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Physics-informed neural network for inverse modeling of natural-state 
geothermal systems 
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H I G H L I G H T S  

• A physics-informed neural net (PINN) for geothermics is proposed for the first time. 
• PINN predicts temperatures, pressures, and permeabilities in hydrothermal systems. 
• PINN outperformed conventional neural networks in terms of prediction accuracy. 
• PINN enhances physical validity of the predictions by considering conservation laws. 
• PINN is useful for geothermal inverse modeling by combining data and physics laws.  
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A B S T R A C T   

Predicting the temperature, pressure, and permeability at depth is crucial for understanding natural-state 
geothermal systems. As direct observations of these quantities are limited to well locations, a reliable method-
ology that predicts the spatial distribution of the quantities from well observations is required. In this study, we 
developed a physics-informed neural network (PINN), which constrains predictions to satisfy conservation of 
mass and energy, for predicting spatial distributions of temperature, pressure, and permeability of natural-state 
hydrothermal systems. We assessed the characteristics of the proposed method by applying it to 2D synthetic 
models of geothermal systems. Our results showed that the PINN outperformed the conventional neural network 
in terms of prediction accuracy. Among the PINN-predicted quantities, the errors in the predicted temperatures 
in the unexplored regions were significantly reduced. Furthermore, we confirmed that the predictions decreased 
the loss of the conservation laws. Thus, our PINN approach guarantees physical plausibility, which has been 
impossible using existing machine learning approaches. As permeability investigations in geothermal wells are 
often limited, we also demonstrate that the resistivity model obtained using the magnetotelluric method is 
effective in supplementing permeability observations and improving its prediction accuracy. This study 
demonstrated for the first time the usefulness of the PINN to a geothermal energy problem.   

1. Introduction 

Modeling the temperature distribution and permeable region at 
depth is a fundamental procedure in geothermal development because 
these factors constitute a geothermal system and enable us to answer the 
major questions of where the heat comes from and where exploitable 
resources exist. The spatial extent of the permeable regions and tem-
perature are also used for potential resource evaluation. Numerical 
simulations have played an important role in modeling multi-physics 
phenomena because heat transfer is described by partial differential 
equations coupling heat and fluid migration [1]. As a general 

development process, it is common to construct natural-state hydro-
thermal simulations by matching simulated and observed temperatures 
and pressures [3,2,4]. To construct a natural-state model, full-physics 
information, including the spatial distribution of physical properties 
and the location and quantity of the heat source that match the obser-
vations, is required. As the information at depth is mostly unknown in 
the geothermal field, trial-and-error and expert knowledge are manda-
tory. Therefore, the construction of a full-physics natural-state simula-
tion is a very time-consuming task. 

Data-driven machine learning has recently been shown to be useful 
for constructing subsurface models [6,5]. In particular, neural networks 

* Corresponding author. 
E-mail address: ishitsuka.kazuya.4w@kyoto-u.ac.jp (K. Ishitsuka).  

Contents lists available at ScienceDirect 

Applied Energy 

journal homepage: www.elsevier.com/locate/apenergy 

https://doi.org/10.1016/j.apenergy.2023.120855 
Received 19 July 2022; Received in revised form 14 December 2022; Accepted 14 February 2023   

mailto:ishitsuka.kazuya.4w@kyoto-u.ac.jp
www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2023.120855
https://doi.org/10.1016/j.apenergy.2023.120855
https://doi.org/10.1016/j.apenergy.2023.120855
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2023.120855&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Applied Energy 337 (2023) 120855

2

(NNs) have the advantage of universal approximation and have been 
utilized to estimate the temperature at depth in geothermal fields [7]. In 
this approach, the relationship between the temperature and co-
ordinates is trained at existing wells using an NN. The temperatures at 
other locations are then predicted using the trained NN. The NN 
approach has been applied to the Hohi geothermal region in Japan [8], 
the Hengill field in Iceland [9], Soultz-sous-Forêts in France [10], and 
the Kakkonda geothermal field in Japan [11,12]. Furthermore, porosity, 
which is an important property of geothermal fluid flow, has been pre-
dicted using the NN approach [13]. Despite successful applications, the 
major drawback of this approach is in respect to the physical evidence of 
the predicted quantities. Subsurface predicted quantities should follow 
fundamental physics laws, i.e., temperatures are distributed according 
to thermal conduction/convection, and thermal convection patterns are 
driven by fluid flow (Darcy flow), which is driven by a pressure gradient 
and constrained by permeability distribution. 

An NN considering a certain physics law has been desired in many 
research fields and is considered a vital step toward the next generation 
of NNs. Several attempts have introduced some of the specific conditions 
that must be followed for the loss function of NNs [16,14,15]. Such 
approaches are effective under certain conditions; however, it is difficult 
to constrain all physical information. Raissi [17] and Raissi et al. [18] 
proposed the framework of a physics-informed neural network (PINN) 
that incorporates partial and ordinary differential equations. As funda-
mental physics laws, which are used in numerical simulations, are 
described in partial and ordinary differential forms, the PINN allows the 
physics laws used in numerical simulations to constrain NN predictions. 
Automatic differentiation (AD) plays an important role in calculating the 
spatial derivatives of the loss function. In contrast to numerical differ-
entiation, AD enables the calculation of accurate derivatives without a 
geometric mesh. Owing to this framework, the prediction by the PINN 
can be regarded as a combination of data-driven and physics-driven 
predictions (Fig. 1). The PINN has been extended to fluid dynamics 
[21,19,20], computational mechanics [22,24,25,23], and material 
physics [26,27]. A recent review was published by Karniadakis et al. 
[28]. In the field of earth resources, the PINN has been used for the 
prediction of the hydraulic head and hydraulic conductivity in steady- 
state 2D (horizontal) groundwater systems using Darcy’s law 
[30,29,31]. However, the existing PINN approach cannot be applied to 
geothermal systems because temperature effects and associated changes 
in fluid properties have not been considered. Furthermore, the benefit in 
one of the most important conditions in earth resource evaluation is not 
clear: predicting quantities in an unexplored region where wells have 
not been drilled. 

In this study, we developed a PINN approach to predict spatial dis-
tributions of the temperature, permeability, and pressure in natural- 
state geothermal systems by considering the mass and energy conser-
vation laws in the loss function. Compared with the previous studies by 
Tartakovsky et al. [29], He et al. [30] and Yeung et al. [31], our PINN 
approach accounted for temperature, resulting in multi-physics 

phenomena, and pore fluid properties vary according to the equation-of- 
state. Moreover, in contrast to these previous studies, we especially 
focused on assessing the prediction capability of the PINN in unexplored 
(extrapolation) regions as the quantities in these unexplored regions are 
of vital interest in geothermal development. We used 2D synthetic data 
to evaluate the accuracy and characteristics of the predictions using the 
proposed method as has been done in many previous PINN studies (e.g., 
[22,30,21,18,23,29]). Compared with the existing NN approach for 
temperature-at-depth prediction, our aim was to develop a PINN method 
that guaranteed that the predicted temperatures, permeabilities, and 
pressures followed the governing conservation equations. In addition, 
considering that resistivity data are often acquired in geothermal fields 
using the magnetotelluric (MT) method, we examined whether the re-
sistivity obtained using the MT method can be used to decrease the 
prediction error of the PINN method. As the resistivity of rocks with 
crustal fluid is influenced by temperature, pressure, and permeability, 
resistivity observations have been used to estimate quantities (e.g., 
temperature) in geothermal fields [32,12,33] and may be useful for 
constraining the estimates by the PINN. We believe that our PINN 
method is an important milestone for developing a reliable and accurate 
NN for energy and earth science applications. 

2. Newly developed physics-informed neural network 

2.1. Governing equations of a hydrothermal system: conservation of mass 
and energy 

The natural-state hydrothermal simulation is governed by mass and 
energy conservation. Mass conservation dictates that the time rate of 
change in the mass stored in a unit volume is equal to the net mass flux 
through the volume. Mass conservation implies that as crustal fluid 
migrates in the pores within the rock mass, the masses of crustal fluid in 
and out of the unit volume are identical in a steady state. In addition, 
equilibrium of the transported heat energy is established in a hydro-
thermal system. Energy conservation dictates that heat advected/con-
ducted in should be equal to the heat advected/conducted out. 
Considering a steady-state and single-phase (e.g., fluid-only) condition, 
the mass and energy conservation equations can be described in a dif-
ferential form as follows: 

∇ •

{
Kρw

μw
(∇P+ ρwg∇z)

}

= 0 on V (1)  

∇ •

{
KρwcwT

μw
(∇P+ ρwg∇z)

}

− ∇ • λr∇T = 0 on V (2)  

where P and T represent pressure and temperature, respectively, and K, 
ρw, μw, cw,and λr are permeability, fluid density, fluid viscosity, fluid heat 
capacity, and rock thermal conductivity, respectively. g represents 
gravity acceleration. ∇ is a gradient vector operator indicating i

→∂/∂x+

j
→∂/∂y+ k

→
∂/∂z. The scalar product of the vector operator ∇ • {} is 

called divergence in vector calculus. The terms inside ∇ • {} are divided 
into two terms: the first term indicates mass flux driven by a pressure 
gradient component (∇P), and the second is driven by gravity. The en-
ergy conservation equation consists of advection and conduction terms, 
as heat energy is conveyed by both thermal advection and thermal 

conduction. The first term ∇ •
{

KρwcwT
μw

(∇P + ρwg∇z)
}

in Eq. (2) in-

dicates the influence of thermal advection, while the second term ∇ • λr 
∇ T in Eq. (2) indicates the influence of thermal conduction. Eq. (2) 
assumes that the thermal energies of the crustal fluid and rock are in an 
equilibrium state (i.e., the temperatures of the fluid and rock are iden-
tical). As shown in Eqs. (1) and (2), temperature and pressure are 
coupled and nonlinearly related. 

We can solve Eqs. (1) and (2) by applying the boundary conditions of 
temperature and pressure. The Dirichlet boundary condition imposes Fig. 1. Schematic concept of the physics-informed neural network in compar-

ison with a conventional neural network and numerical simulation. 
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constant values on surface Ξ, whereas the Neumann boundary condition 
imposes constant derivatives: 

P = PD, T = TD on ΞD (3)  

∂P
∂n

= PN ,
∂T
∂n

= TN on ΞN (4) 

In this study, we considered K as a location-dependent variable; thus, 
the values are predicted by PINN, as with T and P. The other properties, 
including ρw, μw, and cw are temperature- and pressure-dependent. 
Assuming that pure water is the crustal fluid, we implemented the 
model based on the formulation of IAPWS-IF95 and IAPWS-IF97 
[36,34,35]. The assumption of pure water is valid when geothermal 
fluid is of meteoric origin. 

2.2. Physics-informed loss function for a hydrothermal system 

The loss function of the PINN (LOSS) is described as follows [32]: 

LOSS = LOSSm + LOSSphy + LOSSb (5)  

where LOSSm is the measure of the difference between the predictions 
and observations, LOSSphy is the constraint on partial differential 
equations, and LOSSb is the boundary condition. For the hydrothermal 
system, the physics constraint LOSSphy was divided into mass and energy 
conservation (LOSSphyms and LOSSphyen). Thus, we define and minimize 
the following form of the loss function: 

LOSS = LOSSm + κ
(
ν1LOSSphyms + ν2LOSSphyen

)
+LOSSbD + ν3LOSSbN (6)    

LOSSphyms =
1

NC

∑NC

i=1

(

∇ •

{
Kiρw,i

μw,i

(
∇Pi + ρw,ig∇zi

)
})2

(8)  

LOSSphyen =
1

NC

∑NC

i=1

(

∇ •

{
Kiρw,icw,iTi

μw,i

(
∇Pi + ρw,ig∇zi

)
}

− ∇ • λr∇Ti

)2

(9)  

LOSSbD =
∑NbD

i=1

(
P̂i − P̂true,i

)2
+
∑NbD

i=1

(
T̂i − T̂true,i

)2 (10)  

LOSSbN =
∑NbN

i=1

(
∂Pi

∂n
− PN,i

)2

+
∑NbN

i=1

(
∂Ti

∂n
− TN,i

)2

(11)  

where M̂pred and M̂obs indicate the normalized values of the predictions 
and observations, respectively. NT, NP, and NK are the numbers of 
observed Ti, Pi, and Ki, respectively. κ is a user-defined weighting coef-
ficient that emphasizes the physical constraint on the loss function. The 
higher the weighting coefficient, the more strictly the physics-governing 
equation is satisfied. As shown in Eqs. (6)–(11), we obtained the loss 
functions with the variables themselves (LOSSm and LOSSbD) using 
normalized values (T̂i , P̂i , and K̂i); thus, the magnitudes of LOSSm and 
LOSSbD were compatible. On the other hand, we used absolute values 
(Ti, Pi, and Ki) for the losses with gradients (LOSSphyms, LOSSphyen, and 
LOSSbN) to obtain absolute and physically meaningful quantities. 

Therefore, we introduced the calibration coefficients ν1, ν2, and ν3 for 
each physics loss with gradient operators to compensate for the differ-
ence between the loss magnitude of variables (LOSSm and LOSSbD) and 
the magnitude of the loss component with derivatives (LOSSphyms, 
LOSSphyen, and LOSSbN): 

ν1 =
|LOSSm|epoch=0⃒
⃒LOSSphyms

⃒
⃒

epoch=0

, ν2 =
|LOSSm|epoch=0⃒
⃒LOSSphyen

⃒
⃒

epoch=0

, and

ν3 =
|LOSSm|epoch=0

|LOSSbN|epoch=0

(12)  

where |LOSSx|epoch=0 is the absolute value of LOSSx when physical 
constraints are imposed (the first epoch). As described in Section 2.3 in 
more detail, we conducted a pre-training of the PINN without con-
straints on physics and boundary conditions, followed by training of the 
PINN. Therefore, the |LOSSx|epoch=0 was obtained after pre-training and 
before the training of the PINN. The calibration coefficients ν1, ν2 and ν3, 
were fixed during the training of the PINN. 

The RMSEs of the three variables (T, P, and K) were acquired at the 
measurement points along the drilled wells. However, the physics 
constraint LOSSphy can be imposed on arbitrary locations within the 
analyzed area. The physics laws can be satisfied at the coordinates 
where the LOSSphy is imposed, while imposing the constraint at too 
many coordinates increases the computational load. In other words, the 
number of collocation points determines the fidelity of the PINN. The 
fidelity of the network can be tuned by controlling the number of 
collocation points [47]. 

For comparison with the PINN, we trained a conventional NN, which 
lacked physical information, and used the trained NN for the prediction 
of T, P, and K. In the following text, we refer to this setting as an NN or 

conventional NN. The loss function of the NN is composed of LOSSm 
only. Therefore, the NN is purely data-driven. 

2.3. PINN architecture 

The architecture of the PINN is important for calculating accurate 
derivatives of the three variables (T, P, and K) with respect to the co-
ordinates. The inputs are coordinates, and one possibility is to use a 
single network with multiple outputs (e.g., T, P, and K are the outputs of 
a single NN). However, the architecture is ineffective for calculating 
gradients; instead, it has been shown that a multiple network with an 
output of a single variable (e.g., either one of T, P, or K) leads to more 
accurate gradients. Therefore, in this study, we used three fully con-
nected NNs with each variable (T, P, and K) as the output and the co-
ordinates as the inputs (Fig. 2). Each NN was linked to the physical 
information and trained simultaneously (Fig. 2). The number of nodes 
per layer was fixed at a certain value in all layers, and the optimal 
number of layers and nodes/layers of the fully connected feed-forward 
NN used in this study was selected based on a grid search. The search 
candidates for the number of layers were 3, 4, and 5 for both the PINN 
and NN, and the number of nodes/layers was 25, 50, and 100 for the 
PINN and 15, 25, 50, and 100 for the NN. As the second derivative of 
each variable must be calculated with respect to the coordinates, the 
activation function should be second-order differentiable. A hyperbolic 
tangent was used as the activation function. For the optimizer, we 
implemented the adaptive moment optimization (Adam) algorithm 
[37]. We set the learning rate of the Adam algorithm to become pro-
gressively smaller: 5.0 × 10− 5 for 0–3000 epochs, 1.0 × 10− 5 for 

LOSSm =
1

NT

∑NT

i=1

(
T̂pred,i − T̂obs,i

)2
+

1
NP

∑NP

i=1

(
P̂pred,i − P̂obs,i

)2
+

1
NK

∑NK

i=1

(
log10 K̂pred,i − log10 K̂obs,i

)2 (7)   
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3001–10,000 epochs, and 5.0 × 10− 6 for 10,001–final epochs. When the 
training of the network began, the parameters of the NNs were randomly 
initialized using the Xavier scheme [38]. The algorithm was imple-
mented using TensorFlow libraries (version 2.3.1), and we used AD [39] 
implemented in TensorFlow to calculate the spatial derivatives of the 
mass and energy conservation equations. 

For the convergence efficiency of the network, we first performed the 
training using the loss function with LOSSm for only 30,000 epochs, 
regardless of whether the PINN or NN was used. We subsequently 

conducted an additional run for 60,000 epochs incorporating LOSSphyms, 
LOSSphyen, and LOSSb (in the case of the PINN) or using LOSSm only (in 
the case of the conventional NN). After the final epoch, we selected an 
optimal network that minimized the loss of validation data during the 
additional 60,000 epochs and used the optimal network for prediction. 
The calibration coefficients for the PINN loss function defined in Eq. (12) 
were obtained and fixed when the additional run of the PINN began 
(after 30,000 epochs of the conventional NN). Therefore, the calibration 
coefficients reflect the inconsistencies in the loss magnitudes between 

Fig. 2. Basic architecture of the physics-informed neural network (PINN) used in this study.  

Fig. 3. Reference (a), (d) temperature T; (b), (e) pressure P; and (c), (f) permeability K used in this study. The permeability model (c) was constructed from Eqs. (13) 
and (14) with β = 6.0, and the block structure of (f) was created partially based on the Lahendong geothermal model [40]. The spatial distribution of permeability K 
was constructed from Eqs. (13) and (14) with the coefficients in Table S1. The roman numbers in (f) are the block ID in Table S1. The natural-state temperature and 
pressure in (a) and (b) were calculated from the permeability structure of (c), and (d) and (e) were calculated based on (f). The TOUGH2 software [41] was used for 
the numerical simulation. 
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the three variables (T, P, and K) and the physics or boundary constraints. 
The weighting coefficient κ in Eq. (6) was set as 100. 

3. Synthetic data for validating the new physics-informed neural 
network 

3.1. Simulation model setting 

We considered a 2D hydrothermal system of 1 km × 1 km in the 
horizontal and vertical directions, with a grid size of 50 × 50 (Fig. 3a–c). 
Although the numerical modeling of developed commercial geothermal 
fields often has larger spatial scales of several kilometers, the areal size 
of 1 km × 1 km used in this study may be suitable when modeling less 
developed fields. In addition to the 1 km × 1 km model, we used a more 
realistic model with an area of 6 km × 3 km (Fig. 3d–f), whose perme-
ability structure partially resembled the Lahendong geothermal field, 
Indonesia [40]. 

For the 1 km × 1 km model, the permeability of the hydrothermal 
system was assumed to be isotropic, and its distribution was performed 
by the summation of the depth-dependent and heterogenetic patterns. 
Depth-dependent permeability represents a regular permeability 
decrease due to the buried depth, and the spatial fluctuation pattern 
reflects the local geologic influence on permeability. For depth- 
dependent permeability patterns (Fig. S1a), we used the empirical 
equation of Manning and Ingebritsen [42]: 

log10K(z) = − alog10z − b (13)  

where K(z) is the isotropic permeability in square meters (m2) and z is 
the depth in kilometers. The coefficients a and b were 3.2 and 14, 
respectively, according to Manning and Ingebritsen [42]. The empirical 
equation was proposed based on the isotropic and homogeneous 
permeability of samples collected in general geothermal environments 
[42]. 

The heterogeneity of permeability has been modeled based on the 
self-affinity model (e.g., [44,43]). The permeabilities were similar at 
short distances and became statistically different over larger distances. 
In this study, we simulated a heterogeneous pattern of permeability, 
represented by its power spectrum for the heterogenetic pattern: 

P(λ) = Λλβ (14)  

where P(λ) is the power spectrum, λ is the wavenumber, and Λ and β are 
constants. β represents the degree of spatial correlation of the perme-
ability; the smaller the β, the weaker the spatial correlation and the 
higher the heterogeneity. We considered an isotropic power spectrum of 
permeability for simplicity (i.e., β is identical in all directions) and used 
Λ = 2000 so that the magnitudes of the heterogeneous component were 
less than one-fourth of the regular component. For β of the 1 km × 1 km 
model, we used 6.0 as a base reference value (Fig. S1b), and we also used 
10.0 (Fig. S1c) to understand the characteristics of the predicted values 
depending on the spatial complexity of the permeability distribution. 
The sills and ranges of the semivariogram of this permeability pattern 
were 0.193 log10m2 and 595.2 m (β = 6.0) and 0.0814 log10m2 and 
685.4 m (β = 10.0), respectively, when the spherical model was used. 
The permeability distributions as the sum of the two components (reg-
ular and heterogeneous patterns) are shown in Fig. 3c and S2c for β =
6.0 and 10.0, respectively. We set the bulk thermal conductivity to 2.0 
Wm− 1 K− 1 at all analyzed regions. 

Assuming that the top of the simulation model corresponded to the 
ground surface, the upper boundary of the 1 km × 1 km synthetic data 
was set to a fixed temperature of 20 ◦C and fluid pore pressure of 1.013 
× 105 Pa. We assumed that the analyzed domain continued to be heated 
from the bottom; thus, a constant and uniform heat flux of 200 mW/m2 

was used as the bottom boundary. This constant heat flux is larger than 
the global average of crustal heat flow (50–140 mW/m2) [45,46]. 
However, this level is considered to be a moderate heat flux in 

geothermal and volcanic areas worldwide [46,47]. No fluid and heat 
flow boundaries were used as the boundary side. 

As a more realistic synthetic model, we created the permeability 
structure with 6 km and 3 km in the horizontal and vertical directions, 
respectively (Fig. 3f), based on the strike-slip and normal faults system 
of the Lahendong geothermal field [40]. In the middle of the model, we 
placed two faults (near-vertical block boundaries) with a dip angle of 
approximately 84◦ in the opposite direction, striking perpendicular to 
the model section (Fig. 3f). In the regions left and right of the faults, 
horizontal boundaries were placed at a depth of 1.2 km (left) and 1.5 km 
(right), whereas no horizontal boundary was placed between the faults 
(Fig. 3f). Thus, the model had five partitioned blocks (I-V in Fig. 3f). In 
each geological block, we considered the depth-dependent and hetero-
genetic patterns of permeability according to Eqs. (13) and (14). The 
coefficients for the depth-dependent permeability pattern a and b in Eq. 
(13) and those for the heterogenetic pattern Λ and β in Eq. (14) used in 
this model were set block-by-block and are listed in Table S1. The overall 
pattern of the permeability structure showed that the depth trend of 
permeability varied from block to block, and that permeability between 
the faults was higher than that of the surrounding regions (Fig. 3f). In the 
upper boundary, we set a fixed temperature of 25 ◦C and fluid pore 
pressure of 1.013 × 105 Pa. For the bottom and side boundaries, we set 
the same uniform heat flux and side boundary conditions as those used 
in the 1 km × 1 km model. These boundary settings were different from 
those used in Brehme et al. [40]. 

3.2. Well locations 

In geothermal development, direct observations of T, P, and K were 
obtained from wells drilled from the ground surface. T and P are 
generally observed using a thermometer and piezometer, respectively, 
and K along the wells can be observed when the rock cores are retrieved. 
These direct observations can be used to predict T, P, and K values in 
unexplored regions. We tested two scenarios of well placements to assess 
the characteristics of the PINN prediction. In the first scenario, the wells 
were drilled to a certain depth (vertical coordinates of 0–0.66 km in the 
1 km × 1 km model and 0–2.15 km in the 6 km × 3 km model) 
(Fig. S3a–S3c), and T, P, and K were predicted using the PINN at depths 
where wells were not reached. In the second scenario, the wells pene-
trated to the bottom of the analyzed area, but at limited horizontal lo-
cations. In the second scenario, we considered the 1 km × 1 km model 
only, and the horizontal coordinates of the wells were set at 0–0.5 km 
(Fig. S3d–S3f). The second scenario was used to evaluate extrapolation 
performance in horizontally unexplored regions. 

In the 1 km × 1 km model, we assumed that T, P, and K were 
observed at wells with a depth spacing of 20 m, and three, five, and eight 
wells were considered to evaluate the performance of the PINN’s pre-
diction depending on the number of wells (Fig. S3). For the 6 km × 3 km 
model, we considered six wells with a depth spacing of 50 m (Fig. S3g). 
For simplicity, the horizontal locations were uniformly spaced (Fig. S3). 
Of the data from the 1 km × 1 km and 6 km × 3 km models in the first 
scenario, we used data obtained down to 0.6 km and 2.0 km as training 
data, respectively, while the data within 0.6 km < depth ≦ 0.66 km (the 
1 km × 1 km model) and 2.0 km < depth ≦ 2.15 km (the 6 km × 3 km 
model) were used as validation data to select an optimal PINN archi-
tecture. For the second scenario, the validation data were randomly 
selected from 20% of the total data, and the rest of the data were used as 
training data. The validation data were used to avoid over-fitting. Spe-
cifically, we considered the trained network that minimized the loss 
obtained from the validation data as the network that was not overfitted 
and used for prediction. 

3.3. Resistivity model by MT inversion 

We calculated the electrical resistivity γ for the synthetic model with 
1 km × 1 km (Fig. 3a, b, and c) according to Archie’s law using T, P, and 
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K at each model grid: 

γ = γwϕ− m (15)  

where γw denotes the pore fluid resistivity. The symbols ϕ and m indicate 
the effective porosity and the cementation exponent, respectively. In 
this study, we considered a binary system of H2O + NaCl with 0.1 wt% 
NaCl as the pore fluid. A binary system is often used as a typical crustal 
fluid. The dependence of H2O + NaCl resistivity on T and P was obtained 
from the viscosity-dependent empirical formula developed by Watanabe 
et al. [48]. We calculated ϕ from K based on an empirical equation by 
Glover et al. [49], and the exponent m was set to 1.8, which is a 
representative value of porous material (i.e., rock) [50], in all analyzed 
regions. The resistivity of the area outside the synthetic model was set as 
300 Ωm. 

We synthesized the MT responses using forward modeling by solving 
the Maxwell equation using the controlled source audio-frequency 
magnetotelluric (CSAMT) method [52,51]. The CSAMT method in-
volves transmitting a controlled electric signal at a suite of frequencies 
to the ground from one location and measuring the received electric and 
magnetic fields in the area of interest. A total of 34 CSAMT observation 
points were placed from − 2.05–2.90 km on the horizontal coordinate 
(cf. the horizontal area for the PINN was 0.0–1.0 km) with a spacing of 
0.15 km, and the frequency range of the impedance responses was set to 
2.0–2500 Hz. The synthesized impedance responses were then trans-
formed into apparent resistivity and phase (Fig. S4). 

To invert the apparent resistivity and phase responses, we used the 
2D inversion algorithms proposed by Uchida [53] and Uchida and 
Ogawa [54]. The inversion scheme of this algorithm minimizes both the 
misfit between the observed and modeled sounding curves and the 
smoothness of the estimated model. A smoothness parameter is intro-
duced to control the smoothness of the estimated model, and the Akaike 
Bayesian information criterion (ABIC) determines the optimal smooth-
ness parameter. The area analyzed by the CSAMT inversion was 
-112–113 km horizontally at 0–80 km depth, and the area was divided 
into 48 × 36 meshes. The horizontal and vertical mesh intervals were 
larger than 0.15 and 0.013 km, respectively, and were determined by the 
intervals of the adjacent sites. We obtained the final 2D resistivity dis-
tribution of the model in Fig. 3a, b and c after 10 iterations of the al-
gorithm (Fig. 4). In the shallow region (<0.2 km depth), the resistivities 
were relatively low, but at deeper locations, the resistivities were high 
(Fig. 4). The apparent resistivities and phases calculated from the final 
resistivity distribution were in agreement with the synthetic observa-
tions (Fig. S4). 

In consideration of the resistivity model in the PINN, we added the 
following loss function for resistivity matching to the original loss 
function of the PINN in Eq. (6): 

LOSSγ =
1

Nγ

∑Nγ

i=1

(
γpred,i − γobs,i

)2 (16)  

where γpred is the predicted resistivity derived from the predicted T, P, 
and K. When deriving γpred, we assumed that the rock-physics exponent 
(m in Eq. (15)) and salinity were determined from measurements prior 
to the PINN analysis. Nγ is the number of points used to calculate Eq. 
(16) from the PINN predictions and the CSAMT observations of the re-
sistivity. The points were set to every 20 m in both the vertical and 
horizontal directions (Nγ = 50 × 50). 

3.4. Performance metrics 

In the first scenario, which predicts quantities in the deep unexplored 
region, predicted T, P, and K at all simulation grids down to 0.66 km (the 
1 km × 1 km model) and 2.15 km (the 3 km × 6 km model) were used to 
evaluate the interpolation error, while the data within 0.66–1.0 km (the 
1 km × 1 km model) and 2.15–3.0 km (the 3 km × 6 km model) were 
used to evaluate the extrapolation error. In the second scenario, which 
targeted a horizontally unexplored region, the predicted values in the 
horizontal region of 0–0.5 km and 0.5–1.0 km were evaluated as inter-
polation and extrapolation errors of the 1 km × 1 km model, respec-
tively. The prediction errors were evaluated using the following 
percentage error (Err (%)): 

Err = 100

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
χref,i − χpred,i

)2

∑N

i=1
χ2

ref,i

√
√
√
√
√
√
√

(17)  

where χ indicates temperature, pressure, or logarithm of permeability. 
The symbols χref and χpred indicate the reference quantities of the syn-
thetic model and the quantity predicted using the PINN (or NN), 
respectively. N is the number of points that measure the percentage 
error. For each network, architecture and synthetic data are described in 
Sections 2.3 and 3.1. We conducted 10 individual runs with different 
initial network parameters and the locations of collocation points and 
calculated the mean and standard deviation of the percentage error to 
assess the prediction performance of the proposed PINN and the con-
ventional NN. 

4. Results 

4.1. Interpolation and extrapolation accuracy of the PINN in comparison 
with the NN 

4.1.1. The first scenario (observation wells down to a certain depth) 
In the first scenario of the 1 km × 1 km model (Fig. 3a–c), the loss of 

validation data (at the 600–660 m depth) depending on the number of 
layers and nodes per layer is shown in Tables S2 (PINN) and S3 (NN). 
Irrespective of the PINN or NN, the large number of layers and nodes 
tested in this study (e.g., 5 layers and 50 or 100 nodes/layer) led to a 
large amount of error in the validation data (e.g., loss >10− 4) (Tables S2 
and S3). When the number of layers ≦ 4 and/or the number of nodes/ 
layer ≦ 50, the validation loss was relatively small (10− 5–10− 4) 
(Tables S2 and S3). Of the architectures tested in this study, we used 4 
layers and 50 nodes/layer and 4 layers and 25 nodes/layer for the PINN 
and conventional NN, respectively, as these network architectures entail 
a small validation error (Tables S2 and S3). The architectures were used 
in all the following PINN and NN-based analyses. 

The predicted T, P, and K by the PINN and NN when three wells were 
used in the 1 km × 1 km model, together with the difference with respect 

Fig. 4. Electrical resistivities of the synthetic natural-state model shown in 
Fig. 3a, b, and c estimated using the controlled source audio-frequency mag-
netotelluric (CSAMT) method. Black triangles indicate seven of the total syn-
thetic CSAMT observation points above the horizontal range. 
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to the reference synthetic model, are shown in Fig. 5. All of the predicted 
T, P, and K values exhibit similar patterns to the reference model in 
Fig. 3a–c, showing that both the PINN and NN approaches are effective 
for predicting these quantities at depth. Nevertheless, the predicted T by 
the PINN was more consistent with the reference T compared to the 
predictions by the NN (T3a and T3c in Fig. 5). The P and K predicted by 
the PINN were similar to those predicted by the NN (P3b, P3d, K3b, and 
K3d in Fig. 5). 

To quantitatively evaluate decreases in the prediction error, the av-
erages and standard deviations of T, P, and K from the 10 individual 
training sessions were plotted (Fig. 6). In the case of the three wells, the 
average error of T in the interpolation depth intervals (errors from 0 to 
660 m depth), returned by the PINN, was 5.9% ± 0.94% (Fig. 6a), and 
the average error of T was 8.6% ± 3.4% in the extrapolation depth in-
tervals (errors from 660 to 1000 m depth) (Fig. 6d). These percentage 
errors corresponded to the absolute error of 1.9 ◦C ± 0.30 ◦C and 5.8 ◦C 
± 2.3 ◦C in the interpolation and extrapolation depth intervals, 

respectively. On the other hand, the average error of T in the interpo-
lation and extrapolation depth intervals returned by the conventional 
NN were 6.5% ± 1.1% (2.1 ◦C ± 0.32 ◦C) and 10.4% ± 4.0% (6.9 ◦C ±
2.7 ◦C), respectively (Fig. 6a and d). The above results show that the 
predicted T values returned by the PINN were more accurate than those 
returned by the conventional NN. In particular, the PINN allowed for a 
more significant decrease in the prediction error at the unexplored depth 
(extrapolation range) compared to the prediction at the interpolation (i. 
e., developed) depth interval. 

In the cases where the number of wells was five or eight, the pre-
diction errors were reduced compared to the above case involving three 
wells (Fig. 6). This result was attributed to the larger number of wells 
analyzed. Graphical visualizations of the predicted T, P, and K values 
clearly show the effect of the increased number of wells had on the re-
sults (Fig. S5). Similar to the results from the three-well analysis, when 
five or eight wells were analyzed, the prediction accuracy of the PINN in 
relation to T was superior to that of the NN (Fig. 6a and d). Notably, T at 

Fig. 5. Temperatures (T3a and T3c), pressures (P3a and P3c), and permeabilities (K3a and K3c) predicted using the physics-informed neural network (PINN) and 
neural network (NN), respectively, under the scenario 1 of the 1 km × 1 km model and three-well case. T3b, T3d, P3b, P3d, K3b and K3d show the differences 
between the predicted and reference values. Black and white dotted lines represent the locations of both training and validation data along the synthetic observation 
wells. The PINN with 4 layers and 50 nodes/layer and the NN with 4 layers and 25 nodes/layer were used for the analysis. 
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the depth of an unexplored (i.e., extrapolation) region decreased more 
significantly compared to the predictions at shallow developed (i.e., 
interpolation) depth intervals (Fig. 6a and d). 

We found that the prediction errors for P and K returned by the PINN 
were almost equal to or lower than those returned by the conventional 
NN (Figs. 5, 6 and S5). As expected from the visual comparisons in Fig. 5, 
the decrease in the prediction error for T was more apparent than that 
for P and K. In other words, T benefited the most from the PINN 
approach in terms of the prediction accuracy in the unexplored region. 

To verify the superior prediction accuracy of the PINN compared to 
the NN in another network architecture, we tested the PINN with 4 
layers and 25 nodes per layer, which is the optimal architecture of the 
conventional NN. Light purple bars in Fig. 6 show the PINN errors, when 
the architecture of 4 layers and 25 nodes/layer was used, confirming 
that the PINN predictions were more accurate than those returned by the 
NN. We further confirmed the improvements in the prediction error in 
another synthetic model with β = 10 from Eq. (14) (Fig. S2). In this 
supplemental model, improvements in the prediction errors, especially 
in the unexplored depth interval, were also observed using the PINN 
(Figs. S6 and S7). 

The predicted T, P, and K returned by the PINN and NN in the model 
with 6 km × 3 km area (Fig. 3d–f) are shown in Fig. 7. Similar to the 
predictions of the 1 km × 1 km model, the predicted T in the unexplored 
depth region was underestimated using the NN (Tc and Td in Fig. 7), 
whereas that returned by the PINN demonstrated a more similar pattern 
to that of the reference model (Ta and Tb in Fig. 7). The percentage 
errors of T at the interpolation and extrapolation depth intervals were 
4.6% ± 0.7% and 4.1% ± 1.2% (PINN), and 6.0% ± 0.9% and 9.8% ±
1.3% (NN), respectively (Fig. 8a and b). The percentage errors of T 
returned by the PINN corresponded to absolute errors of 3.1 ± 0.56 ◦C 
and 9.0 ± 5.1 ◦C at the interpolation and extrapolation interval, 
respectively, and those returned by the NN were 3.27 ± 0.55 ◦C 

(interpolation) and 17.7 ± 2.7 ◦C (extrapolation). Additionally, the 
spatial patterns of P and K predicted by the PINN were almost consistent 
with those of the reference model (Pa-Pd and Ka–Kd in Fig. 7). The 
percentage errors of the P and K returned by the PINN were almost 
identical or lower compared with those returned by the NN (Fig. 8a and 
b). Considering these results, we conclude that the PINN developed in 
this study outperforms an NN in prediction accuracy. 

4.1.2. The second scenario (observation wells located up to a certain 
horizontal direction) 

Fig. 9 shows examples of the predicted T, P, and K when the number 
of wells was set at three in the second scenario, with the aim of pre-
dicting the quantities in the horizontal unexplored region. The pre-
dictions from the five and eight well analyses are shown in Fig. S8. In 
this scenario, we also found a decrease in the prediction error using the 
PINN. In all well analyses, the prediction error for T from the unexplored 
region returned by the PINN was smaller than that returned by the NN 
(Fig. 10d). Therefore, the prediction errors for T from the horizontally 
unexplored region can also be reduced by the PINN, such as those 
derived during the first scenario analysis. Compared with the unex-
plored region, the prediction errors among the wells (interpolation re-
gion) were similar for both the PINN and NN (Fig. 10a and S8). 

The prediction errors for P from the unexplored region were also 
reduced by the PINN (Figs. 9, 10b, e, and S8). The reduction in the error 
for P from the unexplored region was more significant in the second 
scenario than in the prediction results from the first scenario (Figs. 6e 
and 8e). In contrast, the prediction errors for K from the unexplored 
region returned by the PINN and NN were similar (Fig. 10f and S8). In 
the second scenario in relation to the interpolation region, the PINN 
errors for the predicted P were comparable to those of the NN (Fig. 10b) 
and the first scenario. However, the PINN errors for K were slightly 
smaller than those returned by the NN (Fig. 10c). 

Fig. 6. (Scenario 1 and the 1 km × 1 km model) Prediction errors of the physics-informed neural network (PINN) and neural network (NN) at the interpolation and 
extrapolation depth ranges and with different numbers of wells. (a), (b), and (c) depict the percentage errors of temperature (T), pressure (P), and the logarithm of 
permeability (log10K) at the interpolation depth interval (0 ≦ depth ≦ 660 m), and (d), (e), and (f) depict these variables at the extrapolation depth interval (660 <
depth ≦ 1000 m). The purple, light purple and light blue bars correspond to the errors returned by the PINN with 4 layers and 50 nodes/layer, PINN with 4 layers and 
25 nodes/layer and NN with 4 layers and 25 nodes/layer, respectively, and the error bars represent the standard deviation from 10 individual runs. Numbers in the 
parentheses indicate the number of observation wells. 
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Fig. 7. Temperatures (Ta and Tc), pressures (Pa and Pc), and permeabilities (Ka and Kc) predicted using the physics-informed neural network (PINN) and neural 
network (NN), respectively, under scenario 1 of the 6 km × 3 km model. The PINN with 4 layers and 50 nodes/layer and the NN with 4 layers and 25 nodes/layer 
were used for the analysis. 
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Fig. 8. (Scenario 1 and the 6 km × 3 km model) Prediction errors of the physics-informed neural network (PINN) and neural network (NN) at the (a) interpolation 
and (b) extrapolation depth ranges. 

Fig. 9. The temperatures (T3a and T3c), pressures (P3a and P3c), and permeabilities (K3a and K3c) predicted using the physics-informed neural network (PINN) and 
neural network (NN), respectively, under the scenario 2 of the 1 km × 1 km model and the number of wells was three. T3b, T3d, P3b, P3d, K3b, and K3d are the 
differences between the predicted and reference values. The black and white dotted lines represent the locations of both training and validation data along the 
synthetic observation wells. For the analysis, the PINN with 4 layers and 50 nodes/layer and the NN with 4 layers and 25 nodes/layer were used. 
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4.2. Conservation of mass and energy 

Our results showed that the PINN predictions decreased the loss of 
mass and energy conservation, which was not guaranteed when using a 
conventional NN. Using the PINN, the average loss of the mass 

conservation law in Eq. (8) decreased by 4.6 × 10− 2% (three wells), 1.1 
× 10− 3% (five wells), and 8.9 × 10− 4% (eight wells) compared with the 
same average loss when using the NN in the first scenario of the 1 km ×
1 km model. In addition, the PINN decreased the average loss of the 
energy conservation law in Eq. (9) by 4.6 × 10− 2% (three wells), 1.1 ×

Fig. 10. (Scenario 2 and the 1 km × 1 km model) Prediction errors of the physics-informed neural network (PINN) and neural network (NN) for the interpolation and 
extrapolation horizontal ranges with different numbers of wells. (a), (b), and (c) depict percentage errors for temperature (T), pressure (P), and permeability (K) at 
the interpolation horizontal interval (0 ≦ horizontal axis ≦ 500 m), and (d), (e), and (f) depict these variables at the extrapolation horizontal interval (500 <
horizontal axis ≦ 1000 m). The purple and light blue bars correspond to the errors returned by the PINN and NN, respectively, and the error bars represent the 
standard deviation from 10 individual runs. Numbers in the parentheses indicate the number of observation wells. 

Fig. 11. (Scenario 1 and the 1 km × 1 km model) Prediction errors of the physics-informed neural network (PINN) considering the resistivity model and the five-well 
case. “X from CSAMT R" and “X from true R" indicate the predicted variable X (temperature (T), pressure (P) or the logarithm of permeability (K)) returned by the 
PINN incorporating the resistivity obtained by the CSAMT method and the true resistivity model (i.e., the resistivity model without the CSAMT inversion), 
respectively (a), (b), and (c) depict the percentage errors of temperature, pressure, and permeability at the interpolation depth interval (0 ≦ depth ≦ 660 m), and (d), 
(e), and (f) depict these variables at the extrapolation depth interval (660 < depth ≦ 1000 m). The error bars represent the standard deviation from 10 individual 
runs. The network architecture of the PINN used was 4 layers and 50 nodes/layer. 
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10− 2% (five wells), and 8.6 × 10− 3% (eight wells) compared with the 
same average loss when using the NN in the 1 km × 1 km model. 
Although the loss function and number of epochs were the same in all 
the well cases, the loss of conservation laws decreased with an increase 
in the number of wells. This result may be attributable to the fact that a 
larger number of wells allows the predicted values to converge more 
easily to the global minimum. In addition, the reduction of the losses of 
the conservation laws were confirmed by applying the PINN to the first 
scenario of the 6 km × 3 km model. The average loss of the mass and 
energy conservation laws in this model decreased by 4.6 × 10− 3% and 
4.7 × 10− 3%, respectively. 

In the second scenario, the losses of mass and energy conservation 
also improved when using the PINN. When using the PINN, the average 
loss of mass conservation reduced by 4.1 × 10− 2% (three wells), 1.9 ×
10− 2% (five wells), and 2.5 × 10− 1% (eight wells) compared to the 
average loss of mass conservation when using the NN. The loss reduction 
in the conservation of energy when using the PINN was 4.1 × 10− 2% 
(three wells), 2.1 × 10− 2% (five wells), and 2.4 × 10− 1% (eight wells) 
compared to the loss reduction when using NN. Considering these re-
sults, we conclude that the T, P, and K predicted by the PINN mitigate 
the deviation from these conservation laws, thereby physically pre-
dicting more consistent T, P, and K values. 

4.3. Use of the resistivity model by the CSAMT method 

The prediction errors by accounting for the resistivity taken by the 
CSAMT method (shown in Fig. 4) in the scenario 1 of the 1 km × 1 km 
model are shown in Fig. 11. In the analysis, we considered five obser-
vation wells. Compared with the results from the PINN without 
considering the resistivity model (Fig. 6), the prediction errors of K at 
the interpolation and extrapolation depth intervals were smaller by 
considering the resistivity model (Figs. 6c, f, 11c and f), indicating that 
the resistivity model could help improve the prediction of K. When the 
resistivity model obtained by the CSAMT method was considered, the 
prediction errors for T at the extrapolation depth interval were almost 
same as the results from the PINN without considering the resistivity 
model (Figs. 6d and 11d). On the other hand, the prediction errors for T 
were decreased when the true resistivity model was used (Figs. 6d and 
11d). The prediction errors for P at the interpolation/extrapolation 
depth interval slightly increased regardless of whether the CSAMT re-
sistivity model or the true resistivity model was used (Figs. 6b, e, 11b 
and 11e). 

We further considered a situation in which the permeabilities K 
could not be obtained in half of the well section. Rock core samples are 
commonly not retrieved from all sections along wells owing to budget 
limitations and/or geological conditions. When the number of wells 
analyzed was five and the CSAMT resistivity model was incorporated, 
the prediction errors for the logarithm of K were 0.51% ± 0.15% and 
1.5% ± 0.15% in the interpolation and extrapolation depth intervals, 
respectively. On the other hand, the PINN error for K without the 
incorporation of the resistivity model was 0.88% ± 0.23% (interpola-
tion) and 2.5% ± 2.5% (extrapolation). The results demonstrate that the 
sparsely acquired K results in the increasing error of the predicted K; 
however our results further showed that the error reduction for K by the 
resistivity model was more significant when a part of K was not 
acquired. 

5. Discussion 

5.1. Prediction error reduction in the extrapolation region by the PINN 

To better understand why the predicted T in the unexplored region 
was greatly improved by using the PINN, we plotted the histories of each 
loss (Fig. 12). We found that the loss function of the training and vali-
dation data decreased and converged over epochs (Fig. 12a). Among the 
predicted T, P, and K values produced by the PINN, the losses of P and K 

converged earlier than the loss of T. In addition, the convergence of the 
losses of mass, energy conservation, and boundary conditions was 
relatively slow compared to the losses of P and K, while they had almost 
a similar decay with the loss of T (Fig. 12b–d). These convergence pat-
terns may indicate that T is an influential quantity in terms of the 
convergence of the PINN loss. This may explain why the prediction error 
for T decreased more significantly when using the PINN compared to the 
other parameters (P and K). In addition, the loss histories showed that 
the magnitude of losses, including derivatives (e.g., mass, energy con-
servation, and Neumann boundary condition), were different from the 
loss magnitude of the variables without derivatives (e.g., T, P, and K 

Fig. 12. Examples of the loss magnitudes of the PINN over epochs: (a) losses of 
training and validation data; (b) losses of temperature (T), pressure (P), and 
permeability (K); (c) loss of mass conservation; (d) loss of energy conservation; 
(e) loss of Dirichlet boundary condition; and (f) loss of Neumann bound-
ary condition. 
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alone) (Fig. 12). This difference in the loss magnitudes justifies the 
weighting and calibration coefficients (κ, ν1, ν2) introduced in Eq. (6) to 
compensate for the imbalance in the loss magnitude. 

The prediction of the extrapolation regions produced by the NN was 
performed using only the observed pattern. As the observed T and K in 
the synthetic wells do not represent the overall pattern in the base 
synthetic model used, we speculated that the predictions by the NN at 
the extrapolation depth range were biased. In fact, even as the number of 
wells increased, the extrapolation error by the NN did not necessarily 
decrease (Fig. 6d–f). Considering these points, a conventional NN may 
not be able to accurately predict T, P, and K in unexplored regions based 
on convective temperature patterns at shallow observations, whereas 
the PINN approach additionally utilizes mass and energy conservation as 
well as boundary conditions, supporting predictions in unexplored re-
gions. In fact, the T returned by the PINN at unexplored regions exhibit 
smaller error than those by the conventional NN (e.g., T3b and T3d in 
Fig. 5, T3b and T3d in Fig. 9). On the other hand, the conventional NN 
successfully predicted P at the extrapolation depth interval, as P 
exhibited a regular hydrostatic pattern at both the observed and non- 
observed locations. Nevertheless, even for the T predicted by the 
PINN, a small amount of error remained at locations away from the wells 
(e.g., T3b and T3d in Fig. 5, T3b and T3d in Fig. 9). As indicated in 
previous studies [12,55], this tendency for the error to increase as the 
distance from the well increases is a characteristic of temperature pre-
diction using the NN-based method. Our results showed that such errors 
were reduced by using the PINN. 

5.2. Effect of the physics constraints and boundary conditions in the PINN 
loss function 

To investigate the influence of the losses of conservation laws (Eqs. 
(8) and (9)) and boundary conditions (Eqs. (10) and (11)), we conducted 
PINN training and prediction in the first scenario of the 1 km × 1 km 
model when (i) the losses of the boundary conditions were excluded 
from Eq. (6) (i.e., mass and energy conservations were considered in 
addition to the square errors of observations) and (ii) the losses of mass 
and energy conservations were excluded from Eq. (6) (i.e., the boundary 
conditions were considered in addition to the square errors of the ob-
servations). In case (i), the losses of mass and energy conservation were 
almost the same as those when all physics information (Eq. (6)) were 
considered for the loss function (Table 1). However, the errors for T were 
worse than those obtained when all physical information was considered 
(Table 1). In case (ii), the errors in T were comparable to those obtained 
when considering all physics and boundary conditions (Table 1). On the 
other hand, the predicted T, P, and K followed the mass and energy 

conservation laws to a lesser extent, and the losses of the conservation 
laws were larger than those predicted by the NN (Table 1). Based on the 
above results, we conclude that the loss functions for mass and energy 
conservation improve predictions that satisfy these conservation laws, 
whereas the losses for boundary conditions improve the accuracy of 
predictions, especially at unexplored regions. 

5.3. Spatial characteristics of the predicted permeabilities 

To understand the spatial characteristics of the predicted K, we 
produced an empirical variogram of the predicted permeabilities. To 
obtain the variogram of the heterogeneous component, the regular 
component shown in Eq. (13), was subtracted, and the empirical var-
iogram was derived from the remaining permeability component. The 
sill and range of the variogram were derived from the best-fit spherical 
variogram. 

The semivariogram, sill and range of the predicted K produced using 
the PINN are in Fig. 13b–d and Table 2. Considering the sill and range of 
the reference permeability (Fig. 13a, Table 2), respectively, the sill and 
range of the predicted K were almost consistent with the reference when 
the number of wells was five or eight; however, the values predicted 
when the number of wells was three were much larger than the reference 
value. In other words, the spatial roughness of the reference perme-
ability structure was accurately predicted when five and eight wells 
were used, whereas the spatial patterns of the predicted K from three 
wells were considerably smoother (did not have a fine structure) than 
those of the reference permeabilities. Therefore, when the number of 
wells was three, discrepancies were observed between the reference 
permeabilities and those returned by the PINN among wells (K3b in 
Fig. 5), whereas these discrepancies were not significant when the 
number of wells was five or eight (K5b and K5d Fig. S5). The discrep-
ancies of the predicted and reference temperatures among wells when 
the number of wells was small (three or five) could also be caused by the 
spatial roughness depending on the number of wells (T3b in Fig. 5, T5b 
in Fig. S5). 

The sill and range of the quantities predicted by the PINN were 
similar to those predicted by the conventional NN (Table 2). The sill and 
range of the predicted K values from the three wells were also consid-
erably larger than the reference values. As the sill and range of the K 
predicted when using either the PINN or NN were similar, we conclude 
that the PINN predictions do not refine the spatial structure. 

The difference in the spatial structure between the three wells and 
the other well numbers analyzed could be explained by the sill and range 
of permeabilities at the wells (Fig. 13e–g and Table 2). Owing to the 
sparse well locations in the case of the three wells analyzed, the sill and 
range were extremely high and the spatial structure of the K was not 
properly represented. However, the sill and range were at reasonable 
levels when the number of wells analyzed was five or more. From these 
results, we note that the spatial roughness of the predicted quantities is 
restricted by the number of wells and their spatial density. 

Our results also suggest that the predicted distribution of K was 
affected by the direction of the well. The results using the model with 
block boundaries (the 6 km × 3 km model in Fig. 3d–f) showed that 
horizontal boundaries were predicted by the PINN, whereas near- 
vertical boundaries could not be accurately predicted. This may be 
because the vertical wells used in this study did not allow for dense 
observation of the boundary. With multiple wells inclined at an angle at 
which such boundaries could be observed, vertical boundaries could 
potentially be predicted as well. 

5.4. Utility of the CSAMT resistivity model 

According to our prediction results shown in Section 4.3, the incor-
poration of the resistivity model into the PINN approach helps decrease 
the prediction error for K. The resistivity model used was effective in 
reducing the error for K because K is one of the most influential 

Table 1 
Summary of the losses of the conservation laws and the error for T at the 
extrapolation depth interval (i) when only the conservations of mass and energy 
were considered and (ii) when only the boundary conditions were considered in 
addition to the observation mismatch. The percentage of the conservation losses 
was obtained with respect to the predictions by the conventional NN (see section 
4.1.1).  

(i) Conservations of mass and energy & 
observation mismatch 

3 wells 5 wells 8 wells 

The percentage of mass conservation loss 1.8% 1.5 ×
10− 2% 

1.5 ×
10− 2% 

The percentage of energy conservation loss 1.8% 1.5 ×
10− 2% 

1.5 ×
10− 2% 

The error of T at the extrapolation region 15.4% 13.7% 11.7%  

(ii) Boundary conditions & observation 
mismatch 

3 wells 5 wells 8 wells 

The percentage of mass conservation loss 392.9% 772.4% 859.6% 

The percentage of energy conservation loss 390.2% 747.0% 840.8% 
The error of T at the extrapolation region 8.1% 5.9% 4.8%  
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parameters on rock resistivity. In addition, the prediction errors for T 
and K were influenced by the accuracy of the resistivity model. The 
resistivity model obtained by the CSAMT method does not strictly 
reproduce the true resistivity structure owing to the ill-posed nature of 
the MT inversion. Therefore, when the true resistivity model (i.e., re-
sistivities obtained directly from the synthetic model without using the 
CSAMT inversion) was used, the loss of T and K was much reduced. The 
prediction error of P was not significantly decreased even when the true 
resistivity model was used, likely because electrical resistivity of rock is 
less sensitive to pressure. Considering all the results, we conclude that an 
approach that incorporates the CSAMT (or MT) resistivity model in the 
PINN is promising as it reduces the prediction errors of T and K. As the 
effectiveness of the resistivity model depends on its accuracy, a refining 
strategy for the resistivity model may, for example, involve calibrating 
the resistivity model using resistivity logs and/or using newly proposed 
MT inversion algorithms; these are promising options. In addition to the 
precision of the resistivity model, we note that a proper understanding of 
the rock physics parameters (for example, m in Eq. (15)) is important for 
accurately predicting the quantities. Further, as the influence of the 

resistivity model was prominent when a part of K were not acquired, we 
envision the usefulness of the CSAMT (or MT) resistivity model in real 
field applications as it can supplement sparsely acquired K observations. 

6. Conclusions 

Being able to predict temperature, pressure, and permeability at 
depth is critical to the understanding of natural-state geothermal sys-
tems. However, measurements of these variables are limited to locations 
in wells, beyond which the spatial distribution of these quantities is not 
known or easily predictable. In this study, we developed a physics- 
informed neural network (PINN) framework for inverse modeling of 
temperature, pressure, and permeability. The proposed method is data- 
driven in that these quantities are predicted purely by observed data. In 
addition to the existing data-driven approaches, we have for the first 
time incorporated the physics-driven approach by obeying the conser-
vation laws of mass and energy, as well as boundary conditions. 

Our validation results using 2D synthetic data of geothermal systems 
demonstrated that the proposed PINN reduced the prediction errors, 

Fig. 13. (a) An empirical (blue dots) and best-fit theoretical (a black line) variogram of the synthetic reference permeabilities (K) (the 1 km × 1 km model with β =
6.0 in Eq. (14)). Empirical variograms of the predicted permeabilities from scenario 1, using the PINN, when the number of wells analyzed was (b) three, (c) five, and 
(d) eight. Empirical variograms of the permeabilities at well locations from the scenario 1 of the 1 km × 1 km model, when the number of wells analyzed was (e) 
three, (f) five, and (g) eight. We used a spherical model with a nugget of 0 for these theoretical variograms. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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especially in the vertically and horizontally unexplored areas, compared 
to the conventional neural network (NN). Furthermore, the losses of 
mass and energy conservation were decreased by the proposed PINN, 
which yields a physically more plausible prediction. The improvement 
in the permeability prediction by the PINN was less prominent than the 
temperature prediction, and further permeability along wells is some-
times difficult to acquire in geothermal fields. To overcome these limi-
tations, we showed that the utilization of a resistivity model obtained by 
the magnetotellurics (MT) survey, which is generally acquired in 
geothermal fields, reduces the permeability prediction error. Although 
the effectiveness of the resistivity model depends on the accuracy of the 
MT inversion, recent improvements in the accuracy of the MT inversion 
would enhance the effectiveness of the approach. 

Our results demonstrate the significant impact of the PINN approach 
by combining both data- and physics-driven approaches for geothermal 
modeling. The extension of this method to 3D modeling is straightfor-
ward. One of the limitations of the proposed method is that it does not 
incorporate the geological knowledge of the target site, and this will be a 
topic for future research. We believe that the extension of the proposed 
approach will be beneficial for inverse modeling in various problems in 
energy science and engineering. 
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