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Mode selectivity of dynamically induced conformation in many-body chainlike bead-spring models

Yoshiyuki Y. Yamaguchi *

Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

(Received 6 September 2022; revised 6 March 2023; accepted 1 June 2023; published 26 June 2023)

We consider conformation of a chain consisting of beads connected by stiff springs, where the conformation is
determined by the bending angles between the consecutive two springs. Stability of a conformation is determined
intrinsically by a potential energy function depending on the bending angles. However, effective forces induced
by excited springs can change the stability, and a conformation can stay around a local maximum or a saddle
of the bending potential. A stabilized conformation was named the dynamically induced conformation in a
previous work on a three-body system [Y. Y. Yamaguchi et al., Phys. Rev. E 105, 064201 (2022)]. A remarkable
fact is that the stabilization by the spring motion depends on the excited normal modes, which depend on a
conformation. We extend analyses of the dynamically induced conformation in many-body chainlike bead-spring
systems. Simple rules are that the lowest-eigenfrequency mode contributes to the stabilization and that the higher
the eigenfrequency is, the more the destabilization emerges. We verify theoretical predictions by performing
numerical simulations.
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I. INTRODUCTION

Conformation has a deep relationship to function as found
in isomerization. Maintenance of a conformation requires sta-
bility, and the stability is usually associated with the landscape
of a given potential energy function. We however under-
line that the dynamics also contributes to the stability of
conformation.

A typical example of the dynamical stabilization is the
Kapitza pendulum [1–4], which is an inverted pendulum un-
der uniform gravity. The inverted pendulum is intrinsically
unstable, but it is stabilized by an effective force induced
by fast vertical oscillation of the pivot. The existence of two
timescales, the slow pendulum and the fast pivot, is the key
mechanism of this stabilization. Owing to the importance
of the mechanism, this highly nonintuitive stabilization is
applied in a wide variety of fields: many-body coupled pendu-
lums [5], microscopic objects with a surrounding medium [6],
particles on a toroidal helix [7], liquid [8,9], control [10,11],
localized wave packets in a repulsive Bose-Einstein conden-
sate [12], optical molasses [13], quantum versions [14–17],
and complex potential versions [18].

In this article a similar dynamical stabilization of con-
formation is presented in a bead-spring model [19], which
is a model of polymers. The model consists of the
beads connected by stiff springs and is an autonomous
Hamiltonian system. We explain the meaning of stabilization
in an autonomous system, since there is no external force
modifying the system. It is important to divide the system
into two parts: the slow conformation part defined by the
angles of nearby springs and the fast spring part. We focus on
the subsystem of the conformation part, for which the spring
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part plays the role of the rapidly oscillating external force
of the Kapitza pendulum. Let us start from the zero spring
energy. In that case, stability of a conformation is ruled by
the given bending potential energy function: A conformation
is stable if it is at a local minimum of the bending potential
and unstable at a saddle or a local maximum. However, the
bending part is not independent of the spring part. Excitation
of the fast spring part induces additional effective forces on
the conformation part, and the effective forces can modify the
stability ruled by the bending potential. For instance, a local
maximum of the bending potential can become a local mini-
mum of the effective potential, as the spring energy increases
[20]. The meaning of the dynamical stabilization is therefore
the stabilization of a nonlocal-minimum point of the bending
potential by exciting the spring part. A dynamically stabilized
conformation is called a dynamically induced conformation
(DIC) [20].

The dynamical stabilization in the bead-spring model was
first observed in numerical simulations without the bending
potential [21] and then analyzed theoretically in the three-
body model having a bending potential [20] with the aids
of the multiple-scale analysis [22] and the averaging method
[23–25]. A surprising result of the theory is that the stabil-
ity of a conformation depends on the excited normal modes
of the springs. Suppose that the system consists of three
equal masses and two identical springs. The in-phase mode
contributes to stabilize (destabilize) the straight (fully bent)
conformation and the antiphase mode to destabilize (stabilize)
the straight (fully bent) conformation. Here the in-phase (the
antiphase) mode is a normal mode of the springs and is defined
as the two springs expanding and contracting simultaneously
(alternatively).

The mode dependence of stabilization provides a sharp
contrast with the Kapitza pendulum, since the oscillating
external force always contributes to stabilize the inverted
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FIG. 1. Chainlike bead-spring model for R2. This diagram shows
an example of N = 5 (five beads connected by four springs).

pendulum irrespective of the phase of the external force. This
aspect motivates us to extend the previous analysis [20], which
is restricted to three-body systems. The aim of this article is
to answer the following questions in chainlike bead-spring
models through the combination of the theory and numerical
simulations: Is DIC ubiquitous? How does the stabilization of
a conformation depend on the excited normal modes? Is there
a simple rule for the dependence?

The dynamical effective force is not specific in the
bead-spring model. A related dynamical effect has been dis-
cussed in the reaction dynamics of atomic clusters [26–29].
The present study then is also important in the context of
conformational isomerization in flexible molecules. It is ex-
perimentally observed in N-acetyl-tryptophan methyl amide
that the population of isomers is modified by exciting vi-
bration in a bond, and the modified population depends
on the excited bond [30], whereas the Rice-Ramsperger-
Kassel-Marcus theory [31–33] states that the destination is
determined statistically. This mode selectivity may have a
deep connection to the mode dependence of DIC.

This paper is organized as follows. The chainlike bead-
spring model is introduced in Sec. II. We extract the
equations of motion for the slow bending motion in Sec. III.
Assuming the absence of the bending potential to observe
the simplest case, we exhibit theoretically the excited mode
dependence of stability in Sec. IV, concentrating on one-
dimensional conformations, whose bending angles are 0 or π .
The theoretical predictions are examined through numerical
simulations in Sec. V by applying the Lennard-Jones potential
as the bending potential. Section VI is devoted to a summary
and discussion.

II. MODEL

We consider the N-body chainlike bead-spring model for
R2. No gravitational force is applied. The model consists of
N beads connected by N − 1 springs. The ith bead is charac-
terized by the mass mi ∈ (0,∞), the position column vector
ri ∈ R2, and the velocity column vector ṙi = dri/dt ∈ R2,
where t ∈ R is the time. (See Fig. 1 for a schematic diagram
of the system.) We will input a bending potential energy in
addition to the spring potential energy.

The system has translational symmetry, which induces
conservation of the total momentum vector. We set it as
the zero vector and neglect it. This reduction is realized by

introducing the internal coordinates

y =
(

l
φ

)
∈ R2N−2,

l = (l1, . . . , lN−1)T ∈ RN−1,

φ = (φ1, . . . , φN−1)T ∈ RN−1, (1)

where the superscript T represents transposition. The vector l
contains the lengths of the springs

li = ‖ri+1 − ri‖, i = 1, . . . , N − 1 (2)

and the natural lengths of the springs are defined as l∗ =
(l1,∗, . . . , lN−1,∗)T. The vector φ contains the bending angles
between the adjacent springs, which satisfy

cos φi = (ri+2 − ri+1) · (ri+1 − ri )

‖ri+2 − ri+1‖‖ri+1 − ri‖ , i = 1, . . . , N − 2,

(3)

where the centered dot represents the Euclidean inner product
and ‖ · · · ‖ the Euclidean norm. The last angle φN−1 is asso-
ciated with the rotational symmetry of the system and is a
cyclic coordinate. We keep it to simplify computations. As we
will see, the internal coordinates are useful to clarify coupling
between the springs l and the bending angles φ.

The Lagrangian of the model is written as

L(y, ẏ) = 1

2

2N−2∑
α,β=1

Bαβ (y)ẏα ẏβ − V (y), (4)

where V (y) is the total potential energy function. The function
Bαβ (y) is the (α, β ) element of the matrix B(y) ∈ Mat(2N −
2). Here Mat(n) represents the set of real square matrices of
size n. We will use the above notation for any matrices. The
explicit form of B(y) is given in Appendix A 1. Note that, in
general, an arabic alphabetic index runs from 1 to N − 1 and
a greek alphabetic index runs from 1 to 2N − 2.

From now on, we adopt the Einstein notation for the
sum: We take the sum over an index if it appears twice
in a term. The Euler-Lagrange equation for the variable yα

(α = 1, . . . , 2N − 2) is expressed as

Bαβ (y)ÿβ +
(

∂Bαβ

∂yγ

(y) − 1

2

∂Bβγ

∂yα

(y)

)
ẏβ ẏγ + ∂V

∂yα

(y) = 0.

(5)

III. THEORY

This section provides a general theory to derive the equa-
tions of motion which describe the slow bending motion
affected by the fast spring motion. We analyze the Euler-
Lagrange equations (5) perturbatively by introducing a small
parameter ε, which represents separation of the two timescales
between the fast spring motion and the slow bending motion.

A. Expansions of variables

We assume that there exist two timescales: t0 = t corre-
sponds to the fast spring motion and t1 = εt (0 < ε � 1)
to the slow bending motion. The two timescales induce the

064212-2



MODE SELECTIVITY OF DYNAMICALLY INDUCED … PHYSICAL REVIEW E 107, 064212 (2023)

expansion

d

dt
= ∂

∂t0
+ ε

∂

∂t1
. (6)

We also assume that the expansions

l (t0, t1) = l∗ + εl (1)(t0, t1),

φ(t0, t1) = φ(0)(t1) + εφ(1)(t0, t1) (7)

are valid, which are summarized as

y(t0, t1) = y(0)(t1) + εy(1)(t0, t1). (8)

Hereafter the superscript with the parentheses represents the
order of ε. We are interested in the large and slow motion of
the bending angles φ(0)(t1) and its stability.

The velocities l̇i and φ̇i are of the same order O(ε) and the
fastness of motion connotes a short period. Indeed, the period
of a normal mode is of O(ε0), while the period of the large
bending motion is of O(ε−1).

We note that the assumptions (6) and (8) lead to the decom-
position of potential up to O(ε2) as

V (y) = Vspring(l ) + Ubend(y) (9)

and

Ubend(y) = ε2U (2)
bend(φ(0) ) + O(ε3), (10)

where Vspring and Ubend are the spring energy and the bending
energy, respectively. (See Appendix B for details.) We can set
Vspring(l∗) = 0 without loss of generality, and the total energy
E is expanded as

E = ε2E (2) + O(ε3). (11)

B. Origin of the dependence on the excited normal modes and
total energy

Substituting Eqs. (6) and (8) into Eq. (5), we have the
expanded equations of motion for each order of ε. We sketch
the theory to highlight the excited mode dependence of stabi-
lization.

The leading terms are of O(ε), which give the linear equa-
tions

∂2y(1)

∂t2
0

= −X(y(0)(t1))y(1), (12)

where

X(y) = [B(y)]−1K ∈ Mat(2N − 2), (13)

with

K =
(

Kl O
O O

)
∈ Mat(2N − 2). (14)

The matrix Kl is the Hessian of Vspring(l ) at l∗:

(Kl )
i j = ∂2Vspring

∂li∂l j
(l∗), i, j = 1, . . . , N − 1. (15)

We assume that Kl is positive definite. There exist N − 1
oscillating normal modes and we denote their amplitudes
and phases by w = (w1, . . . ,wN−1) and δ = (δ1, . . . , δN−1),
respectively.

The slow bending motion φ(0)(t1) is captured in O(ε2),
where the fast oscillations of y(1)(t0, t1) are included. We
eliminate the fast timescale t0 by performing the averaging
over t0. This averaging also eliminates the N − 1 phases δ, but
the N − 1 amplitudes w remain and may depend on the slow
timescale t1. We then introduce a working hypothesis [20]

wi(t1)2 = νiw(t1)2, i = 1, . . . , N − 1, (16)

which is inspired by the adiabatic invariance. The prefactors
νi represent the initial distribution of energy among the N − 1
normal modes and are assumed to be constant in time. The
hypothesis can be rewritten as

E (2)
i = νiE

(2)
normal, i = 1, . . . , N − 1 (17)

where E (2)
normal is the second-order normal mode energy and

E (2)
i is the contribution from the ith normal mode. Due to

the hypothesis (16), the number of unknown time series is
reduced from N − 1 to one, i.e., w(t1), and we eliminate the
last one by using the energy conservation law. Finally, we
obtain the closed equations of motion for φ(1)(t1), and the
equations depend on the ratios of the excited normal modes

N =
(

Nl O
O O

)
, Nl = diag(ν1, . . . , νN−1) (18)

and energy E (2).

C. Equations of motion for the slow bending motion

Following the theory sketched in Sec. III B, we obtain the
closed equations of motion for the slow bending variables
φ(0)(t1) as

d2φ
(0)
i

dt2
1

+ F jn
i (y(0) )

dφ
(0)
j

dt1

dφ(0)
n

dt1
+ Gi(y(0) ) = 0 (19)

for i = 1, . . . , N − 1. (See Appendix A 2 for details.) The
functions F jn

i and Gi are

F jn
i (y) = [

B−1
φφ

]is

(
∂Bs j

φφ

∂φn
− 1

2

∂B jn
φφ

∂φs
+ 1

4
TsB

jn
φφ

)
(20)

and

Gi(y) = [
B−1

φφ

]is

(
∂U (2)

bend

∂φs
− E (2) − U (2)

bend

2
Ts

)
, (21)

where s = 1, . . . , N − 1. We underline that the (2N − 2)-
dimensional full dynamics (5) is reduced to the
(N − 1)-dimensional dynamics (19), which describes the
subsystem of the slow bending motion. Explanations of the
symbols follow.

The functions Ts represent the dynamical effects coming
from the averaging procedure of the fast normal modes. If
Ts ≡ 0 (s = 1, . . . , N − 1), Eq. (19) represents motion of φ(0)

governed solely by the bending potential U (2)
bend(φ(0) ). Their

explicit forms are

Ts(y) =
{

Tr(PT ∂B
∂φs

P�N)/Tr(PTKPN), N �= O

0, N = O.
(22)
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The matrix P ∈ Mat(2N − 2) diagonalizes the matrix X as
XP = P� and the diagonal matrix � contains the eigenvalues
of X as

� =
(

�l O
O O

)
, �l = diag(λ1, . . . , λN−1), (23)

where λ1 � · · · � λN−1 are the nontrivial eigenvalues.
We decomposed the matrix B ∈ Mat(2N − 2) into four

square submatrices of size N − 1 as

B(y) =
(

Bll (φ) Blφ (y)

Bφl (y) Bφφ (y)

)
. (24)

See Eq. (A10) for explicit forms of the submatrices.
We use the same symbol E (2) for the averaged E (2) over the

fast timescale t0 for simplicity of notation. It is read with the
hypothesis (16) as

E (2) = 1

2
Tr

[
Bφφ (y(0) )

dφ(0)

dt1

(
dφ(0)

dt1

)T
]

+ U (2)
bend(φ(0) )

+ w(t1)2

2
Tr(PTKPN). (25)

The last term of Eq. (25) is the averaged normal mode energy
〈E (2)

normal〉. We used Eq. (25) to eliminate the last unknown
variable w(t1)2 and to derive Eq. (19).

D. Remarks

We make four remarks regarding Eq. (19). They concern
the applicability and restriction of the theory.

First, the spring potential Vspring is included in Eq. (19) only
as the Hessian matrix Kl . Thus the linear parts of the springs
are essential in the present theory.

Second, the size of the matrices appearing in Ts [Eq. (22)]
and E (2) [Eq. (25)] can be reduced from 2N − 2 to N − 1.
(See Appendix C for details.)

Third, the numbering of normal modes is important for
the hypothesis (16), but a global numbering is not trivial in
general because eigenvalues of X(y(0) ) may cross by varying
φ(0) as shown in Fig. 2. Nevertheless, the numbers can be
identified in a local region of φ(0), and it is sufficient to study
the stationarity and stability of a conformation. From now
on, we number the modes locally in ascending order of the
eigenvalues unless otherwise stated.

Fourth, it is not easy to construct a global effective poten-
tial representing Eq. (19), while the three-body system has it
[20]. Moreover, it is not clear whether Eq. (19) is a potential
system.

IV. DYNAMICAL STABILITY

In this section we study the stability of stationary confor-
mations in the absence of the bending potential Ubend ≡ 0 to
shed light on the dynamical contribution. No bending poten-
tial implies that any stationary conformation is marginal if
no normal modes are excited. However, it may be stable or
unstable in Eq. (19) due to the dynamically added terms Ts.

In a chainlike system, the matrix Kl is diagonal as

Kl = diag(k1, . . . , kN−1). (26)

FIG. 2. Two eigenvalues of X, which depend on φ
(0)
1 for N =

3, for the in-phase mode (purple solid line) and the antiphase
mode (green dashed line), with m1 = m2 = m3 = m = 1 and Kl =
diag(k, k) for k = 10. The eigenvalues are (k/m)(2 ∓ cos φ

(0)
1 ). The

modes are locally numbered in ascending order of the eigenval-
ues. The conformation symbol c is defined in Sec. IV B: c = (1)
represents the straight conformation and c = (−1) the fully bent
conformation.

Further, we restrict ourselves to the uniform setting

mi = m, k j = k, l j,∗ = l∗, 1 � i � N, 1 � j � N − 1

(27)

and to the one-dimensional conformations defined in
Sec. IV B. From now on, we replace Gi(y(0) ) with Gi(φ

(0) ), for
instance, to highlight the dependence on the variables, since
y(0) = (l∗,φ(0) ) and l∗ is a constant vector.

A. Stationary point and stability

Equation (19) is rewritten as

dφ
(0)
i

dt1
= vi,

dvi

dt1
= −F jn

i (φ(0) )v jvn − Gi(φ
(0) ), (28)

where v = (v1, . . . , vN−1)T and vi = dφ
(0)
i /dt1. The station-

ary condition is

�st =
(

φ
(0)
st

vst

)
: stationary ⇐⇒

{
G

(
φ

(0)
st

) = 0
vst = 0,

(29)

where G = (G1, . . . , GN−1)T. The stability of a stationary
state �st is determined by the Jacobian matrix

J(�st ) =
(

O E
−DφG

(
φ

(0)
st

)
O

)
∈ Mat(2N − 2). (30)

Here DφG is the Jacobian matrix of G with respect to the
variables φ(0).

Our task is to compute the eigenvalues of DφG because the
eigenvalues of J are obtained from the eigenvalues of DφG.
Let us assume that the matrix DφG(φ(0)

st ) is diagonalizable
and has the eigenvalues g1, . . . , gN−1. Then the eigenval-
ues of J(�st ) are ±√−g1, . . . , ±√−gN−1. From this fact,
we call an eigenvalue gi a stable eigenvalue if gi ∈ (0,∞),
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FIG. 3. Illustration of the one-dimensional conformations for
N = 5. The stabilizing mode is characterized by the two types
of bonds: A red thin (blue thick) bond represents that the spring
is initially longer (shorter) than the natural length. Conformation
symbols are (a) c = (1, 1, 1), (b) c = (1, 1,−1), (c) c = (1, −1, 1),
(d) c = (1,−1, −1), (e) c = (−1, 1, −1), and (f) c = (−1, −1, −1).

a zero eigenvalue if gi = 0, and an unstable eigenvalue if
gi �∈ [0,∞).

Two remarks are in order. First, one eigenvalue, denoted
by gN−1, should be zero from the rotational symmetry, and we
remove it from the stability criterion. Second, for Ubend ≡ 0,
Gi is simplified to

Gi(φ
(0) ) = −E (2)

2

[
B−1

φφ

]isTs. (31)

Energy E (2) is a positive overall factor of Gi and the stability
does not depend on E (2), while the dependence on N remains
in Ts.

B. One-dimensional conformations

We focus on the one-dimensional conformations whose set
is defined as

C1 = {(φ1, . . . , φN−2) | φi ∈ {0, π} (i = 1, . . . , N − 2)}.
(32)

In words, the ith joint of a one-dimensional conformation is
straight (φi = 0) or fully bent (φi = π ). A conformation in
C1 is stationary, as proven in Appendix D. The appearance
of the bending potential Ubend forbids φi = π in general, to
avoid collision between beads, but we accept φi = π in this
section to discuss the simplest case. Later we will perform
numerical simulations in the presence of a bending potential
which forbids φi = π .

A conformation in C1 is symbolized by a sequence of 1 and
−1: The symbol 1 represents the straight joint (φ = 0) and
−1 the fully bent joint (φ = π ). The conformation symbol
is denoted by c = (c1, . . . , cN−2). We identify two symmet-
ric conformations like (1,−1,−1) and (−1,−1, 1), because
each is mapped to the other by changing the starting end of
the chain. All the possible one-dimensional conformations
for N = 5 are illustrated in Fig. 3 with their conformation
symbols.

C. Dynamical stability of one-dimensional conformations

We first excite only one normal mode: All the diagonal
elements of N are zero except for one element. The stabil-
ity of the one-dimensional conformations is summarized in
Table I with dependence on the excited normal mode, where
the normal modes are numbered in ascending order of the
eigenfrequencies around the conformation considered. Stabil-
ity is symbolized by S, Z, and U and the number after S, Z,
and U represents the number of stable, zero, and unstable
nontrivial eigenvalues of DφG, respectively, whose sum is
N − 2. A symbol is omitted if the number of corresponding
eigenvalues is zero. For instance, the symbol S2U1 represents
that the conformation has two stable eigenvalues and one
unstable eigenvalue and the conformation is unstable.

The (2N − 2)-dimensional eigenvector of a normal mode
contains the (N − 1)-dimensional vector corresponding to ini-
tial lengths of the springs; the latter vector is characterized
by a sequence of +, 0, and −. The symbols +, 0, and −
represent that the corresponding spring is initially longer than,
equal to, or shorter than the natural length, respectively. For
N = 3, the eigenvector (+,+) represents the in-phase mode
and (+,−) the antiphase mode. We define the eigenmode
symbol as s = (s1, . . . , sN−1).

We have two observations about Table I. First, each con-
formation is stabilized by the lowest-eigenfrequency mode of
the springs. The number of unstable directions increases as
the eigenfrequency gets larger. Second, the conformation of
two adjacent springs, which is characterized by the angle φi,
is stabilized by simultaneous (alternative) oscillation of the
springs when the bending angle is φi = 0 (φi = π ). This sta-
bilization rule is a straightforward extension of the three-body
system [20].

Stability analysis can be extended to mixed modes.
Analyses for N = 3, 4, and 5 suggest that the dynamical sta-
bilization is ubiquitous in a larger system having multimode
excitation. Indeed, the dynamical stabilization is realized with
an approximate probability of 0.8 up to N = 5, whereas
higher-eigenfrequency modes contribute to destabilization.
(See Appendix E.)

V. NUMERICAL TESTS

We demonstrate DIC with three examinations of the
theory: (i) the threshold of stability, (ii) the validity of the
hypothesis (16), and (iii) the robustness of DIC. We assume
the uniform setting (27) with

m = 1, k = 10, l∗ = 1. (33)

Throughout this section the small parameter ε is fixed as ε =
10−2, the number of beads as N = 5, and the time step of a
fourth-order symplectic integrator [34] as �t = 10−3. We use
the Hamiltonian in Cartesian coordinates

H (r, p) = 1

2m

N∑
i=1

‖pi‖2 + Vspring(r) + Ubend(r) (34)

to make the integrator explicit. Here r = (r1, . . . , rN ) are the
positions and p = (p1, . . . , pN ) are the conjugate momenta.
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TABLE I. Stability of one-dimensional conformations in the N-body chainlike bead-spring model under the equal masses and the identical
springs. Column 2 lists the conformations c. The mode number is defined in ascending order of the eigenfrequencies. The stability of a
conformation with a given mode is indicated by S (stable), Z (zero), and U (unstable) and the number after S, Z, and U represents the number
of stable, zero, and unstable eigenvalues of DφG, respectively. After the slash, the value of (m/k)ω2

j is shown, where ω j is the eigenfrequency
of the mode. Sequences of +, 0, and − represent the eigenmode symbol s. See the text for the definitions of c and s.

Conformation Stability/Square of eigenfrequency

N c Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

3 S1/1 U1/3
(1) (+, +) (+, −)

(−1) (+, −) (+, +)

4 S2/0.585786 Z2/2 U2/3.41421
(1,1) (+,+, +) (+, 0, −) (+,−, +)

(1, −1) (+,+, −) (+, 0, +) (+,−, −)
(−1,−1) (+,−, +) (+, 0, −) (+,+, +)

5 S3/0.381966 S2U1/1.38197 S1U2/2.61803 U3/3.61803
(1,1,1) (+, +, +, +) (+, +, −, −) (+, −, −, +) (+,−, +, −)

(1, 1, −1) (+, +, +, −) (+, +, −, +) (+, −, −, −) (+,−, +, +)
(1, −1, 1) (+, +, −, −) (+, +, +, +) (+, −, +, −) (+,−, −, +)

(1,−1, −1) (+, +, −, +) (+, +, +, −) (+, −, +, +) (+,−, −, −)
(−1, 1,−1) (+, −, −, +) (+, −, +, −) (+, +, +, +) (+,+, −, −)

(−1, −1, −1) (+, −, +, −) (+, −, −, +) (+, +, −, −) (+,+, +, +)

6 S4/0.267949 S2Z2/1 Z4/2 Z2U2/3 U4/3.73205
(1,1,1,1) (+,+, +, +, +) (+, +, 0, −, −) (+, 0,−, 0, +) (+,−, 0, +, −) (+, −, +,−, +)

(1, 1, 1, −1) (+,+, +, +, −) (+, +, 0, −, +) (+, 0,−, 0, −) (+,−, 0, +, +) (+, −, +,−, −)
(1, 1, −1, 1) (+,+, +, −, −) (+, +, 0, +, +) (+, 0,−, 0, −) (+,−, 0, −, +) (+, −, +,+, −)

(1, 1, −1, −1) (+,+, +, −, +) (+, +, 0, +, −) (+, 0,−, 0, +) (+,−, 0, −, −) (+, −, +,+, +)
(1, −1, 1, 1) (+,+, −, −, −) (+, +, 0, +, +) (+, 0,+, 0, −) (+,−, 0, −, +) (+, −, −,+, −)

(1,−1, 1, −1) (+,+, −, −, +) (+, +, 0, +, −) (+, 0,+, 0, +) (+,−, 0, −, −) (+, −, −,+, +)
(1,−1, −1, 1) (+,+, −, +, +) (+, +, 0, −, −) (+, 0,+, 0, +) (+,−, 0, +, −) (+, −, −,−, +)

(1, −1, −1, −1) (+,+, −, +, −) (+, +, 0, −, +) (+, 0,+, 0, −) (+,−, 0, +, +) (+, −, −,−, −)
(−1, 1, 1, −1) (+,−, −, −, +) (+, −, 0, +, −) (+, 0,+, 0, +) (+,+, 0, −, −) (+, +, −,+, +)

(−1, 1, −1, −1) (+,−, −, +, −) (+, −, 0, −, +) (+, 0,+, 0, −) (+,+, 0, +, +) (+, +, −,−, −)
(−1,−1, −1, −1) (+,−, +, −, +) (+, −, 0, +, −) (+, 0,−, 0, +) (+,+, 0, −, −) (+, +, +,+, +)

The canonical equations of motion are

dri

dt
= ∂H

∂ pi
,

d pi

dt
= −∂H

∂ri
, i = 1, . . . , N. (35)

A. Potential energy

The theory includes the spring potential Vspring up to the
quadratic order, and we use linear springs. The spring poten-
tial Vspring is

Vspring(r) =
N−1∑
i=1

k

2
(‖ri+1 − ri‖ − l∗)2. (36)

The bending potential Ubend is defined as

Ubend(r) =
∑
i< j

ULJ(‖r j − ri‖) (37)

and ULJ is the Lennard-Jones potential

ULJ(r) = 4εLJ

[(σ

r

)12
−

(σ

r

)6
]
, εLJ = ε2, σ = l∗

21/6
.

(38)

The value of σ is determined so that the minimum point of
ULJ coincides with l∗ = 1 [see Eq. (33)] as shown in Fig. 4(a).

FIG. 4. Lennard-Jones potential: (a) ULJ(r)/εLJ [Eq. (38)] and
(b) U (2)

LJ (φ) in N = 3 [Eq. (39)].
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FIG. 5. Six conformations satisfying ∇φU (2)
bend(φ) = 0, labeled

I–VI as indicated in the figure. The arabic numbers represent the
scaled bending potential energy Ubend/εLJ. The stability indices for
E (2)ini

normal = 0 (i.e., based on Ubend) are U3 (conformation I), S1U2 (II
and III), S2U1 (IV and V), and S3 (VI). See the caption of Table I
for the stability index.

For a guide, we show the second-order Lennard-Jones po-
tential U (2)

LJ between the first and third beads in N = 3. The
potential depends on the bending angle φ as

U (2)
LJ (φ) = 4

[(
σ 2

2l2∗ (1 + cos φ)

)6

−
(

σ 2

2l2∗ (1 + cos φ)

)3
]
.

(39)

It takes the minimum value −1 at ±φmin, where

φmin =
∣∣∣∣∣cos−1

[(
σ

21/3l∗

)2

− 1

]∣∣∣∣∣ = 2π

3
. (40)

[See Fig. 4(b).] Clearly, a straight joint (φ = 0) induces insta-
bility and a bent joint (φ = ±φmin) is stable.

B. Initial conditions

The initial positions are determined by the spring lengths
l and the bending angles φ and we set them in the following
three steps. In the first step, the spring lengths are set as the
natural lengths: l = l∗. In the second step, we compute states
satisfying ∇φU (2)

bend(φ) = 0, where ∇φ is the gradient with
respect to φ. A stationary state can be computed by using
the Newton-Raphson method for the vector field ∇φU (2)

bend
and picking up an initial trial from the six one-dimensional
conformations reported in Fig. 3. We obtained six stationary
conformations for U (2)

bend, reported in Fig. 5, which we call
conformations I–VI and denote them by φI, . . . ,φVI. The
initial bending angle vector φ is set as one of them. In the
third step, we modify the positions determined in the first
and second steps to excite normal modes in a desired manner.
For example, in conformation I, mode 1 is excited by adding
a vector which is parallel to the first column vector of the
diagonalizing matrix P(l∗,φI ) to conformation (l∗,φI ).

The initial momenta are zero for the horizontal direction of
Fig. 5. For the vertical direction, we add perturbation to escape

from a stationary state: Each momentum value is drawn from
the uniform distribution on the interval [−ε2, ε2]. The initial
kinetic energy is of O(ε4), and from Eq. (25) we have the
relation up to O(ε2),

E (2) − U (2)
bend(φx ) = E (2)ini

normal, x ∈ {I, . . . , VI}. (41)

We will investigate the stability of a conformation φx by
varying the initial value of E (2)ini

normal.

C. Dynamical stabilization

We excite mode 1 to induce the dynamical stabilization.
Conformation I is an ideal subject for examinations (i) and
(ii): Conformation φI satisfies G(φI ) = 0 for any E (2)ini

normal � 0
since φI is a one-dimensional conformation and Ts(φ

I ) = 0
[see Eqs. (C5) and (D2)]. The threshold of E (2)ini

normal at which
stability changes is predicted theoretically by computing the
eigenvalues of the Jacobian matrix DφG(φI ). Objective (iii) is
realized by investigating conformation II in detail, since φII

is no longer stationary and G(φII ) �= 0 for E (2)ini
normal > 0. Con-

formations III–V will be reported briefly and VI is skipped
because of its native stability.

The stabilization is monitored by computing the average
amplitude of φ, defined by

φamp = 1

N − 2

N−2∑
i=1

[
max

t∈[0,T ]
φi(t ) − min

t∈[0,T ]
φi(t )

]
. (42)

A stabilized conformation takes φamp � 0, while a fully flex-
ible conformation takes φamp � 2φmin = 4π/3, which is the
distance between the two minima of U (2)

LJ [see Fig. 4(b)].
The validity of the hypothesis (17) is examined by ob-
serving temporal evolution of E (2)

i /E (2)
normal [see Eq. (C7) to

compute E (2)
i ].

The stabilization of conformation I is reported in Fig. 6(a).
The amplitude φamp drastically decreases at the theoretically
obtained threshold of E (2)ini

normal. The threshold is also confirmed
from temporal evolution of φi(t ) reported in Figs. 6(b) and
6(c). Examination (i) is successfully performed in this ex-
ample. The hypothesis (16) is satisfied on the stable side
[Fig. 6(e)], while it is not satisfied in a long-time regime on
the unstable side [Fig. 6(d)]. However, even on the unsta-
ble side, the normal mode energy ratios are almost constant
in a short time regime (t < 3000) and the theoretical pre-
diction of instability is justified. Examination (ii) is then
complete.

For examination (iii), conformation II is investigated in
Fig. 7. The theoretical prediction of the stability change based
on DφG(φII ) is not as precise as observed in Fig. 7(a), since
φII is not stationary in the vector field G for E (2)ini

normal > 0.
Nevertheless, excitation of the lowest-frequency normal mode
stabilizes conformation φII: The amplitude φamp for T = 3000
decreases as E (2)ini

normal increases. The stabilization in a short-
time regime is confirmed directly in Figs. 7(b) and 7(c). The
hypothesis (16) is also approximately verified in Figs. 7(d)
and 7(e). The dynamical stabilization breaks in a long-time
regime, in which the Arnold diffusion [35] possibly kicks in
and moves the bending angles far from their initial values.
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FIG. 6. Dynamical stabilization of conformation I. (a) Amplitude
of the bending angles as a function of E (2)ini

normal. The averaged time T
is T = 3 × 103 (purple circles) and T = 3 × 104 (green triangles).
The red vertical line at E (2)ini

normal = 0.087 is the theoretical prediction
of the stability threshold. The temporal evolution of φ1 (orange
short-dashed line), φ2 (black solid line), and φ3 (light blue long-
dashed line) is shown at (b) E (2)ini

normal � 0.08 and (c) E (2)ini
normal � 0.10.

The vertical purple line marks t = 3 × 103. The temporal evolu-
tion of E (2)

i /E (2)
normal for i = 1 (dark red short-dashed line), i = 2

(green solid line), and i = 3 (dark blue long-dashed line) is shown
at (d) E (2)ini

normal � 0.08 and (e) E (2)ini
normal � 0.10. In (e) the lines for

i = 2 and 3 are hard to see because they almost coincide with the
zero-level line.

Stabilization of conformations III–V is summarized in
Fig. 8. The amplitude φamp tends to decrease as E (2)ini

normal
increases, and the theoretically obtained thresholds are ap-
proximately in good agreement with numerical observation of
conformations IV and V.

D. Excited mode dependence

Let us examine the mode dependence of stability in con-
formation I. We fix the observation time as T = 104. The
phase amplitude φamp is reported in Fig. 9 by varying the
excited mode. Mode 1 stabilizes conformation I as observed
in Fig. 6, and as the theory predicts, the three other modes
cannot stabilize it even if we increase the initial normal mode
energy E (2)ini

normal.
Next, to observe stabilization by a mixed mode, we ex-

cite modes 1 and 2 with the energy ratios ν1 ∈ [0, 1] and
ν2 = 1 − ν1, respectively. The phase amplitude is shown in
Fig. 10 as a function of ν1 with the theoretically computed
instability index, which is the number of unstable eigenvalues
of DφG(φI ). We confirm two facts: (i) DIC is robust whereas a
destabilizing mode 2 is excited (ν2 = 1 − ν1 > 0) and (ii) the
amplitude is close to 0 if the theoretically computed instability

FIG. 7. Same as Fig. 6 but for conformation II for (b) and
(d) E (2)ini

normal � 2.5 and (c) and (e) E (2)ini
normal � 6.0.

index is 0. Large amplitudes around ν1 � 0.4 where the insta-
bility index is zero can be explained as follows: Conformation
I is stable but the stability is weak, and hence the system can
escape from conformation I by a perturbation.

FIG. 8. Dynamical stabilization of conformations (a) III, (b) IV,
and (c) V. The theoretical threshold represented by the vertical red
solid line is not obtained in the reported interval of E (2)ini

normal in (a).
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FIG. 9. Phase amplitude φamp as a function of the initial normal
mode energy E (2)ini

normal. The average time is T = 104. The excited
modes are mode 1 (purple closed circles), mode 2 (green open
circles), mode 3 (blue squares), and mode 4 (orange crosses). The
vertical red line is the theoretical threshold for mode 1.

VI. SUMMARY

We have extended a theory of the dynamically induced
conformation to N-body chainlike bead-spring models, while
DIC was developed for N = 3 in a previous work [20].
The theory predicts that the dynamical stability depends on
the excited normal modes of the springs and on the normal
mode energy.

As the simplest case we have studied a system with-
out the bending potential to clearly exhibit dynamical
effects. Concentrating on the so-called one-dimensional con-
formations, which are stationary, we have investigated the
mode-dependent stability up to N = 6 under the condition
of equal masses and identical springs. Simple rules of the
mode dependence have been discovered: A conformation is
stabilized by exciting the lowest-eigenfrequency mode and
destabilization emerges as the eigenfrequency of the exited
pure normal mode becomes higher.

We stress that DIC is ubiquitous. The theory is also appli-
cable for mixed modes, and the stabilization of a conformation
is realized with an approximate probability of 0.8 up to N = 5,
when we choose a mixed mode randomly. The probability
0.8 is notable because, among four normal modes in N =
5, only one mode contributes to the stabilization and the
other three modes contribute to the destabilization. Moreover,
the uniform setting of the equal masses and the identical
springs is not essential for DIC [20]. It might be expected
that a small dissipation does not break the theory devel-
oped in this article, because the (de)stabilization mechanism
is based on separation of timescales. An examination has
to be done.

FIG. 10. Phase amplitude φamp (purple circles) as a function of
the initial normal mode energy ratio ν1 of mode 1. The remaining
energy is given to mode 2: ν2 = 1 − ν1. The average time is T =
104. The instability index (the right vertical axis) is shown by orange
crosses.

The dynamical stabilization of conformations has been
demonstrated numerically in a system having the bend-
ing potential consisting of the Lennard-Jones potentials for
each pair of beads. As the theory predicts, any quasis-
tationary conformation can be stabilized by exciting the
lowest-eigenfrequency mode which depends on the confor-
mation. It is worth noting that the Lennard-Jones potential
takes a local maximum at a straight joint, but the straight
conformation is stabilized by exciting normal modes.

Excitation of a normal mode is a nonequilibrium phe-
nomenon, because the law of equipartition of energy breaks
among the normal modes. Nevertheless, separation of the
two timescales suggests that the importance of DIC survives
in a long time by the Boltzmann-Jeans conjecture [36–42].
An important message of DIC is that the conformation is
not determined by the bending potential only, and we have
to input the dynamical (de)stabilization. This message sheds
light on a different aspect of conformation and conformation
change.
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APPENDIX A: SUPPLEMENTS TO THE THEORY

We derive the Lagrangian (4) in Appendix A 1 and the
equations of slow motion (19) in Appendix A 2.

1. Lagrangian in the internal coordinates

The Lagrangian in Cartesian coordinates is

L(r, ṙ) = K (ṙ) − V (r), (A1)

where the kinetic energy is

K (ṙ) = 1

2

N∑
i, j=1

Mi j ṙi · ṙ j (A2)

and

M = diag(m1, . . . , mN ). (A3)

We derive the Lagrangian (4) in the internal coordinates
through three changes of variables: (i) the relative coordinates
qi = ri+1 − ri, (ii) the polar coordinates of qi, and (iii) the
relative angles φi between qi+1 and qi. For simplicity of no-
tation, we will omit the symbol of transposition for vectors as
y = (l,φ) if no confusion occurs.

The first change of variables from r to q = (q1, . . . , qN ) is
performed as ⎛

⎜⎝q1
...

qN

⎞
⎟⎠ = SM

⎛
⎜⎝r1

...

rN

⎞
⎟⎠, (A4)
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where the matrix SM ∈ Mat(N ) is defined by

SM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0 0

0 −1 1 . . . 0 0

0 0 −1 . . . 0 0
...

. . .
. . .

. . .
. . .

...

0 0 0 · · · −1 1
m1/M m2/M m3/M · · · mN−1/M mN/M

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A5)

and

M = Tr M =
N∑

i=1

mi. (A6)

The last element qN is a cyclic coordinate corresponding to the
total momentum conservation due to the translational symme-
try. We set the total momentum as zero and neglect the last
element.

The second change of variables introduces the polar coor-
dinates to qi. We denote the length and the argument of qi by
li and θi, respectively.

The third change of variables from θ = (θ1, . . . , θN−1) to
φ = (φ1, . . . , φN−1) is performed as φ = Sθ, where

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0 0

0 −1 1 . . . 0 0

0 0 −1 . . . 0 0
...

. . .
. . .

. . .
. . .

...

0 0 0 · · · −1 1
1

N−1
1

N−1
1

N−1 · · · 1
N−1

1
N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mat(N − 1).

(A7)

The last element φN−1 is a cyclic coordinate corresponding to
the total angular momentum conservation due to the rotational
symmetry. We keep it for simplicity of computations.

Finally, we obtain the kinetic energy in the internal coordi-
nates y = (l,φ) as

K (y, ẏ) = 1
2 ẏTB(y)ẏ, (A8)

where

B(y) =
(

Bll (φ) Blφ (y)
Bφl (y) Bφφ (y)

)
∈ Mat(2N − 2) (A9)

and the submatrices of size N − 1 are(
Bll Blφ

Bφl Bφφ

)
=

(
AC (φ) AS (φ)LS−1

−S−TLAS (φ) S−TLAC (φ)LS−1

)
.

(A10)

The matrix L is diagonal and defined by

L(l ) = diag(l1, . . . , lN−1). (A11)

The (i, j) elements of the matrices AC and AS are

Ai j
C = Ai j cos φi, j, Ai j

S = Ai j sin φi, j, (A12)

respectively, with

φi, j =

⎧⎪⎨
⎪⎩

φ j + · · · + φi−1, i > j

0, i = j

−(φi + · · · + φ j−1), i < j,

(A13)

where the matrix A ∈ Mat(N − 1) is the upper left square
block of size N − 1 of the matrix S−T

M MS−1
M ∈ Mat(N ).

2. Averaged Euler-Lagrange equations in O(ε2 )

In O(ε2) the Euler-Lagrange equations are

Bαβ (y(0) )(ÿβ )(2) + Dβγ
α (y(0) )(ẏβ )(1)(ẏγ )(1)

+ ∂Bαβ

∂yγ

(y(0) )(ÿβ )(1)y(1)
γ + ∂U (2)

bend

∂yα

(y(0) ) = 0, (A14)

where

Dβγ
α (y) = ∂Bαβ

∂yγ

(y) − 1

2

∂Bβγ

∂yα

(y) (A15)

and

(ẏ)(1) = dy(0)

dt1
+ ∂y(1)

∂t0
, (ÿ)(1) = ∂2y(1)

∂t2
0

,

(ÿ)(2) = d2y(0)

dt2
1

+ 2
∂2y(1)

∂t0∂t1
. (A16)

The vector (ẏ)(1) is the first-order part of ẏ and (ẏ)(1) �=
dy(1)/dt .

Performing the averaging over the fast timescale t0, which
is denoted by 〈· · · 〉, we have

Bαβ (y(0) )
d2y(0)

β

dt2
1

+ Dβγ
α (y(0) )

dy(0)
β

dt1

dy(0)
γ

dt1
+ ∂U (2)

bend

∂yα

(y(0) )

= 1

2
Tr

(
∂B
∂yα

(y(0) )X(y(0) )〈y(1)y(1)T〉
)

. (A17)

The right-hand side represents the effective force by the fast
motion of normal modes. We use the relation〈

∂y(1)

∂t0

(
∂y(1)

∂t0

)T
〉

= X(y(0) )〈y(1)y(1)T〉, (A18)

proven by the integration by parts. Substituting the solutions
into Eq. (12), we have

〈y(1)y(1)T〉 = 1
2 P(y(0) )W2P(y(0) )T, (A19)

where the diagonal matrix of size 2N − 2,

W = diag(w1, . . . ,wN−1, 0, . . . , 0), (A20)

contains the amplitudes w of the normal modes.
Focusing on the motion of φ(0)(t0), we have the equa-

tions of motion

Bi j
φφ (y(0) )

d2φ
(0)
j

dt2
1

+
(

∂Bi j
φφ

∂φn
− 1

2

∂B jn
φφ

∂φi

)
dφ

(0)
j

dt1

dφ(0)
n

dt1

+ ∂U (2)
bend

∂φi
(y(0) ) = 1

4
Tr

(
∂B
∂φi

P�W2PT

)
(A21)
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because of XP = P�. Finally, substituting the hypothesis
(16), which is read as W2 = w(t1)2N, and using the averaged
energy (25), we have the equations of motion (19) for the slow
bending motion φ(0)(t1).

APPENDIX B: ORDERING OF THE POTENTIAL
FUNCTION

We prove that the assumptions of Eqs. (6) and (8) induce
Eq. (9). The potential V (y) is expanded into the power series
of ε as

V (y) = V (0)(y) + εV (1)(y) + ε2V (2)(y) + · · · . (B1)

We show that V (0) and V (1) depend on only l , and hence

Vspring(l ) = V (0)(l ) + εV (1)(l ), Ubend(y) = ε2V (2)(y)+ · · · .

(B2)

Since ẏ, ÿ = O(ε), the zeroth-order equations of motion are,
for α = 1, . . . , 2N − 2,(

∂V

∂yα

(y)

)(0)

= ∂V (0)

∂yα

(l∗,φ(0) ) = 0, (B3)

where (A)(m) extracts the O(εm) terms of A. The above equal-
ity implies that V (0) does not depend on φ, since φ(0) is
arbitrary. We denote it by V (0)(l ).

The equations of motion in O(ε) are

Bαβ (y(0) )
∂2y(1)

β

∂t2
0

+ ∂2V (0)

∂yα∂yβ

(l∗)y(1)
β + ∂V (1)

∂yα

(l∗,φ(0) ) = 0.

(B4)

The second term on the left-hand side is the spring force. The
third term is constant in the fast timescale t0 and it yields
secular terms in φ(1). The existence of the secular terms breaks
the assumption (7) and the third term must be zero. Therefore,
V (1) depends on only l as V (0).

APPENDIX C: SIMPLIFICATIONS

We can simplify the expressions of the functions Ti and
the spring energy, which help to analyze the stability of a
stationary state. The idea is to decompose a size-(2N − 2)
matrix into four half-size submatrices. The inverse matrix B−1

is decomposed into

B−1 =
(

B̃ll B̃lφ

B̃φl B̃φφ

)
∈ Mat(2N − 2), (C1)

where

B̃ll = (AC + ASA−1
C AS)−1,

B̃lφ = −A−1
C ASB̃llL−1ST,

B̃φl = SL−1A−1
S ASB̃ll ,

B̃φφ = SL−1B̃llL−1ST. (C2)

The matrix P, which diagonalizes the matrix X = B−1K, is
also decomposed into

P =
(

Pl O
Pφ E

)
∈ Mat(2N − 2), (C3)

where Pl solves the eigenvalue problem (B̃llKl )Pl =
Pl�l and

Pφ = −B−1
φφBφlPl = SL−1A−1

c ASPl . (C4)

The functions Ti are simplified to

Ti =
Tr

(
PT

l
∂B̃

−1
ll

∂φi
Pl�lNl

)
Tr(PT

l KlPlNl )
, i = 1, . . . , N − 1. (C5)

Similarly, the averaged normal mode energy 〈E (2)
normal〉 is sim-

plified as 〈
E (2)

normal

〉 = 1
2 Tr(PT

l KlPlW2
l ), (C6)

where Wl = diag(w1, . . . ,wN−1).
Temporal evolution of E (2)

i , the contribution to E (2)
normal from

the ith mode, is computed as

E (2)
i = 1

2

[
P−1

l l (1)]2

i + 1

2λi

[
P−1

l l̇
(1)]2

i , i = 1, . . . , N − 1.

(C7)

Here [P−1
l l (1)]i is the ith element of the vector P−1

l l (1). We
neglected the time derivative of P−1

l (φ(0)(t1) + εφ(1)(t0, t1))
since its contribution is higher than O(ε2).

We can choose the matrix P so that

Ql =
√

KlPl ∈ O(N − 1), (C8)

where O(n) is the set of real orthogonal matrices of size n.
The square root

√
Kl is well defined, since the real symmetric

matrix Kl is assumed to be positive definite. Choosing the
above Pl , we have PT

l KlPl = E, which further simplifies Ti

(i = 1, . . . , N − 1) and 〈E (2)
normal〉.

APPENDIX D: STATIONARITY AND STABILITY OF
ONE-DIMENSIONAL CONFORMATIONS

We first note that

AS (φ ∈ C1) = ∂AC

∂φi
(φ ∈ C1) = O, i = 1, . . . , N − 1,

(D1)

because all the elements depend on sin φi, j in AS and
∂AC/∂φi, and sin φi, j = 0 for a conformation belonging to C1.
This fact implies that

∂B̃
−1
ll

∂φi
(φ ∈ C1) =

(
∂AC

∂φi
+ ∂

(
ASA−1

C AS
)

∂φi

)
φ∈C1

= O (D2)

and

Ti(φ ∈ C1) = 0 (D3)

for i = 1, . . . , N − 1. Thus, we have G(φ ∈ C1) = 0 for
U (2)

bend ≡ 0 from Eq. (21).
Similarly, the Jacobian matrix DφG is simplified as

∂Gi

∂φ j
(φ ∈ C1) = −E (2)

2
(B−1

φφ )in Tr
(
PT

l Yn jPl�lNl
)

Tr(PlKlPlNl )
, (D4)

where

Yi j = ∂2AC

∂φi∂φ j
+ ∂AS

∂φi
A−1

C

∂AS

∂φ j
+ ∂AS

∂φ j
A−1

C

∂AS

∂φi
. (D5)
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FIG. 11. Stable (purple circles) and unstable (green crosses)
regions on the parameter plane (ν1, ν2) for N = 4. All the one-
dimensional conformations share this diagram. The parameter ν3 is
determined by ν3 = 1 − ν1 − ν2. The critical point on the line ν2 = 0
is ν1c � 0.146 446 6.

We remark that each of Yi j (i, j = 1, . . . , N − 1) is a size-

(N − 1) matrix. Further, the matrix B̃
−1
ll is also simplified to

B̃
−1
ll (φ ∈ C1) = AC (φ ∈ C1). (D6)

APPENDIX E: DYNAMICAL STABILITY OF
ONE-DIMENSIONAL CONFORMATIONS

BY MIXED MODES

Let the bending potential be absent: Ubend ≡ 0. We study
the stability of a one-dimensional conformation with exciting
multiple modes under the condition of equal masses and iden-
tical springs expressed in Eq. (27). The normal mode energy
ratios νi (i = 1, . . . , N − 1) are set as

TrN =
N−1∑
i=1

νi = 1, 0 � νi � 1, (E1)

and the number of the free parameters is N − 2. We compute
the N dependence of the stable probability ps(N ) with which
a considered one-dimensional conformation is stabilized by
excited normal modes. Note that a conformation for Ubend ≡ 0
is marginally stable and is easily modified, if no normal modes
are excited.

A necessary and sufficient condition of the stability for
N = 3 is

the conformation is stable ⇐⇒ 1
4 < ν1 � 1 (E2)

for conformations c = (1) (straight) and c = (−1) (bent). The
condition implies that the probability is

ps(3) = 0.75. (E3)

This stable probability for the two conformations is not a con-
tradiction because multistability of the two conformations is
realized in the interval 1

4 < ν1 < 3
4 . The condition of Eq. (E2)

is in agreement with the conclusion reported previously [20],
although the rotational symmetry is not reduced in the present
theory while it is reduced in the previous theory.

For N = 4, we performed numerical computations of
stability at the lattice points (n1/100, n2/100) (n1, n2 =
0, . . . , 100) on the parameter plane (ν1, ν2), where ν3 is de-
termined from Eq. (E1). The stable and unstable regions are
reported in Fig. 11, which is shared by all one-dimensional
conformations. The stability boundary is straight and the
critical value ν1c on the line ν2 = 0 is in the interval
[0.146 446 6, 0.146 446 7]. The stable probability is thus

ps(4) � 0.8535. (E4)

The stability check on the lattice points is also performed
on the parameter space (ν1, ν2, ν3) for N = 5. Among all
176 851 researched points, the six conformations are stable
at 141 019 points. Thus, the stable probability is, for all the
one-dimensional conformations,

ps(5) � 0.7974. (E5)

The probabilities ps(3), ps(4), and ps(5) suggest that dynam-
ical stability is important even if the system size is large and
multiple modes are excited.
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