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1．INTRODUCTION 

Optimization of discrete structures, such as frames and trusses, has widely 

been studied in the field of structural optimization. When nodal connectivity 

and/or cross-sectional properties are chosen as design variables in the 

optimization problem, the problem is classified as a topology optimization 

problem1). Optimal solutions of this problem can be obtained with small 

computational effort when the numbers of members and degrees of freedom 

(DOFs) are small. However, the problem may become more difficult to solve 

for real-world structures which have larger numbers of members and DOFs. 

Moreover, when design variables are chosen from a set of discrete values, 

the topology optimization is considered as a combinatorial problem which is 

difficult to solve, because the gradient of the objective and constraint 

functions with respect to the design variables are not available2). 

  Optimization methods can be classified into mathematical programming, 

in which the gradient with respect to design variables is needed, and heuristic 

approach, in which the gradient information is not utilized. However, for 

heuristic approaches, large computational cost is required for computing and 

comparing structural responses of multiple candidates. The heuristic 

approach is further classified into a population-based approach such as a 

genetic algorithm (GA)3) and a local search approach such as simulated 

annealing (SA)4). In application of the population-based approach to 

 
 

 

 

 

structural optimization problems [Refs.5-8], multiple candidates (i.e., 

population) for optimal solutions are generated in each optimization step. 

Prospective candidates are then selected, based on their structural responses, 

for generating the candidates at the next optimization step, and the 

optimization process is continued until the termination criteria are satisfied.  

  Machine learning (ML) has recently been a subject of study for solving 

engineering problems in various fields including structural design and 

optimization problems. Vanluchene and Sun9) applied an ML approach to 

design reinforced concrete beams. Zheng et al.10) trained an ML model to 

predict architect’s preference of generated structures based on graphic statics. 

Mirra and Pugnale11) used variational autoencoder12) to design shell structures. 

For the braced frames, Tamura et al.13) proposed combining ML, such as 

binary decision tree or support vector machine, with SA for optimization of 

brace locations of building frames. Sakaguchi et al.14) proposed methods for 

extracting important features, and converting the features of a small frame to 

those of a large frame. In both studies, the sizes of beams and columns are 

fixed, and only the types and locations of the braces are optimized. 

  Types of application of ML are classified into function approximation 

(regression), classification of solutions (optimal/non-optimal, feasible/ 

infeasible), and learning optimization process by reinforcement learning 

(RL), which trains the agent to perceive the environment around itself and 
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We propose a method for topology optimization of braced frames under static seismic loads using Deep Deterministic Policy Gradient (DDPG) 

and Graph Convolutional Network (GCN). The structure is interpreted as a graph where structural elements and element configurations are 

represented by the node feature matrix and adjacency matrices, respectively. Using this graph representation, the DDPG agent with GCN 

architecture can observe the properties of the frame, and make the decision to either add braces into the frame or enlarge sections of frame 

elements by selecting from a list of available sections. During the optimization process, the initial structure that cannot withstand the seismic 

load is modified by the agent until all constraints are satisfied. The trained agent can be applied to frames of different sizes and can obtain 

competitive results with less computational cost compared to the genetic algorithm.  
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 2   

make decisions to accomplish the given tasks. Thus, the RL agent can be 

trained to learn an optimal decision process. After the training, the agent can 

be applied to do tasks in other similar environments. Deep Deterministic 

Policy Gradient (DDPG)15) is an RL algorithm using two neural networks 

(NNs), namely actor and critic networks16)-18). The actor network is trained 

to maximize the estimated reward, and the critic network is trained to 

accurately estimate the reward.  

Graph is a type of data consisting of vertices (nodes) and edges. A graph 

can be processed and manipulated using convolutional operators or graph 

signal processing methods19),20). Graph representation can be effectively 

utilized for modeling various components of the building. Langenhean et 

al.21) used graphs to represent room types. Abualdenien and Borrmann22) used 

graph representation for patterns of building elements. Vestartas23) 

represented structural elements and joints using a graph. Hayashi and 

Ohsaki24) proposed a combined method of graph representation and RL for 

binary topology optimization of the trusses. Kupwiwat et al.25) proposed a 

method for binary optimization of braced lattice shells using an RL agent 

made of Graph Convolutional Network (GCN)26) which is a type of NN that 

works effectively with graph data. However, in Kupwiwat et al. paper, the 

dot product of the agent output is needed to identify modifications of the 

element which is too complicated. This paper proposed an improved method 

where the modifications of the element can be directly obtained from the 

agent output. 

  This paper proposes a method for combinatorial optimization of member 

sizes and brace placements of plane building frames under constraints on 

static seismic responses using graph representation and a DDPG agent 

introducing GCN. The agent observes properties of the frame through graph 

representation and sequentially adjusts the frame by adding braces or 

enlarging the sizes of beams and columns. During the training, the penalty 

determined by material and construction cost is given to the agent. It is shown 

that the optimal design modification can be learned by the proposed method. 

The rest of the paper is organized as follows. Section 2 explains the 

formulations of objective and constraint functions of the combinatorial 

optimization problem. Sections 3 and 4 introduce the graph representation 

and DDPG, respectively. Section 5 explains components of the decision-

making process to implement RL. In Section 6, numerical examples of the 

training and test phases are presented. The learnability and applicability of 

the agent are shown in the training phase, and solutions obtained by the RL 

agent in the test phase are compared to those obtained by the GA. 

 

 

 

 

 

 

 

 

 

Fig. 1 Five brace types including no brace 

2．COMBINATORIAL OPTIMIZATION PROBLEM 

2.1 Outline of optimization problem 

  Seismic performance is an important factor in designing building frames 

in earthquake-prone areas. In this paper, the seismic load is simplified using 

the Japanese building code of allowable stress design based on so-called Ai 

distribution for short-term loading, whereas the dead and live loads are 

building frame is improved by increasing the sizes of beams and columns 

and placing braces of various types including diagonal braces, K-type, and  

V-type as shown in Figure 1. 

The building frame without braces is initialized with the smallest section 

index in the lists. During the optimization, braces are placed into the building 

frame together with adjustment of sizes of beams, columns, and braces until 

the building frame can satisfy all constraints on the structural responses. 

2.2 Static seismic loads 

  The horizontal seismic force on each floor is computed by distributing 

shear forces. Horizontal load 𝑃𝑃! on the 𝑖𝑖th floor of the building frame is 

computed as follows: 

𝑃𝑃! = $ 𝑄𝑄!									(𝑖𝑖 = 𝑁𝑁")
										𝑄𝑄!#$%𝑄𝑄!					(𝑖𝑖 = 1, … , 𝑁𝑁" − 1)																													(1.1) 
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𝑊𝑊! = 𝑤𝑤!𝑎𝑎!																																																																																			(1.8) 

where 𝑄𝑄!, 𝐶𝐶!, 𝑊𝑊!,	 𝑅𝑅, and 𝒜𝒜! are the shear force acting on the 𝑖𝑖th story 

between the (𝑖𝑖-1)th and 𝑖𝑖th floors, shear coefficient of the 𝑖𝑖th story, the 

weight of the 𝑖𝑖 th floor, a value representing soil category and vibration 

characteristics of the building, and the shear distribution coefficient of the 

𝑖𝑖th floor, respectively. 𝐶𝐶), 𝑇𝑇, 𝑤𝑤!, and 𝑎𝑎! are the base shear coefficient, the 

fundamental natural period of the building, the unit load of the	 𝑖𝑖th floor, and 

the area of the	 𝑖𝑖th floor, respectively. ℎ, 𝑇𝑇-, 𝑍𝑍), and 𝑁𝑁" are the total height 

of the building, the specific period assigned according to the soil type under 

the building, the regional seismic coefficient, and the number of floors 

excluding the base, respectively.  

  In the following examples, short-term loadings in both left and right 

directions are considered to evaluate the largest response of the building 

frame. 

2.3 Structural response 

  Internal forces and displacements are computed using linear elastic 

analysis. The beams and columns are modeled using 2-dimensional beam 

elements with 6-DOFs, whereas the braces are modeled using 2-dimensional 

truss elements with 4-DOFs. In the local coordinate system, the stiffness 
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matrices of the beam or column element and the brace element are denoted 

as 𝐤𝐤" ∈ ℝ2×2 and 𝐤𝐤4 ∈ ℝ5×5, respectively. These matrices are transformed 

into the global coordinate system and assembled into the global stiffness 

matrix 𝐊𝐊 ∈ ℝ6%×6%, where 𝑛𝑛7 is the number of DOFs of the frame.  
  The load vectors corresponding to the three cases of long-term loading, 

long-term loading with left direction (negative) short-term loading, and 

long-term loading with right direction (positive) short-term loading are 

denoted by 𝐩𝐩8 ∈ ℝ6% , 𝐩𝐩9& ∈ ℝ6% , and 𝐩𝐩9' ∈ ℝ6% , respectively. Nodal 

displacement vectors 𝐝𝐝8 ∈ ℝ6% , 𝐝𝐝9& ∈ ℝ6% , and 𝐝𝐝9' ∈ ℝ6% 

corresponding to the three load cases, respectively, are obtained by solving 

the following stiffness equation: 
𝐊𝐊𝐊𝐊 = 𝐩𝐩																																																					(2) 

where 𝐝𝐝 ∈ {𝐝𝐝8, 𝐝𝐝9& , 𝐝𝐝9'} and 𝐩𝐩 ∈ {𝐩𝐩8, 𝐩𝐩9& , 𝐩𝐩9'}. 

  The internal forces 𝐟𝐟! = X𝑓𝑓:;, 𝑓𝑓:
<, 𝑓𝑓:=, 𝑓𝑓>;, 𝑓𝑓>

<, 𝑓𝑓>=Z of a beam or column 

element 𝑖𝑖	can be obtained from 𝑝𝑝 and 𝑞𝑞 end displacements of the element 

𝑖𝑖 in the local coordinate system and its corresponding stiffness matrix. See 

Figure 2 for definitions of forces. Internal forces 𝐟𝐟! = X𝑓𝑓:;, 𝑓𝑓:
<, 𝑓𝑓>;, 𝑓𝑓>

<Z of a 

brace element can be obtained similarly. From these internal forces, internal 

stress 𝜎𝜎! of a structural element 𝑖𝑖 can be computed as follow: 

𝜎𝜎! =
^𝑓𝑓:;^

𝐴𝐴!
+

max	(^𝑓𝑓:=^, ^𝑓𝑓>=^)
𝑍𝑍!

																																																	(3) 

where 𝐴𝐴! and 𝑍𝑍! denote the cross-sectional area and the section modulus 

of element 𝑖𝑖, respectively, and the second term does not exist for a truss 

element. Note that this paper uses the assumption of the rigid floor where in-

plane stiffness of slab is incorporated by multiplying axial stiffness of the 

beam element by 10. 

 

 

 

 

 

 

Fig. 2 Internal forces in local coordinates 

 
2.4 Objective function 

  The optimal section sizes of beams, columns, and braces as well as brace 

placements of steel frames are to be obtained for minimizing the objective 

function formulated considering material and construction costs. Let 𝑐𝑐! ∈

{0,1, … , 𝑛𝑛*} and 𝑏𝑏! ∈ {0,1, … , 𝑛𝑛?} denote the indices of the predetermined 

cross-sectional properties of columns and beams, respectively. A vector 

representing the element properties of the building frame which has 𝑐𝑐" 

columns and 𝑏𝑏" beams is denoted as 
𝐀𝐀 = X𝑐𝑐$, … , 𝑐𝑐-! , 𝑏𝑏$, … , 𝑏𝑏@!	Z																																		(4) 

  A vector that represents the type of brace in each domain of a building 

frame with 𝑁𝑁B spans and 𝑁𝑁" stories is denoted as 

𝐁𝐁 = >𝑟𝑟$, … , 𝑟𝑟'(')?,				𝑟𝑟! ∈ {0,1,2,3,4}																															(5) 

where 0, 1, …, 4 correspond to the brace types (A), (B), …, (E) in Figure 1, 

respectively. 

  A design variable vector for a building frame can be represented as a 

combination of 𝐀𝐀 and 𝐁𝐁 as  
𝐗𝐗 = {𝐀𝐀, 𝐁𝐁}																																																													(6) 

  The objective function to be minimized is the cost denoted by 𝑉𝑉(𝐗𝐗) 

which is equivalent to the total structural volume. Note that the cost of braces 

is multiplied by the cost coefficient B to avoid placing too many braces. The 

optimization problem of member sizes and brace placements of the steel 

frame is formulated as follows: 
minimize					𝑉𝑉(𝐗𝐗)																																																							(7.1) 

subject	to				𝜎𝜎CDE
8 ≤ 𝜎𝜎u8																																													(7.2) 

𝜎𝜎CDE
9 ≤ 𝜎𝜎u9																																													(7.3) 

𝜃𝜃CDE ≤ 𝜃𝜃w																																															(7.4) 

𝛿𝛿CDE ≤ 1																																															(7.5) 

𝜆𝜆CDE ≤ 1																																															(7.6) 

where 𝜎𝜎CDE
8 , 𝜎𝜎CDE

9 , and 𝜃𝜃CDE are the maximum absolute value of stresses 

at the element ends among all members due to long-term loading, the largest 

maximum absolute value of stresses at the element ends among all members 

due to both directions of short-term loading, and the maximum absolute 

value of inter-story drift angles among all stories, respectively. Their upper 

bounds are denoted by 𝜎𝜎u8, 𝜎𝜎u9, and 𝜃𝜃w, respectively. Note that the two cases 

of positive and negative directions of horizontal loads are considered for 

evaluating the maximum value of responses for the short-term loadings. 

Constraints on base beams are also measured because they are necessary for 

adding V-type braces. 𝛿𝛿CDE is the maximum value of deflection ratio 𝛿𝛿!
? at 

the centers of all beams defined as 

𝛿𝛿!
? = max	 F0))×FG$

*F

H$
* , 1H																																														(8) 

where 𝑑𝑑!
? and 𝐿𝐿!

? are the deflection at the center of beam 𝑖𝑖 in the local 𝑦𝑦  

coordinate, and the length of beam 𝑖𝑖, respectively. 𝜆𝜆CDE is the maximum 

value of buckling stress ratios 𝜆𝜆!, defined as follows, of all braces: 

𝜆𝜆! = }
I$
+

J,K$L$/(O$H$,)
						(𝑓𝑓:; > 0)

0																							(𝑓𝑓:; ≤ 0)
																																	(9) 

 

3．GRAPH CONVOLUTIONAL NETWORK 

3.1 Graph representation 

  In this paper, the building frame structure is represented as a graph which 

consists of nodes representing structural elements (i.e., columns, beams, and 

braces) and edges representing connections between the structural elements 

as shown in Figure 3. The graph representation is a method to store graph 

data in vector or matrix forms. 

3.2 Graph Convolutional Network 

  GCN is a type of NN that can map the input of graph representations to 

the target domain of the graph. The graph consisting of 𝑛𝑛 nodes with 𝑢𝑢 

features can be represented using a node feature matrix 	𝐍𝐍 ∈ ℝ6×Q  to 

represent the features of each node in the graph. An adjacency matrix 𝐌𝐌 ∈

ℝ6×6 indicates the connectivity between nodes such that each entry 𝑚𝑚!,& is 

1 if there is an edge connecting node i and node j, or 0 if there is no edge 

connecting node i and node j, respectively. A diagonal degree matrix 𝐃𝐃 ∈

ℝ6×6 has each entry 𝑑𝑑!,!	 representing the number of edges connected to the 

node i. Note again that the nodes in the graph represent structural elements; 

not the connections of joints between the elements.  
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 4   

A single GCN computation, corresponding to a layer, takes these 

representations as input and computes the output as follows: 
𝐍𝐍′ = σX𝐌𝐌‡ 𝐍𝐍𝐍𝐍Z																																																							(10) 

where σ and 𝐰𝐰 ∈ ℝQ×S are a non-linear activation function and the weight 

matrix (i.e., the convolution filter parameters with 𝑣𝑣 filters) in the GCN 

layer which is adjusted during the training, respectively.  

  𝐌𝐌‡  is the normalized adjacency matrix computed as 

𝐌𝐌‡ = 𝐃𝐃&-/,[𝐌𝐌 + 𝐈𝐈]𝐃𝐃&-/,																																														(11) 

where 𝐈𝐈 ∈ ℝ6×6 and 𝐃𝐃%$/, are the identity matrix and the inverse of the 

matrix 𝐃𝐃$/, satisfying 𝐃𝐃$/,𝐃𝐃$/, = 𝐃𝐃, respectively. 

  Multiple GCN layers can be connected together, in which output 𝐍𝐍′ ∈

ℝ6×S of the previous GCN layer is treated as node input 𝐍𝐍 of the next GCN 

layer, to create a machine learning model. 

   In this paper, we utilize GCN to build an RL agent that can determine 

how to adjust the design of a structure. Let 𝑁𝑁D denote the number of actions 

assigned to each member, which is 1 in this study. The output of the agent is 

𝛑𝛑 ∈ ℝ6×'/, representing the probability to choose the element whose cross-

sectional area is to be enlarged.  

 

4．REINFORCEMENT LEARNING 

4.1 Outline of reinforcement learning 

  An agent aiming to obtain a high accumulated reward signal is trained to 

do actions in an environment that give a reward signal according to how the 

agent’s action affects the environment. RL algorithm consists of three main 

components: a policy dictating the agent’s behavior, a reward signal, and a 

value function that estimates the accumulated reward signal 27). Interactions 

between the agent and the environment are represented using a discrete time 

decision-making process called Markov Decision Process (MDP)28),29), in 

which the next state depends solely on the current state and action. At step 𝑡𝑡, 

the agent observes the environment as state ST  and performs action AT . 

After that, the agent receives reward signal RT#$  and observes the 

representation of the next state ST#$ as shown in Figure 4. 

4.2 Deep Deterministic Policy Gradient 

  DDPG is an RL policy gradient algorithm that determines the probability 

of taking action AT
!  in a state ST , denoted by 𝛑𝛑 , and predicts the 

accumulated reward (Q-value) from the actions using a policy function 

(Actor) 𝛑𝛑U- and a value function QU, (Critic), respectively, both of which 

are represented as follows: 
𝛑𝛑U-(ST) = 𝛑𝛑																																																																							(12) 

QU, >ST, 𝛑𝛑U-(ST)? = 	 0 γS%$RT#S

V

S($
																																											(13) 

where θ$ and θ, are parameters of policy and value functions, respectively. 

γ ∈ [0,1) is a discount factor for the reward signal. 

  The agent interacts with the environment and stores MDP data of 

{ST, AT, RT#$, ST#$}	in a storage of training data called replay buffer. The 

value function adjusts its parameters to increase the accuracy of the reward 

prediction, and the policy function adjusts its parameters to increase the 

predicted reward, respectively. The tau update method30) is used for 

stabilizing the learning process by training a surrogate policy function 𝛑𝛑′UW- 

and a surrogate value function Q′UW, , and then gradually updating the 

parameters of these functions into the real policy function 𝛑𝛑U- that interact 

with the environment, and the real value function QU, using a small value 

of 𝜏𝜏 (𝜏𝜏 ≪ 1) at every tau update interval. 

  The training algorithm of DDPG, which minimizes the loss function 

ℒ(𝑦𝑦, 𝑦𝑦u) between training data 𝑦𝑦 and a predicted value 𝑦𝑦u, is as follows: 

 

DDPG Algorithm: 

1. Sample nbatch training data {ST, AT, RT#$, ST#$} from the stored replay 

buffer and changed them into a set of vectors {𝐒𝐒T, 𝐀𝐀T, 𝐑𝐑T#$, 𝐒𝐒T#$}. 

2. Update the parameters as follows:  
       𝛑𝛑′UW-(𝐒𝐒T) = 	 𝐀𝐀šT  

       𝛑𝛑U-(𝐒𝐒T#$) = 	 𝐀𝐀šT#$  

       Q′UW,(𝐒𝐒T, 𝐀𝐀T) = 	 𝐐𝐐šT  

       QU,X𝐒𝐒T#$, 𝐀𝐀šT#$Z = 	 𝐐𝐐T#$  

       ∇Q′UW, = ∇UW,Q′UW,(𝐒𝐒T, 𝐀𝐀T)∇𝐐𝐐Y0	ℒX𝐑𝐑T#$ + 𝐐𝐐T#$, 𝐐𝐐šTZ  

       ∇J′UW- = −𝔼𝔼 Ÿ∇UW-𝛑𝛑′UW-(𝐒𝐒T)∇𝐀𝐀Y0Q′UW,X𝐒𝐒T, 𝐀𝐀šTZ|𝐀𝐀Y0(𝛑𝛑W12-(𝐒𝐒0)¡  

       Update 𝛉𝛉′, in Q′UW, using ∇Q′UW,  

       Update 𝛉𝛉′$ in 𝛑𝛑′UW- using ∇J′UW-  

       If tau update interval is reached: 
            𝛉𝛉$ = (1 − 𝜏𝜏)𝛉𝛉$ + 𝜏𝜏𝛉𝛉′$  

            𝛉𝛉, = (1 − 𝜏𝜏)𝛉𝛉, + 𝜏𝜏𝛉𝛉′, 

  To reduce the time to find optimal weights in each layer of GCN, an 

optimizer such as stochastic gradient descent (SGD)31),32),33) or Adam34) is 

used for updating 𝛉𝛉′$  and 𝛉𝛉′, , using the gradients ∇J′UW-  and ∇Q′UW, , 

respectively. If the agent just exploits its policy to determine the best actions, 

the agent might miss other better actions. Therefore, Ornstein-Uhlenbeck 

noise35) is added to the output of the policy function to activate the exploration 

of DDPG’s policy function during the training.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Braced frame structure represented as a graph 

 

 

 

 

Fig.4 Diagram of the MDP 
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5．REINFORCEMENT LEARNING FOR OPTIMIZATION 

5.1 State 

  The state of a building frame with all possible 𝑛𝑛 elements is represented 

as graph data where each node has 31 features obtained from structural 

configuration and responses. The definitions of 𝑛𝑛!,&	(𝑗𝑗 = 1, … ,31)  as 

follows: 

𝑛𝑛!,$  1 if 𝑖𝑖 is in the structure, or 0 if 𝑖𝑖 is not in the structure 

𝑛𝑛!,,  0 if 𝑖𝑖’s sectional area is equal to the largest area for 𝑖𝑖, else 1 

𝑛𝑛!,0  1 if 𝑖𝑖 violates stress constraint under p9&, else 0 

𝑛𝑛!,5  1 if 𝑖𝑖 violates stress constraint under p9', else 0 

𝑛𝑛!,]  1 if 𝑖𝑖 violates stress constraint under p8, else 0 

𝑛𝑛!,2  1 if the 𝑝𝑝 end of 𝑖𝑖 is rigidly fixed support, else 0 

𝑛𝑛!,^  0 if the 𝑝𝑝 end of 𝑖𝑖 is rigidly fixed support, else 1 

𝑛𝑛!,_  Magnitude of load act on the 𝑝𝑝 end of 𝑖𝑖 in x axis 

𝑛𝑛!,`  Magnitude of load act on the 𝑝𝑝 end of 𝑖𝑖 in y axis 

𝑛𝑛!,$)  x-axis deformation of the 𝑝𝑝 end of 𝑖𝑖 under p9& 

𝑛𝑛!,$$  x-axis deformation of the 𝑝𝑝 end of 𝑖𝑖 under p9' 

𝑛𝑛!,$,  y-axis deformation of the 𝑝𝑝 end of 𝑖𝑖 under p9& 

𝑛𝑛!,$0  y-axis deformation of the 𝑝𝑝 end of 𝑖𝑖 under p9' 

𝑛𝑛!,$5  𝑝𝑝 end’s position in x-axis coordinate of 𝑖𝑖 

𝑛𝑛!,$]  𝑝𝑝 end’s position in y-axis coordinate of 𝑖𝑖 

𝑛𝑛!,$2  1 if the 𝑞𝑞 end of 𝑖𝑖 is rigidly fixed support, else 0 

𝑛𝑛!,$^  0 if the 𝑞𝑞 end of 𝑖𝑖 is rigidly fixed support, else 1 

𝑛𝑛!,$_  Magnitude of load act on the 𝑞𝑞 end of 𝑖𝑖 in x axis 

𝑛𝑛!,$`  Magnitude of load act on the 𝑞𝑞 end of 𝑖𝑖 in y axis 

𝑛𝑛!,,)  x-axis deformation of the 𝑞𝑞 end of 𝑖𝑖 under p9& 

𝑛𝑛!,,$  x-axis deformation of the 𝑞𝑞 end of 𝑖𝑖 under p9' 

𝑛𝑛!,,,  y-axis deformation of the 𝑞𝑞 end of 𝑖𝑖 under p9& 

𝑛𝑛!,,0  y-axis deformation of the 𝑞𝑞 end of 𝑖𝑖 under p9' 

𝑛𝑛!,,5  𝑞𝑞 end’s position in x-axis coordinate of 𝑖𝑖 

𝑛𝑛!,,]  𝑞𝑞 end’s position in y-axis coordinate of 𝑖𝑖 

𝑛𝑛!,,2  Length of 𝑖𝑖 

𝑛𝑛!,,^  Cross-sectional area of 𝑖𝑖	
𝑛𝑛!,,_  Second moment area of 𝑖𝑖 

𝑛𝑛!,,`  Internal stress in 𝑖𝑖 from p9& 

𝑛𝑛!,0)  Internal stress in 𝑖𝑖 from p9' 

𝑛𝑛!,0$  Internal stress in 𝑖𝑖 from p8 

  Note that the values of 𝑛𝑛!,$, 𝑛𝑛!,0%], and 𝑛𝑛!,,`%0$ are set as 0 if the brace 

i has not been added to the structure. Both ends of beam and column elements 

are rigidly fixed supports while those of braces are hinge supports. 

5.2 Action 

  The agent can choose an action of increasing the index (i.e., section) of the 

existing element or adding a brace. In the case of adding braces, no brace 

exists in the initial frame, and the number of domains with braces on each 

story can be only half of the total number of domains on that story. 

Furthermore, once the braces are added, their domain or type cannot be 

modified. 

  The action is interpreted from the output of the agent 𝛑𝛑 ∈ ℝ6×$ and the 

vector that represents feasible action is represented as 𝐠𝐠 ∈ ℝ6×$ in which 

the entry 𝑔𝑔! is 1 if it is possible to increase the index (i.e., increasing section 

of an existing element or adding a brace) of the element 𝑖𝑖 and is 0 otherwise. 

The action of the agent is the Hadamard product of policy function and 𝐠𝐠 is 

as follows: 
𝐠𝐠 ∘ 𝛑𝛑 = 𝛑𝛑W																																								(14) 

This way, the probability to select an infeasible action exactly becomes 0. 

Note that if the action of one of the braces that make up K-Type or V-Type is 

selected, the other member will also be changed to the same index. 

  If the ith component of 𝛑𝛑′ has the maximum value among all components, 

then the section index of element i is increased by 1, and its section properties 

are changed accordingly. In order to simplify the structural design problem, 

the following rules are also applied: 

 1. Beams on the same floor shall have the same index. If a beam’s section 

index is increased, those of other beams on the same floor will also be 

increased. 

 2. Upper column shall have a smaller cross-sectional area than its lower 

columns. If a column has a larger section index than its lower columns, 

the section index of the lower columns will be increased. 

5.3 GCN-DDPG Agent 

  The agent’s policy and value functions are made of multiple connected 

GCN layers defined by Eqs. (15a) − (15c) where the Rectified Linear Unit 

(ReLU)36) transforms the GCN’s output to increase the robustness of the 

model, while the Sigmoid activation function37) obtains probability-based 

output for the policy function (i.e., probability of taking action AT
!  in a state 

ST). 
µX𝐕𝐕, 𝐌𝐌‡ Z = ReLUX𝐌𝐌‡ 𝐕𝐕𝐰𝐰aZ																																		(15a) 

iterb[µX𝐕𝐕, 𝐌𝐌‡ Z] = µX𝐌𝐌‡ (µX𝐌𝐌‡ (… )𝐰𝐰aZ)𝐰𝐰aZ­®®®®®®¯®®®®®®°
b	cdC4B

																(15b) 

σX𝐕𝐕, 𝐌𝐌‡ Z = SigmoidX𝐌𝐌‡ 𝐕𝐕𝐕𝐕eZ																													(15c) 

where ReLU(∙) = max	(0,∙) , 𝜙𝜙  in iterb[	]  indicates the number of 

computing loops, Sigmoid(∙) = 1/(1 + e%(∙)) , and 𝐕𝐕  denotes a node 

feature matrix or an output from a prior GCN layer. Equations 

(15a)	and	(15b)  represent a GCN layer and multiple computing loops 

using the same GCN layer with ReLU activation function, respectively. 

Equation (15c) represents a GCN layer with Sigmoid activation function. 

  In the value function, two matrix operations are used for transforming the 

output matrix of the last GCN layer into a scalar value representing the 

estimation of accumulated reward. The first operation is a global sum pooling 

operation (GSP: ℝ6×Q → ℝ$×Q)38) which transforms an output matrix of the 

last GCN layer into a vector by summing up all entries in each column of the 

output matrix. The GSP operation to transform a matrix 𝐕𝐕 into a vector is 

represented as 

GSP(𝐕𝐕) = ¹0 𝑣𝑣!,$

6

!($

⋯ 0 𝑣𝑣!,Q

6

!($

» ∈ ℝ$×Q																	(16) 

  The second operation is to compute the estimation of accumulated reward 

(i.e., Q-value ∈ ℝ$×$), from the vector output of the GSP operation, using 

an NN which are approximation functions with adjustable weight parameters 

and activation functions. Equation (17) represents an NN used in this paper 

for computing the accumulated reward from the vector output of the GSP 

operation	 GSP(𝐕𝐕). In NN, 𝓦𝓦$, 𝓦𝓦,, and 𝓦𝓦ghc denote adjustable internal 

weight matrices while 𝓑𝓑$ , 𝓑𝓑, , and 𝓑𝓑ghc  denote adjustable internal bias 
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vectors in each NN layer. 

fiiXGSP(𝐕𝐕)Z = 𝓦𝓦ghc >ReLUX𝓦𝓦,XReLU(𝓦𝓦$GSP(𝐕𝐕)j + 𝓑𝓑$)Z + 𝓑𝓑,Z? 

+𝓑𝓑ghc ∈ ℝ$×$(17) 

  Table 1 shows the computation method of the policy and value functions 

of the GCN-DDPG agent in this paper. The left column shows the policy 

function’s inputs, computation method using Eqs.	 (15) − (17), and output 

while the right column shows those of the value function. 

 

Table 1 Policy and value functions of the agent 

Policy function 𝛑𝛑 Value function Q 

Inputs: 𝐍𝐍, 𝐌𝐌‡  Inputs: 𝐍𝐍, 𝐌𝐌‡ , 𝛑𝛑 

Computation: 

 𝐍𝐍$ = µX𝐍𝐍, 𝐌𝐌‡ Z 

 𝐍𝐍, = iter,¿µX𝐍𝐍$, 𝐌𝐌‡ ZÀ 

 𝛑𝛑 = σX𝐍𝐍,, 𝐌𝐌‡ Z 

 

Computation: 

 𝐍𝐍$.$ = µX𝐍𝐍, 𝐌𝐌‡ Z 

 𝐍𝐍$., = iter,¿µX𝐍𝐍$.$, 𝐌𝐌‡ ZÀ 

 𝐍𝐍,.$ = µX𝛑𝛑, 𝐌𝐌‡ Z 

 𝐍𝐍,., = iter,¿µX𝐍𝐍,.$, 𝐌𝐌‡ ZÀ 

 𝐍𝐍, = 𝐍𝐍$., + 𝐍𝐍,., 

 𝐍𝐍0 = µX𝐍𝐍,, 𝐌𝐌‡ Z 

 𝐍𝐍5 = GSP(𝐍𝐍0) 

    Q = 	 fii(𝐍𝐍5) 

Output: 𝛑𝛑 ∈ ℝ6×$ Output: Q ∈ ℝ$×$ 

 

5.4 Reward 

  In RL, a reward signal is used for training an agent. In this paper, the 

reward signal at step 𝑡𝑡 is formulated based on aforementioned objective and 

constraint functions Eqs.	 (7.1) − (7.6)  so that the agent can adjust the 

structure to satisfy all the constraints while reducing the increment ∆𝑉𝑉 of 

the cost as 
RT#$ = −∆𝑉𝑉 ∙ [4 − (∆𝜎𝜎CDE

8 + ∆𝜎𝜎CDE
9 + ∆𝜃𝜃CDE + ∆𝛿𝛿CDE)]							(18) 

where ∆𝜎𝜎CDE
8 , ∆𝜎𝜎CDE

9 , ∆𝜃𝜃CDE , and ∆𝛿𝛿CDE  denote reward components 

associated with internal stresses from long-term loading, internal stresses 

from long and short-term loadings, inter-story drift angle, and beam center 

deflection, respectively. 

  To compute ∆𝜎𝜎CDE
8  and ∆𝜎𝜎CDE

9 , the ratio of internal stresses and their 

upper bounds of each member, computed from long-term loading and the 

combinations of long-term and short-term loadings, are aggregated into 

vectors associated with each load case. Note if the member is the brace that 

has ratio of buckling stress larger than the ratio of short-term loadings, the 

ratio of buckling stress will be used as the aggregated value instead. These 

vectors are then normalized using p-norm X‖∙‖:Z which computes the pth 

root of the sum of the p-powers of the absolute values of the components 

computed as  

‖𝐱𝐱‖: = Ä0 |𝑥𝑥!|:
6

!($

3

																																							(19) 

where 𝑝𝑝 is a parameter to be specified. Particularly, the p-norm for 𝑝𝑝 = 1 

and ∞ are expressed as 
‖𝐱𝐱‖$ = |𝑥𝑥$| + |𝑥𝑥,| + ⋯ + |𝑥𝑥6|																													(20.1) 

‖𝐱𝐱‖V = max{|𝑥𝑥$|, |𝑥𝑥,|, … , |𝑥𝑥6|}																										(20.2) 

  Thus, p-norm allows scalar representation of a vector as an intermediate 

value between the maximum and average values. Since maximum stress 

usually depends on the section sizes of multiple members, it often happens 

that reduction of the maximum stress leads to an increase of the second one, 

and accordingly, an increase of the value of maximum stress. Therefore, the 

p-norm is used for computing reward components associated with stress 

constraints to incorporate the effect of section sizes of several members with 

large stresses. On the contrary, the maximum values of inter-story drift angle 

and beam center deflection mainly depend on the sizes of the specific 

members, and the constraints can be satisfied by simply reducing the 

maximum values. Therefore, the p-norm is not used for computing reward 

components associated with these constraints. Reward components 

associated with each constraint are formulated as  

∆𝜎𝜎CDE
8 = Ç

‖𝛔𝛔8‖:
T − ‖𝛔𝛔8‖:

T#$

‖𝛔𝛔8‖:
T#$ 	(if	𝜎𝜎CDE

8,T > 𝜎𝜎u8)

0																								(else)
												(21.1) 

∆𝜎𝜎CDE
9 = Ç

‖𝛔𝛔9‖:
T − ‖𝛔𝛔9‖:

T#$

‖𝛔𝛔9‖:
T#$ 	(if	𝜎𝜎CDE

9,T > 𝜎𝜎u9	or	𝜆𝜆CDE
T > 1)	

0 																																													(else)
(21.2) 

∆𝜃𝜃CDE = Ç
𝜃𝜃CDE
T − 𝜃𝜃CDE

T#$

𝜃𝜃CDE
T#$ 	(if	𝜃𝜃CDE

T > 𝜃𝜃w)

0																								(else)
													(21.3) 

∆𝛿𝛿CDE = Ç
𝛿𝛿CDE
T − 𝛿𝛿CDE

T#$

𝛿𝛿CDE
T#$ 	(if	𝛿𝛿CDE

T > 1)

0																								(else)
														(21.4) 

 

6．NUMERICAL EXAMPLES 

6.1 General experiment setting and structural model 

  Structural elements used in this experiment have Young’s modulus, 

maximum short-term, and maximum long-term stress limits of 200 kN/mm2, 

235 N/mm2, and 235/1.5 = 156.7 N/mm2, respectively. Lists of section 

properties for columns, beams, and braces are shown in Tables 2, 3, and 4, 

respectively. The structure is subjected to the floor-weight of 6700 N/m2 (i.e., 

long-term floor load) applied on each beam using the floor depth of 6 m and 

the load computed as described in Sec. 2.2 using a floor-weight of 5700 N/m2 

(i.e., seismic floor load) where the base shear coefficient 𝐶𝐶), the specific 

period 𝑇𝑇-, and seismic area coefficient 𝑍𝑍) are 0.2, 0.6, and 1.0, respectively. 

The cost coefficient B for braces is 1.5, and the parameter p for the p-norm 

is 10. 

  The program is implemented using Python 3.6 environment. A PC with a 

CPU of Intel Core i9-11900 (2.5 GHz, 8 cores) and a GPU of Nvidia GeForce 

RTX3060 12GB is used for computation. 

6.2 Training phase 

  The term episode is defined as the sequence of optimization from the initial 

state to the terminal state by the agent. In each episode of the training phase, 

the agent is trained to optimize the section sizes of beams and columns as 

well as the placements and section sizes of braces of 3-span 3-story steel 

frames with three predetermined span lengths and story heights as indicated 

by S1, S2, and S3 in Table 5. At the beginning of each episode, the frame  
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Table 2 List of column sections 

Index Box section A (cm2) I (cm4) Z (cm3) 

0 200×200×9 66 3920 392 

1 300×300×12 133 18100 1200 

2 400×400×16 237 57100 2850 

3 500×500×22 404 150000 6010 

4 600×600×32 727 392000 13100 

5 700×700×35 855 637000 18210 

6 800×800×40 1216 1173000 29360 

 

Table 3 List of beam sections 

Index H section A (cm2) I (cm4) Z (cm3) 

0 300×200×56	 71 11100 756 

1 400×300×105 133 37900 1940 

2 500×300×125 159 68900 2820 

3 600×300×147 187 114000 3890 

4 700×300×182 232 197000 5640 

5 800×300×188 234 248000 6270 

6 900×300×283 360 491000 10800 

 

Table 4 List of brace sections 

Index Diameter 

(mm) 

Thickness 

(mm) 

A 

(cm2) 

I  

(cm4) 

Z  

(cm3) 

0 no brace 

1  6.6 54.08 4.60×103 344 

2  8.0 65.19 5.49×103 411 

3 267.4 9.3 75.41 6.29×103 470 

4  12.7 101.6 8.26×103 618 

5  15.1 119.7 9.56×103 715 

 

 

 

 

 

 

 

 
 

Fig.5 Training phase result (reward)  

 

 

 

 

 

 

 

 
 

Fig.6 Training phase result (cost) 

without braces is initialized using smallest beam and column sections. In 

order to measure the performance of the agent, 4-span 4-story frames with 

span lengths of [4.0, 6.0, 6.0, 4.0] (m) and story heights of [4.0, 3.0, 3.0, 3.0] 

(m), are used for measuring improvement of the reward during the training 

every 10 episodes.  

  At each step, the agent’s action determines the addition of a brace or 

increasing the size of existing beam, column, or brace. The surrogate policy 

and value functions are adjusted by the Adam optimizer using the mini-batch 

size of 32 and the learning rates of 10-3 and 10-4 for the policy function and 

value functions, respectively. In the value function, each layer in NN has 200 

cells and the loss function for training NN is the mean squared error loss. 

Surrogate functions’ parameters (𝛉𝛉′$, 𝛉𝛉′,) are updated to the real policy and 

value functions’ parameters (𝛉𝛉$,	 𝛉𝛉,) every 100 steps with 𝜏𝜏 = 0.05. The 

agent is trained for 3,000 episodes where each episode is terminated when all 

constraints are satisfied.  

  The total number of structural analyses in the training phase is 134,995. 

Figures 5 and 6 show the reward and the final cost of the structure obtained 

by the agent, respectively, being indicators of the agent’s performance during 

the training phase, where the horizontal axis represents the number of trained 

episodes and the thick red line in each figure shows the moving average of 

20 episodes. According to these figures, the agent has increased the obtained 

reward, reduced the cost of the structure, and maintained its performance 

throughout the training, which indicates the learning ability of the agent. 

Note that since the structural types S1, S2, and S3 are used for training and 

the performance is measured using a 4-span 4-story frame, the agent might 

not be able to keep on improving the obtained reward using this structure 

resulting in the fluctuation of the reward and cost. 

6.3 Test phase 

  In the test phase, the agent saved from the training phase is applied to the 

frames in Table 6 to verify the generality of the agent, where the material 

property and section lists are the same as those in the training phase. To 

prevent the agent to choose unnecessary actions, we introduce another agent 

output modification vector 𝐡𝐡 ∈ ℝ6×$ that represents the beam or column 

that satisfies all constraints, including long-term loading stress, long-term 

and short-term loading stress, inter-story drift, and deflection constraints. 

The entry ℎ! is 0 if the element 𝑖𝑖 is a column or beam that already satisfies 

every constraint. Therefore, the vector 𝐡𝐡 prevents the agent from choosing 

base beams when it is stiff enough, and also other beams and columns, that 

already satisfies all constraints by assigning 0 for the value in 𝐡𝐡. The action 

of agent is modified using the Hadamard product of policy function, using 

both vectors that represent feasible action 𝐠𝐠 and 𝐡𝐡, as follows: 
𝛑𝛑W = 𝐠𝐠 ∘ 𝐡𝐡 ∘ 𝛑𝛑																																							(22) 

The action interpretation of increasing the section index of element and the 

rules are the same as those of the training phase.  

  The trained agent is applied to Structures A and B 50 times for each. Table 

7 shows the minimum, mean, and standard deviation (Std.) of the objective 

function and the total number of structural analyses of each structure. Note 

that the agent can be applied to larger numbers of structures not included in 

this research as well. Therefore, the number of structural analyses in the 

training phase is not included in the comparison. Figures 7 and 8 show the 
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best solutions (Structure A, Structure B) obtained in the test phase where the 

thickness of line and ▲  indicates rigid support. Numbers on the lines 

represent section size of column (black), beam (grey), and brace (red). 

6.4 Comparison of computational cost and performance with GA 

  GA is used for evaluating the performance of the proposed RL method 

utilizing the similar computational cost of structural analyses. GA is a meta-

heuristic optimization method where design variables are represented as 

genes. In each iteration (i.e., generation), candidate solutions (i.e., 

individuals) are generated by randomly mixing genes (i.e., crossover) from 

the previous iteration’s individuals with some random gene modifications 

(i.e., mutation). The best fit individuals in view of the objective function are 

kept for the next generation (i.e., selection). 

  In this research, each gene has an integer value of [0,9] so that they can be 

randomly mixed and mutated. The indices {𝐽𝐽$, 	𝐽𝐽,, … , 	𝐽𝐽'!}  of column 

sections in Table 2 along the same vertical axis are defined by 𝑁𝑁" genes 

{𝐺𝐺$, 	𝐺𝐺,, … , 	𝐺𝐺'!}. If 𝐺𝐺$ is larger than the largest column index (6 in Table 

2), 𝐽𝐽$ is equal to the largest index. Since the upper column cannot have a  

  

Table 5 Structural configuration for training phase 

Structural name S1 S2 S3 

Number of spans 3 3 3 

Span length [4,4,4] (m) [8,8,8] (m) [6,6,6] (m) 

Number of floors 3 3 3 

Floor height [4,4,4] (m) [3,3,3] (m) [4,4,4] (m) 

 

Table 6 Structural configuration for test phase 

Name Structure A Structure B 

Number of spans 8 3 

Span length 
[5.0, 7.5, 5.0, 5.0,    

5.0, 5.0, 7.5, 5.0] (m) 
[5.0, 5.0, 5.0] (m) 

Number of stories 3 7 

Story height [4.0, 4.0, 4.0] (m) 
[4.0, 4.0, 3.5, 3.5,   

3.5, 3.5, 3.5] (m) 

 

Table 7 RL results in test phase (50 trials) 

Name Structure A Structure B 

Minimum 5.61 5.35 

Mean 6.22 5.98 

Std. 0.27 0.26 

Number of structural analyses 3191 3812 

 

Table 8 GA results (5 random seeds) 

Name Structure A Structure B 

Minimum 6.90 7.34 

Mean 7.28 8.05 

Std. 0.46 0.58 

Population 50 100 

Generation 80 50 

Number of structural analyses 4000×5 5000×5 

 

 
 
Final cost:             

 
5.61 

Maximum short-term stress constraint: 1.00 
Maximum long-term stress constraint:     0.85 
Maximum deformation constraint: 0.10 
Maximum inter-story drift constraint: 0.13 

Fig.7 RL best result: Structure A 

 

 
Final cost:             5.35 
Maximum short-term stress constraint: 0.97 
Maximum long-term stress constraint:     0.82 
Maximum deformation constraint: 0.15 
Maximum inter-story drift constraint: 0.19 

Fig.8 RL best result: Structure B 

 

 
 
Final cost:             

 
6.90 

Maximum short-term stress constraint: 0.98 
Maximum long-term stress constraint:     0.89 
Maximum deformation constraint: 0.09 
Maximum inter-story drift constraint: 0.11 

Fig.9 GA best result: Structure A 

 

 
Final Cost:             7.34 
Maximum Short-term stress constraint: 0.94 
Maximum Long-term stress constraint:     0.59 
Maximum Deformation constraint: 0.08 
Maximum Inter-story drift constraint: 0.19 

Fig.10 GA best result: Structure B 
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larger index than the lower ones, 𝐽𝐽!∈{,,…,'!} is equal to 𝐽𝐽!%$ if 	𝐺𝐺! ∈ [0,4], 

whereas 𝐽𝐽!%$ = 𝐽𝐽! − 1  if 	𝐺𝐺! ∈ [5,9]  (i.e., the gene 	𝐺𝐺$  indicates the 

column index while the other genes indicate the reduction of the column 

indices). Beam sections on the same floor are represented by a single gene; 

the index of the beam section from Table 3. If the gene has a larger value than 

the largest beam index, the largest beam index is assigned to the 

corresponding beam. 

  The brace type and brace section in each brace domain are represented by 

two genes where the first gene with the value of {0,1}, {2,3}, {4,5}, {6,7}, 

and {8,9} represent no brace, right diagonal brace, left diagonal brace, K-

type, and V- type, respectively. The second gene with the value of {0,1}, 

{2,3}, {4,5}, {6,7}, and {8,9} represent indices 1, 2, 3, 4, 5, respectively, of 

the brace section in Table 4. Also, similar to the proposed RL method, in GA’s  

solutions, the number of domains with braces in each story can be only half 

of the number of brace domains in that story, which is equal to the number 

of spans for a regular frame. 

  In order to obtain solutions that satisfy all constraints with small cost, 

binary value indicators c9, c8, cU, and cp are introduced for the constraints 

on maximum short-term and buckling stress, long-term stress, beam 

deflection, and inter-story drift, respectively. They The indicator is equal to 

1 if the constraint is violated, and 0 if satisfied. The objective function of GA 

to be maximized is as follows: 

𝐺𝐺(𝐗𝐗) = −𝑉𝑉(𝐗𝐗) − 𝑤𝑤) Îc9
𝑤𝑤$𝜎𝜎CDE

9

𝜎𝜎u9 + c8
𝜎𝜎CDE
8

𝜎𝜎u8 + cU
𝜃𝜃CDE

𝜃𝜃w
+ cp𝛿𝛿CDEÏ				(23) 

where 𝑤𝑤) and 𝑤𝑤$ are the weights of the penalty, which prevent the GA to 

generate solutions that violate the constraints, with the values of 5 and 3, 

respectively. These values are decided after some trials and errors. 

  A Python library DEAP39) is used to implement the GA program. The 

numbers of populations and generations are specified so that the total number 

of analyses becomes similar to the total number of analyses used in RL. Since 

the solution of GA depends on the random seed, we conduct five GA 

experiments with different random seeds on Structures A and B in Table 6. 

Table 8 shows the minimum, mean, standard deviation (Std.) of the objective 

function, population, generation, and the number of structural analyses of 

each structure using GA. The best solutions of Structures A and B obtained 

by GA are shown in Figures 9 and 10.  

   It is observed from Tables 7-8 that the RL agent can obtain more optimal 

results compared to GA for both test structures shown by the minimum of the 

objective function. RL agent’s results from different trails have similar value 

of the objective function shown in the Std. value. In computational aspect, 

the trained RL agent utilizes less structural analyses compared to the GA. 

Figures 7-10, where the width of each member defined the section index of 

that member type (i.e., column, beam, or brace), show differences between 

results obtained by RL and GA. In RL agent’s results, beams and columns 

have smaller cross-sectional sizes compared to those of GA while both RL’s 

results contain more braces than GA’s results.  

   In this research, the brace’s cross-sectional areas are smaller than those 

of beams and columns and increasing sections of beams or columns may lead 

to the increase of other beams on the same floor or columns on the lower 

floor as well which eventually lead to a large value of the objective function. 

From the agent’s viewpoint, placing braces could yield a higher reward 

(lower cost), which is computed from the value of the objective function, in 

each optimization step (i.e., placing braces, increasing sections), compared 

to increasing sections of beams or columns. Therefore, the RL agent shows 

strategies of preferentially placing braces rather than enlarging costly beams 

and columns. In both test structures, short-term and long-term stress 

constraints are the most critical constraints in this experiment. In Figures 

7-10, maximum short-term stress, maximum long-term stress constraint, 

maximum deformation, and maximum inter-story drift constraints in RL’s 

results are higher than those of GA except for the maximum long-term stress 

constraint in structure A. This implied that the trained RL agent yields more 

efficient solutions that are located near the boundary of the feasible region. 

 

7．CONCLUSIONS 

  A method for topology optimization of braced steel frames using DDPG 

and GCN has been proposed for determining brace locations and sizes of 

structural elements including beams, columns, and braces. The optimization 

problem is to minimize the cost computed from the volume and type of 

structural elements under constraints on stress, deformation, and inter-story 

drift. The problem is a combinatorial problem that is difficult to obtain the 

optimal solution even using heuristic approaches which requires large 

computational cost. This research shows that the proposed ML method can 

find more optimal solutions and requires less computational cost compared 

to GA. 

  This paper proposes a topology optimization method that combines graph 

representation of structural elements and DDPG. The graph representation 

method that interprets structural elements into graph nodes is utilized for 

generating state data in the MDP framework. Using this representation, 

modification of the element can be obtained directly from the RL agent with 

graph neural networks. The DDPG agent with policy and value functions 

introducing GCNs is used to determine how the structural design should be 

adjusted. The agent is trained to modify structures until all constraints are 

satisfied using the reward computed from both cost and changes of 

constraints. Results show that the agent can improve its performance by 

maximizing the accumulative reward. 

  The numerical examples of 3-story 8-span and 7-story 3-span frames, 

where short-term and long-term stress constraints are the most critical, show 

that the trained agent can be applied to structures that differ from those used 

for training. The trained agent can obtain solutions utilizing a lower cost 

compared to those of GA by utilizing slenderer beams and columns with 

more braces compared to solutions from GA which have thicker beams and 

columns with fewer braces. Note that the reward in this experiment is partly 

determined from the lists of cross-sections for beams, columns, and braces 

(i.e., structural volume). Therefore, if the lists of cross sections or the reward 

function are changed, the RL agent could modify structures differently.  

  The agent can be used for finding approximate optimal structural 

configurations in a feasible time and is applicable to problems with larger 

structural lists or more degrees of freedom than the numerical examples. 

Application to the three-dimensional model will be investigated in our future 

study. 
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