decision-making process called Markov Decision Process (MDP)28),29), in

which the next state depends solely on the current state and action. At step 𝑡𝑡,

the agent observes the environment as state ST and performs action AT .

After that, the agent receives reward signal RT#$ and observes the

representation of the next state ST#$ as shown in Figure 4.

4.2 Deep Deterministic Policy Gradient

 DDPG is an RL policy gradient algorithm that determines the probability

of taking action AT
! in a state ST , denoted by 𝛑𝛑 , and predicts the

accumulated reward (Q-value) from the actions using a policy function

(Actor) 𝛑𝛑U- and a value function QU, (Critic), respectively, both of which

are represented as follows:
𝛑𝛑U-(ST) = 𝛑𝛑																																																																							(12)

QU, >ST, 𝛑𝛑U-(ST)? = 	 0 γS%$RT#S

V

S($
																																											(13)

where θ$ and θ, are parameters of policy and value functions, respectively.

γ ∈ [0,1) is a discount factor for the reward signal.

 The agent interacts with the environment and stores MDP data of

{ST, AT, RT#$, ST#$}	in a storage of training data called replay buffer. The

value function adjusts its parameters to increase the accuracy of the reward

prediction, and the policy function adjusts its parameters to increase the

predicted reward, respectively. The tau update method30) is used for

stabilizing the learning process by training a surrogate policy function 𝛑𝛑′UW-

and a surrogate value function Q′UW, , and then gradually updating the

parameters of these functions into the real policy function 𝛑𝛑U- that interact

with the environment, and the real value function QU, using a small value

of 𝜏𝜏 (𝜏𝜏 ≪ 1) at every tau update interval.

 The training algorithm of DDPG, which minimizes the loss function

ℒ(𝑦𝑦, 𝑦𝑦u) between training data 𝑦𝑦 and a predicted value 𝑦𝑦u, is as follows:

DDPG Algorithm:

1. Sample nbatch training data {ST, AT, RT#$, ST#$} from the stored replay

buffer and changed them into a set of vectors {𝐒𝐒T, 𝐀𝐀T, 𝐑𝐑T#$, 𝐒𝐒T#$}.

2. Update the parameters as follows:
 𝛑𝛑′UW-(𝐒𝐒T) = 	 𝐀𝐀šT

 𝛑𝛑U-(𝐒𝐒T#$) = 	 𝐀𝐀šT#$

 Q′UW,(𝐒𝐒T, 𝐀𝐀T) = 	 𝐐𝐐šT

 QU,X𝐒𝐒T#$, 𝐀𝐀šT#$Z = 	 𝐐𝐐T#$

 ∇Q′UW, = ∇UW,Q′UW,(𝐒𝐒T, 𝐀𝐀T)∇𝐐𝐐Y0	ℒX𝐑𝐑T#$ + 𝐐𝐐T#$, 𝐐𝐐šTZ

 ∇J′UW- = −𝔼𝔼 Ÿ∇UW-𝛑𝛑′UW-(𝐒𝐒T)∇𝐀𝐀Y0Q′UW,X𝐒𝐒T, 𝐀𝐀šTZ|𝐀𝐀Y0(𝛑𝛑W12-(𝐒𝐒0)¡

 Update 𝛉𝛉′, in Q′UW, using ∇Q′UW,

 Update 𝛉𝛉′$ in 𝛑𝛑′UW- using ∇J′UW-

 If tau update interval is reached:
 𝛉𝛉$ = (1 − 𝜏𝜏)𝛉𝛉$ + 𝜏𝜏𝛉𝛉′$

 𝛉𝛉, = (1 − 𝜏𝜏)𝛉𝛉, + 𝜏𝜏𝛉𝛉′,

 To reduce the time to find optimal weights in each layer of GCN, an

optimizer such as stochastic gradient descent (SGD)31),32),33) or Adam34) is

used for updating 𝛉𝛉′$ and 𝛉𝛉′, , using the gradients ∇J′UW- and ∇Q′UW, ,

respectively. If the agent just exploits its policy to determine the best actions,

the agent might miss other better actions. Therefore, Ornstein-Uhlenbeck

noise35) is added to the output of the policy function to activate the exploration

of DDPG’s policy function during the training.

Fig. 3 Braced frame structure represented as a graph

Fig.4 Diagram of the MDP

－ 132 －

 5

5．REINFORCEMENT LEARNING FOR OPTIMIZATION

5.1 State

 The state of a building frame with all possible 𝑛𝑛 elements is represented

as graph data where each node has 31 features obtained from structural

configuration and responses. The definitions of 𝑛𝑛!,&	(𝑗𝑗 = 1, … ,31) as

follows:

𝑛𝑛!,$ 1 if 𝑖𝑖 is in the structure, or 0 if 𝑖𝑖 is not in the structure

𝑛𝑛!,, 0 if 𝑖𝑖’s sectional area is equal to the largest area for 𝑖𝑖, else 1

𝑛𝑛!,0 1 if 𝑖𝑖 violates stress constraint under p9&, else 0

𝑛𝑛!,5 1 if 𝑖𝑖 violates stress constraint under p9', else 0

𝑛𝑛!,] 1 if 𝑖𝑖 violates stress constraint under p8, else 0

𝑛𝑛!,2 1 if the 𝑝𝑝 end of 𝑖𝑖 is rigidly fixed support, else 0

𝑛𝑛!,^ 0 if the 𝑝𝑝 end of 𝑖𝑖 is rigidly fixed support, else 1

𝑛𝑛!,_ Magnitude of load act on the 𝑝𝑝 end of 𝑖𝑖 in x axis

𝑛𝑛!,` Magnitude of load act on the 𝑝𝑝 end of 𝑖𝑖 in y axis

𝑛𝑛!,$) x-axis deformation of the 𝑝𝑝 end of 𝑖𝑖 under p9&

𝑛𝑛!,$$ x-axis deformation of the 𝑝𝑝 end of 𝑖𝑖 under p9'

𝑛𝑛!,$, y-axis deformation of the 𝑝𝑝 end of 𝑖𝑖 under p9&

𝑛𝑛!,$0 y-axis deformation of the 𝑝𝑝 end of 𝑖𝑖 under p9'

𝑛𝑛!,$5 𝑝𝑝 end’s position in x-axis coordinate of 𝑖𝑖

𝑛𝑛!,$] 𝑝𝑝 end’s position in y-axis coordinate of 𝑖𝑖

𝑛𝑛!,$2 1 if the 𝑞𝑞 end of 𝑖𝑖 is rigidly fixed support, else 0

𝑛𝑛!,$^ 0 if the 𝑞𝑞 end of 𝑖𝑖 is rigidly fixed support, else 1

𝑛𝑛!,$_ Magnitude of load act on the 𝑞𝑞 end of 𝑖𝑖 in x axis

𝑛𝑛!,$` Magnitude of load act on the 𝑞𝑞 end of 𝑖𝑖 in y axis

𝑛𝑛!,,) x-axis deformation of the 𝑞𝑞 end of 𝑖𝑖 under p9&

𝑛𝑛!,,$ x-axis deformation of the 𝑞𝑞 end of 𝑖𝑖 under p9'

𝑛𝑛!,,, y-axis deformation of the 𝑞𝑞 end of 𝑖𝑖 under p9&

𝑛𝑛!,,0 y-axis deformation of the 𝑞𝑞 end of 𝑖𝑖 under p9'

𝑛𝑛!,,5 𝑞𝑞 end’s position in x-axis coordinate of 𝑖𝑖

𝑛𝑛!,,] 𝑞𝑞 end’s position in y-axis coordinate of 𝑖𝑖

𝑛𝑛!,,2 Length of 𝑖𝑖

𝑛𝑛!,,^ Cross-sectional area of 𝑖𝑖	
𝑛𝑛!,,_ Second moment area of 𝑖𝑖

𝑛𝑛!,,` Internal stress in 𝑖𝑖 from p9&

𝑛𝑛!,0) Internal stress in 𝑖𝑖 from p9'

𝑛𝑛!,0$ Internal stress in 𝑖𝑖 from p8

 Note that the values of 𝑛𝑛!,$, 𝑛𝑛!,0%], and 𝑛𝑛!,,`%0$ are set as 0 if the brace

i has not been added to the structure. Both ends of beam and column elements

are rigidly fixed supports while those of braces are hinge supports.

5.2 Action

 The agent can choose an action of increasing the index (i.e., section) of the

existing element or adding a brace. In the case of adding braces, no brace

exists in the initial frame, and the number of domains with braces on each

story can be only half of the total number of domains on that story.

Furthermore, once the braces are added, their domain or type cannot be

modified.

 The action is interpreted from the output of the agent 𝛑𝛑 ∈ ℝ6×$ and the

vector that represents feasible action is represented as 𝐠𝐠 ∈ ℝ6×$ in which

the entry 𝑔𝑔! is 1 if it is possible to increase the index (i.e., increasing section

of an existing element or adding a brace) of the element 𝑖𝑖 and is 0 otherwise.

The action of the agent is the Hadamard product of policy function and 𝐠𝐠 is

as follows:
𝐠𝐠 ∘ 𝛑𝛑 = 𝛑𝛑W																																								(14)

This way, the probability to select an infeasible action exactly becomes 0.

Note that if the action of one of the braces that make up K-Type or V-Type is

selected, the other member will also be changed to the same index.

 If the ith component of 𝛑𝛑′ has the maximum value among all components,

then the section index of element i is increased by 1, and its section properties

are changed accordingly. In order to simplify the structural design problem,

the following rules are also applied:

 1. Beams on the same floor shall have the same index. If a beam’s section

index is increased, those of other beams on the same floor will also be

increased.

 2. Upper column shall have a smaller cross-sectional area than its lower

columns. If a column has a larger section index than its lower columns,

the section index of the lower columns will be increased.

5.3 GCN-DDPG Agent

 The agent’s policy and value functions are made of multiple connected

GCN layers defined by Eqs. (15a) − (15c) where the Rectified Linear Unit

(ReLU)36) transforms the GCN’s output to increase the robustness of the

model, while the Sigmoid activation function37) obtains probability-based

output for the policy function (i.e., probability of taking action AT
! in a state

ST).
µX𝐕𝐕, 𝐌𝐌‡ Z = ReLUX𝐌𝐌‡ 𝐕𝐕𝐰𝐰aZ																																		(15a)

iterb[µX𝐕𝐕, 𝐌𝐌‡ Z] = µX𝐌𝐌‡ (µX𝐌𝐌‡ (…)𝐰𝐰aZ)𝐰𝐰aZ­®®®®®®¯®®®®®®°
b	cdC4B

																(15b)

σX𝐕𝐕, 𝐌𝐌‡ Z = SigmoidX𝐌𝐌‡ 𝐕𝐕𝐕𝐕eZ																													(15c)

where ReLU(∙) = max	(0,∙) , 𝜙𝜙 in iterb[] indicates the number of

computing loops, Sigmoid(∙) = 1/(1 + e%(∙)) , and 𝐕𝐕 denotes a node

feature matrix or an output from a prior GCN layer. Equations

(15a)	and	(15b) represent a GCN layer and multiple computing loops

using the same GCN layer with ReLU activation function, respectively.

Equation (15c) represents a GCN layer with Sigmoid activation function.

 In the value function, two matrix operations are used for transforming the

output matrix of the last GCN layer into a scalar value representing the

estimation of accumulated reward. The first operation is a global sum pooling

operation (GSP: ℝ6×Q → ℝ$×Q)38) which transforms an output matrix of the

last GCN layer into a vector by summing up all entries in each column of the

output matrix. The GSP operation to transform a matrix 𝐕𝐕 into a vector is

represented as

GSP(𝐕𝐕) = ¹0 𝑣𝑣!,$

6

!($

⋯ 0 𝑣𝑣!,Q

6

!($

» ∈ ℝ$×Q																	(16)

 The second operation is to compute the estimation of accumulated reward

(i.e., Q-value ∈ ℝ$×$), from the vector output of the GSP operation, using

an NN which are approximation functions with adjustable weight parameters

and activation functions. Equation (17) represents an NN used in this paper

for computing the accumulated reward from the vector output of the GSP

operation	 GSP(𝐕𝐕). In NN, 𝓦𝓦$, 𝓦𝓦,, and 𝓦𝓦ghc denote adjustable internal

weight matrices while 𝓑𝓑$, 𝓑𝓑, , and 𝓑𝓑ghc denote adjustable internal bias

－ 133 －

 6

vectors in each NN layer.

fiiXGSP(𝐕𝐕)Z = 𝓦𝓦ghc >ReLUX𝓦𝓦,XReLU(𝓦𝓦$GSP(𝐕𝐕)j + 𝓑𝓑$)Z + 𝓑𝓑,Z?

+𝓑𝓑ghc ∈ ℝ$×$(17)

 Table 1 shows the computation method of the policy and value functions

of the GCN-DDPG agent in this paper. The left column shows the policy

function’s inputs, computation method using Eqs.	 (15) − (17), and output

while the right column shows those of the value function.

Table 1 Policy and value functions of the agent

Policy function 𝛑𝛑 Value function Q

Inputs: 𝐍𝐍, 𝐌𝐌‡ Inputs: 𝐍𝐍, 𝐌𝐌‡ , 𝛑𝛑

Computation:

 𝐍𝐍$ = µX𝐍𝐍, 𝐌𝐌‡ Z

 𝐍𝐍, = iter,¿µX𝐍𝐍$, 𝐌𝐌‡ ZÀ

 𝛑𝛑 = σX𝐍𝐍,, 𝐌𝐌‡ Z

Computation:

 𝐍𝐍$.$ = µX𝐍𝐍, 𝐌𝐌‡ Z

 𝐍𝐍$., = iter,¿µX𝐍𝐍$.$, 𝐌𝐌‡ ZÀ

 𝐍𝐍,.$ = µX𝛑𝛑, 𝐌𝐌‡ Z

 𝐍𝐍,., = iter,¿µX𝐍𝐍,.$, 𝐌𝐌‡ ZÀ

 𝐍𝐍, = 𝐍𝐍$., + 𝐍𝐍,.,

 𝐍𝐍0 = µX𝐍𝐍,, 𝐌𝐌‡ Z

 𝐍𝐍5 = GSP(𝐍𝐍0)

 Q = 	 fii(𝐍𝐍5)

Output: 𝛑𝛑 ∈ ℝ6×$ Output: Q ∈ ℝ$×$

5.4 Reward

 In RL, a reward signal is used for training an agent. In this paper, the

reward signal at step 𝑡𝑡 is formulated based on aforementioned objective and

constraint functions Eqs.	 (7.1) − (7.6) so that the agent can adjust the

structure to satisfy all the constraints while reducing the increment ∆𝑉𝑉 of

the cost as
RT#$ = −∆𝑉𝑉 ∙ [4 − (∆𝜎𝜎CDE

8 + ∆𝜎𝜎CDE
9 + ∆𝜃𝜃CDE + ∆𝛿𝛿CDE)]							(18)

where ∆𝜎𝜎CDE
8 , ∆𝜎𝜎CDE

9 , ∆𝜃𝜃CDE , and ∆𝛿𝛿CDE denote reward components

associated with internal stresses from long-term loading, internal stresses

from long and short-term loadings, inter-story drift angle, and beam center

deflection, respectively.

 To compute ∆𝜎𝜎CDE
8 and ∆𝜎𝜎CDE

9 , the ratio of internal stresses and their

upper bounds of each member, computed from long-term loading and the

combinations of long-term and short-term loadings, are aggregated into

vectors associated with each load case. Note if the member is the brace that

has ratio of buckling stress larger than the ratio of short-term loadings, the

ratio of buckling stress will be used as the aggregated value instead. These

vectors are then normalized using p-norm X‖∙‖:Z which computes the pth

root of the sum of the p-powers of the absolute values of the components

computed as

‖𝐱𝐱‖: = Ä0 |𝑥𝑥!|:
6

!($

3

																																							(19)

where 𝑝𝑝 is a parameter to be specified. Particularly, the p-norm for 𝑝𝑝 = 1

and ∞ are expressed as
‖𝐱𝐱‖$ = |𝑥𝑥$| + |𝑥𝑥,| + ⋯ + |𝑥𝑥6|																													(20.1)

‖𝐱𝐱‖V = max{|𝑥𝑥$|, |𝑥𝑥,|, … , |𝑥𝑥6|}																										(20.2)

 Thus, p-norm allows scalar representation of a vector as an intermediate

value between the maximum and average values. Since maximum stress

usually depends on the section sizes of multiple members, it often happens

that reduction of the maximum stress leads to an increase of the second one,

and accordingly, an increase of the value of maximum stress. Therefore, the

p-norm is used for computing reward components associated with stress

constraints to incorporate the effect of section sizes of several members with

large stresses. On the contrary, the maximum values of inter-story drift angle

and beam center deflection mainly depend on the sizes of the specific

members, and the constraints can be satisfied by simply reducing the

maximum values. Therefore, the p-norm is not used for computing reward

components associated with these constraints. Reward components

associated with each constraint are formulated as

∆𝜎𝜎CDE
8 = Ç

‖𝛔𝛔8‖:
T − ‖𝛔𝛔8‖:

T#$

‖𝛔𝛔8‖:
T#$ 	(if	𝜎𝜎CDE

8,T > 𝜎𝜎u8)

0																								(else)
												(21.1)

∆𝜎𝜎CDE
9 = Ç

‖𝛔𝛔9‖:
T − ‖𝛔𝛔9‖:

T#$

‖𝛔𝛔9‖:
T#$ 	(if	𝜎𝜎CDE

9,T > 𝜎𝜎u9	or	𝜆𝜆CDE
T > 1)	

0 																																													(else)
(21.2)

∆𝜃𝜃CDE = Ç
𝜃𝜃CDE
T − 𝜃𝜃CDE

T#$

𝜃𝜃CDE
T#$ 	(if	𝜃𝜃CDE

T > 𝜃𝜃w)

0																								(else)
													(21.3)

∆𝛿𝛿CDE = Ç
𝛿𝛿CDE
T − 𝛿𝛿CDE

T#$

𝛿𝛿CDE
T#$ 	(if	𝛿𝛿CDE

T > 1)

0																								(else)
														(21.4)

6．NUMERICAL EXAMPLES

6.1 General experiment setting and structural model

 Structural elements used in this experiment have Young’s modulus,

maximum short-term, and maximum long-term stress limits of 200 kN/mm2,

235 N/mm2, and 235/1.5 = 156.7 N/mm2, respectively. Lists of section

properties for columns, beams, and braces are shown in Tables 2, 3, and 4,

respectively. The structure is subjected to the floor-weight of 6700 N/m2 (i.e.,

long-term floor load) applied on each beam using the floor depth of 6 m and

the load computed as described in Sec. 2.2 using a floor-weight of 5700 N/m2

(i.e., seismic floor load) where the base shear coefficient 𝐶𝐶), the specific

period 𝑇𝑇-, and seismic area coefficient 𝑍𝑍) are 0.2, 0.6, and 1.0, respectively.

The cost coefficient B for braces is 1.5, and the parameter p for the p-norm

is 10.

 The program is implemented using Python 3.6 environment. A PC with a

CPU of Intel Core i9-11900 (2.5 GHz, 8 cores) and a GPU of Nvidia GeForce

RTX3060 12GB is used for computation.

6.2 Training phase

 The term episode is defined as the sequence of optimization from the initial

state to the terminal state by the agent. In each episode of the training phase,

the agent is trained to optimize the section sizes of beams and columns as

well as the placements and section sizes of braces of 3-span 3-story steel

frames with three predetermined span lengths and story heights as indicated

by S1, S2, and S3 in Table 5. At the beginning of each episode, the frame

－ 134 －

 7

Table 2 List of column sections

Index Box section A (cm2) I (cm4) Z (cm3)

0 200×200×9 66 3920 392

1 300×300×12 133 18100 1200

2 400×400×16 237 57100 2850

3 500×500×22 404 150000 6010

4 600×600×32 727 392000 13100

5 700×700×35 855 637000 18210

6 800×800×40 1216 1173000 29360

Table 3 List of beam sections

Index H section A (cm2) I (cm4) Z (cm3)

0 300×200×56	 71 11100 756

1 400×300×105 133 37900 1940

2 500×300×125 159 68900 2820

3 600×300×147 187 114000 3890

4 700×300×182 232 197000 5640

5 800×300×188 234 248000 6270

6 900×300×283 360 491000 10800

Table 4 List of brace sections

Index Diameter

(mm)

Thickness

(mm)

A

(cm2)

I

(cm4)

Z

(cm3)

0 no brace

1 6.6 54.08 4.60×103 344

2 8.0 65.19 5.49×103 411

3 267.4 9.3 75.41 6.29×103 470

4 12.7 101.6 8.26×103 618

5 15.1 119.7 9.56×103 715

Fig.5 Training phase result (reward)

Fig.6 Training phase result (cost)

without braces is initialized using smallest beam and column sections. In

order to measure the performance of the agent, 4-span 4-story frames with

span lengths of [4.0, 6.0, 6.0, 4.0] (m) and story heights of [4.0, 3.0, 3.0, 3.0]

(m), are used for measuring improvement of the reward during the training

every 10 episodes.

 At each step, the agent’s action determines the addition of a brace or

increasing the size of existing beam, column, or brace. The surrogate policy

and value functions are adjusted by the Adam optimizer using the mini-batch

size of 32 and the learning rates of 10-3 and 10-4 for the policy function and

value functions, respectively. In the value function, each layer in NN has 200

cells and the loss function for training NN is the mean squared error loss.

Surrogate functions’ parameters (𝛉𝛉′$, 𝛉𝛉′,) are updated to the real policy and

value functions’ parameters (𝛉𝛉$,	 𝛉𝛉,) every 100 steps with 𝜏𝜏 = 0.05. The

agent is trained for 3,000 episodes where each episode is terminated when all

constraints are satisfied.

 The total number of structural analyses in the training phase is 134,995.

Figures 5 and 6 show the reward and the final cost of the structure obtained

by the agent, respectively, being indicators of the agent’s performance during

the training phase, where the horizontal axis represents the number of trained

episodes and the thick red line in each figure shows the moving average of

20 episodes. According to these figures, the agent has increased the obtained

reward, reduced the cost of the structure, and maintained its performance

throughout the training, which indicates the learning ability of the agent.

Note that since the structural types S1, S2, and S3 are used for training and

the performance is measured using a 4-span 4-story frame, the agent might

not be able to keep on improving the obtained reward using this structure

resulting in the fluctuation of the reward and cost.

6.3 Test phase

 In the test phase, the agent saved from the training phase is applied to the

frames in Table 6 to verify the generality of the agent, where the material

property and section lists are the same as those in the training phase. To

prevent the agent to choose unnecessary actions, we introduce another agent

output modification vector 𝐡𝐡 ∈ ℝ6×$ that represents the beam or column

that satisfies all constraints, including long-term loading stress, long-term

and short-term loading stress, inter-story drift, and deflection constraints.

The entry ℎ! is 0 if the element 𝑖𝑖 is a column or beam that already satisfies

every constraint. Therefore, the vector 𝐡𝐡 prevents the agent from choosing

base beams when it is stiff enough, and also other beams and columns, that

already satisfies all constraints by assigning 0 for the value in 𝐡𝐡. The action

of agent is modified using the Hadamard product of policy function, using

both vectors that represent feasible action 𝐠𝐠 and 𝐡𝐡, as follows:
𝛑𝛑W = 𝐠𝐠 ∘ 𝐡𝐡 ∘ 𝛑𝛑																																							(22)

The action interpretation of increasing the section index of element and the

rules are the same as those of the training phase.

 The trained agent is applied to Structures A and B 50 times for each. Table

7 shows the minimum, mean, and standard deviation (Std.) of the objective

function and the total number of structural analyses of each structure. Note

that the agent can be applied to larger numbers of structures not included in

this research as well. Therefore, the number of structural analyses in the

training phase is not included in the comparison. Figures 7 and 8 show the

－ 135 －

 8

best solutions (Structure A, Structure B) obtained in the test phase where the

thickness of line and ▲ indicates rigid support. Numbers on the lines

represent section size of column (black), beam (grey), and brace (red).

6.4 Comparison of computational cost and performance with GA

 GA is used for evaluating the performance of the proposed RL method

utilizing the similar computational cost of structural analyses. GA is a meta-

heuristic optimization method where design variables are represented as

genes. In each iteration (i.e., generation), candidate solutions (i.e.,

individuals) are generated by randomly mixing genes (i.e., crossover) from

the previous iteration’s individuals with some random gene modifications

(i.e., mutation). The best fit individuals in view of the objective function are

kept for the next generation (i.e., selection).

 In this research, each gene has an integer value of [0,9] so that they can be

randomly mixed and mutated. The indices {𝐽𝐽$, 	𝐽𝐽,, … , 	𝐽𝐽'!} of column

sections in Table 2 along the same vertical axis are defined by 𝑁𝑁" genes

{𝐺𝐺$, 	𝐺𝐺,, … , 	𝐺𝐺'!}. If 𝐺𝐺$ is larger than the largest column index (6 in Table

2), 𝐽𝐽$ is equal to the largest index. Since the upper column cannot have a

Table 5 Structural configuration for training phase

Structural name S1 S2 S3

Number of spans 3 3 3

Span length [4,4,4] (m) [8,8,8] (m) [6,6,6] (m)

Number of floors 3 3 3

Floor height [4,4,4] (m) [3,3,3] (m) [4,4,4] (m)

Table 6 Structural configuration for test phase

Name Structure A Structure B

Number of spans 8 3

Span length
[5.0, 7.5, 5.0, 5.0,

5.0, 5.0, 7.5, 5.0] (m)
[5.0, 5.0, 5.0] (m)

Number of stories 3 7

Story height [4.0, 4.0, 4.0] (m)
[4.0, 4.0, 3.5, 3.5,

3.5, 3.5, 3.5] (m)

Table 7 RL results in test phase (50 trials)

Name Structure A Structure B

Minimum 5.61 5.35

Mean 6.22 5.98

Std. 0.27 0.26

Number of structural analyses 3191 3812

Table 8 GA results (5 random seeds)

Name Structure A Structure B

Minimum 6.90 7.34

Mean 7.28 8.05

Std. 0.46 0.58

Population 50 100

Generation 80 50

Number of structural analyses 4000×5 5000×5

Final cost:

5.61

Maximum short-term stress constraint: 1.00
Maximum long-term stress constraint: 0.85
Maximum deformation constraint: 0.10
Maximum inter-story drift constraint: 0.13

Fig.7 RL best result: Structure A

Final cost: 5.35
Maximum short-term stress constraint: 0.97
Maximum long-term stress constraint: 0.82
Maximum deformation constraint: 0.15
Maximum inter-story drift constraint: 0.19

Fig.8 RL best result: Structure B

Final cost:

6.90

Maximum short-term stress constraint: 0.98
Maximum long-term stress constraint: 0.89
Maximum deformation constraint: 0.09
Maximum inter-story drift constraint: 0.11

Fig.9 GA best result: Structure A

Final Cost: 7.34
Maximum Short-term stress constraint: 0.94
Maximum Long-term stress constraint: 0.59
Maximum Deformation constraint: 0.08
Maximum Inter-story drift constraint: 0.19

Fig.10 GA best result: Structure B

－ 136 －

 9

larger index than the lower ones, 𝐽𝐽!∈{,,…,'!} is equal to 𝐽𝐽!%$ if 	𝐺𝐺! ∈ [0,4],

whereas 𝐽𝐽!%$ = 𝐽𝐽! − 1 if 	𝐺𝐺! ∈ [5,9] (i.e., the gene 	𝐺𝐺$ indicates the

column index while the other genes indicate the reduction of the column

indices). Beam sections on the same floor are represented by a single gene;

the index of the beam section from Table 3. If the gene has a larger value than

the largest beam index, the largest beam index is assigned to the

corresponding beam.

 The brace type and brace section in each brace domain are represented by

two genes where the first gene with the value of {0,1}, {2,3}, {4,5}, {6,7},

and {8,9} represent no brace, right diagonal brace, left diagonal brace, K-

type, and V- type, respectively. The second gene with the value of {0,1},

{2,3}, {4,5}, {6,7}, and {8,9} represent indices 1, 2, 3, 4, 5, respectively, of

the brace section in Table 4. Also, similar to the proposed RL method, in GA’s

solutions, the number of domains with braces in each story can be only half

of the number of brace domains in that story, which is equal to the number

of spans for a regular frame.

 In order to obtain solutions that satisfy all constraints with small cost,

binary value indicators c9, c8, cU, and cp are introduced for the constraints

on maximum short-term and buckling stress, long-term stress, beam

deflection, and inter-story drift, respectively. They The indicator is equal to

1 if the constraint is violated, and 0 if satisfied. The objective function of GA

to be maximized is as follows:

𝐺𝐺(𝐗𝐗) = −𝑉𝑉(𝐗𝐗) − 𝑤𝑤) Îc9
𝑤𝑤$𝜎𝜎CDE

9

𝜎𝜎u9 + c8
𝜎𝜎CDE
8

𝜎𝜎u8 + cU
𝜃𝜃CDE

𝜃𝜃w
+ cp𝛿𝛿CDEÏ				(23)

where 𝑤𝑤) and 𝑤𝑤$ are the weights of the penalty, which prevent the GA to

generate solutions that violate the constraints, with the values of 5 and 3,

respectively. These values are decided after some trials and errors.

 A Python library DEAP39) is used to implement the GA program. The

numbers of populations and generations are specified so that the total number

of analyses becomes similar to the total number of analyses used in RL. Since

the solution of GA depends on the random seed, we conduct five GA

experiments with different random seeds on Structures A and B in Table 6.

Table 8 shows the minimum, mean, standard deviation (Std.) of the objective

function, population, generation, and the number of structural analyses of

each structure using GA. The best solutions of Structures A and B obtained

by GA are shown in Figures 9 and 10.

 It is observed from Tables 7-8 that the RL agent can obtain more optimal

results compared to GA for both test structures shown by the minimum of the

objective function. RL agent’s results from different trails have similar value

of the objective function shown in the Std. value. In computational aspect,

the trained RL agent utilizes less structural analyses compared to the GA.

Figures 7-10, where the width of each member defined the section index of

that member type (i.e., column, beam, or brace), show differences between

results obtained by RL and GA. In RL agent’s results, beams and columns

have smaller cross-sectional sizes compared to those of GA while both RL’s

results contain more braces than GA’s results.

 In this research, the brace’s cross-sectional areas are smaller than those

of beams and columns and increasing sections of beams or columns may lead

to the increase of other beams on the same floor or columns on the lower

floor as well which eventually lead to a large value of the objective function.

From the agent’s viewpoint, placing braces could yield a higher reward

(lower cost), which is computed from the value of the objective function, in

each optimization step (i.e., placing braces, increasing sections), compared

to increasing sections of beams or columns. Therefore, the RL agent shows

strategies of preferentially placing braces rather than enlarging costly beams

and columns. In both test structures, short-term and long-term stress

constraints are the most critical constraints in this experiment. In Figures

7-10, maximum short-term stress, maximum long-term stress constraint,

maximum deformation, and maximum inter-story drift constraints in RL’s

results are higher than those of GA except for the maximum long-term stress

constraint in structure A. This implied that the trained RL agent yields more

efficient solutions that are located near the boundary of the feasible region.

7．CONCLUSIONS

 A method for topology optimization of braced steel frames using DDPG

and GCN has been proposed for determining brace locations and sizes of

structural elements including beams, columns, and braces. The optimization

problem is to minimize the cost computed from the volume and type of

structural elements under constraints on stress, deformation, and inter-story

drift. The problem is a combinatorial problem that is difficult to obtain the

optimal solution even using heuristic approaches which requires large

computational cost. This research shows that the proposed ML method can

find more optimal solutions and requires less computational cost compared

to GA.

 This paper proposes a topology optimization method that combines graph

representation of structural elements and DDPG. The graph representation

method that interprets structural elements into graph nodes is utilized for

generating state data in the MDP framework. Using this representation,

modification of the element can be obtained directly from the RL agent with

graph neural networks. The DDPG agent with policy and value functions

introducing GCNs is used to determine how the structural design should be

adjusted. The agent is trained to modify structures until all constraints are

satisfied using the reward computed from both cost and changes of

constraints. Results show that the agent can improve its performance by

maximizing the accumulative reward.

 The numerical examples of 3-story 8-span and 7-story 3-span frames,

where short-term and long-term stress constraints are the most critical, show

that the trained agent can be applied to structures that differ from those used

for training. The trained agent can obtain solutions utilizing a lower cost

compared to those of GA by utilizing slenderer beams and columns with

more braces compared to solutions from GA which have thicker beams and

columns with fewer braces. Note that the reward in this experiment is partly

determined from the lists of cross-sections for beams, columns, and braces

(i.e., structural volume). Therefore, if the lists of cross sections or the reward

function are changed, the RL agent could modify structures differently.

 The agent can be used for finding approximate optimal structural

configurations in a feasible time and is applicable to problems with larger

structural lists or more degrees of freedom than the numerical examples.

Application to the three-dimensional model will be investigated in our future

study.

－ 137 －

 10

Acknowledgement

 This study is supported by MEXT scholarship (grant number 180136) and

JSPS KAKENHI (grant number JP 20H04467, JP 21K20461, and JP

21K04337).

Disclosure

 The authors declare that they have no known competing interests or

personal relationships that could have influenced the work reported in this

research paper.

REFERENCES
1) P. W. Christensen and A. Klarbring: An introduction to structural

optimization, Solid mechanics and its applications, Vol.153, Springer,

Dordrecht, 2009.

2) M. Ohsaki and C. Swan: Topology and geometry optimization of

trusses and frames, Recent Advances in Optimal Structural Design,

ASCE, 2002.

3) J. H. Holland: Adaptation in natural and artificial systems, An

introductory analysis with applications to biology, control, and

artificial intelligence. U Michigan Press, 1975.

4) P. J. M. van Laarhoven and E. H. L. Aarts: Simulated Annealing:

Theory and Applications, Reidel, Dordrecht, 1987.

5) W. M. Jenkins: Towards structural optimization via the genetic

algorithm, Comput. Struct., Vol.40, pp.1321-1327, 1991.

6) M. Ohsaki: Genetic algorithm for topology optimization of trusses,

Comput. Struct., Vol.57(2), pp.219-225, 1995.

7) B. V. H. Topping, A. I. Khan and J. P. Leite: Topological design of truss

structures using simulated annealing, Struct. Engng. Rev., Vol.8,

pp.301-314, 1996.

8) H. Tagawa and M. Ohsaki: A continuous topology transition model for

shape optimization of plane trusses with uniform cross-sectional area,

In Proc. 3rd World Congress of Structural and Multidisciplinary

Optimization (WCSMO3), pp. 254-2565, 1999.

9) R. D. Vanluchene and R. Sun: Neural networks in structural

engineering, Computer-Aided Civil Infrastructure Eng., Vol.5, pp. 207–

215, 1990.

10) H. Zheng: Form finding and evaluating through machine learning: the

prediction of personal design preference in polyhedral structures, in

The International Conference on Computational Design and Robotic

Fabrication, Singapore Springer, pp. 169–178, 2019.

11) G. Mirra and A. Pugnale: Comparison between human-defined and ai-

generated design spaces for the optimisation of shell structures,

Structures, Vol.34, pp. 2950–2961, 2021.

12) P. D. Kingma and M. Welling: An introduction to variational

autoencoders, Foundations and Trends in Machine Learning, Vol.12,

No.4, pp. 307-392, 2019.

13) T. Tamura, M. Ohsaki and J. Takagi: Machine learning for

combinatorial optimization of brace placement of steel frames, Jpn.

Architect. Rev., Vol.1, pp.419–430, 2018.

14) K. Sakaguchi, M. Ohsaki and T. Kimura: Machine learning for

extracting features of approximate optimal brace locations for steel

frames, Frontiers in Built Environment, 2020.

15) T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.

Silver and D. Wierstra: Continuous control with deep reinforcement

learning, in ICLR, 2016.

16) F. Rosenblatt: The perceptron: a probabilistic model for information

storage and organization in the brain, Psycological review, Vol.65(6),

pp.386-408, 1958.

17) A. G. Ivakhnenko: The group method of data handling – a rival of the

of stochastic approximation, Soviet Automatic Control, Vol.13(3),

pp.43-55, 1968.

18) I. Goodfellow, Y. Bengio and A. Courville: Deep learning, The MIT

Press, 2016.

19) D. K. Duvenaud, D. Maclaurin, J. Aguileraiparraguirre, R.

Gomezbombarelli, T. D. Hirzel, A. Aspuruguzik and R. P. Adams:

Convolutional networks on graphs for learning molecular fingerprints,

In Proceedings of NIPS, pp.2224–2232, 2015.

20) D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega and P.

Vandergheynst: The emerging field of signal processing on graphs:

extending high-dimensional data analysis to networks and other

irregular domains, IEEE SPM, Vol.30, pp.83–98, 2013.

21) C. Langenhan, M. Weber, M. Liwicki, F. Petzold and A. Dengel: Graph-

based retrieval of building information models for supporting the early

design stages, Adv. Eng. Inform., Vol.27, pp.413–426, 2013.

22) J. Abualdenien and A. Borrmann: PBG: A parametric building graph

capturing and transferring detailing patterns of building models, in

Proc. of the CIB W78 Conference 2021 (Luxembourg: International

Council for Research and Innovation in Building and Construction),

2021.

23) P. Vestartas: Design-to-fabrication workflow for raw-sawn-timber

using joinery solver (LausanneSwitzerland: EPFL), Ph.D. thesis, 2021.

24) K. Hayashi and M. Ohsaki: Reinforcement learning and graph

embedding for binary truss topology optimization under stress and

displacement constraints, Frontiers in Built Environment, Vol.6, pp.59,

2021.

25) C. Kupwiwat, K. Hayashi and M. Ohsaki: Deep deterministic policy

gradient and graph convolutional network for bracing direction

optimization of grid shells, Frontiers in Built Environment, Sec.

Computational Methods in Structural Engineering, 2022.

26) T. N. Kipf and M. Welling: Semi-supervised classification with graph

convolutional networks, in ICLR, 2017.

27) R. S. Sutton and G. B. Andrew: Reinforcement learning, an

introduction, The MIT Press, 1998.

28) R. Bellman: A markovian decision process, Journal of Mathematics

and Mechanics, pp.679-684, 1957.

29) R. Bellman: The theory of dynamic programming, Bull. Amer. Math.

Soc., Vol.60, No.6, pp.503-515, 1954.

30) T. Haarnoja, A. Zhou, P. Abbeel and S. Levine: Soft actor-critic: off-

policy maximum entropy deep reinforcement learning with a stochastic

actor, Arxiv:1801.01290, 2018.

31) H. Robbins and S. Monro: A stochastic approximation method, Ann.

－ 138 －

 11

Math. Statist., Vol.22, No.3, pp.400-407, 1951.

32) J. Kiefer and J. Wolfowitz: Stochastic estimation of the maximum of a

regression function, Ann. Math. Statist., Vol.23, No.3, pp.462-466,

1952.

33) S. Ruder: An overview of gradient descent optimization algorithms,

Arxiv:1609.04747, 2016.

34) D. Kingma and J. Ba: Adam: a method for stochastic optimization, in

ICLR, 2015.

35) G. E. Uhlenbeck and S. L. Ornstein: On the theory of the brownian

motion, Phys. Rev., Vol.36, Issue 5, pp.823-841, 1930.

36) V. Nair and G. E. Hinton: Rectified linear units improve restricted

boltzmann machines, Haifa, pp. 807–814, 2010.

37) N. Chigozie, W. Ijomah, A. Gachagan and M. Stephen: Activation

functions: comparison of trends in practice and research for deep

learning, Arxiv:1811.03378, 2020.

38) S. Aich and I. Stavness: Global sum pooling: a generalization trick for

object counting with small datasets of large images, Arxiv:1805.11123,

2019.

39) F. A. Fortin, F. M. De Rainville, M. A. Gardner, M. Parizeau and C.

Gagné: DEAP: Evolutionary algorithms made easy, Journal of

Machine Learning Research, Machine Learning Open Source Software,

Vol.13, pp.2171-2175, 2012.

－ 139 －

