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Abstract 
A clear understanding of the demand patterns, is one of the key contributors to laying a firm foundation 

for tourist planning. In pursuit of that aim, we estimated the number of tourists at specific areas and 

times in Kyoto City using regression analysis and hierarchical linear models (HLM). We first discuss 

how to extract the tourists’ data from a “mesh population” obtained from aggregate mobile network 

operational data. We then propose that a relatively small sample of GPS tracking data for a population 

that has been monitored over a longer time than the mesh population can be used as a surrogate. To 

distinguish tourists from other persons, we find that a specified threshold of visiting a certain number 

of tourist attractions per day is useful. We also examine the effect of months and time of days by HLM 

on the model fit and number of tourists. Finally, we show that the accessibility of information such as 

the level of the attractiveness of particular Points of Interests (POIs) measured in terms of “Google 

ratings”, in conjunction with the GPS records significantly contributes to a better estimation of the 

number of tourists at specific areas and times in Kyoto City. 

 



1. Introduction 
Over the past few years, Japan’s Popularity as a tourist destination has been gradually increasing with 

exception of the sudden interruption by the COVID-19 crisis. Consequently, problems such as traffic 

congestion and crowding at and around touristic places have become increasingly become more 

serious issues, causing dissatisfaction amongst both the tourists and residents alike1). This study 

focuses on Kyoto, Japan’s Old Capital, one of the most significant tourist destinations. Before the 

COVID-19 crisis, the annual number of tourists continuously increased for two decades, reaching 

nearly 60 million per year, and the tourism consumption reached 1.2 trillion JPY, as illustrated in 

Figure 12). However, along with the rapid rise in tourism, dissatisfaction amongst the tourists with  

 
Figure 1. The trend of tourism consumption and the number of tourists in Kyoto, Japan 

 
their touristic experience has also gradually increased over the years, congestion being one of the 

major contributing factors. For instance, between 2011 and 2019, the mention of “crowding” as the 

main reason for tourist dissatisfaction increased from just over 10% to 20%2). 
For Kyoto City and Japan at large, tourism is an essential stimulant of economic prosperity, and as 

such improvement of tourists’ satisfaction is considered both as a priority and a common fundamental 

policy objective. Furthermore, in the wake of the COVID crisis and its aftermath, adequate prevention 

of crowding in touristic areas, after the end of travel restriction policies has become an additional 

concern. One of the recommended approaches to solving this problem is obtaining a clear 

understanding of the tourism demand. We aim at contributing to that objective by estimating the 

number of tourists in specific areas, at specific points in time in Kyoto city. The paper explores if two 

data sets and transport accessibility measures are suitable to extract and predict tourist numbers. 
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Since there is far less data on tourist behavior than residential travel behavior, most travel surveys 

mainly target residents because obtaining representative samples from tourist surveys is quite difficult. 

One of the novel approaches to addressing this challenge is the use and reliance on “big data” for 

tourist travel patterns as discussed by Schmöcker3). Though there are several kinds of data such as 

mobile network operational data, GPS data, Wi-Fi access point data, traffic IC card data, probe car 

data…etc, all of these require additional analysis to distinguish tourists from other travelers or 

residents. Furthermore, the spatial and temporal units of a majority of these data sources do not often 

match those of interest for planning purposes. For instance, in most cities, there could be several areas 

where tourists tend to gather, at which the planner intends to have a clear estimate of the visitors and 

crowding.  

 

In this study, the two main data sources used are mobile network operational data and GPS tracking 

data. The mobile network data provides us with information about the population within predefined 

mesh areas. This means that for our interest, touristic areas, an estimation based on “interpolation” or 

other statistical methods is needed. To note is that the data are based on a very large number of mobile 

phones so that the total number of persons in a mesh can be considered to be a fairly accurate estimate. 

The GPS data is the location data of users of a travel planning app with a time stamp. This data provides 

us with detailed individual data of those who agreed to share their location information. Because of 

this, the sample size is significantly smaller as well as biased towards public transport users. This 

means that it is more difficult to obtain an accurate population estimate from this data. In addition to 

these two data sets, we used “Point of Interest” (POI) data and public transportation network data to 

consider the touristic features of each mesh and its accessibility. 

 

Both, mobile mesh data and GPS data, are hence not the “ground truth data” of tourists in touristic 

areas. In this paper, we discuss their limitations and show their correlation. In particular, we aim to 

understand how well the GPS data can be used to estimate tourist numbers. The reasons are twofold. 

One is that this smaller sample data set is often more available for researchers (or affordable at a lower 

price). Secondly, if the GPS data can be used for our total tourist number estimates and if the biases in 

the dataset are understood, which also provides us with more confidence for further analysis of tourist 

characteristics, such as which places are visited in conjunction and what the typical stay times are, at 

those touristic areas. Which information, is not available from the aggregate mobile phone mesh data. 

 

This motivates the establishment of a model where the mobile mesh data is the dependent variable and 

the GPS data, accessibility information from POI and public transportation accessibility data are 

independent variables. We first establish linear regression (LR) models and then also establish models 

which consider the effect of month or time of day with hierarchical linear models (HLM). Lastly, we 



apply our model to estimate the population within each area as defined by the Kyoto city government. 

 
2. Literature Review 
A relatively rich body of literature exists about the estimation of the static number of persons in 

specific areas. Some researchers have proposed the use of multiple existing population maps i.e, GPW 

(Gridded Population of the World), LandScan, WorldPop, GRUMP (Global Rural-Urban Mapping 

Project), GHS-POP (Global Human Settlement-Population), HYDE (History Database of the Global 

Environment), census data, etc., to estimate the population within a square of any size as so called 

“mesh populations”.4), 5), and to evaluate their accuracy6), 7), 8), 9), 10). Each of these databases is based 

on census data or information from scanning data of the earth by satellite, etc. These showed that mesh 

populations obtained from such data are highly reliable.  

 

Notable is that, we found little research focusing on other “shape regions” such as touristic areas 

because most of them focus on only mesh populations. There are, however, some significant 

contributions; Balakrishnan11) estimated a residential density with a 30m resolution using street density, 

building heights, and ward-level data on car ownership. Bakillah et al.12) estimated the building level 

population using building footprints and POI data. Shimosaka et al.13) estimated the population within 

100m square meshes using POI and anonymized large-scale GPS data. There is also research on 

refining the census population14), 15). These focused on the specific areas used in census data, but these 

only refined the population obtained from census data based on multiple spatial resolutions, optical 

imagery, or telecommunications data. Kikuchi et al.16) instead used mesh data to calculate an 

“expansion factor” of a population estimate obtained from census data. This expansion factor describes 

the ratio of the mesh data to the census data, so that a population estimate can be obtained from the 

sample. Otake and Kikuchi17) used mesh data as the actual value of a population and then refined the 

origin-destination specific traffic volume based on data assimilation. Similar to what will be done in 

this study, they redistributed the mesh population into the area used in the census based on the sizes 

of each area. These contributed to estimating the population within the fine-grained mesh or regions 

which do not fit the mesh patterns.  

 

There is further research on estimating the number of persons at a specific time in a spatial area. 

Khodabandelou et al.18) and Cecaj et al.19) estimated the urban scale dynamic population densities with 

mobile network traffic data. Bachir et al.20) and Aasa et al.21) estimated the dynamic population 

densities within an area used in the census. All of the results make methodological contributions, but 

none is related to the problem of tourism estimation. For tourism applications, we note the work of 

Ahas et al.22) who used the anonymized GPS data, extracted foreigners’ data based on the information 

on the mobile phone as the tourists’ data from foreign countries, and analyzed the difference in 



behavior among nationalities. Ahas et al.23) also analyzed the data with accommodation statistics and 

showed the distribution of the bias of the data. They emphasized that their data was a sensitive issue 

due to privacy concerns. If we could access data similar to theirs, our research objective would have 

been much more quickly accomplished, however, we are unable to access such data due to privacy 

restrictions in Japan, as they emphasized. 

 

Recent research about Japanese tourism, has mainly focused upon the use of other forms of data other 

than that from the traditional surveys. Ubukata et al.24) estimated the features of tourists’ behavior 

using GPS data, i.e, the number of those visiting a specific area, the staying duration, the origin, the 

traffic mode to visit the objective site, and the number of visits the tourist’s attractiveness. Their data 

was collected with the smartphone users’ consent every 5 minutes. They reported that the number of 

users who consented was only about 5% of the Japanese population, implying that there could be a 

bias in their findings. They extracted the tourists’ data by following a 2 - step criteria; First, the number 

of visits to the objective area per year is less than 12. Secondly, the users walked around at least two 

touristic areas. Kobayashi et al.25) also used GPS traces to estimate tourist flows but only used the 

simple criteria of how many days a person is observed as a criterion to distinguish tourists from other 

persons in their sample. Dantsuji et al.26) used Wi-Fi packet data and estimated the stay time of tourists. 

Nakanishi et al.27) used Wi-Fi packet data and counted the number of persons visiting the facilities 

with Wi-Fi packet sensors. Kawakami et al.28) used the same population mesh data that will be used in 

our subsequent study and OD traffic volume that is published from the same mobile phone provider 

to estimate the OD traffic volumes. They showed that the data could contribute to understanding the 

tourists’ behavior and also pointed out the need to better estimate the total tourist population. However, 

they focused on the predefined meshes or areas created by combining the meshes, so their study did 

not consider the non-uniformly shaped touristic areas. Gao and Schmöcker29), also suggested that Wi-

Fi packet data is a good source to estimate point specific tourist numbers only near the Wi-Fi sensor 

as well as flows of tourists between specific parts of the city, however, a large number of sensor 

installations is required which may be nonviable to obtain the total number of tourists.  

 

In conclusion, the majority of the past research on tourist estimation studies is based on data from the 

traditional surveys30), 31), 32). There is relatively little research on estimating the number of tourists using 

other sources of data other than that from the traditional surveys and as such, one of the novelties of 

this study is to estimate the number of tourists using concise description of the data, specifically 

targeted at a non-residential population with a small sample size. In other words, the novelty of this 

study is the estimation of the population from mesh data using the population from small sample GPS 

data and accessibility information. In addition to this, we also estimate the population within the areas 

defined by the Kyoto city government. As shown by the literature, land-use and other “map data” also 



appear to be promising to partly overcome these problems like estimating the number of tourists. The 

subsequent study aims to explore this further within the touristic areas.  

 
3. Tourism in Kyoto and Data Overview 
3-1. Tourism in Kyoto 
Tourism behavior in Kyoto is widely varied and dispersed, and the tourists use various transport modes 

to travel between touristic areas. Figure 2 shows the map of Kyoto city and the 37 tourist areas, and 

Table 1 indicates the name and size of each area. Shen et al.33) used the same map’s definitions to 

estimate tourist flows between these areas based on a survey of tourists at public transport stations. 

The density of public transportation is higher in the south region of Kyoto city than in the north. Kyoto 

city government strongly recommends tourists to travel without their cars. This policy is called 

“Arukumachi Kyoto.” In English, “Kyoto, the town for walking around.” Thanks to this policy, many 

tourists use a variety of other transportation modes. These areas showed in Figure 2 have multiple 

sizes and features: some include only one famous touristic point, some include a few touristic points, 

and some cover huge areas like hiking trails. As Figure 2 and Table 1 illustrate, our challenge is to 

estimate the number of tourists within the various size areas and characterize them. 

 



 
Figure 2. Touristic areas in Kyoto city (Source: Survey by Kyoto city government) 

Table 1. The name and size of each touristic area 

No. Name Size 
[km2] No. Name Size 

[km2] No. Name Size 
[km2] 

1 Ohara / Yase 21.9 15 Ginkaku-Ji 
Temple 0.0742 29 Kyoto station 

Vicinity 2.20 

2 Kurama Area 5.03 16 The path of 
philosophy 1.34 30 Katsura 

Imperial Villa 0.396 

3 Takaragaike 6.83 17 Heian Jingu 
Shrine 1.59 31 Tofuku-ji 

Temple Area 1.31 

4 Kamigamo 
Shirine 1.28 18 Kyoto Imperial 

Palace 1.45 32 To-ji Temple 
Area 0.423 

5 Takao Area 1.89 19 Hanazono Area 1.03 33 Fushimi Inari 1.45 
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Shrine 

6 Shugakuin / 
Shisendo 2.35 20 Nijo Castle Area 0.765 34 Daigo-ji 

Temple Area 0.476 

7 Koetsu-Ji 
Temple 0.579 21 Nijo station 

Vicinity 0.382 35 Jonan-gu 
Shrine Area 0.111 

8 Kitayama-dori 
Street 1.17 22 Uzumasa Area 0.431 36 Fushimi Area 0.448 

9 Daitoku-Ji 
Temple 0.685 23 Arashiyama 

Area 1.54 37 Keihoku 
Direction 108 

10 Kinkaku-ji 
Temple 0.408 24 Gion Area 1.53 

 

11 Shimogamo 
Shrine 1.36 25 Kawaramachi 1.25 

12 Kitano Temmangu 
Shrine 1.03 26 Matsuo Taisha 

Area 1.30 

13 Kinugasa / 
Omuro 1.77 27 Kiyomizu-dera 

Temple 0.433 

14 Sagano Area 3.48 28 Sanjusangendo 0.702 
 

Ishigami et al.34) mentioned that mobile network operational data and GPS data focus on all traffic 

modes, Wi-Fi access point data mainly targets pedestrians within the vicinity of Wi-Fi spots, traffic IC 

card data targets only public transportation users, whereas probe car data clearly records only car users. 

From this perspective, mobile network operational data and GPS data are most suitable for our study, 

which is why we sought access to these two types of data sources. 

 

3-2. Mesh data 
First, our mobile network operational data are “mobile spatial statistics” from a major Japanese mobile 

phone service provider35). This data is generated based on the following criteria; counting the number 

of mobile phones around the cellular phone base station, expanding the counted value based on the 

diffusion rate of the mobile phone provider, and using these values to provide estimates within 

standardized 1km square mesh population. This mesh data is only published based on predetermined 

meshes defined for all of Japan. Adjusting the data to non-uniform meshes is not trivial. Consider a 

case where half the mesh is covered by inaccessible mountains and the other half of the mesh contains 

touristic POIs. (A scenario that is common in Kyoto as several temples are located at the gateways to 

mountains.) Then presuming that half of the mesh population is in the touristic part of the mesh is 

clearly an underestimated. As will be discussed in Section 5.3, we therefore use the GPS data to 

account for such cases.  

 

The total number of persons in a mesh can be considered accurate due to the significant market share 

of the mobile phone provider. The mesh data also allows us to distinguish between the people from 

Kyoto, other provinces of Japan and foreigners. The data provider is able to do so according to the 

registered address of the mobile phone. However, for privacy reasons, only aggregated data is available, 



and the number of persons within a mesh is not published if too small. This particularly implies that, 

the number of foreign tourists can only be obtained for large space and/or time intervals. In this study, 

therefore, we focus on Japanese tourists who make up about 90% of the total tourists in Kyoto. 

 

Data was obtained for some Wednesdays and weekends/ public holidays for the period (October 2018 

to January 2019) i.e., from the period before COVID-19. We considered averages for Wednesdays as 

representative of weekdays and averages for weekends and public holidays as representative of 

holidays. 

 
3-3. GPS data 
Secondly, we have access to GPS data from a public transport planning mobile phone application 

called “Arukumachi Kyoto.” Some users have given their consent to being tracked, and their locations 

and timestamps are stored mostly while the app is in use. With this individual data, user ID, and using 

language in users’ OS, it is possible to distinguish between Japanese and foreigners. To match our 

analysis with the mesh data, we use only data from those presumed as Japanese based on the language 

settings. Mainly due to the necessity of the users’ consent to obtain the data, the sample size of this 

GPS data is much smaller than the mesh data. The data will be further biased towards those using 

public transport as car users have less need to use this app. Because of this, even if we aggregate the 

data, it does not provide the actual value of the number of persons within an area and we need to 

consider it in conjunction with other data. Our data covers all days for the period between October 

2018 to January 2019.  

 

We note, that GPS data also has accuracy issues. However, we suggest this is a minor issue in our case, 

since we used GPS data only for counting the number of users per hour within each mesh. Specifically, 

we consider a traveler was in the mesh at each hour when at least one GPS record is inside the area. 

Hence errors can be made only if all records of a user over an hour (if there are multiple ones) are 

continuously outside the touristic area which the traveler visited. That case can be made only when a 

user stayed or walked around near the mesh edge for over one hour. This is, however, not likely the 

case because almost all tourists walk around in various directions for tourism. Clearly, the 

aforementioned problem, of missing records, is a more significant one.  

 

3-4. Point of Interest (POI) data 
We also used “POI data” collected from Google maps API. We collected the information on the objects 

labeled “tourist_attraction.” The information includes the latitude, longitude as well as the average 

rating by visitors of the POI and the number of ratings. Figure 3 shows the number of POIs per mesh, 

the average rating, and the total number of ratings within each mesh. As can be seen, 165 meshes have 



no POI. Their distribution is shown in Figure 3. The figure shows that most meshes do not have POIs 

and the ratings are concentrated within a few meshes. Furthermore, most of the POIs are rated highly. 

 

 
Figure 3. The distribution of the three types of POI values per mesh 

 
3-5 Public transportation data 
We also used public transportation data to explain how far the accessibility of an area explains the 

tourist presence. We estimated this accessibility by the number of stations or bus stops and travel costs. 

Since GTFS data was not available for Kyoto, the information on routes, their frequencies and fare 

information was gathered from the operators’ web pages. The average waiting time of each line at its 

terminal during 3h time intervals was used as the frequency of the line as a representative. We used 

the fare table for Kyoto city subway36) as the fare for all links on the train as fares for each train link 

were not published and since there was no fixed fare per km. Similarly, the fare for all buses was set 

to 230 JPY as this is the Kyoto city bus flat fare. Other operators have in some parts of the city charge 

slightly different (distance-depending) fares that are not published on web pages. The generalized 

travel cost, therefore, includes travel time, waiting time, and fare. We used the time value of 29.8 

JPY/min suggested in the VOT meta-analysis of Kato and Hashimoto37). Frequency is converted into 

waiting time, assuming regular service arrivals and random passenger arrival.  

 

We used the above public transport information as direct indicators of the accessibility in conjunction 

with the POI data as shown by Equation (1).  

 

𝑊𝑊𝑖𝑖𝑖𝑖 = ∑ 𝑤𝑤𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒�−𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖�𝑗𝑗     (1) 

 
where 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 is the generalized cost from station or bus stop i to mesh j in time of day t. This includes 

the travel time, waiting time, and fare. 𝑤𝑤𝑗𝑗 is the weight of mesh j based on the POIs in the mesh. We 

consider four types of POI weights to reflect their attractiveness to tourists: 𝑤𝑤𝑗𝑗
𝑝𝑝 is the average number 
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of ratings (number of rating persons) and 𝑤𝑤𝑗𝑗𝑟𝑟 the average rate within a mesh. The product of ratings 

and the number of ratings can be considered as a more comprehensive measure of attractiveness, so 
that we further define 𝑤𝑤𝑗𝑗𝑎𝑎 = 𝑤𝑤𝑗𝑗

𝑝𝑝𝑤𝑤𝑗𝑗𝑟𝑟  as well as a logarithmic version of ln�𝑤𝑤𝑗𝑗𝑎𝑎� . Our rationale for 

testing the logarithmic value of 𝑤𝑤𝑗𝑗𝑎𝑎  was that it is closer to a normal distribution than 𝑤𝑤𝑗𝑗𝑎𝑎 . In the 

regression we tested all versions as will be described in Section 5. 

 

4. Tourist number estimation from Mobile Spatial Statistics 
Since our objective is to extract the tourists in the various areas shown in Figure 2, the mobile spatial 

statistics need to be adjusted. For one, not all non-residents will be tourists and, secondly, the areas of 

interest do not match those for which data is available. 

 

To address these problems, we tested two approaches. First, we extracted the visitors’ data within the 

mesh, overlapping with the touristic areas. There are 890 meshes within Kyoto city out of which 289 

overlap with the touristic areas as shown in Figure 2. The number of persons for each month within 

the 890 meshes is shown in Figure 4, and the number of persons within the 289 “touristic meshes” in 

each month is shown in Figure 5.  

 

The figures illustrate the concentration of visitors on the touristic meshes, but clearly there are also 

non-tourists amongst the visiting population. We refer to this estimate of tourists as 𝑃𝑃�, noting that it 

will overestimate the number of tourists. The figures also illustrate that November is the busiest tourist 

month and December the least busy month. November is the month of autumn foliage in Kyoto, 

usually attracting large numbers of tourists. Instead, December, due to weather conditions and working 

and school schedules, is generally a month with little domestic tourism. Hence as a conservative 

(underestimate) of the tourist population, we extracted the part of the tourists’ data in November by 

removing the number of visitors in December and refer to this as 𝑃𝑃� and show it in Figure 6. 

 

Instead of taking a mean of the two estimates, we aim at obtaining evidence as to which approach is 

more appropriate. First, we note that Kawakami et al.28) used the same data as ours for tourist flow 

estimation and compared their approach with survey data and suggested that results from 𝑃𝑃� matched 

well with the survey result. 

 



  
Figure 4. Number of visitors in all Kyoto meshes a) on weekdays (left) b) on holidays (right) 

 

  
Figure 5. 𝑃𝑃� in each time of day a) on weekdays (left) b) on holidays (right) 

 

 

Figure 6. 𝑷𝑷� in each time of day a) on weekdays (left) b) on holidays (right) in November  
 
To obtain further evidence, we return to our second data set, the GPS traces. Also here, the problem of 

distinguishing visitors from the tourists remains. As an indicator of whether a person is likely a visitor, 

we consider the number of touristic places visited by the respondents over the period for which we 

have (infrequent) tracking records. Our hypothesis is that the number of recorded tourist areas per day 

referred to as 𝜇𝜇 , will tend to be bigger for tourists. To find a suitable threshold, we conducted a 

sensitivity analysis comparing mesh data in the form 𝑃𝑃� and 𝑃𝑃� as the dependent variable and GPS data 

as the independent variable with a LR. The results for different thresholds ranging from 𝜇𝜇 = 0 to 2 

steps of 0.1 are shown in Figure 7. We find that the best fit with 𝑃𝑃� is achieved with 𝜇𝜇 = 0.3. For 𝑃𝑃� the 
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R2 continuously increased, but the gradient of this became negligible when 𝜇𝜇 > 0.4. A value of 0.3 

might seem low, but our GPS data is sampled mostly only when the travelers used the app. Therefore, 

especially visits to neighboring, walkable attraction areas might be missed. Overall, considering these 

points, 0.3 appears to be reasonable. The number of persons based on GPS data with and without the 

threshold is shown in Figure 8. In particular, we note that for weekdays the estimate with 𝜇𝜇 appears to  

be more realistic as clearly tourists tend to populate the touristic places during the day hours. 

 

 
Figure 7. Sensitivity analysis result with 𝑷𝑷� and 𝑷𝑷� 

 

  
Figure 8. Number of persons recorded in tourism areas with 𝜇𝜇 = 0 based on GPS records  

a) on weekdays (left) b) on holidays (right) 

 

Overall, based on this analysis and the aforementioned research of Kawakami et al.28), we concluded 

that 𝑃𝑃� is a better estimate than 𝑃𝑃� for the number of tourists and that 0.3 tourist areas visited per day 

appears to be a suitable threshold to extract tourists from the longer-term GPS tracking data.  

 
We further, conclude this section by noting the small number of observations we have in Figure 9 for 

the GPS data, implying that if one wants to use the GPS data as a basis for tourist number estimation, 

additional information for appropriate scaling is required, which is our topic of discussion in the next 

section. 
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Figure 9. Number of persons recorded in tourism areas with 𝜇𝜇 = 0.3 based on GPS records  

a) on weekdays (left) b) on holidays (right) 

 

5. Tourist number estimation from GPS traces and POI information 
 
5-1 Linear regression model 
We first conducted LR to estimate the number of tourists. The dependent variable is the number of 

tourists from the mesh data per day, month, and time of day in each mesh, i.e, we consider this data as 

“true.” The independent variables are the GPS records, the estimates of attractiveness based on POI 

numbers and ratings as well as the aforementioned accessibility indices. We selected the independent 

variables following the stepwise forward method. To avoid multicollinearity, we did not use variables 

with absolute correlation coefficients exceeding 0.4 simultaneously. 

 

As a consequence, our preferred models all only have two significant uncorrelated remaining variables 

from the set of independent variables. One is 𝑔𝑔𝑖𝑖,𝑚𝑚,𝑡𝑡, the number of tourists from GPS data in mesh i, 

month m, and time of day t per day. The other is 𝑠𝑠𝑖𝑖,𝑡𝑡, the weighted number of stations (WNS) in mesh 

i and time of day t weighted by type mesh attractiveness 𝑤𝑤𝑗𝑗𝑎𝑎.The LR results for weekdays are shown 

in Table 2. We keep the model with GPS data only in the table as it shows the correlation between the 

two data sets. We note that we tested additional models with a constant but found this constant to be 

insignificant. Both variables have the expected sign with the GPS data clearly being of more 

significance. Our composite attractiveness measure is, however, also highly significant and can 

contribute to explaining the differences between the two data sets. 

 

We also show the LR results for holidays in Table 3. The results were mainly the same as on weekdays, 

but 𝛽𝛽 of GPS data was smaller, and 𝛽𝛽 of WNS was larger than the result on weekdays. The result 

suggests hence that the two data sets are less related on weekends and that the attractiveness of the 

POIs is more important in explaining the tourist number on weekends. Alternative interpretations 

could be related to different app usage which triggers the recording of a GPS location. For example, 

most tourists on weekdays probably live nearer Kyoto city and are more familiar than tourists on 
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holidays. If so, most tourists on weekdays use the app only around the station just to know when trains 

arrive at and leave the station because they have a clear understanding of the transportation system. 

On the other hand, tourists on holidays utilize the app frequently to search for the best way to their 

next destination because they are not familiar with transportation system in Kyoto city. In this case, 

the amount of GPS data could converge on weekdays, and be dispersed on holidays, which clearly 

explains our obtained result. 

 

Table 2. LR results on weekdays 

 Model 1 Model 2 
B S.E. 𝛽𝛽 t B S.E. 𝛽𝛽 t 

𝑔𝑔𝑖𝑖,𝑚𝑚,𝑡𝑡[103] 1.29 3.49 0.911 368** 1.22 3.50 0.865 348** 
𝑠𝑠𝑖𝑖,𝑡𝑡[10-2] - - - - 1.64 2.91×10-4 0.140 56.4** 
RMSE 424 402 
AIC 414479.3 414477.4 
N 27744 27744 
B: Non-standardized coefficient, S.E.: standardized error, β: standardized coefficient, *: p < 0.05, **: p < 0.01 

 

Table 3. LR results on holidays 

 Model 3 Model 4 
B S.E. 𝛽𝛽 t B S.E. 𝛽𝛽 t 

𝑔𝑔𝑖𝑖,𝑚𝑚,𝑡𝑡[103] 0.979 2.76 0.905 355** 0.892 2.50 0.824 356** 
𝑠𝑠𝑖𝑖,𝑡𝑡[10-2] - - - - 3.54 3.45×10-4 0.237 103** 
RMSE 556 474 
AIC 429466 429465 
N 27744 27744 
B: Non-standardized coefficient, S.E.: standardized error, β: standardized coefficient, *: p < 0.05, **: p < 0.01 

 

  
Figure 10. LR results a) on weekdays (left) b) on holidays (right) 
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The scatter plot, whose x-axis is the estimated population and the y-axis is the mesh population for 

Model 2, is shown in Figure 10a), and the fit of Model 4 is shown in Figure 10b). As can be seen, the 

results are satisfactory with correlation coefficients above 0.91. 

 

5-2 Hierarchical linear models 
Tourism behavior in Kyoto changes with the seasons. In particular red leaves in autumn and winter 

scenery with snow tend to attract tourists to different sites. In addition to this, the time distribution of 

GPS data can be different from that of mesh data because GPS data were collected when the app was 

used. Considering these, we test if the coefficient values vary by month and time of day using HLM.  

 

HLM is a way of considering the fixed and random effects within groups of the whole sample. 

Consideration of random effects means that group-specific variables are estimated, whereas the 

assumption of fixed effects means a “global” variable for the whole data set. In HLM, the variances 

of each coefficient among the group are considered if the coefficient has a random effect. The 

coefficient of each group is assumed to follow the normal distribution with the fixed effects as average 

and the variance. All coefficients including constant values can have a random effect, so that we must 

decide for which coefficient it is much more suitable to estimate a random effect when applying the 

HLM. We test different specifications and select the best model based on terms of minimal AIC38).  

Criteria for the appropriateness of using an HLM approach are the intra-class correlation coefficient 

(ICC) and the design effect (DE). ICC follows Eq(2), and DE follows Eq(3)38).  

 
𝐼𝐼𝐼𝐼𝐼𝐼 = 𝜏𝜏

𝜎𝜎
     (2) 

𝐷𝐷𝐷𝐷 = 1 + (𝑘𝑘 − 1) × 𝐼𝐼𝐼𝐼𝐼𝐼    (3) 

 

𝜏𝜏  is the variance among groups, and 𝜎𝜎  is the variance of all samples. 𝑘𝑘  is the average number of 

samples in each group. The larger ICC, the more significant the effect of dividing the samples. 

However, ICC becomes small if the average number of samples in each group is large. On the other 

hand, DE can consider the impact of the average number of samples in each group. It is commonly 

accepted that an ICC >0.1 or DE >2.0 indicates the suitability of using HLM. Moreover, even if these 

criteria are not satisfied, applying HLM is reasonable when the application decreases the AIC38).  

 

We divided our samples into 4 groups based on months (October, November, December, and January) 

and 24 groups based on the hour of the day. When we divided our samples into monthly groups, we 

obtained ICC = 0.0004 and 0.0005 and DE = 3.5, DE = 30 for weekdays and holidays respectively. 

For the hourly models, the ICC values were 0.0172 and 0.011 as well as 20 and 14 respectively. 

Considering these results, our adoption of the HLM is reasonable. 



The monthly results are shown in Table 4. The AIC became the smallest when the coefficient of GPS 

data had a random effect, and the coefficient of WNS data did not have a random effect. The 

comparison of the RMSE of the LR and HLM models is shown in Figure 11. In this figure, for a fairer 

comparison, we divided RMSE by the average population per month because a higher average 

population is associated with a bigger improvement in RMSE. Based on this, we can know for each 

month the improvement of using the HLM. RMSE values slightly decreased compared to the LR 

results, but the difference in RMSE is not large. Considering these results, GPS data represents the 

effect of the month well. The range improvement is slightly more significant on weekdays than on 

holidays. The fact that only GPS data has a random effect suggests that the inconsistency of mesh data 

and GPS data is more significant on weekdays than on holidays but that this effect depends on the 

month. An explanation is that mesh data on weekdays includes more non-tourists than on holiday and 

that the size of this effect has a seasonal dependence. 

 

Table 4. HLM results considering the month’s effect 

 Model 5(Weekdays) Model 6(Holidays) 
B S.E. 𝛽𝛽 t B S.E. 𝛽𝛽 t 

𝑔𝑔𝑖𝑖,𝑚𝑚,𝑡𝑡[103] 1.27 58.0 0.892 21.9** 0.906 16.3 0.831 55.5** 
𝑠𝑠𝑖𝑖,𝑡𝑡[10-2] 1.58 2.86×10-4 0.138 55.8** 3.49 3.45×10-4 0.240 101** 

Variance of coefficient 
𝑔𝑔𝑖𝑖,𝑚𝑚,𝑡𝑡[103] 13.3 1.04 

RMSE 393 472 
AIC 410249 420398 
N 27744 27744 
B: Non-standardized coefficient, S.E.: standardized error, β: standardized coefficient, *: p < 0.05, **: p < 0.01 

 

 
Figure 11. Comparison of RMSE in Models 2, 4, 5, and 6 for the months Oct 2018 to Jan 2019 
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The hourly results are shown in Table 5. Also here we find that adding random effects for the GPS 

records but not for 𝑠𝑠𝑖𝑖,𝑡𝑡 is the preferred model.  

 

The RMSE values decreased more significantly compared to the LR results for both weekdays and 

holidays. The comparison of the RMSE of the LR and HLM is shown in Figure 12.  

It can be observed that the difference in RMSE in the early morning was more significant than for 

other times of the day. The reason could be that many tourists used the app at that time of day. Further, 

comparing weekdays and holidays, the range of improvement on holidays is bigger than on weekdays 

possibly for the same reason. As additional evidence, we find that on weekdays the improvement is 

larger in earlier times of the day (predominantly 6-8 a.m.) than on holidays (8-10 a.m.) as presumably 

there is a larger proportion of non-tourists in the early morning weekday data. These effects are 

reflected in Figure 13 in comparison to Figure 10. 

 

Table 5. HLM results considering time of day effects 

 Model 7(Weekdays) Model 8(Holidays) 
B S.E. 𝛽𝛽 t B S.E. 𝛽𝛽 t 

𝑔𝑔𝑖𝑖,𝑚𝑚,𝑡𝑡[103] 1.19 27.5 0.840 43.4** 0.963 36.7 0.883 26.2** 
𝑠𝑠𝑖𝑖,𝑡𝑡[10-2] 1.63 2.84×10-4 0.143 57.5** 3.32 3.15×10-4 0.228 105** 

Variance of coefficient 
𝑔𝑔𝑖𝑖,𝑚𝑚,𝑡𝑡[103] 17.5 32.1 

RMSE 390 429 
AIC 409941 415172 
N 27744 27744 
B: Non-standardized coefficient, S.E.: standardized error, β: standardized coefficient, *: p < 0.05, **: p < 0.01 

 

 
Figure 12. Comparison of RMSE in Models 2, 4, 7, and 8 by time of day 
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Figure 13. HLM results a) on weekdays (left) b) on holidays (right) 

 

5-3 Estimation of the number of tourists within the touristic areas 
 
In previous subsections, we estimated the LR based on the standard 1km2 meshes that are provided by 

the data provider. We now apply the preferred models found in previous subsections to the comparison 

between the GPS data (plus attractiveness and accessibility) models and the mesh data by considering 

the actual tourist areas shown in Figure 2. Hence both data sets are adjusted to fit the revised areas.  

The results of using the HLM models are shown in Figure 14. The figure shows the comparison 

between the “estimated population” based on the HLM model and the “distributed mesh population” 

for each area, month and time of day. There are hence 3,552 (= 37 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 4 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑠𝑠 × 24 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

points in each graph. The distributed mesh population is obtained by a simple estimate of multiplying 

the population of each mesh that overlaps with the target area with a “GPS overlapping ratio”. This 

ratio is defined as the percentage of the GPS data that are within the target area part of the mesh 

compared to all GPS records found in this mesh. The “GPS overlapping ratio” is used instead of simply 

taking the area overlap itself to correct for cases where, for example, half of the mesh area is 

mountainous and not accessible. In that case most GPS records will be found in the target area part of 

the mesh and hence the ratio will be near one so that also all the mesh population will be assumed to 

be in the target area. 

 

Due to various assumptions discussed in this and previous sections, we acknowledge hence that both 

“distributed” and “estimated” values could be different from the actual ones. However, our matching 

shown in Figure 14 gives us some confidence that our values are not too far from the ground truth. In 

general, we observe a good model fit for the two methods that need to overcome very different data 

limitations. 
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Among the areas with worse fit, that is a larger RMSE, are Areas 25 and 29. These areas include 

stations with interchange between different train lines. Our estimated values might hence miss some 

tourists who only traverse this area but do not stay there for longer term. We further observe some 

errors in Areas 2,35 and 37. These are far from the public transportation services and have a low 

number of tourists. Random under-sampling in these areas as well as systemic under-sampling of 

tourists coming by car to these areas –who are hence less likely captured with the GPS data from our 

travel planning app - might contribute to these errors. 

 

  
Figure 14. Comparing the estimated and the distributed populations a) on weekdays b) on holidays 

 

6. Conclusion 
Our study discussed the problem of estimating the number of tourists given that most commonly 

available data sets are inadequate for this purpose. We suggest that, this is not only a common problem 

for many cities but also an often under-researched area by the transportation research community. 

Alternative methods to estimate the tourist population in specific areas at specific times are based on 

counting, tickets sales, hotel bookings, etc. However, in this paper, we showed that a range of map 

data in conjunction with relatively “small big data” could be a potentially useful alternative. 

 

In the case of Kyoto City, as well as other cities, it might be possible to obtain visitor versus residential 

data, but clearly not all visitors are tourists. We first discuss how the mobile spatial statistics might be 

adjusted accordingly and then how an adjusted set of GPS data plus POI and accessibility data can be 

used to estimate the number of tourists. The mobile spatial statistics of non-residents, in general, 

appear to give a good estimate of tourist numbers, however, the estimate unsurprisingly appears to be 

better on holidays than on weekdays.  

From the GPS tracking data, we found out that taking a threshold of 0.3 tourist attraction visits per 

day is a reasonable threshold to distinguish tourists. The value might seem low, but important to 
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remember is that our sampling frequency is quite low such that a fairly large number of attraction 

visits are likely to be missed and that the data is recorded over a longer period such that also days 

without tourist activities could be included. One reason why the sampling frequency is quite low is 

that the GPS data is sampled mostly only when travelled used the app. Also, the utilization frequency 

of the app is for many tourists low, among others, because the attraction areas in Kyoto city are easily 

walked to and from. Therefore, if applied to other GPS tracking data sets, the threshold might have to 

be revised.  

 

Our LR matching the mobile statistics with GPS records plus additional information from the POIs 

and accessibility information generally, showed a good fit as illustrated by the R2 values as well as the 

plot of the two estimates. The standardized coefficients of GPS data and the weighted number of 

stations differed between weekdays and holidays. This might suggest that the tendency to use the app 

which triggers the recording of the GPS locations is different on weekdays and holidays. The 

difference might also be due to different touring patterns on weekdays with a different weight also 

attached to accessibility. Yet another interpretation is again related to the different proportion of non-

tourists in the data on weekdays. 

The results improved further when using HLM. Dividing the samples by month also improved the 

model fit, though the increase was mostly insignificant. Instead, by dividing the samples based on the 

time of day, the model accuracy was improved more significantly. In both models, variable from GPS 

data have a random effect so that GPS data can have a bias based on month or time of day, and we 

could establish the model considering this bias. The range of improvement in the early morning, from 

6 a.m. to 8 a.m. on weekdays and from 8 a.m. to 10 a.m. on holidays, was higher than that of other 

times during the day. These results also suggested different touring patterns on weekdays and holidays 

and different proportions of non-tourists in the data on weekdays and holidays. 

 

We then applied the HLM model to estimate the tourist population within the touristic areas predefined 

by the Kyoto city government. Since there is no ground truth data for this estimation result, so we 

compared the estimations. As a result, we gained some confidence that our estimation results are 

reasonable. Nevertheless, in future work, we certainly hope to obtain some “ground truth” data to 

obtain more evidence to affirm our present conclusions. In ongoing work, we are further utilizing the 

forementioned data to obtain additional information such as the stay duration in touristic areas and 

characteristics of tourist movements in the city. 
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