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Abstract

Gyrokinetic simulations are required for the quantitative calculation of fluxes by tur-
bulence, which dominates over other transport mechanisms in tokamaks. However,
nonlinear gyrokinetic simulations are computationally expensive. Amultimodal con-
volutional neural network model that reads images and values generated by nonlinear
gyrokinetic simulations and predicts electrostatic turbulent heat fluxes was developed
to support efficient runs. The model was extended to account for squared electro-
static potential fluctuations, which are proportional to the fluxes in the quasilinear
model, as well as images containing fluctuating electron and ion distribution func-
tions and fluctuating electrostatic potentials in wavenumber space. This multimodal
model can predict the time and electron and ion turbulent heat fluxes corresponding
to the input data. The model trained on the Cyclone base case data successfully pre-
dicted time and fluxes not only for its test data, but also for the completely different
and unknown JT-60U case, with high accuracy. The predictive performance of the
model depended on the similarity of the linear stability of the case used to train the
model to the case being predicted.
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1 INTRODUCTION

In magnetically confined plasma devices, the transport of particles, heat, and momentum should be reduced to achieve good
plasma confinement. Experiments and simulations showed that in tokamaks, turbulent transport, which is driven by turbulence,
predominates among transport mechanisms in most cases in tokamaks. Over the years, research has been conducted to eluci-
date the detailed characteristics of turbulent transport and its reduction mechanisms. One of the powerful tools for tackling this
problem is a local flux-tube gyrokinetic simulation code, which solves Vlasov-Maxwell equations with respect to the perturbed
distribution function f̃ in the phase space with the assumption that the equilibrium distribution function f0 is fixed. Numer-
ous local flux-tube gyrokinetic codes have been developed, including GS2 [1], GYRO [2], CGYRO [3], GENE [4], GKW [5], and
GKV [6]. In this study, we used the GyroKinetic Vlasov simulation code (GKV). GKV has been extensively employed to investi-
gate turbulent transport physics and quantify turbulent fluxes: finite-� dependence of electromagnetic turbulent transport [7], the
ion-temperature-gradient (ITG) driven turbulent tungsten transport [8], and cross-scale interaction between small- to large-scale
turbulence [9–11].
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Similar to other codes, GKV tracks the nonlinear evolution of a perturbed distribution function f̃ at a single spatial location
as an initial value problem by solving [6]

)f̃
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e∇Φ
Ti

f0 + C(f̃ ), (1)

where b, B0, c,Φ, e, Ti, andΩi are the unit vector parallel to the magnetic field, the magnetic field strength on the magnetic axis,
the speed of light, the electrostatic potential averaged over the gyromotion, the elementary charge, the ion temperature and the
ion cyclotron frequency, respectively. Here v∥, vd , v∗, and � are the parallel speed, the magnetic drift velocity, the diamagnetic
drift velocity, and the magnetic moment, respectively. Furthermore, {…} is the Poisson brackets, C is the linearized collision
term, and f0 is the local Maxwellian. Note that the subscripts s denoting the particle species are dropped for the sake of sim-
plicity. Even though the numerical cost of a local flux-tube gyrokinetic simulation is less than that of a full-f global gyrokinetic
simulation dealing with the evolution of f (= f0 + f̃ ) in an entire spatial domain, it generally takes a few to several dozens of
hours to complete a nonlinear calculation using thousands of central processing units (CPUs). Furthermore, in the studies de-
scribed above, a multiscale gyrokinetic simulation simultaneously covering turbulence from low to high wavenumber spectra
takes from tens of hours to weeks to complete even when using tens of thousands of CPUs in a modern powerful large-scale
supercomputer like Fugaku. Specifically, a GKV multiscale simulation shown in [11] used 2,560 nodes in Fugaku and took 250
h, i.e., 640 thousand nodehours, wherein each node in Fugaku had 48 computation cores. The vast amount of required com-
putational resources hinders the systematic surveying of input parameter sets and from performing multiple cases for model
validation activities [12]. The rapid prediction of turbulent fluxes is also required from the aspect of predicting plasma profiles
with a transport code. Even though frameworks, such as TGYRO [13] and TRINITY [14], have been proposed, the prediction of
turbulent fluxes at all radii by nonlinear gyrokinetic simulations is too costly. Rapid computation will enable the direct use of
nonlinear simulation results on a transport code and improve the reliability of profile predictions. Ways to accelerate compu-
tation to overcome the time-consuming calculation problem have been explored. Relying on rapid improvements in computer
performance alone for further reductions in computation time is unrealistic. One approach is to develop a faster code. A GPU-
native local flux-tube gyrokinetic code that uses pseudo-spectral methods in configuration and velocity space has been recently
proposed [15]. The code rapidly predicts fluxes in the Cyclone base case (CBC) [15]. Our alternative approach is to utilize deep
learning techniques with gyrokinetic simulation data.
In a typical nonlinear gyrokinetic simulation, the nonlinearly growing phase of fluctuations appears after the linearly growing

phase and lasts until the fluctuations at all wavenumbers are saturated. The linearly growing phase is defined as a state in
which fluctuations are exponentially growing. In other words, the nonlinear terms in the gyrokinetic equation have not yet taken
significant effect. Fluctuation evolution begins diverging from exponential growth when the simulation enters the nonlinearly
growing phase because nonlinear terms are effective. The fluctuations stop growing continuously at some point and level off on
average afterward even though they continue fluctuating to some degree. This phase is called the saturation phase. Turbulent
fluxes are estimated by averaging them over a certain window of time in the saturation phase. Thus, the simulation must be
continued for some time after the saturation phase appears. This requirement accounts for the considerable amount of time
needed to estimate the turbulent fluxes by gyrokinetic simulations. Given that the saturation phase is the phase involved in flux
calculation, the computation leading up to it is a period of endurance, and thus far, the vast amount of data generated prior to
the saturation phase has been negligibly utilized. Ultimately, computational costs would be significantly reduced if a model that
properly predicts the final saturation level of fluxes or the path to saturation at an early state of the simulation could be developed.
Deep learning techniques have the potential to build such a model. However, if such techniques were to be used, reducing the

large amount of data generated by gyrokinetic simulations to a manageable volume remains necessary. A gyrokinetic simulation
yields the time-series perturbed distribution function for each species in the five-dimensional space, f̃ (kx, ky, z, v∥, �), where
kx and ky denote radial and poloidal wavenumbers, respectively, z is the poloidal angle, v∥ is the parallel velocity and � is
the magnetic moment representing the perpendicular velocity v⟂. The raw output data are the table of numerical values and
are too massive to handle. Once the numerical data are converted into images, the data size can be reduced by any excellent
image compression algorithm then easily handled by deep learning techniques, such as convolutional neural networks (CNNs).
However, if the five-dimensional data are to be imaged, 10 different combinations of images must be produced. Given that
handling all 10 different images at one time is difficult from the standpoint of numerical costs, selecting one type of images
is favorable that best describes the time evolution of fluctuations as a representative is favorable. By scrutinizing the pattern
of fluctuation evolution in gyrokinetic simulations from various aspects, a type of the image depicting |f̃ |2(kx, ky), i.e., the
intensity of f̃ in the wavenumber space, was selected as the best type of image. As will be discussed again in Section 2.1,
|f̃ |2(kx, ky) images are created for multiple v⟂ at z = 0 and v∥ = 0. In our previous work [16], we developed a model based
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on a state-of-the-art CNN model, EfficientNet [17], which can efficiently read images and extract features. EfficientNet has been
optimized for computer vision tasks, such as image classification and object detection. It achieves a balance between accuracy
and computational efficiency through its design, which employs bothmodel scaling and network architecture search. EfficientNet
is a generic name, and EfficientNet-B0 to B7, depending on the complexity of the network, exist. Among these models, we
used EfficientNet-B4 as a basis of our model. Transfer learning and fine-tuning techniques were employed to fit the pretrained
EfficientNet to our input data set, i.e., images of |f̃ |2(kx, ky). Transfer learning is a technique wherein a pretrained model, that
is, EfficientNet-B4 in this context, is repurposed for a different but similar task. By diverting some knowledge learned in the
previous task, the model can be trained faster and acquire better accuracy for a new task. Fine-tuning refers to the process of
partly readjusting the hyperparameters of some top layers or updating the model architecture of a pretrained model by adding
new layers for a new task. Our model can accurately classify the phase and predict the simulation time corresponding to the
input data [16]. It is a new method that could estimate the simulation time from images in the wavenumber space. The model is
a time predictor and outputs the time t corresponding to the input data. The actual output is scaled to the [0, 1] range, t̄, where
t̄ = 0 corresponds to the initial time of a simulation and t̄ = 1 is the onset time of turbulent flux saturation. Here, t is in R∕vtp
units, where R is the major radius at the axis and vtp is the proton thermal speed.
Despite its ability to predict time with high accuracy, predicting turbulent heat fluxes with the time predictor at that time

is virtually impossible. In actuality, images of |f̃ |2(kx, ky) used as the input of the time predictor are normalized with the
maximum value of |f̃ |2 at each time. Each input image is therefore only a relative intensity distribution in the (kx, ky) space and
does not contain information associated with any kind of absolute value. Two main reasons for normalizing images exist. The
first is to recognize a change in the fluctuation intensity map over time in the wavenumber space. In gyrokinetic simulations,
fluctuation intensity varies by several orders of magnitude from the beginning of the simulation to just before saturation. If the
image is generated on a scale that can represent the maximum value throughout the simulation, the pattern would be completely
unreadable from an image with lower intensity. The images should be normalized to extract meaningful information, even from
images in the early stage. The second reason is to apply the trained model to a case that is different from the data on which it
was trained. A maximum value is different in each case. Without normalization, the same color would correspond to different
intensities in each case because gradation varies within the range of values contained in the data. Hence, having the images
include the magnitude of fluctuations to predict fluxes is inadequate.
In the prediction of turbulent heat fluxes, the model input should include information on the absolute value of some quantities,

such as the intensity of potential fluctuations �̃ or f̃ . Here, �̃ can be determined by the quasi-neutrality condition with f̃ [6], and
the definition of the turbulent heat fluxes in GKV is consulted in [6]. We therefore develop a multimodal model. A multimodal
model generally learns representations from different types of modalities, such as images, texts, sounds, and numerics, within
the same model. The model being developed should be able to read and digest two types of modalities: an image and a numerical
value. Our multimodal model is thus anticipated to gain the ability to predict fluxes even for an unknown case. That is, the model
can predict fluxes by acquiring generalization to flux predictions to previously unseen data sets, where they have similar enough
structure in the distribution functions to the training data sets. This paper describes the development of a multimodal model that
can properly predict turbulent heat fluxes in growing phases. This model is a milestonet toward the ultimate goal of predicting
the final saturated fluxes from data in an early phase of a simulation even for an unseen case.
The rest of this paper is organized as follows. Section 2 details the architecture of a multimodal model. In Section 3, the model

trained on the GKV simulation data for the CBC [18], hereafter dubbed CBC data, was examined to assess the performance of
the model in flux prediction. Section 4 describes the application of the CBC-trained model will be applied to unknown cases,
that is, GKV simulation data for JT-60U plasma. The differences between the cases in which it had good or poor prediction
performance were also investigated. Finally, the conclusions and discussion are presented in Section 5.

2 MULTIMODAL MODEL

The model was implemented in Python by using TensorFlow 2.8.0. The multimodal model was developed by extending the
input of the model introduced in a previous paper [16] This model uses images as input to infer simulation time, as explained in
Section 1. Given that in principle, the CNN part of the multimodal model is similar to the previous one, one may consult the basis
of the CNN in Section 3 of [16]. Here, we will explain the parts of the model that have been extended to handle multimodality.
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Figure 1 Scheme for processing a pseudo color image stacking the monochrome images of |f̃e|2, |f̃i|2 and |�̃|2 in the (kx, ky)
space.

2.1 Input and label data
As in [16], the data in the linearly and nonlinearly growing phases were used in this study and those in the saturation phase were
not used. The output of the multimodal model was the simulation time t and the electron and ion turbulent heat fluxes Qe and
Qi, respectively. Note that the heat flux Qs for species s used throughout this work is the one in neTivtp(�tp∕R)2 unit and �̃
in �tpTi∕(eR) unit. Here, ne is the electron density, Ti is the ion temperature and �tp is the proton Larmor radius. Adequately
choosing which sort of images and which numerical data will be used as the input of the multimodal model is necessary. The
quasilinear formulation in principle leads to the expression of turbulent fluxes in proportion to the square of the fluctuating
electrostatic potential (see e.g., [19]): QEs ∼ |�̃|2, where QEs is the turbulent heat flux driven by the electrostatic fluctuations.
Hereafter, the electrostatic part of the fluxes is the sole focus because it usually predominates over the electromagnetic part.
|�̃|2 is naturally chosen as the numerical data input. Given that |�̃(kx, ky)|2 is apparently a two-dimensional quantity in the
wavenumber space, numerous ways to reduce the dimension of |�̃|2 to a zero-dimension data are available. Here, we define |�̃|2
as

∑

kx,ky
⟨|�̃(kx, ky)|2⟩, where ⟨⋅⟩ is the flux-surface average.

Although the amplitude of the heat fluxes can now be roughly inferred from |�̃|2, predicting the heat flux for each species
without information that helps distinguish between electron and ion heat fluxes remains difficult. In a previous work, images of
ion |f̃ |2, i.e., |f̃i|2, were solely fed to the model. However, they were apparently insufficient for the individual prediction of the
electron and ion turbulent heat fluxes by the model because they did not include information on electrons. Not only images of
|f̃i|2, as was done in the previous work but also those of |f̃e|2 and |�̃|2, should be used as the input of the multimodal model.
The images of |�̃|2 and |f̃e|2 are also normalized in the same manner as those of |f̃i|2. However, this situation does not directly
mean that we can exploit three CNNs for three kinds of images. Even the relatively compact EfficientNet-B4 is still a large model
with tens of millions trainable parameters [17], and a single model equipped with three CNNs would be too large and complex to
handle. The red-toned image used for the previous model contained only information on the normalized |f̃i|2 distribution [16].
We see that the image needs not have red-based tones; only black and white shade information is sufficient. A red, green, and
blue image contains three color channels, and each color channel is stacked to create a natural-colored image. In other words, an
image is a three-dimensional (3D) tensor, and each color channel of the image is a two-dimensional (2D) tensor with information
on intensity. Therefore, the 2D tensors of |f̃e|2, |f̃i|2, and |�̃|2 can be stacked to form a 3D tensor as a three-color channel image,
as shown in Figure 1. This 3D tensor is not literally an image, but given that it has the same format as an image in the program,
we call it a "pseudo" color image and use it as input for the multimodal model. It must have information on |f̃e|2, |f̃i|2, and |�̃|2.
Thus, feeding a single pseudo color image to a CNN is enough to take in three kinds of information.
Finally, as explained in Section 3 of [16] in detail, at each time the multiple images corresponding to the different perpendicular

velocities v⟂ are generated with the parallel velocity v∥ = 0 and the poloidal angle z = 0 fixed. v∥ = 0 and z = 0 were selected
because fluctuation amplitudes are usually large there regardless of time. Multiple values are allowed for v⟂ because increasing
the number of images used for training is advantageous, and a representative value of v⟂ does not seem to exist. This fact should
be kept in mind when examining Figure 4, 6 and 7.
The label data, called the output data in inference mode, are the normalized time t̄, as explained in Section 1, and the electron

and ion turbulent heat fluxes Qe and Qi. Qe and Qi are individually standardized by rescaling their distributions such that their
means are zero and standard deviations are unity, respectively, prior to feeding them to the model.
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Figure 2 Schematic explanation of the model architecture.

2.2 Model architecture
The model reads two kinds of inputs, viz., numerical values of |�̃|2 and images, and should therefore be equipped with two
sets of layers corresponding to these inputs. The array of numerical values can be appropriately processed by a fully connected
feedforward neural network model, namely, a multilayer perceptron (MLP). The input layer for the |�̃|2 data is the dense layer
with a sole unit, followed by three hidden layers with 256, 256 and 128 units. The layers of the Swish activation function are
sandwiched between each hidden layer and the dropout layer with a rate of 0.2 is added after the final hidden layer. The images
are fed into the input layer of EfficientNet-B4 pretrained on ImageNet, and the processed feature vector is output through the
global average pooling layer. Here, ImageNet is a large image database with adequate labels and includes approximately amillion
images. Then, the feature vectors generated by the MLP and CNN are concatenated and subsequently fed to three MLPs, each
of which predicts a different quantity, i.e., t̄,Qe andQi. The architecture of the MLPs for t̄,Qe andQi is almost the same as that
for the |�̃|2 input except that the additional layers normalizing the activations of the previous layer, i.e., the LayerNormalization
layers. The activation layers settled right before the output layers exploit the sigmoid and linear activation functions for time and
fluxes, respectively. The selection of these activation functions depends on the normalization method of label data, as described
in Section 2.1. Figure 2 provides a schematic explanation of the architecture of the whole multimodal model.
The image data set is augmented on the fly in a similar manner that is explained in Section 3 of [16], except that the empty areas

that emerge when the image is rotated or shifted are filled in with zeros other than with the nearest pixel values. This choice
was made through trial and error, which revealed that prediction performance is clearly improved when filling with the constant
values, say, zeros, than with the neighboring values.
EfficientNet-B4 consists of sevenmajor blocks [17]. In contrast to those in a previous study [16], theweights and biases pretrained

on ImageNet are frozen up to the first five blocks and those on the remaining blocks are unfrozen such that they can be updated by
training in this work. The number of frozen blocks is determined by parameter survey. The RMSprop optimizer with a learning
rate of 0.0001 and a momentum of 0.9 is used. The learning rate should generally be kept low for transfer learning. The LogCosh
function is adopted as a loss function for all model outputs. It behaves like the mean squared error function but is less affected
by an occasional largely incorrect prediction. We confirmed that using the root mean squared logarithmic error function instead
also works well in our model. Note that the loss contributions of the flux outputs are weighted 10-fold against that of the time
output to attain better flux prediction performance.

3 TRAINING USING CBC DATA AND PREDICTION FOR ITS TEST DATA SUBSET

Themodel developed is trained on CBC data to examine prediction performance. The typical plasma parameters used to generate
this data and those used in Section 4 are the same as parameters in [16]. These are also summarized in Table 1. For obtaining
accurate predictionswith relatively less training data, transfer learning and fine-tuning techniques are employedwhen training the
EfficientNet-B4 part of themodel. The data are randomly split into training, validation, and test data sets using the train_test_split
function twice with a given random seed. The numbers of training, validation, and test data are 2,635, 765, and 391, respectively,
and the batch size is accordingly set to 64. As a result of efficient input pipelining with TensorFlow dataset and autotune APIs,
the training itself ended in less than 15 min on GeForce RTX 3090 depending on the number of epochs to be finished by early
stopping. Figure 3 shows the smooth reduction in the training and validation losses as the number of epochs increases. The
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Table 1 Plasma parameters used for gyrokinetic simulations. The JT-60U plasma parameters are based on the plasma of discharge
number #45072.

case R∕LTe R∕LTi R∕Lne Te∕Ti q s
CBC 6.92 6.92 2.22 1.00 1.40 0.780
JT-60U (A) � = 0.50 7.67 4.70 3.92 1.33 1.52 0.813
JT-60U (B) � = 0.26 4.25 4.64 2.03 1.42 1.09 0.280
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Figure 3 Logarithmic plot of the training and validation losses as a function of epochs.

training is stopped at 56 epochs due to early stopping, which terminates the training when the validation loss does not decrease
for 24 consecutive times. As seen from Figure 3, the minimum validation loss is achieved at 32 epochs. The learning rate is
reduced by

√

0.1 from 10−4 to 10−6 when the validation loss does not decrease for seven consecutive times.
The coefficient of determination is defined as R2 = 1 −

∑n
i=1(yi − ŷi)

2∕
∑n
i=1(yi − ȳi) with the number of data points n,

the true value yi, the predicted ŷi, and the mean ȳi to measure model prediction performance. The R2 values of t̄, Qe and Qi
predictions for the test data are 0.972, 0.9995, and 0.9995, respectively. The regression plots shown in Figure 4 clearly show that
the predicted values, which are presented as red dots in the figure, are almost aligned with the line of slope unity. In Figure 4
(b) and (c), the number of dots in the regression plots of the fluxes appears small relative to the amount of test data because the
fluxes are very small in the linear phase and remain small in most of the nonlinear growing phase, as seen in their logarithmic
graphs in Figure 4 (d) and (e). The model does not predict the true value well in the range of the true flux values less than about
unity. We do not emphasize accurately predicting excessively small fluxes because our aim is to predict fluxes near the saturation
phase as accurately as possible.
This result reveals that the multimodal model can attain the ability to reproduce sufficiently the fluxes and time for the test

data. However, our preliminary work has ensured that the previous model using only images as input could reproduce fluxes
to a certain degree if it is applied to the test data subset. The true value of the multimodal model can be tested only when it is
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Figure 4 Regression plots of the predicted (a) t, (b) Qe, and (c) Qi versus the true ones for the test data with the corresponding
R2. The actual model output t̄ is rescaled to t for visibility. The plots in (d) and (e) are the logarithmic graphs of (b) and (c),
respectively. The number of data points is 391.

applied to data that are not associated with the subset of the data used for training. Hereafter, the multimodal model trained in
this section will be used as is.

4 PREDICTION PERFORMANCE FOR UNKNOWN DATA

As reported in this section, the multimodal model trained on CBC data is applied to the two data sets of JT-60U #45072 at
different radial positions. One data set is the plasma parameter set at � = 0.50, namely, JT-60U (A), and the other data set is the
set at � = 0.26, namely, JT-60U (B). Their parameters are summarized in Table 1. Here, � is the normalized radial coordinate.
For all cases, the evolution of heat fluxes and the linear stability diagram showing the normalized linear growth rate 
 and
the normalized real frequency ! as a function of the normalized ky are shown in Figure 5 (a) and (b), respectively. Knowing
the appearance of the distributions of fluxes in the CBC data set used to train the model before applying it to other data sets
is meaningful. The histogram of Qe and Qi is shown on the right panel in Figure 5 (a3). The horizontal axis represents flux
values and the vertical axis represents the number of data included in each bin. As expected, the distributions of the data do
not look like normal distributions. For electrons and ions, the skewness and kurtosis, which are measures of the deviation from
the normal distribution, are [3.20, 3.14] and [9.57, 9.22], respectively. These values clearly indicate non-normal distributions.
The histograms are almost flat over the entire range and can be called log-uniform distributions, except for the peak observed
only for Qe, which corresponds to the plateau of Qe at approximately t = 10 shown in Figure 5 (a1). The mean and median of
the data set are � = [13.5, 39.7] and Mdn = [1.17, 0.131] for electrons and ions, respectively, but in this kind of distributions
wherein values vary over many orders of magnitude, the mean does not make sense.
Prior to application to unknown cases, we first discuss the results of the model predictions for the CBC data in comparison

with Figure 5 (a3). In gyrokinetic simulations, fluxes take time to rise to near-saturation levels. Therefore, most of the flux values
contained in the data set are inevitably quite small, as shown in Figure 5 (a3), and such small flux values are not predicted very
well by the model, as seen in Figure 4 (b)-(e). On the basis of this prediction result, input data with small flux values may not
have contributed to the prediction of the flux values; However, they may act as a sign of an early phase of a simulation. Thus,
the data with small flux values have helped predict time accurately.
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Figure 5 Plots in the left panel show the evolution of |�̃|2 (yellow with symbols), Qe (purple), and Qi (green) as a function
of time; those in the middle show the linear stability diagrams; and those in the right show the histograms of Qe and Qi for
CBC and the JT-60U (A) and (B) cases. The subfigures embedded in the left panels are magnified plots near saturation, and the
dashed arrows are drawn to facilitate finding peak value magnitudes.

4.1 JT-60U (A) case
Prior to checking prediction performance, the difference between the characteristics of CBC and the JT-60U (A) case shown in
Figure 5 must be examined. From the statistics point of view, � = [50.9, 39.5] and Mdn = [0.405, 0.117] with the skewness
of [2.72, 2.74] and kurtosis of [6.40, 6.50] for electrons and ions, respectively. In Figure 5 (b1), Qe is larger than Qi in the JT-
60U (A) case and the similar is true for CBC until the middle of the nonlinearly growing phase. This implies that the pattern of
flux evolution in the JT-60U (A) case is somewhat different from that in CBC. Immediately before the saturation, all flux peak
values, except forQe in CBC, which is approximately 170, are close to 500. This finding indicates that the model trained on CBC
data has not experienced Qe ≳ 170 but will have to predict such a situation when it is applied to JT-60U (A) data. Therefore,
building a multimodal model has improved the prediction performance for unknown data if the model can predict Qe well even
whenQe ≳ 170. Both the linear stability diagrams in general show typical ITG/TEM behavior, wherein TEM denotes a trapped
electron mode, despite some difference in ! behavior in the low-ky region and in the 
 magnitude.
The predictive performance of the CBC-trained model in the JT-60U (A) case is scrutinized on the basis of differences and

similarities. Regression plots are shown in Figure 6. Despite some variance in t predictions in the early and middle phases, all
three model outputs agree very well with the true values with high R2 values of 0.915, 0.987, and 0.989. It should be noted that
the prediction accuracy decreases for small flux values as the model predictions seem to have a cutoff around 1 to 10. Even in
the region where Qe exceeds approximately 170, Qe can be successfully predicted. Interestingly, the multimodal model trained
on CBC data, wherein Qi is approximately three times larger than Qe at their maximum, successfully reproduced the fluxes in
the JT-60U (A) case, wherein Qi and Qe are comparable. Among the inputs for the model, |�̃|2 is the only information that can
be used to infer flux amplitude, which is of course independent of species. Nevertheless, the successful prediction of the flux of
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𝑅! = 0.915 𝑅! = 0.987 𝑅! = 0.989

(a) 𝑡 (b) 𝑄! (c) 𝑄"

(d) 𝑄! (e) 𝑄"

Figure 6 Regression plots of (a) t, (b) Qe, and (c) Qi predicted by the CBC-trained model versus the true ones for JT-60U (A)
data with the corresponding R2. The plots in (d) and (e) are the logarithmic graphs of (b) and (c), respectively. The number of
data points is 3,587.

each species means that the model can read the difference betweenQe andQi from the image input. In other words, the method
using a pseudo image overlaying |f̃e|2, |f̃i|2, and |�̃|2 images is working effectively. The multimodal model trained on CBC
data can predict t, Qe, and Qi with high accuracy for the unknown JT-60U data when provided with only a set of images and
|�̃|2 values.
As shown in Figure 5 (a3) and (b3), the CBC data containQe peaks at approximately unity, and the model trained on that data

should naturally incorporate information on that peak, whereas the JT-60U (A) data do not contain such peaks there. Figure 6
(b)-(e) show that when applying the CBC-trained model to the JT-60U (A) case, R2 and the predictive tendency between Qe
and Qi are almost the same. This finding indicates that the Qe peaks in CBC data may not affect the predictive performance of
the model on JT-60U (A) data, which do not contain such peaks.

4.2 JT-60U (B) case
We now proceed to the next case, JT-60U (B), where � = [5.87, 17.7] and Mdn = [0.0116, 0.0322] with the skewness of
[2.94, 2.98] and kurtosis of [7.73, 7.98] for electrons and ions, respectively. Figure 5 (c1) shows thatQi always hovers aboveQe
during the entire period before saturation, which is different from that in the JT-60U (A) case and partly different from that in
CBC. In general, the amplitudes of Qe and Qi in the JT-60U (B) case are less than half those in CBC, indicating that the range
of the fluxes in the JT-60U (B) case is well within the range in CBC. Thus, the CBC-trained model has already known more
or less the range in the JT-60U (B) case. The linear stability diagram in Figure 5 (c2) clearly shows that the plasma is stable
in the ky ≲ 0.2 and ky ≳ 0.55 regions and elsewhere the ITG mode solely resides. The relatively smaller growth rate may be
associated with the relatively smaller fluxes in the nonlinear simulation.
Regression plots measuring the prediction performance of the model are shown in Figure 7. These plots indicate poor per-

formance. The R2 values are 0.643, 0.518, and 0.555. In time prediction, the model predicts time farther into the future than it
actually is in the early phase but has better time prediction in the later phase. A similar pattern of predictions is seen in Figure
12 (c) of [16]. For fluxes, as seen in Figure 5 (c1), the amplitudes of the fluxes are at most less than or equal to 10 until t = 50.
This result indicates that most of the flux prediction points visible in Figure 7 (b) and (c) correspond to t > 50. They tend to be
underestimated by a factor of three. Figure 5 (c1) reveals that the fluxes begin to decrease before entering the saturation phase,
whereas |�̃|2 continues to increase. As a result, the series of predictions appear if they are folding back in Figure 7 (b)-(e), and
the predicted values immediately before saturation agree well with the true values. This finding shows that the values close to
their maximum are well reproduced, but those en route to saturation are poorly reproduced. Figure 8 also clearly depicts the
time series of the true and predicted heat fluxes for electrons and ions. The heat fluxes are not successfully reproduced in the
early and middle growing phases wherein the fluxes are approximately less than 10. Where Qe, Qi ≳ 10, they can be predicted
to some extent, but are less than the true values. Just before saturation, both heat fluxes are close to the true values.
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𝑅! = 0.643 𝑅! = 0.518 𝑅! = 0.555

(a) 𝑡 (b) 𝑄! (c) 𝑄"

(d) 𝑄! (e) 𝑄"

Figure 7 Regression plots of (a) t, (b) Qe, and (c) Qi predicted by the CBC-trained model versus the true ones for JT-60U (B)
data with the corresponding R2. The plots i (d) and (e) are the logarithmic graphs of (b) and (c), respectively. The number of
data points is 10,557.
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Figure 8 Time series graph of true heat fluxes for electrons (red) and ions (green) and predicted fluxes for electrons (magenta)
and ions (olive).

The patterns of evolution that emerge in the linear and nonlinear growing phases vary depending on the dominant instability.
The model does not reproduce the JT-60U (B) case well likely because the dominant instability of the CBC data used to train
the model, viz., ITG/TEM, is different from this case, viz., pure ITG, as already suggested in a previous work [16].

5 CONCLUSIONS AND DISCUSSION

A previously developed CNN-based model was extended to a multimodal model to predict the turbulent heat fluxes of electrons
and ions and time. In addition to images, this model can read |�̃|2 values as the absolute value inputs, which are directly
linked to the heat flux in quasilinear modeling. The developed multimodal model was trained on CBC data, and it showed good
performance for not only the CBC test data but also for the data based on the parameters taken from JT-60U #45072 at � = 0.50,
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i.e., the JT-60U (A) case. Notably, the model was able to predict fluxes with high accuracy despite having no knowledge of the
JT-60U (A) case. This result demonstrates the applicability of the multimodal model for supporting gyrokinetic simulations.
However, the model performed poorly on the data which had dominant instability different from the CBC data, i.e., the JT-60U
(B) case. In a previous work [16], pure ITG CBC and pure TEM CBC were additionally prepared and tests were done by applying
the model to these cases. In this work, the multimodal model was not applied to these cases, but it can be attempted in future.
However, we now understand that to obtain better prediction performance, multiple models trained on various data with different
dominant instabilities must be prepared as representatives, and the best one must be employed for prediction based on a linear
stability analysis performed in advance. The similarity of the linear stability between the data used for model training and for
prediction may be a certain measure of the distance between data sets and hints at predictive performance.
A considerable amount of work remains for the future. As stated in Section 1, our ultimate goal is to develop a predictor of

saturated fluxes based on a limited time-series of early-phase nonlinear simulation data. We are developing a combined recurrent
neural network and CNN model to predict future flux on the basis of early-phase data by making use of the knowledge gained
from the developement of the CNN-based multimodal model.
A gyrokinetic simulation outputs not only heat flux but also particle and momentum fluxes when the kinetic electron response

is included. This study solely focused on the prediction of the heat flux for a proof-of-principle experiment, but in principle the
predictions of the particle and momentum fluxes are possible in the same manner.
In this work, the model was trained solely on the well-known CBC data. However, this choice of data may not be always the

best for this purpose. First, training on a variety of data sets may result in a more robust model. We will attempt to test this
approach in the near future. Second, the time of the |�̃|2 peak coincides with that of the Qe and Qi peaks in CBC, whereas in
the other two cases the fluxes decrease before |�̃|2 culminates. Deviations of the peak positions between |�̃|2 and fluxes must
influence prediction performance because folding back in flux prediction has been observed in both JT-60U cases, as seen in
figure 6 and figure 7. Whether the selection of |�̃|2 as input is appropriate to reproduce fluxes is also an issue. Some velocity
space moments of the distribution functions can be used as input because the fluxes to be predicted are the quantities integrated
over the distribution functions. Furthermore, the linear and nonlinear cross-phases have been suggested to agree well, and cross-
phases could be a good quantity for the comparison of linear gyrokinetic simulations with experimental measurements [20]. Recall
that the electrostatic turbulent heat flux could be written as QEs,ky ∼ ky

∑

kx
⟨|p̃||�̃| sin �p̃,�̃⟩, where the brackets denote the flux-

surface average and �p̃,�̃ is defined as the cross-phase between the pressure fluctuation p̃ and �̃ [20]. Therefore, it is possible to
develop a multimodal model, that reads the numerical values |p̃|, |�̃| and the images of their cross-phases as input, to predict
fluxes. Such a model is under development, and the results will be reported in the near future. Moreover, the outcome of a
previous study [20] showing that cross-phases obtained through linear and nonlinear simulations are in agreement may help lead
to the development of a model that can properly estimate saturated fluxes with information obtained by linear calculation.
Finally, we should mention the existence of long-time-scale dynamics in the saturation phase in gyrokinetic simulations [21].

The literature shows the cases in which the turbulence state essentially changes after saturation. Thus far, we have attempted
to predict the fluxes in the saturation phase utilizing only the data before the saturation. Therefore, we anticipate that this
phenomenon cannot be recovered by our approach. Developing a model that incorporates the data generated in the saturation
phase to predict the final turbulence level is a future challenge.
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