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Abstract—This paper explores whether reinforcement learning
is capable of enhancing metaheuristics for the quadratic un-
constrained binary optimization (QUBO), which have recently
attracted attention as a solver for a wide range of combinatorial
optimization problems. In particular, we introduce a novel
approach called the bandit-based variable fixing (BVF). The
key idea behind BVF is to regard an execution of an arbitrary
metaheuristic with a variable fixed as a play of a slot machine.
Thus, BVF explores variables to fix with the maximum expected
reward, and executes a metaheuristic at the same time. The
bandit-based approach is then extended to fix multiple variables.
To accelerate solving multi-armed bandit problem, we implement
a parallel algorithm for BVF on a GPU. Our results suggest that
our proposed BVF enhances original metaheuristics.

Index Terms—quadratic unconstrained binary optimization,
GPGPU, multi-armed bandit problem, decision making.

I. INTRODUCTION

Triggered by the rise of quantum annealing [1], the
quadratic unconstrained binary optimization (QUBO) has been
gathering attention because it is mathematically equivalent
to finding the ground state of an Ising model. In particular,
QUBO solvers with FPGAs [2]–[4], GPUs [5], [6], and
ASICs [7], [8] are developed and reported in the literature as
a potential universal solver of a wide range of combinatorial
optimization problems. QUBO is an NP-hard problem in
which the variables are restricted to 0 and 1, and a solution is
represented by a bit vector. Thus, most of the solvers rely on
metaheuristics that flip a bit repeatedly based on the values of
∆i, a change of the objective function when bit i is flipped,
as illustrated in Fig. 1 (b). A design of a metaheuristic hence
reduced to a policy of selecting a bit to flip.

An interesting question here is whether reinforcement learn-
ing can enhance existing metaheuristics. In particular, we
focus on the multi-armed (or k-armed) bandit problem, a
fundamental and simple reinforcement learning problem [9].
Suppose that you faced repeatedly with a choice among k slot
machines, each of which returns a numerical reward based
on a stationary probability distribution that depends on each
machine. The multi-armed bandit problem aims to maximize
the expected total reward over some plays of slot machines.
This problem is simple yet practical; it has many applications.
Recently it is applied to sophisticated reinforcement learning
methods such as Monte Carlo tree search, which is notably
employed in software that plays board games [10], [11].

(a)

(b)

Fig. 1. Basic concept of our method. (a) The bandit-based variable fixing for
an n-bit QUBO. It solves a 2n-armed bandit problem and n− 1-bit QUBO
simultaneously. (b) Existing metaheuristics for quadratic unconstrained binary
optimization (QUBO), which is used in our method as a play of a slot machine.

One straightforward idea to apply the multi-armed bandit
problem to QUBO is to regard each flip as a machine.
However, this formulated problem is hard to solve because
the probability distribution becomes non-stationary; the reward
is directly determined by the value of ∆, which changes
every time a variable is flipped. Another possible idea to
apply the multi-armed bandit problem is to determine the
best metaheuristic from multiple candidates, each of which
corresponds to a machine. In principle, however, this approach
cannot outperform a system that executes the best metaheuris-
tic. Our method proposed herein is more aggressive, general,
and capable of outperforming existing metaheuristic.

Specifically, we propose to apply the multi-armed bandit
problem to a variable fixing method as a preliminary step
toward metaheuristics. Fixing a bit to 0 or 1 divides a search
space into bisection, and we can select a half search space so
that the expected solution is better. For an n-bit QUBO, the



number of possible 1-bit fixing is 2n, and we select one of
them. To estimate the best search space, we are required to
explore many possible search spaces and obtain the results by
executing a metaheuristic. At the same time, we must exploit
the knowledge of which search space is better. Here we face
the so-called exploration-exploitation dilemma, and hence we
propose to resolve this dilemma by solving the multi-armed
bandit problem.

Our key idea is to regard a variable fixing (or a search space
bisection) as a machine. We call this approach, whose basic
concept is depicted in Fig. 1, the bandit-based variable fixing
(BVF). Our method can directly use such existing flip-based
metaheuristics as a play of a slot machine in a multi-armed
bandit problem, and further improve the solution quality. In
this sense, BVF is a general method and a higher-level method
than metaheuristics. A main issue of BVF is that the number
of machines is large, i.e., 2n for n-bit QUBO. It takes much
time to play all of the machines. To address this issue, this
paper accelerates BVF by exploiting GPU parallel computing
for the multi-armed bandit problem.

Section II describes quadratic unconstrained binary opti-
mization and multi-armed bandit problem. Section III intro-
duces the bandit-based variable fixing (BVF) and its GPU
implementation. In Section IV, BVF is evaluated in terms of
the solution quality, the execution time. Finally, Section V
concludes the paper.

II. PRELIMINARIES

A. Quadratic Unconstrained Binary Optimization

The quadratic unconstrained binary optimization (QUBO) is
binary optimization where the objective function is quadratic
and there are no constraints. Let X be an n-bit vector
X = x0x1 · · ·xn−1 (xi ∈ {0, 1}); then QUBO aims to find X

such that f(X) = X>QX =
n−1∑
i=0

n−1∑
j=i

qi,jxixj is minimum,

where a matrix Q = (qi,j) determines the quadratic function
f(X). QUBO is NP-hard, and a wide range of combinatorial
optimization problems, including all of Karp’s 21 NP-complete
problems [12] and training machine learning models [13], can
be reduced to QUBO by setting the values of qi,j .

Most of the metaheuristics for solving QUBO relies on ∆-
based flip policy (Fig. 1 (b)). This policy retains ∆i for all
i ∈ {0, 1, · · · , n − 1}, which denotes the difference in the
objective function after bit i is flipped, and determine which bit
to flip based on the values. For example, a hill climbing selects
bit i = arg max ∆i, and a simulated annealing selects a bit on
the basis of Metropolis–Hastings algorithm. We may regard
X = 00 · · · 0 as an initial solution because ∆i = qi,i holds in
this solution, and ∆ can be updated in O(1) computational
cost [6]. This update computation can be parallelized by
GPU and FPGA. Some literature suggests that classical (non-
quantum) QUBO solvers outperform quantum annealing [14].

B. Multi-Armed Bandit Problem

Throughout the paper we focus on the stochastic multi-
armed bandit problem, where the rewards for each slot ma-

chine are provided from a probability distribution. Suppose
that we have k slot machines (or arms). Let µi be the expected
reward obtained from machine i (i ∈ {0, 1, · · · , k−1}). If the
value of µi for all i is known, then the best policy continues to
play machine i∗ such that µi∗ = µ∗ = maxi∈{0,1,··· ,k−1} µi.
When the number of total plays is T , the best cumulative
reward is µ∗T . However, the bandit problem assumes that
µi is unknown, and actual cumulative reward should be less
than µ∗T . This difference is called regret and denoted by
regret(T ). The objective of the bandit problem is to minimize
the expected value of regret, denoted by E[regret(T )].

Many methods to solve the multi-armed bandit problem
have been proposed. The UCB policy relies on the upper con-
fidence bound (UCB) score based on Hoeffding’s inequality.
In particular, UCB1 algorithm [15] assumes that the reward
is in [0, 1] and the UCB score is computed by µ̂i +

√
2 lnN
Ni

,
where µ̂i, N , and Ni denote a sample mean of the reward
of machine i, the number of total plays, and the number
of plays of machine i, respectively. The UCB policy selects
a machine with the maximum UCB score. Intuitively, term√

2 lnN
Ni

indicating uncertainty is large if machine i is not
played so far. This follows the principle of optimism in the fact
of uncertainty. We adopt the UCB1 algorithm in this paper.

III. METHODS

A. Basic Bandit-based Variable Fixing

First, we describe how to determine a variable fixing for
n-bit QUBO based on the multi-armed bandit problem. For
any i ∈ {0, 1, · · · , n − 1}, let machine 2i and machine
2i+ 1 correspond to fixing bit i to 0 and 1, respectively. This
assumption results in 2n-armed bandit problem. A play of each
machine corresponds to an execution of a metaheuristic with
bit i fixed. A reward is determined by whether the solution is
improved or not. If the solution is improved, then the reward is
1. If the solution is the same, the reward is 0.5. If the solution
becomes worse, the reward is 0.

Algorithm 1 shows a main function of the basic BVF. At
first, machines are initialized based on the policy for bandit
problem. Since we adopt UCB1 algorithm, the UCB score
requires at least one play trial Ni for each machine, and hence
the number of trials is initialized to 1. The algorithm then starts
from an initial solution X = 00 · · · 0 (i.e., xi = 0 and ∆i =
qi,i for all i), and repeatedly executes PLAY MACHINE(X),
where an arbitrary metaheuristic are executed with a variable
fixed and returns an updated solution.

Algorithm 2 shows pseudocodes of INIT MACHINE() and
PLAY MACHINE(X) based on the UCB1 algorithm. Since
the UCB score is computed by the number of play trials
and rewards, UCB structure consists of an integer trials
and a floating point variable reward. As an initialization in
INIT MACHINE(), the number of play trials and reward of
every machine is set to 1 and 0.5, respectively. Subsequently
PLAY MACHINE(X) fixes a variable such that the UCB score
is maximum, executes a metaheuristic, and updates the values
of trials and reward. A pair of UCB(i, j) and UCB(i, (j−1)2)



Algorithm 1 Basic bandit-based variable fixing
1: procedure BVF
2: INIT MACHINE()
3: X ← 00 · · · 0 . initial solution
4: loop
5: X ← PLAY MACHINE(X)

Algorithm 2 UCB-based selection
1: function INIT MACHINE
2: UCB(i, j).trial ← 1 . 0 ≤ i < n and j ∈ {0, 1}
3: UCB(i, j).reward ← 0.5

4: function PLAY MACHINE(X)
5: select pair of i, j such that maxUCB = UCB(i, j).
6: fix xi to j (j ∈ {0, 1}).
7: E ← f(X)
8: X ′ ← ARBITRARY METAHEURISTIC(X)
9: E′ ← f(X ′)

10: UCB(i, j).trial ← UCB(i, j).trial + 1
11: UCB(i, (j − 1)2).trial ← UCB(i, (j − 1)2).trial + 1
12: if E′ < E then
13: UCB(i, j).reward ← UCB(i, j).reward + 1
14: else if E′ > E then
15: UCB(i, (j− 1)2).reward ← UCB(i, (j− 1)2).reward+1
16: else
17: UCB(i, j).reward ← UCB(i, j).reward + 0.5
18: UCB(i, (j−1)2).reward← UCB(i, (j−1)2).reward+0.5

19: return X

(j ∈ {0, 1}) are updated at the same time because fixing xi
to 0 and fixing xi to 1 are complementary.

B. Multi-bit Bandit-based Variable Fixing

The basic BVF fixes only one variable in each slot machine,
and hence a search space is just bisected. We extend the
basic concept of BVF so that it can fix multiple variables
for dividing a search space further. Algorithm 3 shows the
extended multi-bit algorithm. In addition to INIT MACHINE()
and PLAY MACHINE(X), this algorithm includes SEMIPER-
MANENT FIX(Y,Z). Once PLAY MACHINE(X) with bit i
fixed is executed, SEMIPERMANENT FIX(Y ) fixes bit i semi-
permanently by updating Y = y0y1 · · · yn−1 so that yi = 1.
Hence, in the next iteration of the loop, bit j (j 6= i) is fixed
and consequently two variables are fixed. In general, k bits
are fixed in the k-th iteration.

Algorithm 3 Multi-bit bandit-based variable fixing on a graph
1: procedure BVF
2: INIT MACHINE()
3: X ← 00 · · · 0 . initial solution
4: Y ← 00 · · · 0 . yi = 1 if xi is fixed
5: loop
6: X ← PLAY MACHINE(X,Y, Z)
7: Y ← SEMIPERMANENT FIX(Y )
8: function SEMIPERMANENT FIX(Y )
9: if xi is fixed in the last play of a slot machine then

10: yi ← 1

11: if it takes a certain iterations after xi is fixed then
12: yi ← 0

13: return Y

Fig. 2. Concept of a multi-bit BVF on a graph. In our proposed method,
the graph is not actually a tree because it constitutes cycles when unfixing
variables.

We can regard the multi-bit BVF as a walk on a graph as
depicted in Fig. 2. While a basic BVF just repeats a walk
from a root node to one of the adjacent 2n nodes, a multi-
bit BVF further goes to distant nodes. For 2-bit fixing, we can
reach 2(n+1) possible nodes. In general, the number of nodes
corresponding to k-bit fixing is 2(n + k − 1). A trivial idea
for solving n-bit QUBO by such a permanent variable fixing
is to repeat the loop (lines 5–7 in Algorithm 3) n times as
depicted in the figure. However, this prevents us to obtain good
solutions because the value of xi is improperly determined by
the result of a limited duration of a metaheuristic. To address
this issue, we introduce semi-permanent variable fixing with
a certain duration (100 iterations in our evaluation). More
specifically, we fix bit i in a certain number of iterations after
bit i to fix (i.e., machine 2i or machine 2i + 1) is selected.
After a certain number of iterations end, the algorithm can
select bit i to fix again. The value of yi is reset to 0 at this
point (line 12 in Algorithm 3).

C. Acceleration and Parallelization with GPU

We accelerate and parallelize BVF with NVIDIA RTX
A6000 GPU and CUDA C++. CUDA programming model
consists of multiple blocks, each of which has multiple threads.
The blocks are assigned to a streaming multiprocessor (SM)
and executed. In the case of RTX A6000 GPU, 84 SMs can
execute up to 84× 1536 = 129024 threads at the same time.

Algorithm 4 shows the parallel algorithm of our multi-bit
BVF. Each block has one solution X and is responsible for
a part of machines, and all of the blocks share information
of fixed variables Y in a global memory. Thus, a host code
executed in a CPU has an array X for all of the solutions
and a shared variable Y . Furthermore, an additional variable
Z = z0z1 · · · zn−1 is introduced for retaining the values of
fixed bits. For example, if bit i is fixed to 0, we set yi = 1 and
zi = 0. This information is necessary because every solution
in the blocks must be updated so that it follows the variable
fixing before a metaheuristic is executed.

In PLAY MACHINE(X, Y, Z), which is a device code for
GPU, each block independently executes a metaheuristic.
Since each block is responsible for a part of variables to fix,



Algorithm 4 Parallel version of multi-bit BVF
1: procedure BVF . host code
2: INIT MACHINE()
3: for i← 0,# of blocks− 1 do
4: X[i]← 00 · · · 0 . initial solutions for the blocks
5: Y ← 00 · · · 0 . yi = 1 if xi is fixed
6: Z ← 00 · · · 0 . xi is fixed to zi if yi = 1
7: loop
8: X ← PLAY MACHINE(X, Y, Z) . X is an array.
9: Y,Z ← SEMIPERMANENT FIX(Y,Z)

10: function PLAY MACHINE(X, Y, Z) . device code
11: update X[blockID] if yi = 1 and zi 6= xi for any bit i

assigned to this block
12: select bit to fix from the bits assigned to this block based on

UCB policy
13: execute an arbitrary metaheuristic
14: update UCB
15: return X[blockID]

16: function SEMIPERMANENT FIX(Y,Z) . device code
17: select the best bit to fix, say xbest

i , based on the results of
metaheuristics

18: if this block is responsible for xi then
19: yi ← 1
20: zi ← xbest

i

21: if this block is responsible for xi then
22: yi ← 0

23: return Y,Z

the search is entirely different from those of the other blocks.
This parallelization makes two advantages. First, it improves
the solution quality because multiple blocks output different
solutions. Second, updating UCB is accelerated.

SEMIPERMANENT FIX(Y ) starts with a selection of the
variable to fix because there are multiple candidates given by
the blocks. This selection policy is also important. We can use
UCB also for this selection policy, but it is better to consider
the quality of the solutions generated by each block. Thus, we
select the best variable xi = xbesti to fix from the block that
obtains the best solution. The best solution is simply computed
by a reduction operation using shared memory. Then it updates
Y and Z so that they force to fix bit i to xbesti . Also, it unfixes
bit j if a certain number of iterations end since bit j is fixed.

IV. RESULTS

All of our evaluations are carried out in an environment with
AMD EPYC 7502P CPU and NVIDIA RTX A6000 GPU.
We compare original metaheuristics without variable fixing,
basic BVF, and multi-bit BVF in terms of the solution quality
and the execution time. Benchmark problems include the
maximum cut (max-cut) problem and the traveling salesman
problem (TSP), all of which are reduced to QUBO. The max-
cut instances include G1 derived from G-set and K2000. The
TSP instance gr24 is derived from TSPLIB [16].

First, we evaluate the solution quality of QUBO with
existing metaheuristics: hill climbing and the cyclic-min al-
gorithm [17]. We repeat the loop in Algorithm 4 n times.
Figs. 3–5 show the transition of the objective function during
the algorithm.

TABLE I
EXECUTION TIME (HILL CLIMBING).

Problem Original Basic BVF Multi-bit BVF
TSP (gr24) 0.3337 s 0.4086 s (+21%) 0.4030 s (+19%)

Max-cut (G1) 0.7502 s 0.9573 s (+28%) 0.9630 s (+28%)
Max-cut (k2000) 6.410 s 7.326 s (+14%) 7.441 s (+16%)

Fig. 3 shows the solution quality of hill climbing. In all
of the benchmark problems, an original hill climbing cannot
find good solutions. The basic BVF (Algorithm 1) improves
an original hill climbing because of the variable fixing, but it
also cannot escape from a local optimal solution as suggested
by the convergence. On the other hand, the multi-bit BVF
perturbs the solution and consequently improves the solution
quality. The improvement ratio over the original hill climbing
is 1.72%, 6.82%, and 3.03%, respectively. This suggests that
BVF is effective for a naive greedy local search.

Fig. 4 shows the solution quality of tabu search, which
adopts a tabu (forbidden) list of the bits. Once a bit is flipped,
it is inserted the tabu list and it is not flipped during a
certain number of iterations. As shown in Fig. 4, an original
tabu search significantly outperforms hill climbing, but it still
cannot find the optimal solution. For G1 max-cut problem,
both basic and multi-bit BVF algorithms quickly find the
optimal solution (f(X) = −11624). For K2000 max-cut
problem that is fully-connected and larger problems than G1,
the multi-bit BVF provides the best solution. Interestingly, the
multi-bit BVF provides extremely bad solutions in the first
250 steps. We assume that this is because a UCB policy makes
wrong decisions in the first some steps, but it gradually learns
to make right decisions. For TSP problem, whose QUBO
formulation is generally hard to solve, both BVF algorithms
improve the solution quality. In particular, the multi-bit BVF
successfully finds the optimal solution.

Fig. 5 shows the solution quality of the cyclic-min al-
gorithm. This algorithm provides better solutions than hill
climbing and tabu search. G1 max-cut problem is too easy for
the cyclic-min algorithm, so BVF is unnecessary for obtaining
the optimal solution. However, BVF improves the solution
quality for K2000 max-cut problem and TSP, albeit only
slightly. These results suggest that BVF potentially improves
the solution quality also for sophisticated metaheuristics.

Next, we measure the execution time for evaluating over-
head of BVF. Tab. I summarizes the representative results
for hill climbing. As shown in the table, the overhead of
the execution time is only 14–28 %, and there is no clear
difference between basic and multi-bit BVF methods. The
overhead occurs because of the additional computational costs
regarding UCB computation. Note that it takes unacceptably
long time if GPU is not used for BVF.

V. CONCLUSIONS

We have demonstrated that the multi-armed bandit problem
is capable of enhancing metaheuristics for binary optimization.
In particular, we propose a novel approach called a bandit-
based variable fixing (BVF). Our results have shown that both
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Fig. 3. Solution quality (transition of the objective function): Hill climbing and its BVF extensions
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Fig. 5. Solution quality (transition of the objective function): Cyclic-Min algorithm and its BVF extensions

basic and multi-bit BVF improves the solution quality for
hill climbing, tabu search, and the cyclic-min algorithm. The
improvement ratio over original metaheuristics is up to 6.82%,
and BVF allows a simple tabu search to find the optimal
solution for G1 max-cut problem and gr24 TSP. The results
suggest that the multi-bit BVF outperforms the basic BVF.
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